

1 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MS-COMA-Diff]:

Component Object Model Plus (COM+) Remote
Administration Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this

documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.

However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map.
▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

9/28/2007 0.1.1 Editorial Changed language and formatting in the technical content.

10/23/2007 0.1.2 Editorial Changed language and formatting in the technical content.

11/30/2007 0.1.3 Editorial Changed language and formatting in the technical content.

1/25/2008 0.1.4 Editorial Changed language and formatting in the technical content.

3/14/2008 0.1.5 Editorial Changed language and formatting in the technical content.

5/16/2008 0.1.6 Editorial Changed language and formatting in the technical content.

6/20/2008 1.0 Major Updated and revised the technical content.

7/25/2008 1.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 1.0.2 Editorial Changed language and formatting in the technical content.

10/24/2008 1.1 Minor Clarified the meaning of the technical content.

12/5/2008 1.2 Minor Clarified the meaning of the technical content.

1/16/2009 2.0 Major Updated and revised the technical content.

2/27/2009 2.1 Minor Clarified the meaning of the technical content.

4/10/2009 2.2 Minor Clarified the meaning of the technical content.

5/22/2009 2.2.1 Editorial Changed language and formatting in the technical content.

7/2/2009 2.2.2 Editorial Changed language and formatting in the technical content.

8/14/2009 2.2.3 Editorial Changed language and formatting in the technical content.

9/25/2009 2.3 Minor Clarified the meaning of the technical content.

11/6/2009 2.3.1 Editorial Changed language and formatting in the technical content.

12/18/2009 2.3.2 Editorial Changed language and formatting in the technical content.

1/29/2010 2.4 Minor Clarified the meaning of the technical content.

3/12/2010 2.5 Minor Clarified the meaning of the technical content.

4/23/2010 3.0 Major Updated and revised the technical content.

6/4/2010 4.0 Major Updated and revised the technical content.

7/16/2010 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 5.0 Major Updated and revised the technical content.

10/8/2010 6.0 Major Updated and revised the technical content.

11/19/2010 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Date
Revision
History

Revision
Class Comments

1/7/2011 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 6.1 Minor Clarified the meaning of the technical content.

9/23/2011 7.0 Major Updated and revised the technical content.

12/16/2011 8.0 Major Updated and revised the technical content.

3/30/2012 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 8.1 Minor Clarified the meaning of the technical content.

11/14/2013 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 9.0 Major Significantly changed the technical content.

10/16/2015 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 10.0 Major Significantly changed the technical content.

9/15/2017 11.0 Major Significantly changed the technical content.

12/1/2017 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Table of Contents

1 Introduction .. 10
1.1 Glossary ... 10
1.2 References .. 14

1.2.1 Normative References ... 14
1.2.2 Informative References ... 15

1.3 Overview .. 16
1.3.1 Background ... 17
1.3.2 Catalog ... 17
1.3.3 Catalog Versions and Partition Support .. 19
1.3.4 Role-Based Security Configuration .. 19
1.3.5 Bitness .. 21
1.3.6 Registration ... 21
1.3.7 Export and Import .. 21
1.3.8 Instantiation Concepts... 22
1.3.9 Instance Load Balancing .. 23
1.3.10 Protection of Configuration State .. 23
1.3.11 Events ... 23
1.3.12 Replication ... 24

1.4 Relationship to Other Protocols .. 24
1.5 Prerequisites/Preconditions ... 25
1.6 Applicability Statement ... 25
1.7 Versioning and Capability Negotiation ... 26
1.8 Vendor-Extensible Fields ... 26
1.9 Standards Assignments ... 26

2 Messages ... 30
2.1 Transport .. 30
2.2 Common Data Types .. 30

2.2.1 Table Formats .. 31
2.2.1.1 fTableFlags ... 31
2.2.1.2 eDataType ... 31
2.2.1.3 eSpecialQueryOption ... 32
2.2.1.4 QueryCell ... 32
2.2.1.5 QueryCellArray ... 33
2.2.1.6 QueryComparisonData ... 34
2.2.1.7 PropertyMeta .. 35
2.2.1.8 fPropertyStatus... 36
2.2.1.9 TableEntryFixed .. 37
2.2.1.10 TableDataFixed ... 39
2.2.1.11 eTableEntryAction ... 39
2.2.1.12 TableEntryFixedWrite .. 40
2.2.1.13 TableDataFixedWrite ... 40
2.2.1.14 TableEntryVariable .. 41
2.2.1.15 TableDataVariable ... 42
2.2.1.16 TableDetailedError .. 42
2.2.1.17 TableDetailedErrorArray ... 43

2.2.2 Property Formats .. 43
2.2.2.1 Placeholder Property Formats ... 44

2.2.2.1.1 PlaceholderPartitionIdProperty .. 44
2.2.2.1.2 PlaceholderGuidProperty .. 44
2.2.2.1.3 PlaceholderStringProperty .. 44
2.2.2.1.4 PlaceholderIntegerProperty ... 45

2.2.2.2 ImplementationSpecificPathProperty ... 45
2.2.2.3 Threading Model Property Formats .. 45

2.2.2.3.1 ThreadingModelEnumerationProperty ... 46

5 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.2.3.2 ThreadingModelStringProperty .. 47
2.2.2.4 ScriptingProgramIdProperty ... 47
2.2.2.5 BitnessProperty .. 47
2.2.2.6 NameProperty .. 48
2.2.2.7 DescriptionProperty ... 48
2.2.2.8 ContextFacilityProperty .. 48
2.2.2.9 BooleanProperty ... 49

2.2.2.9.1 BooleanBitProperty .. 49
2.2.2.10 Pool Size Property Formats ... 49

2.2.2.10.1 MinPoolSizeProperty .. 49
2.2.2.10.2 MaxPoolSizeProperty .. 49

2.2.2.11 Timeout Property Formats .. 50
2.2.2.11.1 LongTimeoutInSecondsProperty .. 50
2.2.2.11.2 ShortTimeoutInSecondsProperty ... 50
2.2.2.11.3 LongTimeoutInMinutesProperty ... 50
2.2.2.11.4 ShortTimeoutInMinutesProperty .. 50

2.2.2.12 ApplicationSpecificStringProperty .. 51
2.2.2.13 ORB-Specific Property Formats ... 51

2.2.2.13.1 ORBSpecificExceptionClassProperty ... 51
2.2.2.13.2 ORBSpecificModuleIdentifierProperty ... 51
2.2.2.13.3 ORBSpecificTypeIdentifierProperty ... 51
2.2.2.13.4 ORBSpecificAlternateLaunchNameProperty ... 52
2.2.2.13.5 ORBSpecificAlternateLaunchParametersProperty.................................. 52
2.2.2.13.6 ORBSpecificCommandLineProperty .. 52
2.2.2.13.7 ORBSpecificWebServerVirtualDirectoryProperty 52
2.2.2.13.8 ORBSpecificSubscriptionFilterCriteriaProperty 53
2.2.2.13.9 ORBSpecificAlternateActivationProperty .. 53
2.2.2.13.10 ORBSpecificProtocolSequenceMnemonicProperty 53

2.2.2.14 TransactionIsolationLevelProperty ... 53
2.2.2.15 ComputerNameProperty ... 54
2.2.2.16 ComputerNameOrAddressProperty .. 54
2.2.2.17 SecurityPrincipalNameProperty ... 55
2.2.2.18 PasswordProperty ... 55
2.2.2.19 YesNoProperty .. 55
2.2.2.20 LegacyYesNoProperty .. 55
2.2.2.21 SecurityDescriptorProperty ... 56

2.2.2.21.1 Component Access Mask Types ... 56
2.2.2.21.1.1 Component Access Constants .. 56
2.2.2.21.1.2 OldVersionComponentAccessMask .. 57
2.2.2.21.1.3 NewVersionComponentAccessMask .. 57

2.2.2.21.2 Component ACE Types ... 57
2.2.2.21.2.1 OldVersionComponentAccessAllowedACE 57
2.2.2.21.2.2 NewVersionComponentAccessAllowedACE 57
2.2.2.21.2.3 OldVersionComponentAccessDeniedACE 58
2.2.2.21.2.4 NewVersionComponentAccessDeniedACE 58
2.2.2.21.2.5 ComponentMandatoryLabelACE ... 58

2.2.2.21.3 Component Access Control List Types .. 58
2.2.2.21.3.1 OldVersionComponentDACL ... 58
2.2.2.21.3.2 NewVersionComponentDACL ... 59
2.2.2.21.3.3 ComponentSACL .. 59

2.2.2.21.4 ComponentSecurityDescriptor ... 59
2.2.2.22 DefaultAuthenticationLevelProperty ... 60
2.2.2.23 ActivationTypeProperty .. 60
2.2.2.24 TrustLevelProperty .. 60
2.2.2.25 DefaultImpersonationLevelProperty ... 60
2.2.2.26 ORBSecuritySettingsProperty.. 61
2.2.2.27 MaxDumpCountProperty .. 62
2.2.2.28 ConcurrentAppsProperty .. 62

6 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.2.29 RecyclingCriterionLimitProperty .. 62
2.2.2.30 MaxThreadsProperty .. 63
2.2.2.31 PortsListProperty... 63
2.2.2.32 Subscription Property Typed Value Formats .. 63

2.2.2.32.1 SubscriptionPropertyTypeProperty ... 63
2.2.2.32.2 SubscriptionPropertyValueProperty .. 64

2.2.3 fModuleStatus .. 64
2.2.4 fComponentStatus .. 65
2.2.5 eComponentType .. 66
2.2.6 SRPLevelInfo .. 66
2.2.7 CatSrvServices ... 66
2.2.8 CatSrvServiceState ... 67
2.2.9 InstanceContainer .. 67

3 Protocol Details ... 69
3.1 Server Details .. 69

3.1.1 Abstract Data Model .. 69
3.1.1.1 Configuration and the ORB ... 69

3.1.1.1.1 Transactions ... 69
3.1.1.1.2 Pooling ... 70
3.1.1.1.3 Role-Based Security ... 70
3.1.1.1.4 Publisher-Subscriber Framework ... 70
3.1.1.1.5 Transport Protocols .. 70
3.1.1.1.6 Instance Load Balancing ... 71
3.1.1.1.7 Configured Proxies... 71
3.1.1.1.8 Transport Security ... 72
3.1.1.1.9 Software Restriction Policy .. 72
3.1.1.1.10 Crash Dump ... 72
3.1.1.1.11 Partitions and Users ... 72
3.1.1.1.12 System Services .. 73

3.1.1.2 Tables ... 73
3.1.1.2.1 Table Metadata ... 73
3.1.1.2.2 Supported Queries ... 73
3.1.1.2.3 Multiple-Bitness Support .. 73
3.1.1.2.4 Table Flags ... 74
3.1.1.2.5 Constraints ... 74
3.1.1.2.6 Default Values... 74
3.1.1.2.7 Internal Properties ... 75
3.1.1.2.8 Write Restrictions .. 75
3.1.1.2.9 Triggers ... 75
3.1.1.2.10 Cascades .. 76
3.1.1.2.11 Populates ... 76

3.1.1.3 Table Definitions ... 76
3.1.1.3.1 ComponentsAndFullConfigurations Table .. 77
3.1.1.3.2 ComponentFullConfigurationsReadOnly Table 85
3.1.1.3.3 ComponentLegacyConfigurations Table .. 88
3.1.1.3.4 ComponentNativeBitness Table ... 91
3.1.1.3.5 ComponentNonNativeBitness Table .. 92
3.1.1.3.6 Conglomerations Table ... 93
3.1.1.3.7 Partitions Table ... 99
3.1.1.3.8 MachineSettings Table .. 101
3.1.1.3.9 Roles Table .. 103
3.1.1.3.10 RoleMembers Table .. 104
3.1.1.3.11 ConfiguredInterfaces Table .. 105
3.1.1.3.12 ConfiguredMethods Table .. 107
3.1.1.3.13 RolesForComponent Table ... 109
3.1.1.3.14 RolesForInterface Table ... 111
3.1.1.3.15 RolesForMethod Table ... 112

7 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.1.3.16 PartitionUsers Table .. 114
3.1.1.3.17 PartitionRoles Table .. 115
3.1.1.3.18 PartitionRoleMembers Table ... 116
3.1.1.3.19 InstanceLoadBalancingTargets Table ... 117
3.1.1.3.20 ServerList Table ... 117
3.1.1.3.21 InstanceContainers Table .. 118
3.1.1.3.22 EventClasses Table ... 119
3.1.1.3.23 Subscriptions Table... 120
3.1.1.3.24 SubscriptionPublisherProperties Table ... 123
3.1.1.3.25 SubscriptionSubscriberProperties Table ... 124
3.1.1.3.26 Protocols Table ... 126
3.1.1.3.27 FilesForImport Table ... 126

3.1.1.4 Alternate Launch Configurations .. 128
3.1.1.5 Per-Session State .. 129
3.1.1.6 Replication Directories .. 129

3.1.2 Timers ... 129
3.1.3 Initialization .. 129
3.1.4 Message Processing Events and Sequencing Rules ... 129

3.1.4.1 Catalog Version Negotiation .. 130
3.1.4.2 64-Bit QueryCell Marshaling Format Capability Negotiation 130
3.1.4.3 Multiple-Partition Support Capability Negotiation 131
3.1.4.4 Multiple-Bitness Capability Negotiation ... 131
3.1.4.5 ICatalogSession ... 131

3.1.4.5.1 InitializeSession (Opnum 7) ... 132
3.1.4.5.2 GetServerInformation (Opnum 8) ... 132

3.1.4.6 ICatalog64BitSupport ... 133
3.1.4.6.1 SupportsMultipleBitness (Opnum 3) .. 134
3.1.4.6.2 Initialize64BitQueryCellSupport (Opnum 4) .. 134

3.1.4.7 ICatalogTableInfo .. 135
3.1.4.7.1 GetClientTableInfo (Opnum 3) ... 135

3.1.4.8 ICatalogTableRead ... 137
3.1.4.8.1 ReadTable (Opnum 3) ... 137

3.1.4.9 ICatalogTableWrite ... 140
3.1.4.9.1 WriteTable (Opnum 3) .. 141

3.1.4.10 IRegister ... 147
3.1.4.10.1 RegisterModule (Opnum 3) .. 147

3.1.4.11 IRegister2 ... 151
3.1.4.11.1 CreateFullConfiguration (Opnum 3)... 151
3.1.4.11.2 CreateLegacyConfiguration (Opnum 4) .. 153
3.1.4.11.3 PromoteLegacyConfiguration (Opnum 5) ... 154
3.1.4.11.4 RegisterModule2 (Opnum 8) .. 156

3.1.4.12 IImport ... 160
3.1.4.12.1 ImportFromFile (Opnum 3) .. 160
3.1.4.12.2 QueryFile (Opnum 4) .. 165

3.1.4.13 IImport2 ... 166
3.1.4.13.1 SetPartition (Opnum 3) ... 167

3.1.4.14 IExport ... 167
3.1.4.14.1 ExportConglomeration (Opnum 3) .. 168

3.1.4.15 IExport2 ... 169
3.1.4.15.1 ExportPartition (Opnum 3) ... 169

3.1.4.16 IAlternateLaunch ... 170
3.1.4.16.1 CreateConfiguration (Opnum 3) ... 170
3.1.4.16.2 DeleteConfiguration (Opnum 4) .. 171

3.1.4.17 ICatalogUtils ... 172
3.1.4.17.1 ValidateUser (Opnum 3) .. 172
3.1.4.17.2 WaitForEndWrites (Opnum 4) .. 173
3.1.4.17.3 GetEventClassesForIID (Opnum 5) ... 173

3.1.4.18 ICatalogUtils2 .. 174

8 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.18.1 CopyConglomerations (Opnum 3) ... 175
3.1.4.18.2 CopyComponentConfiguration (Opnum 4) .. 177
3.1.4.18.3 AliasComponent (Opnum 5) ... 178
3.1.4.18.4 MoveComponentConfiguration (Opnum 6) ... 180
3.1.4.18.5 GetEventClassesForIID2 (Opnum 7) ... 181
3.1.4.18.6 IsSafeToDelete (Opnum 8) .. 182
3.1.4.18.7 FlushPartitionCache (Opnum 9) .. 183
3.1.4.18.8 EnumerateSRPLevels (Opnum 10) .. 183
3.1.4.18.9 GetComponentVersions (Opnum 11) ... 184

3.1.4.19 ICapabilitySupport ... 185
3.1.4.19.1 Start (Opnum 3) .. 186
3.1.4.19.2 Stop (Opnum 4) ... 186
3.1.4.19.3 IsInstalled (Opnum 7) ... 187
3.1.4.19.4 IsRunning (Opnum 8) ... 187

3.1.4.20 IContainerControl... 188
3.1.4.20.1 CreateContainer (Opnum 3) ... 188
3.1.4.20.2 ShutdownContainers (Opnum 4) .. 189
3.1.4.20.3 RefreshComponents (Opnum 5) ... 189

3.1.4.21 IContainerControl2 ... 189
3.1.4.21.1 ShutdownContainer (Opnum 3) .. 190
3.1.4.21.2 PauseContainer (Opnum 4) .. 190
3.1.4.21.3 ResumeContainer (Opnum 5) ... 191
3.1.4.21.4 IsContainerPaused (Opnum 6) ... 191
3.1.4.21.5 GetRunningContainers (Opnum 7) .. 191
3.1.4.21.6 GetContainerIDFromProcessID (Opnum 8) ... 192
3.1.4.21.7 RecycleContainer (Opnum 9) ... 193
3.1.4.21.8 GetContainerIDFromConglomerationID (Opnum 10) 193

3.1.4.22 IReplicationUtil .. 194
3.1.4.22.1 CreateShare (Opnum 3) .. 194
3.1.4.22.2 CreateEmptyDir (Opnum 4) ... 195
3.1.4.22.3 RemoveShare (Opnum 5) .. 196
3.1.4.22.4 BeginReplicationAsTarget (Opnum 6) .. 197
3.1.4.22.5 QueryConglomerationPassword (Opnum 7) .. 197
3.1.4.22.6 CreateReplicationDir (Opnum 8) ... 198

3.1.5 Timer Events ... 198
3.1.6 Other Local Events ... 198

3.2 Client Details .. 198
3.2.1 Abstract Data Model ... 198

3.2.1.1 Per-Session State .. 199
3.2.2 Timers ... 199
3.2.3 Initialization .. 199
3.2.4 Message Processing Events and Sequencing Rules ... 199

3.2.4.1 Catalog Version Negotiation .. 200
3.2.4.2 64-Bit QueryCell Marshaling Format Capability Negotiation 201
3.2.4.3 Multiple-Partition Support Capability Negotiation 202
3.2.4.4 Multiple-Bitness Capability Negotiation ... 202
3.2.4.5 Reads and Writes ... 203
3.2.4.6 Write Validation ... 203
3.2.4.7 Write Synchronization ... 203
3.2.4.8 IsSafeToDelete .. 203

3.2.5 Timer Events ... 203
3.2.6 Other Local Events ... 203

4 Protocol Examples ... 204
4.1 Catalog Session and Capabilities Initialization ... 204
4.2 Reading a Table .. 206
4.3 Writing to a Table ... 212
4.4 Registration .. 215

9 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

5 Security ... 218
5.1 Security Considerations for Implementers .. 218
5.2 Index of Security Parameters ... 218

6 Appendix A: Full IDL .. 220

7 Appendix B: Product Behavior ... 230

8 Change Tracking .. 257

9 Index ... 258

10 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1 Introduction

This document specifies the Component Object Model Plus (COM+) Remote Administration Protocol
(COMA), which allows clients to manage the configuration of software components and to control
running instances of these components.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

activation: In COM, a local mechanism by which a client provides the CLSID of an object class and

obtains an object, either an object from that object class or a class factory that is able to create
such objects.

atomic transaction: A shared activity that provides mechanisms for achieving the atomicity,
consistency, isolation, and durability (ACID) properties when state changes occur inside
participating resource managers.

authentication level: A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more

information, see [C706] section 13.1.2.1 and [MS-RPCE].

bitness: The distinction between 32-bit and 64-bit address spaces, and the potential differences in
instantiation of components that this entails.

catalog: A data store that holds the configuration properties for components and conglomerations.

class identifier (CLSID): A GUID that identifies a software component; for instance, a DCOM
object class or a COM class.

COM class: An object class.

component: A representation of a constituent transport address if a candidate consists of a set of
transport addresses. For example, media streams that are based on the Real-Time Transfer
Protocol (RTP) have two components, one for RTP and another for the Real-Time Transfer
Control Protocol (RTCP).

component configuration: A particular component configuration.

component configuration entry: An entry in the catalog that represents a particular

configuration of a component.

component full configuration entry: A type of component configuration entry that supports
configuration of the full set of services provided by an Object Request Broker (ORB), and to
which the configuration properties of its containing conglomeration fully apply.

component instance: An instantiation of a component.

component legacy configuration entry: A type of component configuration entry that supports
configuration of only a small subset of the services provided by an Object Request Broker

(ORB), and to which only a subset of its containing conglomeration's configuration properties
apply. Component legacy configuration entries are typically used to configure components that,
for technical reasons, do not support component full configuration entries.

computer name: The DNS or NetBIOS name.

11 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

configured interface: A set of methods that is supported by a component with a component full
configuration entry, for which configuration at the interface level is supported.

configured method: A method in a configured interface that supports configuration at the method
level.

configured proxy: A preferred client configuration for a component or conglomeration that is
provided by another Object Request Broker (ORB).

conglomeration: A collection of component configuration entries, together with a component-
independent configuration that is conceptually shared by the component configuration entries. A
conglomeration is identified by a conglomeration identifier.

conglomeration identifier: A GUID that identifies a conglomeration.

container identifier: A GUID that identifies an instance container.

container pooling: Enabling a conglomeration to support multiple concurrent instance containers.

directory: The database that stores information about objects such as users, groups, computers,
printers, and the directory service that makes this information available to users and
applications.

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

endpoint: In the context of a web service, a network target to which a SOAP message can be
addressed. See [WSADDR].

event: A discrete unit of historical data that an application exposes that may be relevant to other
applications. An example of an event would be a particular user logging on to the computer.

event class: A collection of events that are grouped together based on criteria that the publishing
application specifies.

export: The process of creating an installer package file for a conglomeration or partition on a

COMA server, so that it can be imported onto another server.

global partition: The default, required partition on a COMA server.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique

identifier (UUID).

GUID_NULL: A GUID that has the value "{00000000-0000-0000-0000-000000000000}".

import: The process of creating a conglomeration or partition on a COMA server based on modules
and configurations extracted from an installer package file.

installer package file: A file that packages together modules and configuration states sufficient to
create a conglomeration or partition on a server.

Instance container: A container for the instantiation of components that are configured in a
single conglomeration.

instance load balancing: The process of automatically distributing instantiation of components
across instance containers on multiple servers, according to run-time information, such as the
comparative load on each server.

12 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

instance load balancing router: An ORB that performs instance load balancing.

instance load balancing target: A machine that participates in instance load balancing as a

target for component instantiation.

instance pooling: The act of enabling component instances that are no longer active to return to

a pool for reuse.

interface: A specification in a Component Object Model (COM) server that describes how to access
the methods of a class. For more information, see [MS-DCOM].

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

IPv4 address in string format: A string representation of an IPv4 address in dotted-decimal

notation, as described in [RFC1123] section 2.1.

IPv6 address in string format: A string representation of an IPv6 address, as described in

[RFC4291] section 2.2.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

module: A file used by a server to register and instantiate one or more components. It contains

either implementations of the components or metadata that a server can use to find
implementations.

Object Request Broker (ORB): A set of mechanisms that collectively enable local or remote
clients to create instances of software components, and to invoke operations on these instances.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

partition: A container for conglomerations. Every COMA server has at least one partition--the
Global Partition--and may have additional partitions. A partition is identified by a partition
identifier.

partition identifier: A GUID that identifies a partition.

paused: A service that is not available because it has been placed in a suspended state, usually as
a result of explicit administrative action.

pausing: Temporarily disabling the creation of new component instances in an instance container.

process: A context in which an instance container can be created, consisting of one or more
threads of execution with a shared memory address space and shared security properties. A
process is identified by a process identifier.

protected conglomeration: A conglomeration for which configuration changes are permanently

disabled; for example, because modifying the configuration would impact system-wide stability.

publisher: An application that needs to publish historical data that may be of interest to other

applications.

publisher-subscriber framework: An application framework that allows applications to expose
historical data to other applications that might receive this data.

queue listener: A conceptual service that waits for queued messages for one or more components
on an ORB that enables queuing.

13 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

queuing: A transport protocol stack that consists of an asynchronous remote procedure call
protocol layered over a reliable messaging protocol.

recycling: To permanently disable the creation of new component instances in an instance
container.

registration: The process of making components known to a server so that they will be
represented in the catalog and can be configured.

remote procedure call (RPC): A context-dependent communication protocol used primarily
between client and server. The term commonly overloaded withhas three meanings.
Notedefinitions that much of the industry literature concerning RPC technologies uses this
termare often used interchangeably for any of the three meanings. Following are the three
definitions: (*) The : a runtime environment providing remote procedure callfor communication

facilities. The preferred usage for this meaning is " between computers (the RPC runtime". (*)
The pattern); a set of request-and-response message exchanges between computers (the RPC
exchange between two parties (typically, a client and a server). The preferred usage for this
meaning is "RPC exchange". (*) A); and the single message from an RPC exchange as defined

in (the previous definition. The preferred usage for this term is "RPC message". For more
information about). The RPC, see specification is [C706].

replication: An administration scenario in which a replication client application automatically
copies multiple conglomerations from a replication source to one or more replication targets.

replication client application: A client application that provides automatic copying of
conglomerations between COMA servers, typically using COMA export and import functionality.

replication source: A COMA server whose catalog contains conglomerations to be copied.

replication target: A COMA server whose catalog is to contain the copied conglomerations after
replication is performed.

role: A set of role members that represents authorization for a set of operations that is supported
by a conglomeration. A role is identified by a role name.

role member: A predicate indicating that a particular user account belongs to a role.

role name: A string that identifies a role within a conglomeration.

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

security descriptor: A data structure containing the security information associated with a
securable object. A security descriptor identifies an object's owner by its security identifier
(SID). If access control is configured for the object, its security descriptor contains a
discretionary access control list (DACL) with SIDs for the security principals who are allowed or
denied access. Applications use this structure to set and query an object's security status. The
security descriptor is used to guard access to an object as well as to control which type of

auditing takes place when the object is accessed. The security descriptor format is specified in

[MS-DTYP] section 2.4.6; a string representation of security descriptors, called SDDL, is
specified in [MS-DTYP] section 2.5.1.

security principal: A unique entity that is identifiable through cryptographic means by at least
one key. It frequently corresponds to a human user, but also can be a service that offers a
resource to other security principals. Also referred to as principal.

security principal name (SPN): The name that identifies a security principal (for example,

machinename$@domainname for a machine joined to a domain or username@domainname for
a user). Domainname is resolved using the Domain Name System (DNS).

14 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

share: A resource offered by a Common Internet File System (CIFS) server for access by CIFS
clients over the network. A share typically represents a directory tree and its included files

(referred to commonly as a "disk share" or "file share") or a printer (a "print share"). If the
information about the share is saved in persistent store (for example, Windows registry) and

reloaded when a file server is restarted, then the share is referred to as a "sticky share". Some
share names are reserved for specific functions and are referred to as special shares: IPC$,
reserved for interprocess communication, ADMIN$, reserved for remote administration, and A$,
B$, C$ (and other local disk names followed by a dollar sign), assigned to local disk devices.

subscriber: An application that needs to receive events that are published by another application.

subscription: A registration performed by a subscriber to specify a requirement to receive events,
future messages, or historical data.

target Object Request Broker (target ORB): The ORB for which a COMA server manages
configuration.

trust: To accept another authority's statements for the purposes of authentication and

authorization, especially in the case of a relationship between two domains. If domain A trusts
domain B, domain A accepts domain B's authentication and authorization statements for
principals represented by security principal objects in domain B; for example, the list of groups

to which a particular user belongs. As a noun, a trust is the relationship between two domains
described in the previous sentence.

trust level: A numerical value used to determine the degree of trust associated with a component.

unconfigured component: A component that has no component configuration entries.

Uniform Resource Locator (URL): A string of characters in a standardized format that identifies
a document or resource on the World Wide Web. The format is as specified in [RFC1738].

Universal Naming Convention (UNC): A string format that specifies the location of a resource.

For more information, see [MS-DTYP] section 2.2.57.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple

purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not

imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

15 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol".

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-LCID] Microsoft Corporation, "Windows Language Code Identifier (LCID) Reference".

[MS-OAUT] Microsoft Corporation, "OLE Automation Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.rfc-editor.org/rfc/rfc4234.txt

[RFC821] Postel, J., "SIMPLE MAIL TRANSFER PROTOCOL", STD 10, RFC 821, August 1982,
http://www.rfc-editor.org/rfc/rfc821.txt

[SOAP1.1] Box, D., Ehnebuske, D., Kakivaya, G., et al., "Simple Object Access Protocol (SOAP) 1.1",
W3C Note, May 2000, http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

1.2.2 Informative References

[ARIESTrnsRcvr] Mohan, C., Haderle, D., Lindsay, B., et al., "ARIES: a transaction recovery method
supporting fine-granularity locking and partial rollbacks using write-ahead logging", ACM Transactions
on Database Systems (TODS), Volume 17 Issue 1, March 1992,

http://portal.acm.org/citation.cfm?id=128770

[CORBA] Object Management Group, "The Common Object Request Broker: Architecture and
Specification", CORBA version 2.1, August 26, 1997, http://www.omg.org/cgi-bin/doc?formal/97-09-
01

[MC-COMQC] Microsoft Corporation, "Component Object Model Plus (COM+) Queued Components
Protocol".

[MS-COMA] Microsoft Corporation, "Component Object Model Plus (COM+) Remote Administration
Protocol".

[MS-COMEV] Microsoft Corporation, "Component Object Model Plus (COM+) Event System Protocol".

[MS-COMT] Microsoft Corporation, "Component Object Model Plus (COM+) Tracker Service Protocol".

[MS-COM] Microsoft Corporation, "Component Object Model Plus (COM+) Protocol".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-MQMP] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Client Protocol".

[MS-MQMQ] Microsoft Corporation, "Message Queuing (MSMQ): Data Structures".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

16 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MS-SCMR] Microsoft Corporation, "Service Control Manager Remote Protocol".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MSDN-Assemblies] Microsoft Corporation, "Assemblies", http://msdn.microsoft.com/en-

us/library/hk5f40ct(VS.71).aspx

[MSDN-COM+] Microsoft Corporation, "COM+ (Component Services)", http://msdn.microsoft.com/en-
us/library/ms685978.aspx

[MSDN-COMADMIN] Microsoft Corporation, "COM+ Administration Reference",
http://msdn.microsoft.com/en-us/library/ms681189.aspx

[MSDN-COMMonikers] Microsoft Corporation, "COM Monikers", http://msdn.microsoft.com/en-
us/library/ms691261.aspx

[MSDN-CreateProcess] Microsoft Corporation, "CreateProcess function",
http://msdn.microsoft.com/en-us/library/ms682425.aspx

[MSDN-IIS] Microsoft Corporation, "Internet Information Services (IIS)",
http://msdn.microsoft.com/en-us/library/aa286507.aspx

[MSDN-MarshalDetails] Microsoft Corporation, "Marshaling Details", http://msdn.microsoft.com/en-
us/library/ms692621.aspx

[MSDN-SOFTWRSTRPOLICY] Microsoft Corporation, "Software Restriction Policy (COM)",
http://msdn.microsoft.com/en-us/library/ms682195.aspx

[MSDN-ThreadMDLS] Microsoft Corporation, "COM+ Threading Models",
http://msdn.microsoft.com/en-us/library/ms686448(VS.85).aspx

[MSDN-TypeLibraries] Microsoft Corporation, "COM, DCOM and Type Libraries",

http://msdn.microsoft.com/en-us/library/aa366757.aspx

[MSDN-WindowsInstaller] Microsoft Corporation, "Windows Installer", http://msdn.microsoft.com/en-
us/library/cc185688(VS.85).aspx

[MSDN-WINSVC] Microsoft Corporation, "Services", http://msdn.microsoft.com/en-

us/library/ms685141.aspx

[RFC2460] Deering, S., and Hinden, R., "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460,
December 1998, http://www.rfc-editor.org/rfc/rfc2460.txt

[RFC791] Postel, J., Ed., "Internet Protocol: DARPA Internet Program Protocol Specification", RFC 791,
September 1981, http://www.rfc-editor.org/rfc/rfc791.txt

[UML] Object Management Group, "Unified Modeling Language", http://www.omg.org/spec/UML/

1.3 Overview

The COM+ Remote Administration Protocol (COMA) enables remote clients to register, import,
remove, configure, control, and monitor components and conglomerations for an Object Request
Broker (ORB). The server end of the protocol is a conceptual service that maintains a catalog of

configurations for an ORB. A COMA server exposes interfaces that enable a client to manage the
catalog and control component instances and instance containers.

17 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1.3.1 Background

An ORB is a conceptual service that enables local or remote clients to instantiate, and to invoke
software operations on, software components (sometimes known as objects). Examples of ORBs

include a DCOM server [MS-DCOM], a COM+ server [MS-COM], and a CORBA/IIOP ORB [CORBA].

1.3.2 Catalog

A catalog is a data store that holds configuration for a single ORB, hereafter known as the target ORB.
A COMA catalog organizes the configurations as hierarchically structured collections of various types of

configurable objects. Most of the configuration in the catalog can be understood in terms of the
following object types: component, component configuration entry, conglomeration, partition, and
machine settings. The following Unified Modeling Language (UML) [UML] diagram shows the
relationships between these types of objects.

Figure 1: Relationship between objects in the catalog

A component is an indivisible unit of software functionality. Examples of components include DCOM
object classes [MS-DCOM] and event classes described in [MS-COMEV]. Each component known to the
server is identified by a GUID, known as the class identifier (CLSID).

18 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

A component configuration entry represents a particular configuration of a component. In general, it is
possible for a component to have more than one component configuration entry on a server. It is also

possible for a component to have no component configuration entries, in which case it is said to be an
unconfigured component.

A conglomeration is a collection of component configuration entries for components that a component
developer or administrator wishes to be managed as a group, and is identified by a conglomeration
identifier. A component that has a component configuration entry in a conglomeration is said to be
configured in that conglomeration. A conglomeration also has a set of configuration properties that
apply to members of the collection. The conglomeration model assumes that component developers
and administrators group together components based on application architecture, administrative
policies, and performance concerns related to the shared use of system resources. Most of the

configuration exposed by [MS-COMA] at the conglomeration level is therefore related to broad-level
security policy, such as role membership (section 1.3.4), and configuration of shared system
resources such as compensating resource managers (section 3.1.1.1.1) and queue listeners (section
3.1.1.1.5). Some conglomeration-level configuration properties might not apply to all component
configuration entries, as explained in more detail in the sections that follow.

There are two types of component configuration entries, component legacy configuration entries and

component full configuration entries, each of which has a different purpose and a different set of
configuration properties. Component full configuration entries support configuration for the full set of
services provided by the target ORB. Component legacy configuration entries, if supported by the
target ORB, enable configuring a component to be part of a conglomeration, where for technical
reasons it might not be possible or desirable to create a component full configuration entry for the
component.

Many of the configuration properties of component full configuration entries are not supported by

component legacy configuration entries. For example, component legacy configuration entries do not
have properties for synchronization or queuing. Additionally, some of the configuration properties of
conglomerations do not apply to component legacy configuration entries. Component legacy
configuration entries do however have equivalent configuration properties at the component level for a
subset of configuration, such as user identity and authentication level, that is usually managed at the
conglomeration level.

Figure 2: Types of component configurations

A partition is a container for conglomerations and is identified by a partition identifier. Every server
has at least one partition, the global partition, and can have additional partitions and support the
creation of new partitions. Multiple partitions on a server enable multiple configurations of a
component. Component configuration entries for a component are subject to the following constraints:

▪ There can be at most one component configuration entry for any one component in a single
conglomeration.

19 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ Only conglomerations in the global partition can contain component legacy configuration entries.

▪ There can be at most one component configuration entry in the conglomerations in each partition

that is associated with a given component, or at most one per bitness, if multiple bitnesses are
supported (section 1.3.5).

▪ A component that has a component legacy configuration entry cannot have any other component
configuration entries, or no other component configuration entries for the same bitness, if multiple
bitnesses are supported (section 1.3.5).

The singleton machine settings object represents machine-wide configuration for the server.

1.3.3 Catalog Versions and Partition Support

This document specifies three catalog versions, which correspond to changes in the configuration state
model. Version 3.00 is the initial catalog version. Version 4.00 supports new types of configurable
objects, and adds configuration properties to existing types of objects. Version 5.00 is a minor update
that adds a configuration property to enable multiple-partition support to the machine settings object.

To ensure interoperability, the client and server perform version negotiation (section 1.7) and use the

same catalog version.

One of the biggest differences between catalog version 3.00 and version 4.00 is the addition of explicit
support for partitions. In catalog version 3.00, all conglomerations are implicitly contained in the
global partition, and the catalog does not represent partitions or support their configuration. In catalog
version 4.00, partitions are represented in the catalog and can be configured, and optionally new
partitions can be created.

A server might support catalog version 4.00 or catalog version 5.00 but not support multiple

partitions. COMA provides a mechanism for a client to determine whether a server allows multiple-
partition support to be enabled. However, for historical reasons, catalog version 4.00 does not provide
a reliable mechanism to determine whether multiple-partition support is actually enabled on the
server. Catalog version 5.00 adds a configuration property to the machine settings object that
indicates to the client whether multiple-partition support is enabled and optionally enables the client to

change this configuration.

1.3.4 Role-Based Security Configuration

Role-based security is a model for authorization in which user accounts are grouped into roles and
authorization decisions for an operation are based on whether the user account of the requestor of an
operation belongs to a particular role. COMA enables configuration of role-based security for

conglomerations through role and role member objects. The following UML diagram shows the
relationship between these types of objects and other object types in the catalog.

20 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 3: Role-related objects

A role is identified by a role name and is a set of role members that represents authorization for a set

of operations that is supported by the components configured in a conglomeration. A role member is a
predicate indicating that a particular user account belongs to a role.

Role-based security can be programmatic (dynamic) or declarative (static). In the programmatic
model, the ORB provides an implementation-specific mechanism by which a component configured in
a conglomeration can dynamically determine whether the user account of the requestor belongs to a
particular role, in order to make authorization decisions. In the declarative model, the component

configuration entries in a conglomeration statically specify which roles are authorized to perform
specific operations. COMA enables configuration of both programmatic and declarative role-based
security.

COMA supports enabling or disabling role-based security for a conglomeration. If role-based security is
enabled, programmatic role-based security is automatically supported. Declarative role-based
security, on the other hand, can be enabled and configured at multiple levels of granularity.

A conglomeration is said to be configured for conglomeration-level access checks if all operations

supported by the components configured in the conglomeration require the user account of the
requestor to belong to one of the conglomeration's roles. Conglomerations can be configured to enable
or disable conglomeration-level access checks.

A COMA server optionally supports configuration of components at the interface and method levels,
the primary purpose of which is declarative role-based security configuration. This configuration is
supported for component full configuration entries only. A configured interface is a set of methods

supported by a component and for which configuration at the interface level is supported. A configured

interface is identified by an interface identifier (IID). A configured method is a method in a configured
interface for which configuration at the method level is supported.

A component is said to be configured for component-level access checks if the component uses
declarative role-based security configuration at the component, interface, and method levels for
authorization. For the purpose of component-level access checks, roles can be associated with
component full configuration entries, configured interfaces, and configured methods. This

configuration has the following semantics:

21 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ If a role is associated with a component full configuration entry, that role is authorized for all
methods supported by the component.

▪ If a role is associated with a configured interface, that role is authorized for all methods in that
interface.

▪ If a role is associated with a configured method, that role is authorized for that method.

1.3.5 Bitness

For technical reasons, a COMA server might to make a distinction between instantiation of components

in a process with a 32-bit or 64-bit address space. The term bitness refers to the distinction between
32-bit and 64-bit address spaces and the potential differences in instantiation of components that this
entails.

For example, the target ORB can provide a local interoperability mechanism that instantiates a
component in its creator's process. In this case, a server that supports both 32-bit and 64-bit address
spaces would be required to determine whether a given component supports the creator's bitness.

Furthermore, if a component supports multiple bitnesses, the details of its instantiation might be

different. For example, each bitness might be implemented in a different module (section 1.3.6).

To support multiple bitnesses, a COMA server keeps a separate copy of a component's properties for
each bitness the component supports and allows each bitness to be configured separately. Bitness is
exposed in the catalog as a property of component configuration entries, and a COMA server enables a
bitness-aware client to specify which bitness of a component that it is configuring.

Not all COMA servers support multiple component bitnesses. If a server supports only a single bitness,
bitness is opaque to the client, and all flags and configuration options related to bitness are ignored. A

bitness-aware client performs capability negotiation for the multiple-bitness capability (section 1.7) to
determine whether it is required to select bitness when performing configuration.

1.3.6 Registration

Registration is the process of making components known to a COMA server so that they will be
represented in the catalog and can be configured. For example, registration might be part of an
application-specific process for installing components on a machine. A server typically supports one or
more implementation-specific registration mechanisms, which are invoked in response to local events
and can also be exposed by the server through COMA.

A module is a file that a server uses to register one or more components. Once the components are
registered, the module is used to instantiate the components. A module might contain component

implementations or metadata that a server can use to find the implementations. It is important to
note that modules are implementation-specific; in other words, a module that is supported by one
COMA server will not necessarily be supported by other COMA servers.

1.3.7 Export and Import

COMA enables exporting a conglomeration to a file, which can then be imported on another server.

The export procedure packages the modules for components that are configured in the
conglomeration, the complete configuration state from the catalog, and possibly other files and
installation instructions into an installer package file. The client can then import this file on another
server if the installer package file and the modules it contains are appropriate to (supported by) the
other server.

COMA also enables exporting all of the conglomerations in a partition at once to an installer package
file; this is known as exporting a partition. An exported partition can be imported on a server that
supports multiple partitions.

22 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1.3.8 Instantiation Concepts

A COMA server optionally provides run-time control of instance containers--conceptual containers in
which components are instantiated--by forwarding client requests (via an implementation-specific

mechanism) to its target ORB. This section describes instantiation concepts.

An ORB typically provides local and/or remote mechanisms by which components can be instantiated.
An example of a remote instantiation mechanism is DCOM activation, ([MS-DCOM] section 1.3.1). An
instantiation of a component is known as a component instance.

For historical reasons, COMA enables control over instantiation of components only in cases where the
instantiation is associated with a component configuration entry in a conglomeration. Although the
details of instantiation might vary, the following conceptual steps are part of any instantiation that can

be controlled in COMA:

▪ By some implementation-specific mechanism, the ORB associates the instantiation with a
component configuration entry in a conglomeration.

▪ The ORB finds an existing instance container for the conglomeration, or creates a new instance
container, and associates it with the conglomeration. An instance container is a conceptual
container in which components that are configured in a single conglomeration can be instantiated.

▪ The ORB creates the component instance in the selected instance container.

An instance container is identified by a GUID, known as the container identifier.

The following UML diagram summarizes the relationships between components, component
configuration entries, conglomerations, component instances, and instance containers.

Figure 4: Relationships between static and run-time objects

23 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Recycling refers to permanently disabling the creation of new component instances in an instance
container. An instance container that is recycled is shut down as soon as the existing component

instances in the container are destroyed. Recycling enables a problematic instance container to
gradually drain its component instances rather than being immediately and forcibly shut down. An

ORB optionally recycles instance containers automatically based on run-time information, such as the
number of component instances that have been created in its context or the system resources it has
consumed. COMA enables automatic recycling to be configured for a conglomeration and also enables
clients to recycle instance containers.

Pausing refers to temporarily disabling the creation of new component instances in an instance
container. COMA enables clients to pause instance containers.

1.3.9 Instance Load Balancing

COMA also supports instance load balancing, in which instantiation of components is automatically
distributed across instance containers on multiple servers, according to run-time information, such as
the comparative load on each server. Instance container load balancing also enables a rudimentary

form of failover, in which a server that is experiencing system failures is temporarily disabled so that it
can be restarted or otherwise returned to a good state.

An ORB that performs instance load balancing is said to be configured as an instance load balancing
router. A machine that participates in instance load balancing as a target for component instantiation
is known as an instance load balancing target. COMA enables configuration of instance container load
balancing as follows:

▪ A COMA server optionally enables instance load balancing support to be started or stopped for its

configured ORB.

▪ The machine settings object has a configuration property that indicates whether the target ORB is
configured as an instance load balancing router and, optionally, enables a client to change this
configuration.

▪ A COMA server that configures an instance load balancing router, exposes its list of instance load

balancing targets in its catalog, and allows this list to be modified.

1.3.10 Protection of Configuration State

A conglomeration can be configured to disable configuration changes to the conglomeration and to the
component configuration entries and roles contained in that conglomeration. A conglomeration can
also be configured to disable its deletion. A conglomeration's configuration includes properties that

indicate whether it is changeable or can be deleted, and optionally enable a client to change this
configuration. Additionally, in catalog version 4.00 and catalog version 5.00, a partition can be
configured to disable changes to all conglomerations in the partition, and to disable deletion of
conglomerations in the partition or creation of new conglomerations in the partition.

The primary purpose of these configuration properties is to prevent accidental changes to a
conglomeration by an administrator, not to act as a security measure. Changing a conglomeration that
is marked as not changeable is usually possible by first marking the conglomeration as changeable

and by then making the desired configuration changes. However, there might be conglomerations in a

COMA server's catalog for which configuration is fixed because, for example, modifying the
configuration would impact system-wide stability. Such a conglomeration is said to be a protected
conglomeration.

1.3.11 Events

A publisher-subscriber framework allows applications to publish historical information that other
applications might request. The applications that publish the information are called publishers, while
the applications that subscribe to the information are called subscribers. A publisher can specify this

24 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

information in discrete units. Each discrete unit of information is called an event. Similarly, a
subscriber can subscribe to an event by creating a subscription for it.

COMA enables management of events and their respective subscriptions on the server's target ORB as
follows:

▪ A COMA server optionally enables event classes--collections of events that are grouped together
based on criteria specified by the publishing application--to be registered as components.

▪ A COMA server with registered event classes enables clients to create, update, or remove
subscriptions to events in those event classes.

▪ COMA enables application-specific properties to be associated with the publisher or subscriber of a
subscription.

1.3.12 Replication

Replication is a special-case administration scenario involving two or more COMA servers, in which a

replication client application (which can be but is not always to one of the servers) automatically
copies one or more conglomerations from a replication source. A replication source is a server whose

catalog contains the conglomerations to be copied to one or more replication targets, servers whose
catalogs are to contain the copied conglomerations after the replication procedure has completed.

COMA does not support replication directly, but most of a typical replication procedure can be
performed using COMA export and import functionality and remote file operations; for example,
Server Message Block (SMB) [MS-SMB] or SMB2 [MS-SMB2] can be used. However, replication
scenarios can differ from other administration scenarios in which conglomerations are copied between
COMA servers, in that replication is a batch procedure and cannot take advantage of information

usually provided by the administrator during interactive configuration. COMA enables the following
tasks specific to replication:

▪ Managing directories and Common Internet File System (CIFS) file shares (for details, see [MS-
CIFS]) to be used for copying installer package files.

▪ Limited management of replication history and backup state.

▪ Retrieving user passwords from the replication source, when they are necessary, in order to

configure a conglomeration on a replication target to run as the same user as for the replication
source.

Many of the details of replication are specific to the replication client application. In particular, the
conglomerations to be copied can be all or just a subset of the conglomerations on the replication
source, and are selected according to application-specific criteria. However, conglomerations in a
COMA catalog have an informational configuration property that indicates to replication client
applications whether or not the conglomeration is intended to be available for replication. This is an

advisory value and does not otherwise affect COMA protocol behavior.

1.4 Relationship to Other Protocols

COMA is built on top of DCOM, as described in [MS-DCOM].

The COM+ Tracker Service Protocol is another protocol that provides functionality for obtaining run-

time information about instance containers (for more information, see [MS-COMT]). The COM+
Tracker Service Protocol makes obsolete that functionality provided by this protocol by enabling clients
to obtain a richer set of information and by providing a push model.

The COM+ Event System Protocol is another protocol that provides functionality for configuring event
classes and subscriptions (for more information, see [MS-COMEV]). The COM+ Event System Protocol

25 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

makes obsolete that functionality provided by this protocol by enabling configuration for additional
types of subscriptions.

COMA can be used to configure COM+ on a server. COMA partitions have a natural mapping to COM+
partitions, and many configuration properties of objects in the COMA catalog are designed to support

configuration of COM+ behavior that is implementation-specific as described in [MS-COM].

COMA can be used to configure the COM+ Queued Components Protocol on a server (for more
information, see [MC-COMQC]). Several configuration properties of objects in the COMA catalog are
designed to support enabling the COM+ Queued Components Protocol as a transport for
communication between components.

COMA can be used to configure system services (also known as daemons) for conglomerations. The
Service Control Manager Remote Protocol is another protocol for configuring system services (for more

information, see [MS-SCMR]). Neither protocol makes the other obsolete because each enables
configuration that is not available in the other.

COMA provides limited management of CIFS file shares (for details, see [MS-CIFS]) for use in

replication scenarios. COMA replication functionality is intended to be used alongside CIFS to copy
conglomerations between COMA servers in these replication scenarios. Other COMA functionality
requiring remote file operations might use CIFS, but this is not required by the protocol.

1.5 Prerequisites/Preconditions

COMA expects that a client application that requests to write an IPv4 address in string format or IPv6
address in string format as values for properties identifying computers has determined that the COMA
server supports the Internet Protocol [RFC791] or Internet Protocol, version 6 [RFC2460],

respectively.

COMA expects that a client application that requests to set properties representing component-related
security descriptors detects which versions of the security descriptors are supported by the COMA
server.

COMA expects that a client application that has to register components on a COMA server is able to

locate modules supported by the COMA server. COMA expects that a client application that has to

import a conglomeration or a partition on a COMA server has an installer package file that the COMA
server recognizes.

COMA expects that a client application that has to install instance load balancing support on a COMA
server recognizes the location of a file that a COMA server can use to install this support.

COMA expects that a replication client application that has to perform replication recognizes that
installer package files created by the replication source are also supported by the replication targets.

1.6 Applicability Statement

COMA is not a general-purpose or extensible configuration protocol. The configuration state model
specified in this document is based on the following:

▪ COM+ Protocol, as described in [MS-COM].

▪ COM+ Event System Protocol as described in [MS-COMEV].

▪ COM+ Queued Components Protocol as described in [MC-COMQC].

▪ A specific set of services provided by the server.

COMA is appropriate for configuration of an ORB or for administration of a server by a single client at a
time because it does not provide any guarantees of consistency between multiple clients.

26 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

COMA replication functionality for managing replication directories and file shares is appropriate for
copying files between COMA servers as part of batch replication. It is not appropriate for general file

system or file share management.

1.7 Versioning and Capability Negotiation

This section covers versioning issues in the following areas.

Capability Negotiation: This protocol performs explicit negotiation as described in this section.

This document specifies three catalog versions: 3.00, 4.00, and 5.00. A COMA server and a COMA

client perform catalog version negotiation before exchanging configuration data in the catalog. Except
where otherwise noted, catalog version negotiation is completed before the client makes any other
calls to the server.

Each COMA client and each COMA server can support a range of catalog versions. Catalog version
negotiation is initiated by the client by sending the server its supported range. The catalog server
selects the negotiated catalog version as the highest catalog version that both the client and the

server support and returns the negotiated version to the client, as specified in section 3.1.4.1.

This document specifies two custom marshaling formats for queries, as used in certain server
interfaces. One of the custom marshaling formats is optimized for implementations that use a 32-bit
address space and the other for implementations that use a 64-bit address space. A COMA client and
a COMA server optionally perform capability negotiation for the 64-bit query marshaling format
capability, as specified in section 3.1.4.2.

On behalf of a client application that wishes to configure multiple partitions, a COMA client and a
COMA server can perform capability negotiation for the multiple-partition support capability, as

specified in section 3.1.4.3.

On behalf of a bitness-aware client application, a COMA client and a COMA server perform capability
negotiation for the multiple-bitness capability to determine whether the COMA client needs to select
bitness when performing configuration, as specified in section 3.1.4.4.

1.8 Vendor-Extensible Fields

This protocol uses HRESULT values, as specified in [MS-ERREF]. Vendors can define their own
HRESULT values, provided that they set the C bit (0x20000000) for each vendor-defined value,
indicating that the value is a customer code.

1.9 Standards Assignments

There are no standard assignments for this protocol. The following is a table of well-known GUIDs
(generated using the mechanism specified in [C706] section A.2.5) in COMA.

 Parameter Value

DCOM CLSID for the COMA server (CLSID_COMAServer) {182C40F0-32E4-11D0-818B-
00A0C9231C29}

remote procedure call (RPC) IID for ICatalogSession interface
(IID_ICatalogSession)

{182C40FA-32E4-11D0-818B-
00A0C9231C29}

RPC IID for ICatalog64BitSupport interface (IID_ICatalog64BitSupport) {1D118904-94B3-4A64-9FA6-
ED432666A7B9}

RPC IID for ICatalogTableInfo interface (IID_ICatalogTableInfo) {A8927A41-D3CE-11D1-8472-
006008B0E5CA}

27 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Parameter Value

RPC IID for ICatalogTableRead interface (IID_ICatalogTableRead) {0E3D6630-B46B-11D1-
9D2D-006008B0E5CA}

RPC IID for ICatalogTableWrite interface (IID_ICatalogTableWrite) {0E3D6631-B46B-11D1-
9D2D-006008B0E5CA}

RPC IID for IRegister interface (IID_IRegister) {8DB2180E-BD29-11D1-8B7E-
00C04FD7A924}

RPC IID for IRegister2 interface (IID_IRegister2) {971668DC-C3FE-4EA1-9643-
0C7230F494A1}

RPC IID for IImport interface (IID_IImport) {C2BE6970-DF9E-11D1-8B87-
00C04FD7A924}

RPC IID for IImport2 interface (IID_Import2) {1F7B1697-ECB2-4CBB-8A0E-

75C427F4A6F0}

RPC IID for IExport interface (IID_IExport) {CFADAC84-E12C-11D1-B34C-
00C04F990D54}

RPC IID for IExport2 interface (IID_IExport2) {F131EA3E-B7BE-480E-A60D-
51CB2785779E}

RPC IID for IAlternateLaunch interface (IID_IAlternateLaunch) {7F43B400-1A0E-4D57-BBC9-
6B0C65F7A889}

RPC IID for ICatalogUtils interface (IID_ICatalogUtils) {456129E2-1078-11D2-B0F9-
00805FC73204}

RPC IID for ICatalogUtils2 interface (IID_ICatalogUtils2) {C726744E-5735-4F08-8286-
C510EE638FB6}

RPC IID for ICapabilitySupport interface (IID_ICapabilitySupport) {47CDE9A1-0BF6-11D2-8016-
00C04FB9988E}

RPC IID for IContainerControl interface (IID_IContainerControl) {3F3B1B86-DBBE-11D1-9DA6-
00805F85CFE3}

RPC IID for IContainerControl2 interface (IID_IContainerControl2) {6C935649-30A6-4211-8687-
C4C83E5FE1C7}

RPC IID for IReplicationUtil interface (IID_IReplicationUtil) {98315903-7BE5-11D2-ADC1-
00A02463D6E7}

Catalog identifier for the COMA catalog {6E38D3C4-C2A7-11D1-
8DEC-00C04FC2E0C7}

Table identifier for ComponentsAndFullConfigurations table {6E38D3C8-C2A7-11D1-
8DEC-00C04FC2E0C7}

Table identifier for ComponentFullConfigurationsReadOnly table {6E38D3CA-C2A7-11D1-
8DEC-00C04FC2E0C7}

Table identifier for ComponentLegacyConfigurations table {09487519-892D-4CA0-A00B-
58EEB1662A68}

Table identifier for ComponentNativeBitness table {39344B1F-EFE8-4286-9DB8-
AC0A3D791FF2}

Table identifier for ComponentNonNativeBitness table {96EC9BF1-063B-4ABF-8B90-
42C878D9033E}

28 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Parameter Value

Table identifier for Conglomerations table {D495F321-AF37-11D1-8B7E-
00C04FD7A924}

Table identifier for Partitions table {E4AD9FD6-D435-4CF5-95AD-
20AD9AC6B59F}

Table identifier for MachineSettings table {61436562-EE01-11D1-BFE4-
00C04FB9988E}

Table identifier for Roles table {CD331D11-C739-11D1-
9D35-006008B0E5CA}

Table identifier for RoleMembers table {CD331D10-C739-11D1-
9D35-006008B0E5CA}

Table identifier for ConfiguredInterfaces table {D13B72C6-C426-11D1-8507-

006008B0E79D}

Table identifier for ConfiguredMethods table {D13B72C4-C426-11D1-8507-
006008B0E79D}

Table identifier for RolesForComponent table {CD331D12-C739-11D1-
9D35-006008B0E5CA}

Table identifier for RolesForInterface table {CD331D13-C739-11D1-
9D35-006008B0E5CA}

Table identifier for RolesForMethod table {CD331D14-C739-11D1-
9D35-006008B0E5CA}

Table identifier for PartitionUsers table {0AF55FDC-30B5-4B6E-B258-
A9DE4B64818C}

Table identifier for PartitionRoles table {9D29E285-E24D-4096-98E1-
44DBB2EAF7F0}

Table identifier for PartitionRoleMembers table {352131CD-E0FF-4C46-9675-
C3808B249F69}

Table identifier for InstanceLoadBalancingTargets table {B7EEEA91-B3B9-11D1-8B7E-
00C04FD7A924}

Table identifier for ServerList table {2DAF1D50-BD53-11D1-8280-
00A0C9231C29}

Table identifier for InstanceContainers table {DF2FCC47-B7B7-4CB9-8B40-
0B3D1E59E7DD}

Table identifier for EventClasses table {E12539AD-CDE0-4E46-9211-
916018B8C4D2}

Table identifier for Subscriptions table {5A84E823-7277-11D2-9029-
3078302C2030}

Table identifier for SubscriptionPublisherProperties table {5A84E824-7277-11D2-9029-
3078302C2030}

Table identifier for SubscriptionSubscriberProperties table {5A84E825-7277-11D2-9029-
3078302C2030}

Table identifier for Protocols table {61436563-EE01-11D1-BFE4-
00C04FB9988E}

29 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Parameter Value

Table identifier for FilesForImport table {E4053366-BF8F-4E84-B4B2-
72B3C2626CC9}

RequiredFixedGuid (used by ICatalogTableInfo::GetClientTableInfo) {92AD68AB-17E0-11D1-B230-
00C04FB9473F}

AuxiliaryGuid for ComponentsAndFullConfigurations table (used by
ICatalogTableInfo::GetClientTableInfo)

{B4B3AECB-DFD6-11D1-
9DAA-00805F85CFE3}

AuxiliaryGuid for SubscriptionPublisherProperties and
SubscriptionSubscriberProperties tables (used by
ICatalogTableInfo::GetClientTableInfo)

{EB56EAE8-BA51-11D2-B121-
00805FC73204}

Partition identifier for global partition {41E90F3E-56C1-4633-81C3-
6E8BAC8BDD70}

GUIDs reserved for conglomeration identifiers of protected conglomerations {01885945-612C-4A53-A479-
E97507453926},

{9EB3B62C-79A2-11D2-9891-
00C04F79AF51}, and

{6B97138E-3C20-48D1-945F-
81AE63282DEE}

30 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2 Messages

2.1 Transport

All protocol messages MUST be transported via DCOM, as specified in [MS-DCOM]. COMA uses the

dynamic endpoints allocated and managed by the DCOM infrastructure.

COMA implementations MUST override the default RPC authentication level of the underlying DCOM
implementation to use RPC_C_AUTHN_LEVEL_PKT_PRIVACY ([MS-RPCE] section 2.2.1.1.8).

The COMA client implementations SHOULD<1> override the default impersonation level of the
underlying DCOM implementation to use RPC_C_IMP_LEVEL_IMPERSONATE, as specified in [MS-RPCE]
section 2.2.1.1.9.

The COMA client implementations SHOULD<2> override the default security provider of the underlying
DCOM implementation to use RPC_C_AUTHN_GSS_NEGOTIATE, as specified in [MS-RPCE] section
2.2.1.1.7.

For historical reasons, ASCII MUST be used as the character representation format (as specified in
[C706] section 14.2.4) and little-endian MUST be used as the integer format, as specified in [C706]
section 14.2.5.

2.2 Common Data Types

In addition to RPC base types and definitions specified in [C706] and [MS-DTYP], additional data types
are defined in the following table.

Field types in packet diagrams are defined by the packet diagram and the field descriptions. All fields
in packet diagrams use little-endian byte ordering unless otherwise stated.

All extra padding bytes MUST be zero unless otherwise stated and MUST be ignored on receipt.

This protocol uses the following types specified in [MS-DTYP] and [MS-OAUT].

 Type Reference

ACCESS_ALLOWED_ACE [MS-DTYP], section 2.4.4.2

ACCESS_DENIED_ACE [MS-DTYP], section 2.4.4.4

ACL [MS-DTYP], section 2.4.5

BOOL [MS-DTYP], section 2.2.3

BSTR [MS-OAUT], section 2.2.23

BYTE [MS-DTYP], section 2.2.6

Curly Braced GUID String Syntax [MS-DTYP], section 2.3.4.3

DWORD [MS-DTYP], section 2.2.9

GUID [MS-DTYP], section 2.3.4.2

HRESULT [MS-DTYP], section 2.2.18

LCID [MS-DTYP], section 2.3.6

LONG [MS-DTYP], section 2.2.27

31 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Type Reference

LPCWSTR [MS-DTYP], section 2.2.34

LPWSTR [MS-DTYP], section 2.2.36

RPC GUID [MS-DTYP], section 2.3.4

SECURITY_DESCRIPTOR [MS-DTYP], section 2.4.6

SYSTEM_MANDATORY_LABEL_ACE [MS-DTYP], section 2.4.4.13

ULONG [MS-DTYP], section 2.2.51

VARIANT_BOOL [MS-OAUT], section 2.2.27

VARIANT Type Constants [MS-OAUT], section 2.2.7

2.2.1 Table Formats

The following sections specify the formats of structures related to reads from and writes to tables in a
catalog, as performed by the ICatalogTableInfo::GetClientTableInfo (section 3.1.4.7.1),
ICatalogTableRead::ReadTable (section 3.1.4.8.1), and

ICatalogTableWrite::WriteTable (section 3.1.4.9.1) methods.

2.2.1.1 fTableFlags

The fTableFlags type represents a selector for component bitness in reads from and writes to certain
tables. fTableFlags is an enumeration that MUST be one of the following values.

Flag Description

fTABLE_UNSPECIFIED

0x00000000

Bitness is unspecified by this value, either because bitness is not distinguished for the
type of object being read or because it is specified through another mechanism.

fTABLE_32BIT

0x00200000

32-bit component bitness.

fTABLE_64BIT

0x00400000

64-bit component bitness.

2.2.1.2 eDataType

The eDataType enumeration represents the data type of variable-typed data, as used in queries and

PropertyMeta (section 2.2.1.7) structures. In QueryCell (section 2.2.1.4) structures, which are
custom-marshaled, an eDataType is represented by a 32-bit unsigned integer. In a PropertyMeta
structure, an eDataType is marshaled as a DWORD, as specified in [MS-DTYP] section 2.2.9.

eDataType is an enumeration that MUST be set to one of the following values.

Value Description

eDT_ULONG

0x00000013

Tags data of type ULONG

32 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Description

eDT_GUID

0x00000048

Tags data of type GUID

eDT_BYTES

0x00000080

Tags data that is an opaque array of BYTES

eDT_LPWSTR

0x00000082

Tags data of type LPWSTR

2.2.1.3 eSpecialQueryOption

The eSpecialQueryOption enumeration is used in queries to identify QueryCell (section 2.2.1.4)

structures that represent a special option for the query, rather than a property in the table. An

eSpecialQueryOption is represented by a 32-bit unsigned integer. eSpecialQueryOption is an
enumeration that MUST be set to the following value.

Value Description

eSQO_OPTHINT

0xF0000005

An advisory value that for historical reasons is required as a cell in certain queries, where it
MUST be associated with a comparison value of 1.<3>

2.2.1.4 QueryCell

The QueryCell structure represents either a constraint on a single property in a table, as used to
construct a query on the table or, alternatively, one of the special query options identified by an

eSpecialQueryOption (section 2.2.1.3) value.

The QueryCell type is a custom-marshaled type for which two custom marshaling formats are specified
in this section. The 32-bit QueryCell marshaling format is optimized for implementations that use a
32-bit address space, and the 64-bit QueryCell marshaling format is optimized for implementations

that use a 64-bit address space. All implementations MUST support the 32-bit format and MAY<4>
additionally support the 64-bit format.

A client and a server optionally perform capability negotiation, as specified in section 3.1.4.2, for the
64-bit QueryCell marshaling format. If this capability negotiation is performed, and if both the client
and the server support the 64-bit format, the 64-bit format MUST be used. If this capability
negotiation is not performed, or if either the client or the server does not support the 64-bit format,
the 32-bit format MUST be used.

A QueryCell is always associated with a variable-typed comparison data value, although this value can
be null. The comparison data value is not part of the QueryCell marshaling format; instead, it is

supplied in a separate parameter when marshaling a query, as specified in section 2.2.1.6. The
QueryCell does, however, specify the size, in bytes, of its associated comparison data, the data type
of the comparison data, and whether the comparison data is non-null.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NonNullComparisonData (variable)

33 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

...

QueryOperator

IndexOrOption

ComparisonDataType

ComparisonDataSize

NonNullComparisonData (variable): Size depends on negotiated QueryCell marshaling format. It
MUST be 4 bytes in the 32-bit format and MUST be 8 bytes in the 64-bit format. It MUST be set to
zero if the comparison data is null and MUST be set to a nonzero value if the comparison data is

non-null. On receipt, the server MUST treat all nonzero values identically.

QueryOperator (4 bytes): MUST be set to one of the following values.

Value Meaning

eOPERATOR_EQUAL

0x00000000

The QueryCell represents an equality constraint.

eOPERATOR_NOTEQUAL

0x00000001

The QueryCell represents an inequality constraint.

IndexOrOption (4 bytes): MUST be set to either the zero-based index of a property in a table
(values strictly less than 0xF0000000) or an eSpecialQueryOption value (values greater than or
equal to 0xF0000000).

ComparisonDataType (4 bytes): The eDataType (section 2.2.1.2) value that represents the data
type of the comparison data.

ComparisonDataSize (4 bytes): The size, in bytes, of the comparison data. If the representation of
the comparison data in a QueryComparisonData (section 2.2.1.6) structure requires padding to a
multiple of 4 bytes, this size MUST NOT include the padding bytes. If the comparison data is null,
this MUST be set to zero. If the comparison data is non-null and the ComparisonDataType field

is one of the following data type tags, this field is constrained as follows.

Data type tag Constraint

eDT_ULONG MUST be set to 0x00000004.

eDT_GUID MUST be set to 0x00000010 (decimal 16).

eDT_LPWSTR MUST be a multiple of 2.

2.2.1.5 QueryCellArray

The QueryCellArray is part of the representation of a query, as used in the
ICatalogTableInfo::GetClientTableInfo (section 3.1.4.7.1),
ICatalogTableRead::ReadTable (section 3.1.4.8.1), and
ICatalogTableWrite::WriteTable (section 3.1.4.9.1) methods. It is always used along with a

QueryComparisonData (section 2.2.1.6) structure.

34 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

QueryCellArray is a custom-marshaled type that is passed in a char* parameter. A QueryCellArray is
marshaled as an array of zero or more QueryCell structures (a query with zero QueryCell structures

MUST be represented by a NULL pointer).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

QueryCell (variable)

...

QueryCell (variable): MUST be a sequence of zero or more QueryCell structures, custom-marshaled
in the negotiated format, as specified in QueryCell.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

QueryCell 0 (variable)

QueryCell 1 (variable)

...

QueryCell n (variable)

2.2.1.6 QueryComparisonData

The QueryComparisonData structure is part of the representation of a query, as used in the

ICatalogTableInfo::GetClientTableInfo (section 3.1.4.7.1),
ICatalogTableRead::ReadTable (section 3.1.4.8.1), and
ICatalogTableWrite::WriteTable (section 3.1.4.9.1) methods. It is always used along with a
QueryCellArray (section 2.2.1.5) structure.

QueryComparisonData is a custom-marshaled type that is passed in a char* parameter. A
QueryComparisonData is marshaled as an array of zero or more custom-marshaled comparison data
values, each of which is associated with a QueryCell. Each non-null comparison data value MUST be
marshaled in the same order as the QueryCell to which it is associated and according to the custom
marshaling defined as follows for each of the supported types (a query with zero non-null comparison
data values MUST be represented by a NULL pointer).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ComparisonData (variable)

...

ComparisonData (variable): A sequence of zero or more comparison data values, marshaled
according to type.

35 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Type Custom marshaling

eDT_ULONG Marshaled as a 32-bit, unsigned integer in little-endian byte order.

eDT_GUID Marshaled as specified in [MS-DTYP], section 2.3.4.2.

eDT_BYTES Marshaled as an array of bytes, padded with zeros to a multiple of 4 bytes.

eDT_LPWSTR Marshaled as a null-terminated array of wchar_t in little-endian byte order, padded with zeros to
a multiple of 4 bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ComparisonData 0 (variable)

ComparisonData 1 (variable)

...

ComparisonData m (variable)

2.2.1.7 PropertyMeta

The PropertyMeta structure represents the type, size, and meta-properties (specified in this section) of
a property in a table.

 typedef struct {
 DWORD dataType;
 ULONG cbSize;
 DWORD flags;
 } PropertyMeta;

dataType: The eDataType (section 2.2.1.2) value that represents the data type of the property.

cbSize: A size, in bytes, associated with the property. The meaning of this value depends on the
value of the dataType field and whether the fPROPERTY_FIXEDLENGTH flag is set in the flags
field.

 Value of
dataType

 fPROPERTY_FIXEDLENGTH
set? Meaning

eDT_ULONG - The fixed size of the property. MUST be set to
0x00000004.

eDT_GUID - The fixed size of the property. MUST be set to
0x00000010 (decimal 16).

eDT_BYTES No The maximum size of the property. A value of 0xFFFFFFFF
indicates the property's size is unconstrained.

eDT_BYTES Yes The fixed size of the property.

36 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Value of
dataType

 fPROPERTY_FIXEDLENGTH
set? Meaning

eDT_LPWSTR No The maximum size of the property. A value of 0xFFFFFFFF
indicates the property's size is unconstrained.

eDT_LPWSTR Yes The fixed size of the property. MUST be set to a multiple
of 2.

flags: A bit field specifying the meta-properties of the property. MUST be a combination of zero or
more of the following flags.

Value Meaning

fPROPERTY_PRIMARYKEY

0x00000001

This property is part of the primary key for its table. MUST be set if
fPROPERTY_NOTNULLABLE is set.

fPROPERTY_NOTNULLABLE

0x00000002

This property cannot be null.

fPROPERTY_FIXEDLENGTH

0x00000004

This eDT_BYTES or eDT_LPWSTR property has a fixed size. MUST NOT be set
for properties of type eDT_ULONG or eDT_GUID.

fPROPERTY_NOTPERSISTABLE

0x00000008

This property contains sensitive data such as passwords that MUST NOT be
written in plaintext to persistent storage.

fPROPERTY_CASEINSENSITIVE

0x00000020

This eDT_LPWSTR property MUST be treated as case-insensitive for purposes of
comparison. MUST NOT be set for properties of type eDT_ULONG, eDT_GUID, or
eDT_BYTES.

2.2.1.8 fPropertyStatus

The fPropertyStatus structure represents the status of a property value in a table entry, as
represented in a TableEntryFixed (section 2.2.1.9) structure. fPropertyStatus is a bit field 1 byte in
length.

0

1

2

3

4

5

6

7

0 R

1

W R

E

R

2

N

T

C N

N

Where the bits are defined as:

Value Description

R1

Reserved1 (2 bits). MUST be cleared when sent and MUST be ignored on receipt.

W

Write (1 bit). For historical reasons, this flag SHOULD<5> be set for a write and MUST be set for a
write if the property has variable length and any of the following is true:

▪ Action equals eACTION_ADD (section 2.2.1.11).

▪ Action equals eACTION_UPDATE (section 2.2.1.11).

37 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Description

▪ Action equals eACTION_DELETE (section 2.2.1.11) and the property is a primary key.

This flag MUST be cleared for a read. It SHOULD<6> be ignored on receipt.

RE

Read (1 bit). For historical reasons, this flag SHOULD<7> be set for a read and MUST be set for a
read if the property has variable length. This flag MUST be cleared for a write and SHOULD<8> be
ignored on receipt.

R2

Reserved2 (1 bit). MUST be cleared when sent and MUST be ignored on receipt.

NT

NoTouch (1 bit). For a write, this flag MUST be set on certain properties for historical reasons. For
information about which properties require this flag, see the table definitions in section 3.1.1.3. For
a read, this flag MUST be clear.

C

Changed (1 bit). For a write, indicates that the property value is to be changed. For a read, MAY
be set by the server and MUST be ignored by the client on receipt.

NN

NonNull (1 bit). The property value is non-null.

2.2.1.9 TableEntryFixed

The TableEntryFixed structure is used in the TableDataFixed (section 2.2.1.10) and
TableDataFixedWrite (section 2.2.1.13) structures. These structures are always used along with a
TableDataVariable (section 2.2.1.15) structure. This type represents fixed-size parts of the data in a
table entry:

▪ The status of each property value.

▪ The size of each nonfixed size eDT_BYTES property.

▪ The property value for each fixed size property.

▪ An offset, in bytes, to the property value within a TableDataVariable for each nonfixed size
property.

This structure is marshaled as specified in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Status 0 Status 1

Status n Padding

Size 0

Size 1

...

Size m

38 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ValueOrOffset 0 (variable)

ValueOrOffset 1 (variable)

...

ValueOrOffset n (variable)

Status 0-n: The property status for each property, in order by index. MUST be an
fPropertyStatus (section 2.2.1.8) value.

Padding: Padding with zeros to a 4-byte boundary from the start of the structure.

Size 0-m: The size, in bytes, represented by an unsigned integer, of the property value for each
nonfixed size eDT_BYTES property, in order by index. If the representation of the property value
in the associated TableDataVariable structure requires padding to a multiple of 4 bytes, this size

does not include the padding bytes.

ValueOrOffset 0-n: The property value or offset for each property, in order by index. The format of
this field depends on the type of the property, whether the fPROPERTY_FIXEDLENGTH flag is set in

the property's section PropertyMeta (section 2.2.1.7), and whether the NonNull (see section
2.2.1.8) bit is set in the property's Status field.

Type of
property

fPROPERTY_FIXEDLENGTH
set?

NonNull
set? Format

eDT_ULONG - The property value, marshaled as a 32-bit
unsigned integer.

eDT_GUID - - The property value, marshaled as specified
in [MS-DTYP], section 2.3.4.2.

eDT_BYTES No No A 4-byte field, which SHOULD<9> be zero
and MUST be ignored on receipt.

eDT_BYTES No Yes A 32-bit unsigned integer, which MUST be
the offset in bytes to the property value
from the start of the associated
TableDataVariable structure. MUST be a
multiple of 4.

eDT_BYTES Yes No A field with length equal to the fixed size of
the property, rounded up to a multiple of 4.
SHOULD be filled with zeros and MUST be
ignored on receipt.

eDT_BYTES Yes Yes The property value, marshaled as an array
of bytes, padded with zeros to a multiple of
4 bytes.

eDT_LPWSTR No No A 4-byte field, which SHOULD<10> be zero
and MUST be ignored on receipt.

eDT_LPWSTR No Yes A 32-bit unsigned integer, which MUST be
the offset in bytes to the property value
from the start of the associated
TableDataVariable structure. MUST be a
multiple of 4.

eDT_LPWSTR Yes No A field with the length equal to the fixed

39 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Type of
property

fPROPERTY_FIXEDLENGTH
set?

NonNull
set? Format

size of the property, rounded up to a
multiple of 4. SHOULD be filled with zeros
and MUST be ignored on receipt.

eDT_LPWSTR Yes Yes The property value, marshaled as a null-
terminated array of wchar_t in little-endian
byte order, padded with zeros to a multiple
of 4 bytes.

2.2.1.10 TableDataFixed

The TableDataFixed structure represents the fixed-size parts of the data in zero or more entries in a
table, as returned by the ICatalogTableRead::ReadTable (section 3.1.4.8.1) method. It is always used

along with a TableDataVariable (section 2.2.1.15) structure.

TableDataFixed is a custom-marshaled type that is returned in a char** parameter. A TableDataFixed
structure is marshaled as a sequence of zero or more TableEntryFixed (section 2.2.1.9) structures (a
result with zero table entries is represented by a NULL pointer).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Entry (variable)

...

Entry (variable): A sequence of zero or more TableEntryFixed structures. The order in which these
structures appear MUST be the same as the order in which the corresponding TableEntryVariable

(section 2.2.1.14) structures appear in the associated TableDataVariable structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Entry 0 (variable)

Entry 1 (variable)

...

Entry n (variable)

2.2.1.11 eTableEntryAction

The eTableEntryAction enumeration represents a write action to an entry in a table. An
eTableEntryAction is represented by a 32-bit unsigned integer. The eTableEntryAction enumeration
MUST be set to one of the following values.

40 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Description

eACTION_ADD

0x00000001

Add an entry to the table.

eACTION_UPDATE

0x00000002

Update an existing entry in the table.

eACTION_REMOVE

0x00000003

Remove an entry from the table.

2.2.1.12 TableEntryFixedWrite

The TableEntryFixedWrite structure represents the fixed-size parts of the data, along with the write

action, for a write to an entry in a table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Entry (variable)

...

Action

Entry (variable): A TableEntryFixed structure, marshaled as specified in section 2.2.1.9.

Action (4 bytes): An eTableEntryAction (section 2.2.1.11) value identifying the type of write action.

2.2.1.13 TableDataFixedWrite

The TableDataFixedWrite structure represents the fixed-size parts of the data, along with write
actions, for a write to zero or more entries in a table, as used in the
ICatalogTableWrite::WriteTable (section 3.1.4.9.1) method. It is always used along with a
TableDataVariable (section 2.2.1.15) structure.

TableDataFixedWrite is a custom-marshaled type that is passed in a char* parameter. A

TableDataFixedWrite structure is marshaled as a sequence of zero or more
TableEntryFixedWrite (section 2.2.1.12) structures (a write with zero table entries MUST be
represented by a NULL pointer).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EntryWrite (variable)

...

EntryWrite (variable): A sequence of zero or more TableEntryFixedWrite structures. The order in
which these structures appear MUST be the same as the order in which the corresponding
TableEntryVariable (section 2.2.1.14) structures appear in the associated TableDataVariable

structure.

41 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EntryWrite 0 (variable)

EntryWrite 1 (variable)

...

EntryWrite n (variable)

2.2.1.14 TableEntryVariable

The TableEntryVariable structure represents the variable-size parts of the data in an entry in a table or

in a write to an entry in a table. It consists of a sequence of zero or more variable-size property
values.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Value (variable)

...

Value (variable): A sequence of zero or more property values, with one value for each variable-size
property, in order by index. The format of each property value depends on the type of the
property.

Type of
property Format

eDT_BYTES

0x00000080

The property value, marshaled as an array of bytes, padded with zeros to a multiple of 4
bytes.

eDT_LPWSTR

0x00000082

The property value, marshaled as a null-terminated array of wchar_t in little-endian byte
order, padded with zeros to a multiple of 4 bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Value 0 (variable)

Value 1 (variable)

...

Value n (variable)

42 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.1.15 TableDataVariable

The TableDataVariable structure represents the variable-size parts of the data in zero or more entries
in a table, as returned by the ICatalogTableRead::ReadTable (section 3.1.4.8.1) method, or in a write

to zero or more entries in a table, as used in the ICatalogTableWrite::WriteTable (section 3.1.4.9.1)
method. It is always used along with a TableDataFixed (section 2.2.1.10) or
TableDataFixedWrite (section 2.2.1.13) structure, which specifies the offsets to each of the values in
this structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Entry (variable)

...

Entry (variable): A sequence of zero or more TableEntryVariable (section 2.2.1.14) structures. The

order in which these structures appear MUST be the same as the order in which the corresponding

TableEntryFixed (section 2.2.1.9) or TableEntryFixedWrite (section 2.2.1.12) structures appear in
the associated TableDataFixed or TableDataFixedWrite structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Entry 0 (variable)

Entry 1 (variable)

...

Entry n (variable)

2.2.1.16 TableDetailedError

The TableDetailedError structure represents a record of an error related to a particular property of a
particular table entry, which contributed to a partial failure in a read from a table (see section
3.1.4.8.1) or a failure in a write to a table (see section 3.1.4.9.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EntryIndex

Reason

PropertyIndex

EntryIndex (4 bytes): An unsigned integer that represents the zero-based index of the entry to

which this error corresponds.

Reason (4 bytes): An HRESULT value that represents the reason for failure. MUST be a failure
result, as specified in [MS-ERREF] section 2.1.

43 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

PropertyIndex (4 bytes): An unsigned integer that represents the zero-based index of the property
to which this error corresponds.

2.2.1.17 TableDetailedErrorArray

The TableDetailedErrorArray structure represents an unordered collection of one or more detailed
errors that contributed to a partial failure in a read from a table (see section 3.1.4.8.1) or a failure in
a write to a table (see section 3.1.4.9.1).

TableDetailedErrorArray is a custom-marshaled type that is returned in a char** parameter. A

TableDetailedErrorArray structure is marshaled as an array of one or more
TableDetailedError (section 2.2.1.16) structures, the order of which is not significant.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DetailedError (variable)

...

DetailedError (variable): One or more TableDetailedError structures, marshaled as specified in
section 2.2.1.16.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DetailedError 0

...

...

DetailedError 1

...

...

DetailedError m

...

...

2.2.2 Property Formats

The definition of a property in a table (see section 3.1.1.3 for details) includes the domain of valid
property values, its representation on the wire, and the semantics of the configuration it represents.
The fields of a property's PropertyMeta (section 2.2.1.7) structure represent some low-level typing

metadata--a simple type (one of the eDataType (section 2.2.1.2) values), size, and whether or not
null is a valid value--but do not specify any higher-level constraints or semantics. For example, many

44 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

properties that are represented as an eDT_ULONG are required to have a value from an enumeration,
where each enumeration value has a specific meaning. The following sections specify common types

for properties in tables, where the constraints and semantics are not clearly implied by the property's
PropertyMeta values.

For historical reasons, COMA does not apply a consistent requirement for server and client validation
responsibilities across all property types. For example, some type validity constraints require only
server validation, while others require only client validation. Therefore, validity constraints on the
types defined in these sections are specified separately from the validation requirements for servers
and clients. For details on server and client validation requirements, see sections 3.1.4.9.1 and
3.2.4.6 respectively.

Each property type definition includes the following information:

Simple type: The eDataType value for properties of this type, as used when representing a property
of this type in a call to the ICatalogTableRead::ReadTable (section 3.1.4.8.1) and
ICatalogTableWrite::WriteTable (section 3.1.4.9.1) methods. If properties of this type are also
used as method parameters, the wire representation used in these methods is mentioned here as

well.

Validity: Constraints on the values that represent valid configuration for properties of this type. If a

property of this type is set to a value that does not conform to these constraints, the resulting
ORB behavior is undefined.

Server validation: Requirements for validation of writes received by a server implementation.

Client validation: Requirements for validation of writes sent by a protocol client implementation on
behalf of a client application.

2.2.2.1 Placeholder Property Formats

The following sections specify property formats for properties that are reserved or otherwise not used
in a particular context. The values required for properties of these types are placeholder values only
and have no meaning.

2.2.2.1.1 PlaceholderPartitionIdProperty

Simple type: eDT_GUID

Validity: MUST have the value {41E90F3E-56C1-4633-81C3-6E8BAC8BDD70} (the partition identifier
of the global partition).

Server validation: Servers SHOULD enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.1.2 PlaceholderGuidProperty

Simple type: eDT_GUID

Validity: MUST have the value GUID_NULL.

Server validation: Servers SHOULD enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.1.3 PlaceholderStringProperty

Simple type: eDT_LPWSTR

45 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Validity: MUST be null.

Server validation: Servers SHOULD enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.1.4 PlaceholderIntegerProperty

Simple type: eDT_ULONG

Validity: MUST be zero.

Server validation: Servers SHOULD enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.2 ImplementationSpecificPathProperty

The ImplementationSpecificPathProperty represents a path to a resource in a format that is specific to
a COMA server implementation.

Simple type: eDT_LPWSTR. Represented as an LPWSTR or LPCWSTR when used as a method
parameter.

Validity: Character length MUST be at least 1 and at most 260, not including the terminating null
character. Additional constraints are implementation-specific.<11> However, paths in Universal
Naming Convention (UNC) SHOULD be valid.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

2.2.2.3 Threading Model Property Formats

If an ORB provides a feature for hosting component instances on different types of threads,
restrictions on the types of threads on which the component instances for a particular component will
be hosted is represented in the catalog as a property of the component and of its component
configurations.

An ORB that provides this feature divides all threads in a given process that will be used to host

component instances into one of two categories:

▪ Single threaded apartment (STA) threads are primarily used to host component instances when
the component expects that all calls to any given component instance will be executed on a single
thread. Optionally, the ORB designates one STA thread in each process as the Main STA thread.

▪ Multi-threaded apartment (MTA) threads are used to host component instances when the
component does not have such an expectation.

An ORB that provides this feature furthermore assigns to each component instance one of the

following hosting models at the time that the component is instantiated:

▪ In the STA-hosted model, all calls to the component instance are executed on the same thread.
The component instance is said to be hosted on that thread.

▪ In the MTA-hosted model, all calls to the component instance are executed on one of the MTA
threads in the process. The specific thread used for any given call is selected according to ORB-
specific criteria.<12>

46 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ In the neutral-hosted model, calls to the component instance are executed on any STA or MTA
thread, selected according to ORB-specific criteria.<13>

Properties that use the formats specified in the following sections are an indication of how the ORB will
select the hosting model for component instances. These property values are typically selected by the

component itself, and COMA does not provide a mechanism for modifying the values. If an ORB does
not provide such a feature, this SHOULD be indicated by using the values eTM_NEUTRAL and "Neutral"
for all components. If an ORB does not designate one STA thread in each process as the Main STA
thread, the values eTM_MAIN and null SHOULD NOT be used.

2.2.2.3.1 ThreadingModelEnumerationProperty

The ThreadingModelEnumerationProperty type represents how the hosting model is to be selected for

component instances.

Simple type: eDT_ULONG

Validity: MUST be one of the following values.

Value Meaning

eTM_APARTMENT

0x00000000

Each component instance is to be STA-hosted. The STA thread used to host the
component instance is to be selected as follows:

If an instantiation request originates from an STA thread in the same process in
which the component is to be instantiated, the component instance is to be hosted
on that thread.

Otherwise, the ORB is to select an existing STA thread or create a new STA thread
to host the component instance according to some ORB-specific criteria.<14>

eTM_FREE

0x00000001

Each component instance is to be MTA-hosted. If no MTA threads exist in the
process in which the component is to be instantiated at the time of the instantiation
request, the ORB is to create at least one MTA thread.

eTM_MAIN

0x00000002

Each component instance is to be STA-hosted in the Main STA thread. If no STA
threads exist in the process in which the component is to be instantiated at the time
of the instantiation request, the ORB is to create one STA thread and designate it
the Main STA thread.

eTM_BOTH

0x00000003

Each component instance is to be either STA-hosted or MTA-hosted, according to
the following criteria:

If an instantiation request originates from an STA thread in the same process in
which the component is to be instantiated, the component instance is to be STA-
hosted on that thread.

If an instantiation request originates from an MTA thread in the same process in
which the component is to be instantiated, the component instance is to be MTA-
hosted.

If an instantiation request does not originate from within the process in which the
component is to be instantiated, the component instance is to be MTA-hosted. If no
MTA threads exist in the process at the time of the instantiation request, the ORB is
to create at least one MTA thread.

eTM_NEUTRAL

0x00000004

Component instances are to be neutrally hosted.

Server validation: No validation requirements (COMA does not provide a mechanism for writing
properties of this type).

Client validation: No validation requirements (COMA does not provide a mechanism for writing
properties of this type).

47 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.2.3.2 ThreadingModelStringProperty

The ThreadingModelStringProperty type represents how the hosting model is to be selected for
component instances. For historical reasons, some properties use this format instead of the

ThreadingModelEnumerationProperty (section 2.2.2.3.1) format. Each allowed value of this format
corresponds to one of the ThreadingModelEnumerationProperty values.

Simple type: eDT_LPWSTR

Validity: MUST be one of the following values.

Value Corresponding ThreadingModelEnumerationProperty value

"Apartment" eTM_APARTMENT

"Free" eTM_FREE

null eTM_MAIN

"Both" eTM_BOTH

"Neutral" eTM_NEUTRAL

Server validation: No validation requirements (COMA does not provide a mechanism for writing

properties of this type).

Client validation: No validation requirements (COMA does not provide a mechanism for writing
properties of this type).

2.2.2.4 ScriptingProgramIdProperty

The ScriptingProgramIdProperty represents a scripting-friendly unique name for a component,
intended for use in scripting environments and for display purposes.

Simple type: eDT_LPWSTR. It is represented as an LPWSTR or LPCWSTR type, as specified in [MS-
DTYP] section 2.2.36, when used as a method parameter.

Validity: Character length MUST be at least 1 and at most 39, not including the terminating null
character. Each value MUST uniquely identify a component.

Server validation: Servers MAY enforce character length restrictions and SHOULD enforce
uniqueness.

Client validation: Clients MAY enforce character length restrictions and SHOULD NOT enforce
uniqueness.

2.2.2.5 BitnessProperty

The BitnessProperty type represents the bitness of a component configuration.

Simple type: eDT_ULONG

Validity: It MUST be one of the following values.

Value Meaning

0x00000001 The component configuration is for the 32-bit bitness of the component.

0x00000002 The component configuration is for the 64-bit bitness of the component.

48 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Server validation: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.6 NameProperty

The NameProperty represents a scripting-friendly name for an object, intended for use in scripting
environments and for display purposes.

Simple type: eDT_LPWSTR. It is represented as an LPCWSTR type, as specified in [MS-DTYP] section
2.2.34, when used as a method parameter.

Validity: MUST NOT be null.

Server validation: Servers MUST enforce validity constraints. Servers MAY enforce an
implementation-specific character length limit. If so, this limit SHOULD be at least 255 characters,
not including the terminating null character.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.7 DescriptionProperty

The DescriptionProperty represents a human-readable description for an object, intended for display
purposes.

Simple type: eDT_LPWSTR

Validity: No restrictions.

Server validation: Servers MAY enforce an implementation-specific character length limit. If so, this

limit SHOULD be at least 255 characters, not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.8 ContextFacilityProperty

The ContextFacilityProperty enumeration represents how, if at all, a particular facility provided by an
ORB is to be automatically integrated into the context of a new component instance from an incoming
instantiation request.

Simple type: eDT_ULONG

Validity: MUST be one of the following values.

Value Meaning

Ignored

0x00000000

The presence of the facility in the incoming request is to be ignored.

Unsupported

0x00000001

The presence of the facility in the incoming request is to result in failure for the
instantiation.

Supported

0x00000002

The facility is to be integrated into the component instance's context if present in the
instantiation request, but no instance of the facility is to be created if absent.

Required

0x00000003

The facility is to be integrated into the component instance's context if present in the
instantiation request, and a new instance of the facility is to be created if absent.

RequiresNew Regardless of whether the facility is present in the incoming instantiation request, a

49 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Meaning

0x00000004 new instance of the facility is to be created.

Server validation: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.9 BooleanProperty

The BooleanProperty represents a Boolean value.

Simple type: eDT_ULONG

Validity: MUST be one of the values TRUE (0x00000001) or FALSE (0x00000000).

Server validation: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.9.1 BooleanBitProperty

The BooleanBitProperty type represents a Boolean value multiplexed with other Boolean values in an
eDT_ULONG property.

Simple type: This type is always a bit in an eDT_ULONG property.

Validity: No restrictions.

Server validation: No requirements.

Client validation: No requirements.

2.2.2.10 Pool Size Property Formats

The following sections specify the property formats for properties used to configure instance pooling.

2.2.2.10.1 MinPoolSizeProperty

The MinPoolSizeProperty type represents the minimum size of a pool of component instances.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000000 and 0x00100000 (decimal 1048576), inclusive. Furthermore,
table entries with a property of this type also have a corresponding property of type
MaxPoolSizeProperty (section 2.2.2.10.2). The value of this property MUST be less than or equal

to the corresponding MaxPoolSizeProperty.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.10.2 MaxPoolSizeProperty

The MaxPoolSizeProperty type represents the maximum size of a pool of component instances.

Simple type: eDT_ULONG

50 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Validity: MUST be between 0x00000001 and 0x00100000 (decimal 1048576), inclusive. Furthermore,
table entries with a property of this type also have a corresponding property of type

MinPoolSizeProperty (section 2.2.2.10.1). The value of this property MUST be greater than or
equal to the corresponding MinPoolSizeProperty.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.11 Timeout Property Formats

The following sections specify property formats that represent timeout values.

2.2.2.11.1 LongTimeoutInSecondsProperty

The LongTimeoutInSecondsProperty type represents a timeout as a number of seconds.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000000 and 0x0000FFFF (decimal 65535), inclusive, where a zero
value indicates an infinite timeout.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.11.2 ShortTimeoutInSecondsProperty

The ShortTimeoutInSecondsProperty type represents a timeout as a number of seconds.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000000 and 0x00000EA0 (decimal 3744) inclusive.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.11.3 LongTimeoutInMinutesProperty

The LongTimeoutInMinutesProperty type represents a timeout as a number of minutes.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000000 and 0x00007620 (decimal 30240), inclusive.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.11.4 ShortTimeoutInMinutesProperty

The ShortTimeoutInMinutesProperty type represents a timeout as a number of minutes.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000000 and0x000005A0 (decimal 1440) inclusive.

Server validation: Servers MAY enforce validity constraints.

51 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.12 ApplicationSpecificStringProperty

The ApplicationSpecificStringProperty type represents a string with application-specific meaning, which
is not interpreted by the target ORB but rather provided as a parameter to components at runtime.

Simple type: eDT_LPWSTR

Validity: No restrictions.

Server validation: Servers MAY enforce an implementation-specific character length limit. If so, this

limit SHOULD be at least 255 characters, not including the terminating null character.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

2.2.2.13 ORB-Specific Property Formats

The following sections specify property formats with ORB-specific meaning and validity constraints.

2.2.2.13.1 ORBSpecificExceptionClassProperty

The ORBSpecificExceptionClassProperty type represents an application-provided software component
that an ORB is to use for handling an exceptional condition in an instance container.

Simple type: eDT_LPWSTR

Validity: ORB-specific.<15>

Server validation: Servers MAY enforce ORB-specific validity constraints. Servers MAY enforce an

implementation-specific character length limit. If so, this limit SHOULD be at least 255 characters,
not including the terminating null character.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

2.2.2.13.2 ORBSpecificModuleIdentifierProperty

The ORBSpecificModuleIdentifierProperty type represents an ORB-specific identifier for a module.

Simple type: eDT_LPWSTR

Validity: ORB-specific.<16>

Server validation: Servers MAY enforce ORB-specific validity constraints. Servers MAY enforce an
implementation-specific character length limit. If so, this limit SHOULD be at least 255 characters,
not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.3 ORBSpecificTypeIdentifierProperty

The ORBSpecificTypeIdentifierProperty type represents an identifier for a type in an ORB-specific type
system.

Simple type: eDT_LPWSTR

Validity: ORB-specific.<17>

52 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Server validation: Servers MAY enforce ORB-specific validity constraints. Servers MAY enforce an
implementation-specific character length limit. If so, this limit SHOULD be at least 255 characters,

not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.4 ORBSpecificAlternateLaunchNameProperty

The ORBSpecificAlternateLaunchNameProperty type represents the name of a resource in an ORB-
specific namespace that is to be used by the ORB when creating instance containers via an ORB-
specific alternate launch mechanism.

Simple type: eDT_LPWSTR

Validity: ORB-specific.<18>

Server validation: Servers MAY enforce ORB-specific validity constraints. Servers MAY enforce an
implementation-specific character length limit. If so, this limit SHOULD be at least 255 characters,

not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.5 ORBSpecificAlternateLaunchParametersProperty

The ORBSpecificAlternateLaunchParametersProperty type represents the additional parameters that
are to be used by the ORB when creating instance containers via an ORB-specific alternate launch
mechanism.

Simple type: eDT_LPWSTR

Validity: ORB-specific.<19>

Server validation: Servers MAY enforce ORB-specific validity constraints. Servers MAY enforce an
implementation-specific character length limit. If so, this limit SHOULD be at least 255 characters,

not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.6 ORBSpecificCommandLineProperty

The ORBSpecificCommandLineProperty type represents a command to be executed by the ORB in an
ORB-specific syntax.

Simple type: eDT_LPWSTR

Validity: ORB-specific.<20>

Server validation: Servers MAY enforce ORB-specific validity constraints. Servers MAY enforce an
implementation-specific character length limit. If so, this limit SHOULD be at least 255 characters,
not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.7 ORBSpecificWebServerVirtualDirectoryProperty

The ORBSpecificWebServerVirtualDirectoryProperty type represents a virtual directory within the
namespace used by the ORB's web server.

Simple type: eDT_LPWSTR

53 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Validity: ORB-specific.<21>

Server validation: Servers MAY enforce ORB-specific validity constraints. Servers MAY enforce an

implementation-specific character length limit. If so, this limit SHOULD be at least 255 characters,
not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.8 ORBSpecificSubscriptionFilterCriteriaProperty

The ORBSpecificSubscriptionFilterCriteriaProperty type represents criteria for a subscriber to receive
events from a publisher in an ORB-specific syntax.

Simple type: eDT_LPWSTR

Validity: ORB-specific.<22>

Server validation: Servers MAY enforce ORB-specific validity constraints. Servers MAY enforce an
implementation-specific character length limit. If so, this limit SHOULD be at least 255 characters,

not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.9 ORBSpecificAlternateActivationProperty

The ORBSpecificAlternateActivationProperty type represents a string to be used by an ORB to activate
a component via an ORB-specific alternate activation mechanism.

Simple type: eDT_LPWSTR

Validity: ORB-specific.<23>

Server validation: Servers MAY enforce ORB-specific validity constraints. Servers MAY enforce an
implementation-specific character length limit. If so, this limit SHOULD be at least 255 characters,
not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.10 ORBSpecificProtocolSequenceMnemonicProperty

The ORBSpecificProtocolSequenceMnemonicProperty type is an ORB-specific string mnemonic for one
or more RPC protocol sequences, to be used by an ORB for configuring DCOM.

Simple type: eDT_LPWSTR

Validity: ORB-specific.<24>

Server validation: Servers SHOULD enforce ORB-specific validity constraints. Servers MAY enforce
an implementation-specific character length limit. If so, this limit SHOULD be at least 255
characters, not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.14 TransactionIsolationLevelProperty

The TransactionIsolationLevelProperty type represents the level to which component instances in the
context of an ORB-provided atomic transaction are to be isolated from entities external to this
transaction.

Simple type: eDT_ULONG

54 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Validity: MUST be one of the following values.

Value Meaning

eTXIL_ANY

0x00000000

The ORB is to select one of the other transaction isolation levels
according to ORB-specific criteria.

eTXIL_READUNCOMMITTED

0x00000001

The ORB is to allow the component instance to read data even if it is
being modified in the context of another transaction that has not been
committed.

eTXIL_READCOMMITTED

0x00000002

The ORB is to prevent the component instance from reading data that
is being modified in the context of another transaction that has not
been committed.

eTXIL_REPEATABLEREAD

0x00000003

The ORB is to guarantee that data read by the component instance is
not modified by entities external to the transaction until the
transaction finishes. The ORB makes no guarantees about whether
new data written by an external entity is visible to the component
instance.

eTXIL_SERIALIZABLE

0x00000004

The ORB is to guarantee that data read by the component instance is
not modified by entities external to the transaction until the
transaction finishes. The ORB is also to guarantee that new data
written by an external entity is not made visible to the component
instance until the transaction finishes.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.15 ComputerNameProperty

The ComputerNameProperty type represents a computer name.

Simple type: eDT_LPWSTR

Validity: If not null, it MUST be a computer name.

Server validation: Servers MAY enforce validity constraints but SHOULD NOT attempt to enforce that
the computer identified exists or is reachable. Servers MAY enforce an implementation-specific
character length limit. If so, this limit SHOULD be at least 255 characters, not including the

terminating null character.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

2.2.2.16 ComputerNameOrAddressProperty

The ComputerNameOrAddressProperty type represents a computer name, an IPv4 address in string

format if the server supports the Internet Protocol [RFC791], or an IPv6 address in string format if the

server supports the Internet Protocol, version 6 [RFC2460].

Simple type: eDT_LPWSTR

Validity: If not null, it MUST be a computer name, an IPv4 address in string format, or an IPv6
address in string format. It MUST NOT be an IPv4 address in string format if the server does not
support the Internet Protocol. It MUST NOT be an IPv6 address in string format if the server

supports the Internet Protocol, version 6.

55 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Server validation: Servers MAY enforce validity constraints, but SHOULD NOT attempt to enforce
that the computer identified exists or is reachable. Servers MAY enforce an implementation-

specific character length limit. If so, this limit SHOULD be at least 255 characters, not including
the terminating null character.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

2.2.2.17 SecurityPrincipalNameProperty

The SecurityPrincipalNameProperty type represents a security principal name (SPN).

Simple type: eDT_LPWSTR. It is represented as an LPWSTR or LPCWSTR type, as specified in [MS-
DTYP] section 2.2.36, when used as a method parameter.

Validity: MUST be a security principal name.

Server validation: Servers MAY enforce validity constraints. Servers MAY enforce an implementation-
specific character length limit. If so, this limit SHOULD be at least 255 characters, not including

the terminating null character.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

2.2.2.18 PasswordProperty

The PasswordProperty type represents a password associated with a security principal.

Simple type: eDT_LPWSTR. It is represented as an LPWSTR or LPCWSTR type (as specified in [MS-
DTYP] section 2.2.36), or an array of bytes containing a null-terminated array of wchar_t in little-

endian byte order and marshaled in a char*, when used as a method parameter.

Validity: No restrictions.

Server validation: Servers MAY enforce an implementation-specific character length limit. If so, this
limit SHOULD be at least 255 characters, not including the terminating null character.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

Except where otherwise noted, properties of this type MUST NOT be persisted in plaintext or returned

to clients.

2.2.2.19 YesNoProperty

The YesNoProperty represents a Boolean value. For historical reasons, this type is used instead of
BooleanProperty (section 2.2.2.9) for certain properties.

Simple type: eDT_LPWSTR

Validity: MUST be one of the following values: "Y" (for true) or "N" (for false).

Server validation: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.20 LegacyYesNoProperty

The LegacyYesNoProperty represents a Boolean value. For historical reasons, this type is used instead
of BooleanProperty (section 2.2.2.9) for certain properties. This type is equivalent to YesNoProperty,
but null values are permitted and have the same meaning as "N" (false).

56 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Simple type: eDT_LPWSTR.

Validity: If not null, MUST be one of the following values: "Y" (for true) or "N" (for false).

Server validation: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.21 SecurityDescriptorProperty

The SecurityDescriptorProperty type represents a security descriptor used by an ORB to authorize
instantiation of components and access to component instances.

Simple type: eDT_BYTES

Validity: If not null, it MUST be a ComponentSecurityDescriptor (section 2.2.2.21.4).

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

2.2.2.21.1 Component Access Mask Types

The following sections specify types used in access masks for component-related security descriptors.

2.2.2.21.1.1 Component Access Constants

The following values are used as flags in the access mask of an Access Control Entry (ACE) in a
component-related security descriptor.

Value Meaning

COM_RIGHTS_EXECUTE

0x00000001

In an OldVersionComponentAccessMask (section 2.2.2.21.1.2), this value
represents a combination of all of the rights represented by
COM_RIGHTS_EXECUTE_LOCAL, COM_RIGHTS_EXECUTE_REMOTE,
COM_RIGHTS_ACTIVATE_LOCAL, and COM_RIGHTS_ACTIVATE_REMOTE.

In a NewVersionComponentAccessMask (section 2.2.2.21.1.3), this flag has
no specific meaning but is required to be set for historical reasons.

COM_RIGHTS_EXECUTE_LOCAL

0x00000002

In a NewVersionComponentAccessMask, this value represents the right of a
security principal to use ORB-specific local mechanisms to cause a
component to be executed, where the precise meaning of execute depends
on the context.

In a component access security descriptor, this right controls whether or not
a principal is authorized to execute method calls on component instances.

In a component launch security descriptor, this right controls whether or not
a principal is authorized to create a process in which the component will be
hosted.

COM_RIGHTS_EXECUTE_REMOTE

0x00000004

In a NewVersionComponentAccessMask, this value represents the right of a
security principal to use ORB-specific remote mechanisms to cause a
component to be executed, where the precise meaning of execute depends
on the context.

In a component access security descriptor, this right controls whether or not
a principal is authorized to execute method calls on component instances.

In a component launch security descriptor, this right controls whether or not
a principal is authorized to create a process in which the component will be
hosted.

COM_RIGHTS_ACTIVATE_LOCAL In a NewVersionComponentAccessMask, this value represents the right of a

57 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Meaning

0x00000008 security principal to use ORB-specific local mechanisms to activate a
component.

This right is meaningful only in a component launch security descriptor.

COM_RIGHTS_ACTIVATE_REMOTE

0x000000010

In a NewVersionComponentAccessMask, this value represents the right of a
security principal to use ORB-specific local mechanisms to activate a
component.

This right is meaningful only in a component launch security descriptor.

2.2.2.21.1.2 OldVersionComponentAccessMask

The OldVersionComponentAccessMask type represents an access mask that uses only the flag
COM_RIGHTS_EXECUTE to specify rights.

Fields of this type are 32-bit unsigned integers that MUST have the flag COM_RIGHTS_EXECUTE
(0x00000001) set and furthermore MUST NOT have any of the following flags set:
COM_RIGHTS_EXECUTE_LOCAL (0x00000002), COM_RIGHTS_EXECUTE_REMOTE (0x00000004),

COM_RIGHTS_ACTIVATE_LOCAL (0x00000008), and COM_RIGHTS_ACTIVATE_REMOTE
(0x00000010). Other bits of the value are not meaningful and SHOULD NOT be set.

2.2.2.21.1.3 NewVersionComponentAccessMask

The NewVersionComponentAccessMask type represents an access mask that uses the more granular
component access constants to specify rights.

Fields of this type are 32-bit unsigned integers that for historical reasons MUST have the flag

COM_RIGHTS_EXECUTE (0x00000001) set, and furthermore MUST have one or more of the following
flags set: COM_RIGHTS_EXECUTE_LOCAL (0x00000002), COM_RIGHTS_EXECUTE_REMOTE
(0x00000004), COM_RIGHTS_ACTIVATE_LOCAL (0x00000008), and

COM_RIGHTS_ACTIVATE_REMOTE (0x00000010). Other bits of the value are not meaningful and
SHOULD NOT be set.

2.2.2.21.2 Component ACE Types

The following sections specify types used as Access Control Entries (ACEs) in component-related
security descriptors.

2.2.2.21.2.1 OldVersionComponentAccessAllowedACE

The OldVersionComponentAccessAllowedACE type represents an ACCESS_ALLOWED_ACE as specified
in [MS-DTYP] section 2.4.4.2, where the access mask is an
OldVersionComponentAccessMask (section 2.2.2.21.1.2).

A field of this type MUST be an ACCESS_ALLOWED_ACE ([MS-DTYP] section 2.4.4.2). Furthermore,
the Mask field MUST be an OldVersionComponentAccessMask. The AceFlags subfield of the Header

field is not meaningful and SHOULD be zero.

2.2.2.21.2.2 NewVersionComponentAccessAllowedACE

The NewVersionComponentAccessAllowedACE type represents an ACCESS_ALLOWED_ACE as specified
in [MS-DTYP] section 2.4.4.2, where the access mask is a

NewVersionComponentAccessMask (section 2.2.2.21.1.3).

58 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

A field of this type MUST be an ACCESS_ALLOWED_ACE ([MS-DTYP] section 2.4.4.2). Furthermore,
the Mask field MUST be a NewVersionComponentAccessMask. The AceFlags subfield of the Header

field is not meaningful and SHOULD be zero.

2.2.2.21.2.3 OldVersionComponentAccessDeniedACE

The OldVersionComponentAccessDeniedACE type represents an ACCESS_DENIED_ACE as specified in
[MS-DTYP] section 2.4.4.4, where the access mask is an
OldVersionComponentAccessMask (section 2.2.2.21.1.2).

A field of this type MUST be an ACCESS_DENIED_ACE ([MS-DTYP] section 2.4.4.4). Furthermore, the
Mask field MUST be an OldVersionComponentAccessMask. The AceFlags subfield of the Header field
is not meaningful and SHOULD be zero.

2.2.2.21.2.4 NewVersionComponentAccessDeniedACE

The NewVersionComponentAccessDeniedACE type represents an ACCESS_DENIED_ACE as specified in
[MS-DTYP] section 2.4.4.4, where the access mask is a

NewVersionComponentAccessMask (section 2.2.2.21.1.3).

A field of this type MUST be an ACCESS_DENIED_ACE ([MS-DTYP] section 2.4.4.4). Furthermore, the

Mask field MUST be a NewVersionComponentAccessMask. The AceFlags subfield of the Header field
is not meaningful and SHOULD be zero.

2.2.2.21.2.5 ComponentMandatoryLabelACE

The ComponentMandatoryLabelACE type represents a SYSTEM_MANDATORY_LABEL_ACE as specified
in [MS-DTYP] section 2.4.4.13 that can be used in the System Access Control List (SACL) of a
component-related security descriptor.

A packet of this type MUST be a SYSTEM_MANDATORY_LABEL_ACE ([MS-DTYP] section 2.4.4.13). The
only access flag in the Mask field that is meaningful is
SYSTEM_MANDATORY_LABEL_NO_EXECUTE_UP (0x00000004). For the purpose of access checks

against a component-related security descriptor that includes an ACE of this type in its SACL, all
Component Access Constants (section 2.2.2.21.1.1) are considered execute rights. Other access flags
are not meaningful and SHOULD NOT be set. The AceFlags subfield of the Header field is not
meaningful and SHOULD be zero.

2.2.2.21.3 Component Access Control List Types

The following sections specify types used as Access Control Lists (ACLs) in component-related security
descriptors.

2.2.2.21.3.1 OldVersionComponentDACL

The OldVersionComponentDACL type represents a DACL in a component-related security descriptor

that uses only the flag COM_RIGHTS_EXECUTE to specify rights in each of its ACEs.

A field of this type MUST be an ACL as specified in [MS-DTYP] section 2.4.5. Furthermore, the

following restrictions apply to the Ace fields:

▪ Each Ace field SHOULD be an OldVersionComponentAccessAllowedACE (section 2.2.2.21.2.1) or
OldVersionComponentAccessDeniedACE (section 2.2.2.21.2.3).

▪ Each Ace field MUST NOT be a NewVersionComponentAccessAllowedACE (section 2.2.2.21.2.2) or
NewVersionComponentAccessDeniedACE (section 2.2.2.21.2.4).

Other ACE types are not meaningful and SHOULD NOT be present.

59 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.2.21.3.2 NewVersionComponentDACL

The NewVersionComponentDACL type represents a DACL in a component-related security descriptor
that uses the more granular component access constants to specify rights in each of its ACEs.

A field of this type MUST be an ACL as specified in [MS-DTYP] section 2.4.5. Furthermore, the
following restrictions apply to the Ace fields:

▪ Each Ace field SHOULD be a NewVersionComponentAccessAllowedACE (section 2.2.2.21.2.2) or
NewVersionComponentAccessDeniedACE (section 2.2.2.21.2.4).

▪ Each Ace field MUST NOT be an OldVersionComponentAccessAllowedACE (section 2.2.2.21.2.1) or
OldVersionComponentAccessDeniedACE (section 2.2.2.21.2.3).

Other ACE types are not meaningful and SHOULD NOT be present.

2.2.2.21.3.3 ComponentSACL

The ComponentSACL type represents a SACL in a component-related security descriptor.

A field of this type MUST be an ACL as specified in [MS-DTYP] section 2.4.5. Furthermore, the
following restrictions apply to the Ace fields:

▪ There SHOULD be at most one Ace field, which if present SHOULD be a

ComponentMandatoryLabelACE (section 2.2.2.21.2.5) type.

▪ Duplicate ComponentMandatoryLabelACE fields are not meaningful and SHOULD NOT be present.

Other ACE types are not meaningful and SHOULD NOT be present.

2.2.2.21.4 ComponentSecurityDescriptor

The ComponentSecurityDescriptor type represents a component-related security descriptor.

A packet of this type MUST be a SECURITY_DESCRIPTOR as specified in [MS-DTYP] section 2.4.6.

Furthermore, the following restrictions apply to the fields:

▪ The OwnerSid field MUST be present, but its value has no meaning.

▪ The GroupSid field MUST be present, but its value has no meaning.

▪ The Sacl field, if present, MUST be a ComponentSACL (section 2.2.2.21.3.3).

▪ The Dacl field, if present, MUST be either an OldVersionComponentDACL (section 2.2.2.21.3.1) or
a NewVersionComponentDACL (section 2.2.2.21.3.2).

An ORB might interpret the DACLs in all component-related security descriptors as if they were

OldVersionComponentDACLs, or it might interpret both OldVersionComponentDACLs and
NewVersionComponentDACLs. The NewVersionComponentDACL type has the property that, if
interpreted as an OldVersionComponentDACL, each access allowed and access denied ACEs will grant
or deny all rights to the trustee rather than the more granular access rights. Whether or not an ORB

interprets NewVersionComponentDACLs is ORB-specific.<25>

An ORB might or might not interpret the SACL, if present, in a component-related security descriptor.
An ORB that does not interpret ComponentSACLs does not make authorization decisions on the basis

of mandatory integrity level. Whether or not an ORB interprets ComponentSACLs is ORB-
specific.<26>

60 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.2.22 DefaultAuthenticationLevelProperty

The DefaultAuthenticationLevelProperty type represents an authentication level, as specified in [MS-
RPCE] section 2.2.1.1.8, to be used by the ORB as follows for DCOM calls:

▪ The default authentication level for outgoing DCOM calls.

▪ The minimum authentication level for incoming DCOM calls.

The scope within which this default or minimum value is to be applied is specified for each of the
individual properties of this type.

Simple type: eDT_ULONG

Validity: MUST be one of the authentication level constants specified in [MS-RPCE] section 2.2.1.1.8.

Server validation: Servers SHOULD<27> enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.23 ActivationTypeProperty

The ActivationTypeProperty type represents whether instance containers for a conglomeration are to

be hosted in a new process or in the creator's process.

Simple type: eDT_LPWSTR

Validity: MUST be one of the following values.

Value Meaning

"Local" Instance containers are to be hosted in a new process.

"Inproc" Instance containers are to be hosted in the creator's process.

Server validation: Servers SHOULD<28> enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.24 TrustLevelProperty

The TrustLevelProperty type represents a numerical trust level.

Simple type: eDT_ULONG

Validity: MUST be a trust level supported by the ORB. The set of trust levels that are supported is

ORB-specific,<29> but all supported numerical values MUST be in the range 0x00000000
(meaning untrusted) to 0x00040000 (meaning fully trusted).

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.25 DefaultImpersonationLevelProperty

The DefaultImpersonationLevelProperty type represents an impersonation level, as specified in [MS-
RPCE] section 2.2.1.1.9, to be used as a default value by the ORB for outgoing DCOM calls. The scope
within which this default is to be applied is specified for each of the individual properties of this type.

61 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Simple type: eDT_ULONG

Validity: It MUST be one of the following values.

Value Meaning

eIMP_ANONYMOUS

0x00000001

The ORB is to make unsecured calls by default.

eIMP_IDENTIFY

0x00000002

The ORB is to use RPC_C_IMPL_LEVEL_IDENTITY by default.

eIMP_IMPERSONATE

0x00000003

The ORB is to use RPC_C_IMPL_LEVEL_IMPERSONATE by default.

eIMP_DELEGATE

0x00000004

The ORB is to use RPC_C_IMPL_LEVEL_DELEGATE by default.

Server validation: Servers SHOULD<30> enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.26 ORBSecuritySettingsProperty

The ORBSecuritySettingsProperty type represents a set of ORB security settings as an integer.

Simple type: eDT_ULONG

Validity: MUST be a combination of the following flags.

Flag Meaning

fAC_MUTUAL_AUTH

0x00000001

The ORB is to provide mutual authentication services if this capability is
supported.

fAC_SECURE_REFS

0x00000002

The ORB is to provide services to secure reference counting against
malicious tampering if this capability is supported.

fAC_DYNAMIC

0x00000010

This flag is reserved for future use and SHOULD NOT be set.

fAC_STATIC_CLOAKING

0x00000020

The ORB is to configure the default behavior for outgoing calls to use
static cloaking if this capability is supported. Static cloaking means that
on the first outgoing call to a particular target, the ORB captures the
identity of an impersonated client, if any, and uses this identity for all

calls to this target. It MUST NOT be used with
fAC_DYNAMIC_CLOAKING.

fAC_DYNAMIC_CLOAKING

0x00000040

The ORB is to configure the default behavior for outgoing calls to use
dynamic cloaking if this capability is supported. Dynamic cloaking
means that on each outgoing call, the ORB captures the identity of an
impersonated client, if any, and uses this identity for the call. It MUST
NOT be used with fAC_STATIC_CLOAKING.

fAC_ANY_AUTHORITY

0x00000080

The ORB is to accept any certificate as a root certificate for the purposes
of certificate-based authentication mechanisms if this capability is
supported.

fAC_MAKE_FULLSIC

0x00000100

The ORB is to configure the default behavior for its security negotiation
mechanism to send security principal names in a format that represents

62 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Flag Meaning

the complete certificate chain if this capability is supported.

fAC_REQUIRE_FULLSIC

0x00000200

The ORB is to prevent its security negotiation mechanisms from sending
security principal names in a format that does not represent the
complete certificate chain if this capability is supported.

fAC_DISABLE_AAA

0x00001000

The ORB is to configure the default behavior for outgoing activation
requests to disallow activation of components that are configured to run
as the security identity of the client if this capability is supported.

fAC_NO_CUSTOM_MARSHAL

0x00002000

The ORB is to prevent the use of custom marshalers that are not trusted
if this capability is supported.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.27 MaxDumpCountProperty

The MaxDumpCountProperty type represents an upper limit on the number of debugging data files
that can be associated with a conglomeration.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000000 and 0x000000C8 (decimal 200).

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.28 ConcurrentAppsProperty

The ConcurrentAppsProperty type represents an upper limit on the number of instance containers that

can be associated with a conglomeration.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000001 and 0x00100000 (decimal 1048576).

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.29 RecyclingCriterionLimitProperty

The RecyclingCriterionLimitProperty type represents a numerical limit to be used in a criterion for
automatic recycling applied by an ORB.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000000 and 0x00100000 (decimal 1048576). A value of zero

indicates that the associated criterion is not to be applied by the ORB for automatic recycling.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

63 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.2.30 MaxThreadsProperty

The MaxThreadsProperty type represents a maximum number of threads an ORB is to use for a
particular purpose.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000000 and 0x000003E8 (decimal 1000). A value of zero indicates
that the ORB is to select a maximum based on ORB-specific criteria.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.31 PortsListProperty

The PortsListProperty type represents a list of TCP port numbers and ranges of TCP port numbers as a
string.

Simple type: eDT_LPWSTR

Validity: MUST be a PortsList according to the following Augmented Backus-Naur Form (ABNF)

syntax, as specified in [RFC4234]:

 PortsList = PortNumberOrRange / (PortNumberOrRange "," PortsList)
 PortNumberOrRange = PortNumber / PortRange
 PortRange = (PortNumber "-" PortNumber)
 PortNumber = 1*DIGIT

Furthermore, the following constraints MUST be met:

▪ Each substring matching the PortNumber production MUST be the decimal representation of an
integer in the range 0 to 65535, inclusive.

▪ In each substring matching the PortRange production, the first PortNumber term MUST
represent an integer value strictly less than the value represented by the second PortNumber

term.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.32 Subscription Property Typed Value Formats

The publisher-subscriber framework data model exposed by COMA enables subscriptions to be
assigned name/typed value pairs with application-specific semantics, known as subscription
properties. Each subscription property's typed value is represented by two property values in a table
entry, one identifying the type and the other containing an encoding of the typed value. The formats
of these properties are specified in the following sections.

2.2.2.32.1 SubscriptionPropertyTypeProperty

The SubscriptionPropertyTypeProperty type represents the type of a subscription property's typed
value.

Simple type: eDT_ULONG

Validity: MUST be one of the following constants, as specified in [MS-OAUT] section 2.2.7: VT_BSTR,
VT_I4, VT_I8 or VT_I2.

64 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Server validation: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.32.2 SubscriptionPropertyValueProperty

The SubscriptionPropertyValueProperty type represents an encoding of a subscription property's typed
value according to the subscription property's type as identified by a corresponding
SubscriptionPropertyTypeProperty (section 2.2.2.32.1).

Simple type: eDT_BYTES

Validity: MUST be an encoding of the property's value according to type as follows:

Type Value encoding

VT_BSTR Encoded as a null-terminated array of wchar_t in little-endian byte order.

VT_I4 Encoded as a 32-bit signed integer in little-endian byte order.

VT_I8 Encoded as a 64-bit signed integer in little-endian byte order.

VT_I2 Encoded as a 16-bit signed integer in little-endian byte order.

Server validation: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.3 fModuleStatus

The fModuleStatus enumeration represents detailed status results from processing a file as a module,
as used in the IRegister::RegisterModule (section 3.1.4.10.1),
IRegister2::RegisterModule2 (section 3.1.4.11.4), and IImport::ImportFromFile (section 3.1.4.12.1)

methods. A value of this type is specified to be a combination of zero or more of the following flags.

Flag Description

fMODULE_LOADED

0x00000001

The file is a dynamically linked library and was successfully loaded by the
server.

fMODULE_INSTANTIATE

0x00000002

The file is a dynamically linked library that has an implementation-defined
entry point for instantiating components.<31>

fMODULE_SUPPORTCODE

0x00000004

The file contains implementation-defined support code for communication
between components.<32>

fMODULE_CONTAINSCOMP

0x00000008

The file was recognized as a module (contains one or more components).

fMODULE_TYPELIB

0x00000010

The file was recognized as containing a "type library", an implementation-
specific format for component metadata.<33>

fMODULE_SELFREG

0x00000020

The file is a dynamically linked library that has an entry point to register its
own components.<34>

fMODULE_SELFUNREG

0x00000040

The file is a dynamically linked library that has an entry point to unregister
its own components.<35>

fMODULE_LOADFAILED The file appears to be a dynamically linked library, but the server failed to

65 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Flag Description

0x00000080 load it.

fMODULE_DOESNOTEXIST

0x00000100

Either there is no file at the path specified or the file is inaccessible.

fMODULE_ALREADYINSTALLED

0x00000200

The file was recognized as a module (contains one or more components) but
the components that it contains are already registered.

fMODULE_BADTYPELIB

0x00000400

The file appears to contain a type library, but it is malformed.

fMODULE_CUSTOMSUPPORTED

0x00002000

The file contains a type library that specifies a custom mechanism to register
components, and this mechanism is supported by the server.

fMODULE_CUSTOMUNSUPPORTED

0x00004000

The file contains a type library that specifies a custom mechanism to register
components, but this mechanism is not supported by the server.

fMODULE_TYPELIBFAILED

0x00008000

An attempt to register the module by using the metadata in its type library
failed.

fMODULE_SELFREGFAILED

0x00010000

An attempt to register the module by using its self-registration entry point
failed.

fMODULE_CUSTOMFAILED

0x00020000

An attempt to register the module by using a custom mechanism failed.

2.2.4 fComponentStatus

This type represents detailed status results from an attempt to register or verify a component in a

module, as used in the IRegister::RegisterModule (section 3.1.4.10.1),
IRegister2::RegisterModule2 (section 3.1.4.11.4), and IImport::ImportFromFile (section 3.1.4.12.1)
methods. A value of this type is specified to be a combination of zero or more of the following flags.

 Flag Meaning

fCOMPONENT_TYPELIBFOUND
(0x00000001)

Metadata for this component was found in a "type library", an
implementation-specific format for component metadata.<36>

fCOMPONENT_COMADATA
(0x00000002)

Metadata for the component's preferred configuration in a component full
configuration entry was found in a type library.

fCOMPONENT_INTERFACES
(0x00000008)

Metadata for this component's interfaces was found in a type library.

fCOMPONENT_INSTALLED
(0x00000010)

This component is already installed.

fCOMPONENT_PROXY
(0x00000100)

The component was handled specially due to import of a configured proxy.
MUST NOT be used by IRegister::RegisterModule or
IRegister2::RegisterModule2.

fCOMPONENT_CLSIDCONFLICT
(0x00000200)

The CLSID of this component matches the conglomeration identifier of an
existing conglomeration (used to flag a common configuration error by the
user).

fCOMPONENT_NOTYPELIB No metadata for this component was found in a type library.

66 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Flag Meaning

(0x00000800)

fCOMPONENT_HIDDEN
(0x00001000)

Metadata for this component was found in a type library but it is marked
as hidden.

2.2.5 eComponentType

The eComponentType enumeration is used to select a component bitness when multiple bitnesses
might exist for the same component.

 typedef enum
 {
 eCT_UNKNOWN = 0x00000000,
 eCT_32BIT = 0x00000001,
 eCT_64BIT = 0x00000002,
 eCT_NATIVE = 0x00001000
 } eComponentType;

eCT_UNKNOWN: The component bitness is unknown to the client. The server MUST select the
native bitness of the component if it exists; otherwise, the server MUST select the non-native
bitness of the component.

eCT_32BIT: The server MUST select the 32-bit bitness of the component.

eCT_64BIT: The server MUST select the 64-bit bitness of the component.

eCT_NATIVE: The server MUST select the native bitness (see section 3.1.4.4) of the component.

2.2.6 SRPLevelInfo

The SRPLevelInfo structure defines a software restriction policy trust level, as specified in section

3.1.1.1.9, supported by the server.

 typedef struct {
 DWORD dwSRPLevel;
 [string] WCHAR* wszFriendlyName;
 } SRPLevelInfo;

dwSRPLevel: The numerical identifier of the software restriction policy level. This MUST be between
0x00000000 and 0x00040000.

wszFriendlyName: A user-friendly display name for the software restriction policy level.

2.2.7 CatSrvServices

The CatSrvServices enumeration identifies the optional catalog-related capabilities of a COMA server
that can be controlled dynamically by the ICapabilitySupport (section 3.1.4.19) interface. The current
version of COMA defines one such capability, instance load balancing.

 typedef enum
 {
 css_lb = 1

67 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 } CatSrvServices;

css_lb: Identifies the instance load balancing capability.

2.2.8 CatSrvServiceState

The CatSrvServiceState enumeration identifies possible run-time states for instance load balancing.

 typedef enum
 {
 css_serviceStopped = 0,
 css_serviceStartPending = 1,
 css_serviceStopPending = 2,
 css_serviceRunning = 3,
 css_serviceContinuePending = 4,
 css_servicePausePending = 5,
 css_servicePaused = 6,
 css_serviceUnknownState = 7
 } CatSrvServiceState;

css_serviceStopped: Instance load balancing is not running.

css_serviceStartPending: Instance load balancing is not yet running, but it is in the process of
starting.

css_serviceStopPending: Instance load balancing is running, but it is in the process of stopping.

css_serviceRunning: Instance load balancing is running.

css_serviceContinuePending: Instance load balancing is running, has been paused, and is in the
process of resuming.

css_servicePausePending: Instance load balancing is running, but it is in the process of pausing.

css_servicePaused: Instance load balancing is running, but it is paused.

css_serviceUnknownState: The server was unable to determine the state of instance load
balancing.

2.2.9 InstanceContainer

 The InstanceContainer structure represents an instance container.

 typedef struct {
 GUID ConglomerationID;
 GUID PartitionID;
 GUID ContainerID;
 DWORD dwProcessID;
 BOOL bPaused;
 BOOL bRecycled;
 } InstanceContainer;

ConglomerationID: The conglomeration identifier of the conglomeration associated with the

instance container.

PartitionID: The partition identifier of the partition that contains the conglomeration associated with
the instance container.

ContainerID: The activation of the instance container.

68 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

dwProcessID: The value of the instance container's ProcessIdentifier property, as described in
section 3.1.1.3.21.

bPaused: A flag that indicates whether or not the instance container is paused.

bRecycled: A flag that indicates whether or not the instance container has been recycled.

69 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3 Protocol Details

The following sections specify details of COMA, including abstract data models, message processing
events, and sequencing rules.

The client initiates a conversation with a server by performing DCOM activation <37> (see [MS-
DCOM] section 1.3.1) of the COMA server CLSID (CLSID_COMAServer) specified in section 1.9. After
getting the interface pointer to the DCOM object as a result of the activation, the client works with the

object by making calls on the DCOM interface that it supports. When complete, the client performs a
release on the interface pointer. For the purposes of initialization and other behavior described in this
section, the conversation between a server and a single client from the time of activation to the time
that the client releases its last reference on one of the server interfaces will be referred to as a
session.

3.1 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

3.1.1.1 Configuration and the ORB

With the exception of a few meta-configuration properties, such as the Changeable and Deleteable
properties of a conglomeration (section 3.1.1.3.6), the configuration that is stored in the COMA
server's catalog is intended for use by the target ORB and MUST NOT be interpreted by the COMA
server itself.<38> They are merely applied as is to the ORB, which can interpret them in a way that is

independent of which protocol or mechanism was used to configure them.

However, a COMA server SHOULD manage this configuration in a manner that is sensible for its target
ORB. For example, this protocol permits a server to constrain unused configuration properties to a
default value. (For more information about implementation-specific constraints, see section 3.1.1.2.5.)
A COMA server SHOULD therefore constrain properties that do not apply to its ORB.

The following sections describe facilities that might be provided by an ORB and that are configurable
using COMA. References are provided to the specific configuration in the catalog that applies to these

facilities.

3.1.1.1.1 Transactions

If the target ORB provides facilities for managing atomic transactions,<39> the following SHOULD be
used to configure this facility:

▪ The Transaction, FlowTransactionIntegratorProperties, TransactionTimeout, and

TransactionIsolationLevel properties of the ComponentsAndFullConfigurations table, as specified in

section 3.1.1.3.1.

▪ The TransactionTimeout property of the MachineSettings table, as specified in section 3.1.1.3.8.

Compensation is a well-known technique for guaranteeing atomicity and durability of transactions
using a write-ahead log (for an example of this technique, see [ARIESTrnsRcvr]). A compensating
resource manager is an ORB facility that applies compensation using an ORB-managed log. If the
target ORB provides compensating resource managers,<40> the following SHOULD be used to

configure this facility:

70 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ The CRMEnabled and CRMLogFile properties of the Conglomerations table, as specified in section
3.1.1.3.6.

3.1.1.1.2 Pooling

An ORB might provide a single instance container, at most, for a conglomeration at any given time, or
it might have the capability to provide multiple instance containers. Enabling a conglomeration to
support multiple concurrent instance containers is known as container pooling. If the target ORB
provides container pooling,<41> the following SHOULD be used to configure this facility:

▪ The ConcurrentApps property of the Conglomerations table, as specified in section 3.1.1.3.6.

Instance pooling refers to enabling component instances that are no longer active to return to a pool
for reuse. If the target ORB provides instance pooling,<42> the following SHOULD be used to

configure this facility:

▪ The MinPoolSize, MaxPoolSize, and EnablePooling properties of the
ComponentsAndFullConfigurations table, as specified in section 3.1.1.3.1.

If an ORB provides instance pooling, there is a subtle distinction between instantiation and activation,
as these terms are used in the description of configuration properties. Activation refers to the process
of making a component instance active (able to respond to requests), even if the component instance

had been created previously (for example, if the instance was pooled). Therefore, activation might
involve instantiating a component (if no suitable pooled component instance existed prior to the
activation). If the target ORB does not provide instance pooling, these terms can be understood to be
interchangeable.

3.1.1.1.3 Role-Based Security

If the ORB provides role-based security,<43> the following SHOULD be used to configure this facility:

▪ The ComponentAccessChecksEnabled property of the ComponentsAndFullConfigurations table, as
specified in section 3.1.1.3.1.

▪ The RoleBasedSecurityEnabled property of the Conglomerations table, as specified in section
3.1.1.3.6.

▪ The Roles (as specified in section 3.1.1.3.9), RoleMembers (as specified in section 3.1.1.3.10),
RolesForComponent (as specified in section 3.1.1.3.13), RolesForInterface (as specified in section
3.1.1.3.14), and RolesForMethod tables (as specified in section 3.1.1.3.15).

3.1.1.1.4 Publisher-Subscriber Framework

If the ORB provides a publisher-subscriber framework,<44> the following SHOULD be used to
configure this facility:

▪ The IsEventClass, PublisherID, MultiInterfacePublisherFilterCLSID, AllowInprocSubscribers, and
FireInParallel properties of the ComponentsAndFullConfigurations table, as specified in section
3.1.1.3.1.

▪ The EventClasses (as specified in section 3.1.1.3.22), Subscriptions (as specified in section
3.1.1.3.23), SubscriptionPublisherProperties (as specified in section 3.1.1.3.24),
SubscriptionSubscriberProperties (as specified in section 3.1.1.3.25) tables.

3.1.1.1.5 Transport Protocols

Although a majority of the configuration specified in this document is independent of the transport

protocols enabled or used by the target ORB, a few configuration properties are intended to control

71 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

specific transport protocols or transport protocols with specific characteristics. This section covers
these configuration properties.

If the ORB provides a facility for exposing components via SOAP [SOAP1.1] or an extension
thereof,<45> the following SHOULD be used to configure this facility:

▪ The SoapAssemblyName and SoapTypeName properties of the ComponentsAndFullConfigurations
table, as specified in section 3.1.1.3.1.

▪ The SoapActivated, SoapVRoot, SoapMailTo, and SoapBaseUrl properties of the Conglomerations
table, as specified in section 3.1.1.3.6.

Queuing generically refers to a transport protocol stack in which an asynchronous remote procedure
call protocol is layered over a reliable messaging protocol. The following diagram shows queuing, with
the queued components protocol layered over the data structure and the queue manager client

protocol. If an ORB enables queuing, a conceptual service that waits for queued messages for one or
more components is known as a queue listener. For more information about queueing protocols, see
[MC-COMQC]. For more information about message queuing data structures, see [MS-MQMQ]. For

more information about message queueing client protocols, see [MS-MQMP].

Figure 5: Example of a queuing transport stack

If the ORB provides a facility for exposing components via queuing,<46> the following SHOULD be

used to configure this facility:

▪ The IsQueued, QCListenerEnabled, QCListenerMaxThreads, and QCAuthenticateMsgs properties of
the Conglomerations table, as specified in section 3.1.1.3.6.

▪ The IsQueueable and QueueingSupported properties of the ConfiguredInterfaces table, as
specified in section 3.1.1.3.11.

Finally, the following SHOULD be managed as ORB-wide configuration of transport protocols:

▪ The EnableDCOM, EnableCIS, PortsInternetAvailable, UseInternetPorts, and RpcProxyEnabled
properties of the MachineSettings table, as specified in section 3.1.1.3.8.

▪ The Protocols table, as specified in section 3.1.1.3.26.

3.1.1.1.6 Instance Load Balancing

If the ORB provides instance load balancing,<47> the following SHOULD be used to configure this
facility:

▪ The LoadBalancingSupported property of the ComponentsAndFullConfigurations table, as specified
in section 3.1.1.3.1.

▪ The LoadBalancingCLSID property of the MachineSettings table, as specified in section 3.1.1.3.8.

3.1.1.1.7 Configured Proxies

72 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

A configured proxy is a preferred client configuration for a component or conglomeration provided by
another ORB. If the ORB provides a facility for configured proxies,<48> the following SHOULD be used

to configure this facility:

▪ The ServerName and IsProxyApp properties of the Conglomerations table, as specified in section

3.1.1.3.6.

▪ The RemoteServerName property of the MachineSettings table, as specified in section 3.1.1.3.8.

3.1.1.1.8 Transport Security

If the ORB enables security parameters of supported transport protocols to be configured, the
following SHOULD be used to configure this facility:

▪ The LaunchPermissions, AccessPermissions, and AuthenticationLevel properties of the

ComponentLegacyConfigurations table, as specified in section 3.1.1.3.3.

▪ The Authentication, ImpersonationLevel, AuthenticationCapability, and QCAuthenticateMsgs

properties of the Conglomerations table, as specified in section 3.1.1.3.6.

▪ The DefaultAuthenticationLevel, DefaultImpersonationLevel, EnableSecurityTracking, and
EnableSecureReferences properties of the MachineSettings table, as specified in section 3.1.1.3.8.

3.1.1.1.9 Software Restriction Policy

Software restriction policy is an ORB facility that enables a numerical trust level to be assigned to
components. The trust level represents the degree of trust that is associated with a component and is
used in an ORB-specific manner to control instantiation of components. If the target ORB provides a
configurable software restriction policy, the server SHOULD expose the supported set of trust levels to
clients via the ICatalogUtils::EnumerateSRPLevels method (as specified in section 3.1.4.18.8), and the
following SHOULD be used to configure this facility:

▪ The SRPLevel property of the ComponentLegacyConfigurations table, as specified in section
3.1.1.3.3.

▪ The SRPLevel and SRPEnabled properties of the Conglomerations table, as specified in section
3.1.1.3.6.

▪ The SaferActivateAsActivatorChecks and SaferRunningObjectChecks properties of the
MachineSettings table, as specified in section 3.1.1.3.8.

3.1.1.1.10 Crash Dump

If the target ORB provides a facility to automatically collect debugging data, known as a crash dump,
when an instance container encounters an exceptional condition at run time, the following SHOULD be
used to configure this facility:

▪ The DumpEnabled, DumpOnException, DumpOnFailfast, MaxDumpCount, and DumpPath
properties of the Conglomerations table (section 3.1.1.3.6).

3.1.1.1.11 Partitions and Users

If the target ORB has facilities that require users to be associated with partitions, for example, to
assign each user a default partition, the following SHOULD be used to configure this facility:

▪ The PartitionUsers (as specified in section 3.1.1.3.16), PartitionRoles (as specified in section
3.1.1.3.17), and PartitionRoleMembers tables (as specified in section 3.1.1.3.18).

73 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

In addition, if the target ORB has the ability to associate users with partitions that are based on either
local configuration or configuration that is managed by an active directory, the following SHOULD be

used to configure this facility:

▪ The LocalPartitionLookupEnabled and DSPartitionLookupEnabled properties of the MachineSettings

table, as specified in section 3.1.1.3.8.

An ORB that uses an active directory in this manner might keep a local cache of user-partition
associations. These associations are not exposed in the COMA catalog, but the method
ICatalogUtils2::FlushPartitionCache, as specified in section 3.1.4.18.7, enables clients to flush a
server's cache in case this information is stale.

3.1.1.1.12 System Services

If the target ORB has a facility that enables components to be instantiated in the context of a system
service or daemon, the following SHOULD be used to configure this facility:

▪ The ServiceName and ServiceParameters properties of the ComponentLegacyConfigurations table,

as specified in section 3.1.1.3.3.

▪ Alternate launch configurations, as specified in section 3.1.1.4.

3.1.1.2 Tables

The catalog that is managed by the catalog server is organized as a set of tables. A table is a set of
entries, each of which represents a configurable object or a relationship between objects. With the
exception of the ComponentsAndFullConfigurations table, all the entries in a specific table represent
either objects of the same type or relationships between objects of the same types. For historical

reasons, the ComponentsAndFullConfigurations table contains entries that represent two different
types of objects: unconfigured components and component full configuration entries. Each table is
identified by a GUID, known as the table identifier.

An entry is a list of typed properties. Each table has a schema, which specifies the properties that are

present in each entry in the table, and an order for interchange in methods that read and write to
tables. The schemas for each table are listed in the table definitions (see section 3.1.1.3).

Except where otherwise noted, the catalog tables are persistent; in other words, they retain their state

between sessions.

3.1.1.2.1 Table Metadata

Each table has associated metadata, which can be retrieved by a client by calling
ICatalogTableInfo::GetClientTableInfo (see section 3.1.4.7.1). Table metadata consists of the table's
schema, and for historical reasons, an optional AuxiliaryGuid value. This metadata is specified in each

table's definition (see section 3.1.1.3).

3.1.1.2.2 Supported Queries

When reading from or writing to a table, and for historical reasons, when requesting a table's

metadata, clients provide a query, which selects a subset of the entries in the table according to
constraints on a set of properties in the table. Each table's definition (see section 3.1.1.3) includes a
list of one or more query templates, or rules for constructing a query on that table. A query that is

constructed according to a query template that is listed in a table's definition is known as a supported
query for that table.

3.1.1.2.3 Multiple-Bitness Support

74 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

A COMA server that supports catalog version 4.00 or catalog version 5.00 MAY<49> support the
configuration of multiple bitnesses for components. If a server supports this capability, then for

historical reasons 64-bit component bitness is said to be "native bitness" and 32-bit component
bitness is said to be "non-native bitness" If a server does not support this capability, the single bitness

that is supported by the server is said to be "native bitness".

A COMA server that supports multiple bitnesses has an additional table: the
ComponentNonNativeBitness table, which is not defined for servers that do not support this capability.
In addition, for historical reasons, the ComponentsAndFullConfigurations table has a "hidden"
component bitness property, which is not present in the representation of the table's entries on the
wire. The hidden component bitness property, when defined, has a value of either 32-bit or 64-bit.

3.1.1.2.4 Table Flags

For historical reasons, a COMA server that supports multiple bitnesses accepts and assigns special
meaning to the values of the fTableFlags type (see section 2.2.1.1) for reads from and writes to
certain tables. A COMA server that does not support multiple bitnesses does not assign special
meaning to these flags and ignores them.

For the ComponentsAndFullConfigurations table, these flags are used to select entries based on the

hidden bitness property.

For the ComponentNativeBitness and ComponentNonNativeBitness tables, these flags serve only as a
consistency check (required to have the values fTABLE_64BIT and fTABLE_32BIT, respectively).

For other tables, only the value zero is supported for table flags.

3.1.1.2.5 Constraints

The table definitions specify constraints on properties other than those that are implied by their type,

size, and flags. All COMA servers MUST ensure that their catalog conforms to these constraints.

For the purposes of this protocol, two types of constraints can be distinguished: referential and
nonreferential. Referential constraints restrict the legal values of a property in an entry based on

properties of other entries, including possibly entries in other tables (for example, constraints that
reflect containment relationships). Nonreferential constraints restrict the legal values of a property
independently of the properties of any other entries (for example, a range of legal values for a
configuration property).

An important class of referential constraints is primary key constraints. Each table definition specifies
a set of properties in the table as its primary key. Entries are constrained so that an entry is uniquely
identified by its values for the primary key properties. In other words, there exists at most one entry
in the table with any given value assignment to all the values in the primary key.

A COMA server MAY enforce implementation-specific, nonreferential constraints, as long as these
constraints are more restrictive than those that are specified in the table definitions. For example, a

server MAY constrain an unused property to a default value. The ICatalogTableWrite::WriteTable (see
section 3.1.4.9.1) method specifies a mechanism by which a server can return TableDetailedError
records (see section 2.2.1.16) to indicate to the client the reason for a failed write. If a server

enforces implementation-specific constraints more restrictive than those that are specified in the table
definitions, it SHOULD return TableDetailedError records for writes that fail due to these more
restrictive constraints.

A COMA server MUST NOT enforce any referential constraints except those that are specified in the

table definitions.

3.1.1.2.6 Default Values

75 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The following changes to the catalog require the server to set properties to implementation-specific
default values:

▪ Adding an entry to a table in a call to ICatalogTableWrite::WriteTable (section 3.1.4.9.1).

▪ Creating a component full configuration entry as part of registration in a call to

IRegister::RegisterModule (section 3.1.4.10.1) or IRegister2::RegisterModule2 (section
3.1.4.11.4).

▪ Creating a component configuration entry in a call to IRegister2::CreateFullConfiguration (section
3.1.4.11.1) or IRegister2::CreateLegacyConfiguration (section 3.1.4.11.2).

▪ Converting a component legacy configuration entry into a component full configuration entry in a
call to IRegister2::PromoteLegacyConfiguration (section 3.1.4.11.3).

A server is free to choose any default values for properties as long as they conform to the constraints

that are specified in the table definitions.

3.1.1.2.7 Internal Properties

For historical reasons, there are properties in some of the tables that are intended for internal use
only and that do not affect interoperability. A COMA server MAY<50> use these properties for
implementation-specific purposes. Internal properties also implicitly disallow writes by the client,

although whether a server enforces this is implementation-specific.<51> Internal properties are
specified as such in the table definitions.

3.1.1.2.8 Write Restrictions

Some tables do not support specific types of writes (add, update, or remove) or disallow writes
altogether. The write operations that are supported by each table are specified in its definition.

Additionally, some tables have restrictions on which entries can be legally modified, based on

properties such as the Changeable entry in the Conglomerations table. Where such restrictions exist
for a table, they are specified in its definition.

Finally, some properties are read-only, even when the entry allows updates. Read-only properties for
a table that otherwise allows updates are specified in the table definition.

3.1.1.2.9 Triggers

A COMA server MAY<52> modify properties of entries automatically as the result of another property

being modified; for example, to enforce configuration dependencies that a client might not have
detected. Such behavior is known as a trigger. A property whose modification causes other properties
to be modified is known as the triggering property of a trigger, and any properties so modified are
known as triggered properties.

The following restrictions apply to triggers:

▪ Some properties cannot be triggered; in other words, they MUST NOT be triggered. Properties that
cannot be triggered are specified as such in the table definitions.

▪ With the exception of internal properties, for which this document does not specify any restrictions
on how they are used, a triggered property MUST be a property of the same entry as the
triggering property.

▪ A server MAY<53> apply multiple triggers in a write operation to a single entry. However, if
multiple triggers modify the same triggered property, all triggers MUST cause an identical,
idempotent modification to the triggered property. For example, multiple triggers might have the

effect of setting a property to TRUE if more than one property has a configuration dependency on
the property.

76 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

For the purposes of describing the behavior of the ICatalogTableWrite::WriteTable method (see
section 3.1.4.9.1), the following additional restriction applies to how triggers are performed. If a write

explicitly updates a property and the property is also triggered by an update to another property, the
server MUST do one of the following:

▪ The server MAY disallow such a write and fail the call, in which case the server SHOULD return
TableDetailedError records, as specified in section 2.2.1.16, to indicate to the client why the write
failed.

▪ The server MAY<54> perform the modifications in a trigger-consistent order. A trigger-consistent
order is defined as an order in which, for all triggers, the triggered properties are ordered before
the triggering property. In other words, the trigger overwrites the explicit modification.

3.1.1.2.10 Cascades

Many of the referential constraints that are specified in the table definitions reflect containment
relationships (for example, a component configuration entry is contained in a conglomeration).
Removing an entry from a table, where that entry represents a container in a containment

relationship, causes all the contained entries to be removed. This recursive process is known as a
cascade. Each table definition specifies what cascades, if any, are performed as a result of removing

an entry.

3.1.1.2.11 Populates

The PartitionRoles table, which does not support writes, MAY<55> be populated with entries when a
new entry is added to the Partitions table. See the definition of the Partitions table (section 3.1.1.3.7)
for a specification of this populate.

3.1.1.3 Table Definitions

The following sections specify the schemas and other information for the tables used by COMA. These
definitions cover all catalog versions, but when differences exist between versions, these differences
are called out. Each table definition has the following information:

Table identifier: The GUID for the table.

AuxiliaryGuid: An additional GUID that is returned by
IClientTableInfo::GetClientTableInfo (section 3.1.4.7.1), if this table specifies such a value.

Defined in catalog version: The catalog versions for which the table is defined.

Prerequisites: Restrictions, other than catalog version, on when the table is defined.

Hidden bitness property: Specifies whether the table defines a hidden bitness property.

Supported query templates: A set of templates from which supported queries can be constructed.

Each template is a list of cells, with parameters supplied by the client indicated by <A>, , etc.
Empty queries (no query cells) are listed as "Empty query". See QueryCellArray (section 2.2.1.5)
and QueryComparisonData (section 2.2.1.6) for more details about how queries are represented.

Primary key: The set of properties in the primary key.

Other referential constraints: Referential constraints on table entries besides the primary key
constraint (nonreferential constraints are specified in the individual property definitions).

Write restrictions: Specifies which types of writes (add, update, remove), if any, are supported by

the table, and optionally additional restrictions on which entries can be legally modified.

Cascade: Specifies the cascade that MUST be performed when an entry is removed from the table.

77 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Populate: Specifies the populate that MAY be performed when an entry is added to the table.

Properties: The table's schema, as returned by IClientTableInfo::GetClientTableInfo, and additional

information about its properties. This is specified in a tabular format similar to the following
example, followed by descriptions of each of the properties.

 Index
(3.00)

 Index
(4.00/.500)

 Property
name Type Size Flags Meta

0 0 ExampleProp1 eDT_GUID 16 0x00000003 RO

- 1 ExampleProp2 eDT_LPWSTR variable 0x00000000 IN,
NT

1 2 ExampleProp3 eDT_ULONG 4 0x00000002 TR

Index (versions): The zero-based index of a property in the table for a particular catalog version or
set of catalog versions. The index values specify the order in which properties are exchanged with

the reads from the table or the writes to the table. They are additionally used as unique identifiers
for properties in QueryCell (section 2.2.1.4) structures and TableDetailedError (section 2.2.1.16)
records. If a property has a dash in the index column for a catalog version, this indicates that the
property is not defined for that version.

Property name: A descriptive identifier for the property. These identifiers are used throughout this
document to refer to a particular property in a table, but they are not used on the wire.

Type: The eDataType (section 2.2.1.2) value that specifies the type of the property. This value MUST

be used for the dataType field of the PropertyMeta (section 2.2.1.7) structure for this property.

Size: The size of the property (fixed size or maximum size). See PropertyMeta for more details about
the meaning of this size and how it is represented.

Flags: The value that MUST be used in the Flags field of the PropertyMeta structure for this property.
See PropertyMeta for more details about these flags.

Meta: A list of meta properties that are not implied by Flags. The following mnemonics are used.

 Mnemonic Meaning

IN The property is an internal property (section 3.1.1.2.7).

RO The property is read-only (section 3.1.1.2.8).

TR The property can be triggered (section 3.1.1.2.9).

NT The property requires the NoTouch bit (section 2.2.1.8) to be set for writes to the table.

3.1.1.3.1 ComponentsAndFullConfigurations Table

The entries in the ComponentsAndFullConfigurations table can be divided into two categories:

▪ Entries representing components (or component bitnesses on servers that support multiple
bitnesses) that do not have component full configuration entries.

▪ Entries representing component full configuration entries.

78 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Both types of entries have the same schema. However, the semantics of these types of entries are
different, as are the constraints on the values of their properties. This is specified in more detail in this

section.

Table identifier: {6E38D3C8-C2A7-11D1-8DEC-00C04FC2E0C7}

AuxiliaryGuid: {B4B3AECB-DFD6-11D1-9DAA-00805F85CFE3}

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: Yes (catalog version 4.00 and catalog version 5.00).

Supported query templates

Cell 1 Cell 2

 eSQO_OPTHINT equals 1 ConglomerationIdentifier equals <A>

 ConglomerationIdentifier equals null InprocServerPath not equal to null

Primary key

Catalog
version Primary key properties

 3.00 CLSID

 4.00/5.00 Hidden component bitness property, CLSID, PartitionIdentifier, Reserved1,
ConfigurationBitness

For the purposes of constraints and the semantics of certain properties, it is important to make a
distinction between the two types of entries. Entries that have the value GUID_NULL for the

ConglomerationIdentifier property represent components (or component bitnesses on servers that
support multiple bitnesses) that do not have component full configurations on the server. Hereafter

these are referred to as componententries. Entries that have a value other than GUID_NULL for the
ConglomerationIdentifier property represent component full configurations (hereafter full configuration
entries).

Other referential constraints

For simplicity, the constraints are expressed as if the hidden component bitness property is present on
all servers that support catalog version 4.00 or catalog version 5.00. For these purposes, the hidden

component bitness property can be thought of as having the fixed value of the single bitness
supported by the server on servers that do not support multiple bitnesses.

The following constraints apply to component entries.

Catalog
version Constraints Notes

3.00 If ProgID is not null, there MUST NOT exist
another entry with an identical value for ProgID.

The ProgID is a unique identifier of a
component for scripting environments.

4.00/5.00 Component entries MUST be uniquely identified
by CLSID and hidden component bitness
property.

Implied by constraints on PartitionIdentifier,
Reserved1, and ConfigurationBitness properties
for these entries.

4.00/5.00 There MUST NOT exist a full configuration entry
in the table with identical values for CLSID and

Entries represent components (or component
bitnesses) that do not have component full

79 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Catalog
version Constraints Notes

hidden component bitness property. configuration entries.

4.00/5.00 If ProgID is not null, there MUST NOT exist
another entry with identical values for ProgID
and hidden component bitness property.

The ProgID is a unique identifier of a
component (or component bitness) for
scripting environments.

The following constraints apply to component full configuration entries.

Catalog
version Constraints Notes

3.00 There MUST exist an entry in the Conglomerations table
with an identical value for the ConglomerationIdentifier
property.

Each component configuration entry is
contained in a conglomeration.

3.00 There MUST NOT exist an entry in the
ComponentLegacyConfigurations table with identical

CLSID.

A component (or component bitness)
that has a component legacy

configuration can have no other
component configuration entries.

3.00 If ProgID is not null, there MUST NOT exist another entry
with an identical value for ProgID.

The ProgID is a unique identifier of a
component for scripting environments.

3.00 If ServerInitializer is TRUE, the conglomeration identified
by ConglomerationIdentifier MUST have the value
0x00000001 for the Activation property.

The server initializer facility is intended
for initialization of instance containers
created in a new process.

4.00/5.00 There MUST exist an entry in the Conglomerations table
with an identical value for the ConglomerationIdentifier
property.

Each component configuration entry is
contained in a conglomeration.

4.00/5.00 The matching entry in the Conglomerations table MUST
have an identical value for the PartitionIdentifier property.

4.00/5.00 There MUST exist an entry in the Partitions table with an
identical value for the PartitionIdentifier property.

4.00/5.00 Full configuration entries MUST be uniquely identified by
CLSID and ConglomerationIdentifier.

Each component can have at most one
component configuration entry in a
conglomeration.

4.00/5.00 There MUST NOT exist another entry in the table with an
identical value for the ConglomerationIdentifier property
and a different value for the ConfigurationBitness
property.

Each conglomeration contains
component full configuration entries
for a single bitness.

4.00/5.00 There MUST NOT exist an entry in the
ComponentLegacyConfigurations table with identical
values for the CLSID and ConfigurationBitness properties.

A component (or component bitness)
that has a component legacy
configuration entry can have no other
component configuration entries.

4.00/5.00 There MUST NOT exist another entry in the table with
identical CLSID and ConfigurationBitness for which the
values of the InprocServerPath, ThreadingModel, ProgID,
Description, VersionMajor, VersionMinor, VersionBuild, or
VersionSubBuild properties have different values.

These properties represent static
properties of the component (or
component bitness), not the
configuration. Note, however, that
VersionMajor, VersionMinor,
VersionBuild, or VersionSubBuild are
not used for component entries.

4.00/5.00 If ProgID is not null, there MUST NOT exist another entry
with identical values for ProgID and hidden component

The ProgID is a unique identifier of a
component (or component bitness) for

80 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Catalog
version Constraints Notes

bitness property but a different value for CLSID. scripting environments.

4.00/5.00 If ServerInitializer is TRUE, the conglomeration identified
by ConglomerationIdentifier MUST have the value
0x00000001 for the Activation property.

The server initializer facility is intended
for initialization of instance containers
created in a new process.

Write restrictions: Add MUST NOT be supported. Update and remove MUST be supported if and only
if:

▪ The conglomeration identified by ConglomerationIdentifier has the value "Y" for Changeable.

▪ The conglomeration identified by ConglomerationIdentifier has the value "N" for IsSystem.

▪ The partition identified by PartitionIdentifier has the value "Y" for Changeable.

Cascade: On removal of a full configuration entry, all entries in the ConfiguredInterfaces table

(section 3.1.1.3.11) and RolesForComponent table (section 3.1.1.3.13) tables that have identical
values for CLSID property (catalog version 3.00), or CLSID, PartitionIdentifier, and
ConfigurationBitness properties (catalog version 4.00) are removed.

Populate: N/A.

Properties:

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

1 1 InprocServerPath eDT_LPWSTR variable 0x00000000 RO

2 2 ThreadingModel eDT_ULONG 4 0x00000002 RO

3 3 ProgID eDT_LPWSTR variable 0x00000000 RO

4 4 Description eDT_LPWSTR variable 0x00000000

5 5 Internal1 eDT_LPWSTR variable 0x00000000 IN

- 6 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 7 Reserved1 eDT_GUID 16 0x00000003

- 8 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

6 9 ConglomerationIdentifier eDT_GUID 16 0x00000000 RO

7 10 Internal2 eDT_GUID 16 0x00000000 IN

8 11 VersionMajor eDT_ULONG 4 0x00000002 RO

9 12 VersionMinor eDT_ULONG 4 0x00000002 RO

10 13 VersionBuild eDT_ULONG 4 0x00000002 RO

11 14 VersionSubBuild eDT_ULONG 4 0x00000002 RO

12 15 Internal3 eDT_ULONG 4 0x00000002 IN

13 16 ServerInitializer eDT_ULONG 4 0x00000002 TR

81 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

14 17 Transaction eDT_ULONG 4 0x00000002 TR

15 18 Synchronization eDT_ULONG 4 0x00000002 TR

16 19 Internal4 eDT_ULONG 4 0x00000002 IN

17 20 FlowWebServerProperties eDT_ULONG 4 0x00000002 TR

18 21 FlowTransactionIntegratorProperties eDT_ULONG 4 0x00000002 TR

19 22 JustInTimeActivation eDT_ULONG 4 0x00000002 TR

20 23 ComponentAccessChecksEnabled eDT_ULONG 4 0x00000002 TR

21 24 Internal5 eDT_BYTES variable 0x00000000 IN

22 25 Internal6 eDT_GUID 16 0x00000000 IN

23 26 MinPoolSize eDT_ULONG 4 0x00000002 TR

24 27 MaxPoolSize eDT_ULONG 4 0x00000002 TR

25 28 CreationTimeout eDT_ULONG 4 0x00000002 TR

26 29 ConstructorString eDT_LPWSTR variable 0x00000000 TR

27 30 ConfigurationFlags eDT_ULONG 4 0x00000002 TR

28 31 Internal7 eDT_GUID 16 0x00000000 IN

29 32 Reserved2 eDT_ULONG 4 0x00000002

30 33 Internal8 eDT_LPWSTR variable 0x00000000 IN

31 34 Internal9 eDT_GUID 16 0x00000000 IN

32 35 ExceptionClass eDT_LPWSTR variable 0x00000000 TR

33 36 Internal10 eDT_ULONG 4 0x00000002 IN

34 37 Internal11 eDT_LPWSTR variable 0x00000000 IN

35 38 Internal12 eDT_ULONG 4 0x00000002 IN

36 39 Internal13 eDT_LPWSTR variable 0x00000020 IN

37 40 Internal14 eDT_LPWSTR variable 0x00000000 IN

38 41 Internal15 eDT_LPWSTR variable 0x00000020 IN

39 42 Internal16 eDT_ULONG 4 0x00000002 IN

40 43 IsEventClass eDT_ULONG 4 0x00000002 RO

41 44 PublisherID eDT_LPWSTR variable 0x00000000 TR

42 45 MultiInterfacePublisherFilterCLSID eDT_GUID 16 0x00000000 TR

43 46 AllowInprocSubscribers eDT_ULONG 4 0x00000002 TR

44 47 FireInParallel eDT_ULONG 4 0x00000002 TR

82 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

45 48 Internal17 eDT_ULONG 4 0x00000002 IN

46 49 Internal18 eDT_LPWSTR variable 0x00000000 IN

47 50 TransactionTimeout eDT_ULONG 4 0x00000002 TR

48 51 Internal19 eDT_ULONG 4 0x00000002 IN

- 52 IsEnabled eDT_ULONG 4 0x00000002

- 53 TransactionIsolationLevel eDT_ULONG 4 0x00000002 TR

- 54 IsPrivateComponent eDT_ULONG 4 0x00000002

- 55 SoapAssemblyName eDT_LPWSTR variable 0x00000000 TR

- 56 SoapTypeName eDT_LPWSTR variable 0x00000000 TR

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation-specific because
it does not affect interoperability.

CLSID: The CLSID of the component.<56>

InprocServerPath: If not null, an ImplementationSpecificPathProperty (section 2.2.2.2) providing a
path to a module of the component (or component bitness) that is supported for full

configuration.<57> For full configuration entries, it MUST NOT be null.

ThreadingModel: A ThreadingModelEnumerationProperty (section 2.2.2.3.1) representing the
restrictions, if any, that the ORB is to place on the types of threads on which the instantiations of the
component (or component bitness) will be hosted. <58>

ProgID: If not null, a ScriptingProgramIdProperty (section 2.2.2.4) of the component (or component
bitness).<59> If not null, the character length of this property MUST be between 1 and 39.

Description: A DescriptionProperty (section 2.2.2.7) providing a human-readable description of the
component (or component bitness).<60>

PartitionIdentifier: For component full configuration entries, the partition identifier of the partition in
which the configuration resides. For component entries, a
PlaceholderPartitionIdProperty (section 2.2.2.1.1).

Reserved1: A PlaceholderGuidProperty (section 2.2.2.1.2).

ConfigurationBitness: For full configuration entries, a BitnessProperty (section 2.2.2.5) representing

the bitness for which the component is configured in this component full configuration.<61> This
value MUST represent the same bitness as the hidden bitness property. For component entries, a
PlaceholderIntegerProperty (section 2.2.2.1.4).

ConglomerationIdentifier: For component full configuration entries, the conglomeration identifier of
the conglomeration containing the configuration. For component entries, it MUST be GUID_NULL (this
value indicates a component entry).

VersionMajor: For component full configuration entries, the application-specific major version of the

component.<62> For component entries, a PlaceholderIntegerProperty.

VersionMinor: For component full configuration entries, the application-specific minor version of the
component.<63> For component entries, a PlaceholderIntegerProperty.

83 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

VersionBuild: For component full configuration entries, the application-specific build version of the
component.<64> For component entries, a PlaceholderIntegerProperty.

VersionSubBuild: For full configuration entries, the application-specific sub build version of the
component.<65> For component entries, a PlaceholderIntegerProperty.

ServerInitializer: For component full configuration entries, a BooleanProperty (section 2.2.2.9) that
indicates whether the component is to be activated by the ORB when an instance container is created
for its containing conglomeration.<66> For component entries, a PlaceholderIntegerProperty.

Transaction: For full configuration entries, a ContextFacilityProperty (section 2.2.2.8) value indicating
how, if at all, the ORB is to enable atomic transactions for the component.<67> It MUST be a
ContextFacilityProperty (section 2.2.2.8). For component entries, a PlaceholderIntegerProperty.

Synchronization: For full configuration entries, a ContextFacilityProperty (section 2.2.2.8) value

indicating how, if at all, the ORB is to provide synchronization to components that might not be thread
safe.<68> It MUST be a ContextFacilityProperty (section 2.2.2.8). For component entries, a
PlaceholderIntegerProperty.

FlowWebServerProperties: For full configuration entries, a BooleanProperty that indicates whether
the ORB is to provide special services to component instances if they were created within a context of
a web server servicing a request.<69> It MUST be a BooleanProperty. For component entries, a

PlaceholderIntegerProperty.

FlowTransactionIntegratorProperties: For full configuration entries, a BooleanProperty that
indicates whether the ORB is to provide special services to component instances to interoperate with
other transaction managers not native to the ORB.<70> For component entries, a
PlaceholderIntegerProperty.

JustInTimeActivation: For full configuration entries, a BooleanProperty that indicates whether
component instances are to be activated by the ORB only when a method call arrives.<71> For

component entries, a PlaceholderIntegerProperty.

ComponentAccessChecksEnabled: For full configuration entries, a BooleanProperty that indicates

whether component-level access checks (section 1.3.4) are to be enabled for the component by the
ORB.<72> For component entries, a PlaceholderIntegerProperty.

MinPoolSize: For full configuration entries, a MinPoolSizeProperty (section 2.2.2.10.1) indicating the
minimum pool size for instance pooling by the ORB.<73>It MUST be between 0x00000000 and
0x00100000 (decimal 1048576). For component entries, MUST be zero (placeholder value, no

meaning). Note that this property is only meaningful if EnablePooling has the value TRUE.

MaxPoolSize: For full configuration entries, a MaxPoolSizeProperty (section 2.2.2.10.2) indicating the
maximum pool size for instance pooling by the ORB.<74>For component entries, a
PlaceholderIntegerProperty. Note that this property is only meaningful if EnablePooling has the value
TRUE.

CreationTimeout: For full configuration entries, a

LongTimeoutInSecondsProperty (section 2.2.2.11.1) indicating how long the ORB is to wait for a
pooled component instance to complete its activation.<75> This property is only meaningful if

EnablePooling has the value TRUE. For component entries, a PlaceholderIntegerProperty.

ConstructorString: For full configuration entries, an
ApplicationSpecificStringProperty (section 2.2.2.12) to be used for configurable initialization as part of
instantiation of the component by the ORB.<76> This property is only meaningful if
EnableConstruction has the value TRUE. For component entries, a

PlaceholderStringProperty (section 2.2.2.1.3).

84 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ConfigurationFlags: For full configuration entries, a bit field used to configure different properties on
the component, each of which is a BooleanBitProperty (section 2.2.2.9.1). For component entries, a

PlaceholderIntegerProperty. ConfigurationFlags is specified as follows for full configuration entries.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1

Internal
D

C

C

C
In

E

E

L

B

E

C

E

P
Internal

All bits marked Internal (or In) MUST NOT be interpreted by clients. (To modify any of the non-
Internal bits in this bit field, as specified in section 3.2.4.5, clients are expected to first read the value
of the bit field, construct a value with the non-Internal bits modified, and then write the result back to
the server.) The server's use of these bits is implementation-specific as it does not affect
interoperability.

▪ MustRunInDefaultContext (DC): For full configuration entries, a BooleanBitProperty that

indicates whether the ORB is to restrict activation of the component such that it can only be

activated in a default environment.<77> The definition of the default environment is ORB-specific.

▪ MustRunInClientContext (CC): For full configuration entries, a BooleanBitProperty that
indicates whether the ORB is to restrict activation of the component such that it can only be
activated in the client's environment. If an application requires this behavior for its component, it
can set this property.<78>

▪ EnableEvents (EE): For full configuration entries, a BooleanBitProperty that indicates whether

the ORB is to collect activity statistics for component instances.<79>

▪ LoadBalancingSupported (LB): For full configuration entries, a BooleanBitProperty that
indicates whether the ORB is to provide instance load balancing for the component.<80>

▪ EnableConstruction (EC): For full configuration entries, a BooleanBitProperty that indicates
whether the ORB is to provide a configurable initialization for components during activation.<81>

▪ EnablePooling (EP): For full configuration entries, a BooleanBitProperty that indicates whether

or not the ORB is to provide instance pooling for the component.<82>

Reserved2: A PlaceholderIntegerProperty.

ExceptionClass: For full configuration entries, an
ORBSpecificExceptionClassProperty (section 2.2.2.13.1) to be used in creating an exception-handling
object if an error condition occurs while the ORB is servicing method calls to the component.<83> For
component entries, a PlaceholderStringProperty.

IsEventClass: For full configuration entries, a BooleanProperty that indicates whether the component

is an event class that can be used in a publisher-subscriber framework.<84> For component entries, a
PlaceholderIntegerProperty.

PublisherID: For full configuration entries, a NameProperty (section 2.2.2.2) providing a unique
identifier for a publisher in a publisher-subscriber framework provided by the ORB, or null to indicate

that the configuration is not a publisher.<85> If not null, IsEventClass must have the value TRUE
(0x00000001). For component entries, a PlaceholderStringProperty.

MultiInterfacePublisherFilterCLSID: For full configuration entries, a CLSID of a component that

provides filtering for events in a publisher-subscriber framework provided by the ORB, or GUID_NULL
to indicate that the configuration does not use such a filter component.<86> If not GUID_NULL,
PublisherID MUST NOT be null. For component entries, a PlaceholderGuidProperty (section 2.2.2.1.2).

85 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

AllowInprocSubscribers: For full configuration entries, a BooleanProperty that indicates whether a
publisher allows subscriber components to be instantiated in its process.<87> This property is only

meaningful if IsEventClass has the value TRUE. For component entries, a PlaceholderIntegerProperty.

FireInParallel: For full configuration entries, a BooleanProperty that indicates whether subscribers

will be notified of events from this event class in parallel (as opposed to serially).<88> This property
has no meaning if the component is not an event class. If TRUE, IsEventClass MUST have the value
TRUE. For component entries, a PlaceholderIntegerProperty.

TransactionTimeout: For full configuration entries, a LongTimeoutInSecondsProperty indicating how
long the ORB is to allow the component to run with a specific transaction before it is forcibly
aborted.<89> For component entries, a PlaceholderIntegerProperty.

IsEnabled: For full configuration entries, a BooleanProperty that indicates whether the ORB is to

enable instantiation of the component.<90> For component entries, a PlaceholderIntegerProperty.

TransactionIsolationLevel: For full configuration entries, a
TransactionIsolationLevelProperty (section 2.2.2.14) the ORB is use when managing atomic

transactions for the component (or component bitness).<91> For component entries, a
PlaceholderIntegerProperty.

IsPrivateComponent: For full configuration entries, a BooleanProperty that indicates whether or not

instantiation of the component is to be scoped by the ORB so that only components in the same
conglomeration can instantiate it.<92> For component entries, a PlaceholderIntegerProperty.

SoapAssemblyName: For full configuration entries, an
ORBSpecificModuleIdentifierProperty (section 2.2.2.13.2) for a module to be used by the ORB to
expose the component as a SOAP [SOAP1.1] endpoint. In order to provide such a feature, an ORB
MAY need a module to interpret calls from SOAP to the component. If an application wishes to use this
feature, it can set this property.<93> This property has no meaning if not specified in conjunction

with SoapTypeName field. For component entries, a PlaceholderStringProperty.

SoapTypeName: For full configuration entries, an
ORBSpecificTypeIdentifierProperty (section 2.2.2.13.3) for the type name used by the ORB to locate

an entity in the module specified by the SoapAssemblyName, to be used by the ORB to expose the
component as a SOAP [SOAP1.1] endpoint. If an application wishes to use this feature, it can set this
property.<94> This property has no meaning if not specified in conjunction with the
SoapAssemblyName property. For component entries, a PlaceholderStringProperty.

3.1.1.3.2 ComponentFullConfigurationsReadOnly Table

The entries in the ComponentFullConfigurationsReadOnly table represent component full
configurations. This table contains copies of component full configuration properties from entries in the
ComponentsAndFullConfigurations table. It MUST be read-only.

Table identifier: {6E38D3CA-C2A7-11D1-8DEC-00C04FC2E0C7}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Cell 1

 ConglomerationIdentifier equals <A>

86 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Primary key:

Catalog
version Primary key properties

 3.00 CLSID

 4.00/5.00 Hidden component bitness property, CLSID, PartitionIdentifier, Reserved1,
ConfigurationBitness

Other referential constraints: For each entry, there MUST exist an entry in the

ComponentsAndFullConfigurationsTable for which the values of all common properties (indicated by
the same property name) have identical values.

Write restrictions: No writes supported.

Cascade: N/A.

Populate: N/A.

Properties:

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

- 1 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 Reserved1 eDT_GUID 16 0x00000003 RO

- 3 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

1 4 ConglomerationIdentifier eDT_GUID 16 0x00000000 RO

2 5 Internal2 eDT_GUID 16 0x00000000 RO,
IN

3 6 VersionMajor eDT_ULONG 4 0x00000002 RO

4 7 VersionMinor eDT_ULONG 4 0x00000002 RO

5 8 VersionBuild eDT_ULONG 4 0x00000002 RO

6 9 VersionSubBuild eDT_ULONG 4 0x00000002 RO

7 10 Internal3 eDT_ULONG 4 0x00000002 RO,
IN

8 11 ServerInitializer eDT_ULONG 4 0x00000002 RO

9 12 Transaction eDT_ULONG 4 0x00000002 RO

10 13 Synchronization eDT_ULONG 4 0x00000002 RO

11 14 Internal4 eDT_ULONG 4 0x00000002 RO,
IN

12 15 FlowWebServerProperties eDT_ULONG 4 0x00000002 RO

13 16 FlowTransactionIntegratorProperties eDT_ULONG 4 0x00000002 RO

14 17 JustInTimeActivation eDT_ULONG 4 0x00000002 RO

87 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

15 18 ComponentAccessChecksEnabled eDT_ULONG 4 0x00000002 RO

16 19 Internal5 eDT_BYTES variable 0x00000000 RO,
IN

17 20 Internal6 eDT_GUID 16 0x00000000 RO,
IN

18 21 MinPoolSize eDT_ULONG 4 0x00000002 RO

19 22 MaxPoolSize eDT_ULONG 4 0x00000002 RO

20 23 CreationTimeout eDT_ULONG 4 0x00000002 RO

21 24 ConstructorString eDT_LPWSTR variable 0x00000000 RO

22 25 ConfigurationFlags eDT_ULONG 4 0x00000002 RO

23 26 Internal7 eDT_GUID 16 0x00000000 RO,
IN

24 27 Reserved2 eDT_ULONG 4 0x00000002 RO

25 28 Internal8 eDT_LPWSTR variable 0x00000000 RO,
IN

26 29 Internal9 eDT_GUID 16 0x00000000 RO,
IN

27 30 ExceptionClass eDT_LPWSTR variable 0x00000000 RO

28 31 Internal10 eDT_ULONG 4 0x00000002 RO,
IN

29 32 Internal11 eDT_LPWSTR variable 0x00000000 RO,
IN

30 33 Internal12 eDT_ULONG 4 0x00000002 RO,
IN

31 34 Internal13 eDT_LPWSTR variable 0x00000020 RO,

IN

32 35 Internal14 eDT_LPWSTR variable 0x00000000 RO,
IN

33 36 Internal15 eDT_LPWSTR variable 0x00000020 RO,
IN

34 37 Internal16 eDT_ULONG 4 0x00000002 RO,
IN

35 38 IsEventClass eDT_ULONG 4 0x00000002 RO

36 39 PublisherID eDT_LPWSTR variable 0x00000000 RO

37 40 MultiInterfacePublisherFilterCLSID eDT_GUID 16 0x00000000 RO

38 41 AllowInprocSubscribers eDT_ULONG 4 0x00000002 RO

39 42 FireInParallel eDT_ULONG 4 0x00000002 RO

88 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

40 43 Internal17 eDT_ULONG 4 0x00000002 RO,
IN

41 44 Internal18 eDT_LPWSTR variable 0x00000000 RO,
IN

42 45 TransactionTimeout eDT_ULONG 4 0x00000002 RO

43 46 Internal19 eDT_ULONG 4 0x00000002 RO,
IN

- 47 IsEnabled eDT_ULONG 4 0x00000002 RO

- 48 TransactionIsolationLevel eDT_ULONG 4 0x00000002 RO

- 49 IsPrivateComponent eDT_ULONG 4 0x00000002 RO

- 50 SoapAssemblyName eDT_LPWSTR variable 0x00000000 RO

- 51 SoapTypeName eDT_LPWSTR variable 0x00000000 RO

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation-specific because
it does not affect interoperability.

3.1.1.3.3 ComponentLegacyConfigurations Table

The entries in the ComponentLegacyConfigurations table represent component legacy configurations.

Table identifier: {09487519-892D-4CA0-A00B-58EEB1662A68}

AuxiliaryGuid: None.

Present in catalog version: 4.00 and 5.00.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Cell 1

 ConglomerationIdentifier equals <A>

Primary key: CLSID, ConfigurationBitness.

Other referential constraints: There MUST NOT exist an entry in the

ComponentsAndFullConfigurations table with identical values for CLSID and ConfigurationBitness
properties.

Write restrictions: Add MUST NOT be supported.

Update and remove MUST be supported if and only if:

▪ The conglomeration identified by ConglomerationIdentifier has the value "Y" for Changeable.

▪ The conglomeration identified by ConglomerationIdentifier has the value "N" for IsSystem.

89 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Cascade: None.

Populate: N/A.

Properties:

Index (4.00/5.00) Property name Type Size Flags Meta

0 CLSID eDT_GUID 16 0x00000001 RO

1 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

2 Description eDT_LPWSTR variable 0x00000000

3 ProgID eDT_LPWSTR variable 0x00000000 RO

4 InprocServerPath eDT_LPWSTR variable 0x00000000 RO

5 InprocHandlerPath eDT_LPWSTR variable 0x00000000 RO

6 ThreadingModel eDT_LPWSTR variable 0x00000000 RO

7 LocalServerPath eDT_LPWSTR variable 0x00000000 RO

8 IsEnabled eDT_ULONG 4 0x00000002

9 ConglomerationIdentifier eDT_GUID 16 0x00000000 RO

10 Internal1 eDT_ULONG 4 0x00000000 IN

11 LegacyConglomerationIdentifier eDT_GUID 16 0x00000000 RO

12 Name eDT_LPWSTR variable 0x00000000 RO

13 RemoteServerName eDT_LPWSTR variable 0x00000000

14 ServiceName eDT_LPWSTR variable 0x00000000

15 ServiceParameters eDT_LPWSTR variable 0x00000000

16 SurrogatePath eDT_LPWSTR variable 0x00000000

17 RunAs eDT_LPWSTR variable 0x00000000

18 Password eDT_LPWSTR variable 0x00000000

19 ActivateAtStorage eDT_LPWSTR 4 0x00000004

20 LaunchPermissions eDT_BYTES variable 0x00000000

21 AccessPermissions eDT_BYTES variable 0x00000000

22 AuthenticationLevel eDT_ULONG 4 0x00000000

23 SRPLevel eDT_ULONG 4 0x00000000

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written

to or interpreted by the client. The server's use of these properties is implementation-specific because
it does not affect interoperability.

CLSID: The CLSID of the component.<95>

ConfigurationBitness: A BitnessProperty (section 2.2.2.5) representing the bitness configured for
the component.<96>

90 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Description: A DescriptionProperty (section 2.2.2.7) providing a human-readable description of the
component.<97>

ProgID: If not null, a ScriptingProgramIdProperty (section 2.2.2.4) of the component (or component
bitness).<98>

InprocServerPath: If not null, an ImplementationSpecificPathProperty (section 2.2.2.2) providing a
path to a module of the component that is supported for full configuration.<99>

InprocHandlerPath: If not null, an ImplementationSpecificPathProperty providing a path to an
alternate module of the component, which is not supported for full configuration.<100>

ThreadingModel: A ThreadingModelStringProperty (section 2.2.2.3.2) representing the restrictions, if
any, that the ORB is to place on the types of threads on which the instantiations of the component (or
component bitness) will be hosted. <101>

LocalServerPath: If not null, an ImplementationSpecificPathProperty providing a path to an alternate
module of the component, which is not supported for full configuration.<102> The character length of
this field MUST be between 1 and 260.

IsEnabled: A BooleanProperty (section 2.2.2.9) that indicates whether the server is to enable
instantiation of the component by the ORB.<103>

ConglomerationIdentifier: The conglomeration identifier of the conglomeration containing the

configuration.

LegacyConglomerationIdentifier: An ORB for historical reasons can provide a facility to specify a
conglomeration stored in some alternate store on the server by means of another unique identifier.
This identifier is given through this property.<104>

Name: If not null, a NameProperty (section 2.2.2.6) providing a human-readable name of the
component.<105>

RemoteServerName: If not null, a ComputerNameOrAddressProperty (section 2.2.2.16) indicating

the remote server on which the ORB is to attempt to instantiate the component.<106>

ServiceName: If not null, an ORBSpecificAlternateLaunchNameProperty (section 2.2.2.13.4) for use
in an alternate launch mechanism, which the ORB is to use when instantiating the component.<107>

ServiceParameters: If not null, an
ORBSpecificAlternateLaunchParametersProperty (section 2.2.2.13.5) providing additional parameters
an ORB is to use when using an alternate launch mechanism for the component.<108>

SurrogatePath: If not null, an ImplementationSpecificPathProperty providing a path to a file that the

ORB is to use to host the module specified in InprocServer.<109>

RunAs: If not null, a SecurityPrincipalNameProperty (section 2.2.2.17) indicating the security principal
to be used by the ORB for the process hosting the component.<110>

Password: If not null, a PasswordProperty (section 2.2.2.18) indicating the password for the security
principal specified in the RunAs property.<111> Although for historical reasons, this property does not

have the fPROPERTY_NOTPERSISTABLE (section 2.2.1.7) flag, it MUST NOT be persisted in plaintext

or returned to the client.

ActivateAtStorage: An ORB can provide a facility to activate a component based on the location of a
file.<112> The specification and details of how the file path is given is ORB-specific. This property is a
LegacyYesNoProperty (section 2.2.2.20) that indicates whether this feature is to be used.

AccessPermissions: If not null, a SecurityDescriptorProperty (section 2.2.2.21) indicating the access
permissions to be used by the ORB to authorize clients to call methods on the component
instance.<113>

91 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

LaunchPermissions: If not null, a SecurityDescriptorProperty indicating the access permissions used
by the ORB to allow clients to launch instantiate collections for the component.<114>

AuthenticationLevel: A DefaultAuthenticationLevelProperty (section 2.2.2.22) indicating the
authentication level the ORB is to use for instances of the component. <115>

SRPLevel: A TrustLevelProperty (section 2.2.2.24) indicating he trust level that is to be used by the
ORB in an ORB-specific manner to control instantiation of the component <116>

3.1.1.3.4 ComponentNativeBitness Table

The entries in the ComponentNativeBitness table represent native bitnesses of unconfigured
components.

Table identifier: {39344B1F-EFE8-4286-9DB8-AC0A3D791FF2}

Defined in catalog version: 4.00 and 5.00.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates: Empty query.

Primary key: CLSID.

Other referential constraints: There MUST NOT exist an entry in either the

ComponentsAndFullConfigurations table or the LegacyConfigurations table with an identical value for
CLSID property and ConfigurationBitness property equal to the native bitness.

Write restrictions: No writes supported.

Cascade: N/A.

Populate: N/A.

Properties:

Index (4.00/5.00) Property name Type Size Flags Meta

0 CLSID eDT_GUID 16 0x00000001 RO

1 Internal1 eDT_LPWSTR variable 0x00000000 RO, IN

2 Internal2 eDT_GUID 16 0x00000000 RO, IN

3 Internal3 eDT_LPWSTR variable 0x00000000 RO, IN

4 InprocServerPath eDT_LPWSTR variable 0x00000000 RO

5 Internal4 eDT_LPWSTR variable 0x00000000 RO, IN

6 LocalServerPath eDT_LPWSTR variable 0x00000000 RO

7 ProgID eDT_LPWSTR variable 0x00000000 RO

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation-specific because
it does not affect interoperability.

CLSID: The CLSID of the component.<117>

92 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

InprocServerPath: If not null, an ImplementationSpecificPathProperty (section 2.2.2.2) providing a
path to a module of the component for the native bitness that is supported for full

configuration.<118>

LocalServerPath: If not null, an ImplementationSpecificPathProperty providing a path to an alternate

module of the component for the native bitness, which is not supported for full configuration.<119>

ProgID: If not null, a ScriptingProgramIdProperty (section 2.2.2.4) for the component's native
bitness.<120>

3.1.1.3.5 ComponentNonNativeBitness Table

The entries in the ComponentNonNativeBitness table represent non-native bitness components.

Table identifier: {96EC9BF1-063B-4ABF-8B90-42C878D9033E}

Present in catalog version: 4.00 and 5.00.

Prerequisites: Multiple-bitness capability supported.

Hidden bitness property: No.

Supported query templates: Empty query.

Primary key: CLSID.

Other referential constraints: There MUST NOT exist an entry in either the

ComponentsAndFullConfigurations table or the LegacyConfigurations table with an identical value for
CLSID property and ConfigurationBitness property equal to the non-native bitness.

Write restrictions: No writes supported.

Cascade: N/A.

Populate: N/A.

Properties:

Index (4.00/5.00) Property name Type Size Flags Meta

0 CLSID eDT_GUID 16 0x00000001 RO

1 Internal1 eDT_LPWSTR variable 0x00000000 RO, IN

2 Internal2 eDT_GUID 16 0x00000000 RO, IN

3 Internal3 eDT_LPWSTR variable 0x00000000 RO, IN

4 InprocServerPath eDT_LPWSTR variable 0x00000000 RO

5 Internal4 eDT_LPWSTR variable 0x00000000 RO, IN

6 LocalServerPath eDT_LPWSTR variable 0x00000000 RO

7 ProgID eDT_LPWSTR variable 0x00000000 RO

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation-specific because
it does not affect interoperability.

CLSID: The CLSID of the component.<121>

93 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

InprocServerPath: If not null, an ImplementationSpecificPathProperty (section 2.2.2.2) providing a
path to a module of the component for the non-native bitness that is supported for full

configuration.<122>

LocalServerPath: If not null, an ImplementationSpecificPathProperty providing a path to an alternate

module of the component for the non-native bitness, which is not supported for full
configuration.<123>

ProgID: If not null, a ScriptingProgramIdProperty (section 2.2.2.4) for the component's non-native
bitness.<124> The character length of this field MUST be between 1 and 39.

3.1.1.3.6 Conglomerations Table

The entries in the Conglomerations table represent conglomerations.

Table identifier: {D495F321-AF37-11D1-8B7E-00C04FD7A924}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Catalog version 3.00: Empty query.

Catalog version 4.00 and catalog version 5.00:

Cell 1

PartitionIdentifier equals <A>

Primary key: ConglomerationIdentifier

Other referential constraints:

Catalog version 3.00: None.

Catalog version 4.00 and catalog version 5.00: There MUST exist an entry in the Partitions table with
identical value for the PartitionIdentifier property.

Write restrictions: Add MUST be supported if and only if:

▪ Catalog version 4.00 and catalog version 5.00: The partition identified by the PartitionIdentifier
property of the new entry has the Changeable property set to TRUE (0x00000001).

Update MUST be supported if and only if:

▪ Changeable has the value "Y" or only Changeable and/or Deleteable are updated.

▪ IsSystem has the value "N".

▪ IsProxyApp has the value FALSE (0x00000000), or no properties designated read-only for proxies

are updated.

▪ The conglomeration is not a protected conglomeration.<125> For historical reasons, there is no
general mechanism for a client to determine if a conglomeration is protected except to attempt
updating the Changeable property. However, so that clients can avoid making calls that would

94 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

update a protected conglomeration, the following container identifiers are reserved for protected
conglomerations: {01885945-612C-4A53-A479-E97507453926}, {9EB3B62C-79A2-11D2-9891-

00C04F79AF51}, and {6B97138E-3C20-48D1-945F-81AE63282DEE}.

▪ Catalog version 4.00 and catalog version 5.00: The partition identified by the PartitionIdentifier

property of the new entry has the Changeable property set to TRUE (0x00000001).

Remove MUST be supported if and only if:

▪ Deleteable has the value "Y".

▪ IsSystem has value "N".

▪ Catalog version 4.00 and catalog version 5.00: The partition identified by the PartitionIdentifier
property of the new entry has the Changeable property set to TRUE (0x00000001).

Cascade: On removal of an entry, all entries in the

ComponentsAndFullConfigurations (section 3.1.1.3.1),
ComponentLegacyConfigurations (section 3.1.1.3.3), and Roles (section 3.1.1.3.9) table with identical

values for ConglomerationIdentifier property MUST be removed.

Populate: None.

Properties:

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

0 0 ConglomerationIdentifier eDT_GUID 16 0x00000003 RO

1 1 Name eDT_LPWSTR variable 0x00000002

2 2 Internal1 eDT_ULONG 4 0x00000002 IN

3 3 ServerName eDT_LPWSTR variable 0x00000000

4 4 Internal2 eDT_ULONG 4 0x00000002 IN

5 5 CommandLine eDT_LPWSTR variable 0x00000000 TR

6 6 ServiceName eDT_LPWSTR variable 0x00000000

7 7 Internal3 eDT_ULONG 4 0x00000002 IN

8 8 RunAsUser eDT_LPWSTR variable 0x00000000

9 9 Internal4 eDT_BYTES variable 0x00000000 IN

10 10 Description eDT_LPWSTR variable 0x00000000

11 11 IsSystem eDT_LPWSTR 4 0x00000006 RO

12 12 Authentication eDT_ULONG 4 0x00000002

13 13 ShutdownAfter eDT_ULONG 4 0x00000002 TR

14 14 RunForever eDT_LPWSTR 4 0x00000006 TR

15 15 Password eDT_LPWSTR variable 0x00000008

16 16 Activation eDT_LPWSTR variable 0x00000000 TR

17 17 Changeable eDT_LPWSTR 4 0x00000004

95 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

18 18 Deleteable eDT_LPWSTR 4 0x00000004

19 19 CreatedBy eDT_LPWSTR variable 0x00000000

20 20 Internal5 eDT_BYTES variable 0x00000000 IN

21 21 Internal6 eDT_ULONG 4 0x00000002 IN

22 22 RoleBasedSecurityEnabled eDT_ULONG 4 0x00000002 TR

23 23 Internal7 eDT_BYTES variable 0x00000000 IN,
NT

24 24 ImpersonationLevel eDT_ULONG 4 0x00000002

25 25 ORBSecuritySettings eDT_ULONG 4 0x00000002

26 26 CRMEnabled eDT_ULONG 4 0x00000002 TR

27 27 Enable3GigSupport eDT_ULONG 4 0x00000002 TR

28 28 IsQueued eDT_ULONG 4 0x00000002 TR

29 29 QCListenerEnabled eDT_LPWSTR 4 0x00000006 TR

30 30 EventsEnabled eDT_ULONG 4 0x00000002 TR

31 31 Internal8 eDT_ULONG 4 0x00000002 IN

32 32 Internal9 eDT_ULONG 4 0x00000002 IN

33 33 IsProxyApp eDT_ULONG 4 0x00000002 RO

34 34 CRMLogFile eDT_LPWSTR variable 0x00000000 TR

- 35 DumpEnabled eDT_ULONG 4 0x00000002 TR

- 36 DumpOnException eDT_ULONG 4 0x00000002 TR

- 37 DumpOnFailFast eDT_ULONG 4 0x00000002 TR

- 38 MaxDumpCount eDT_ULONG 4 0x00000002 TR

- 39 DumpPath eDT_LPWSTR variable 0x00000000 TR

- 40 IsEnabled eDT_ULONG 4 0x00000002

- 41 PartitionIdentifier eDT_GUID 16 0x00000002 RO

- 42 ConcurrentApps eDT_ULONG 4 0x00000002 TR

- 43 RecycleLifetimeLimit eDT_ULONG 4 0x00000002 TR

- 44 RecycleCallLimit eDT_ULONG 4 0x00000002 TR

- 45 RecycleActivationLimit eDT_ULONG 4 0x00000002 TR

- 46 RecycleMemoryLimit eDT_ULONG 4 0x00000002 TR

- 47 RecycleExpirationTimeout eDT_ULONG 4 0x00000002 TR

- 48 QCListenerMaxThreads eDT_ULONG 4 0x00000002 TR

96 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

- 49 QCAuthenticateMsgs eDT_ULONG 4 0x00000002 TR

- 50 ApplicationDirectory eDT_LPWSTR variable 0x00000000

- 51 SRPTrustLevel eDT_ULONG 4 0x00000002 TR

- 52 SRPEnabled eDT_ULONG 4 0x00000002 TR

- 53 SoapActivated eDT_ULONG 4 0x00000002 TR

- 54 SoapVRoot eDT_LPWSTR variable 0x00000000 TR

- 55 SoapMailTo eDT_LPWSTR variable 0x00000000 TR

- 56 SoapBaseUrl eDT_LPWSTR variable 0x00000000 TR

- 57 Replicable eDT_ULONG 4 0x00000002 TR

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation-specific because
it does not affect interoperability.

ConglomerationIdentifier: The conglomeration identifier for the conglomeration.<126>

Name: A NameProperty (section 2.2.2.6) providing a human-readable name of the
conglomeration.<127> This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

ServerName: A ComputerNameOrAddressProperty (section 2.2.2.16) indicating the remote server on
which the ORB is to attempt to instantiate the components in the conglomeration, if the
conglomeration is a Configured Proxy (section 3.1.1.1.7).<128> The ServerName property must be
null if IsProxyApp is FALSE (0x00000000).

CommandLine: If not null, an ORBSpecificCommandLineProperty (section 2.2.2.13.6) containing
command that is to be executed by the ORB to host instance containers for the

conglomeration.<129>This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

ServiceName: If not null, an ORBSpecificAlternateLaunchNameProperty (section 2.2.2.13.4)
corresponding to the AlternateLaunchName property of the alternate launch configuration (section
3.1.1.4) to be used by the ORB to perform an alternate launch for the conglomeration.<130> This
property MUST be read-only if IsProxyApp is TRUE (0x00000001).

RunAsUser: If not null, a SecurityPrincipalNameProperty (section 2.2.2.17) indicating the security
principal to be used by the ORB when creating instance containers for the conglomeration.<131> This

property MUST be read-only if IsProxyApp is TRUE (0x00000001).

Description: A DescriptionProperty (section 2.2.2.7) providing a human-readable description of the
conglomeration.<132>

IsSystem: A YesNoProperty (section 2.2.2.19) that indicates whether or not a conglomeration is
distinguished by the COMA server.<133> A distinguished conglomeration is handled much like one for
which Changeable is "N", except that role members for its roles can be added or removed (see write
restrictions for this and other tables for a more formal specification). The criteria for determining

whether or not a conglomeration is distinguished are implementation-specific.

Authentication: A DefaultAuthenticationLevelProperty (section 2.2.2.22) that, when configured for a
conglomeration with Activation set to "Local", indicates the authentication level the ORB is to use for
instance containers associated with the conglomeration. <134> The meaning of this property when

97 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Activation is set to "Inproc" is ORB-specific. <135> This property MUST be read-only if IsProxyApp is
TRUE (0x00000001).

ShutdownAfter: A ShortTimeoutInMinutesProperty (section 2.2.2.11.4) indicating the time that the
ORB is to allow an instance container to run until it is forcibly shut down.<136> The ORB is to trigger

the timer for this time out once it has determined that the instance collection is idle. The criteria for
determining that an instance container is idle are ORB-specific. This property is to be ignored by the
ORB if RunForever is "Y". This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

RunForever: A YesNoProperty that indicates whether or not the ORB is to ignore the ShutdownAfter
property.<137> This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

Password: If not null, a PasswordProperty (section 2.2.2.18) indicating the password for the security
principal specified by the RunAsUser property.<138> This property MUST be read-only if IsProxyApp

is TRUE (0x00000001).

Activation: An ActivationTypeProperty (section 2.2.2.23) that indicates whether the ORB is to host
instance containers associated with the conglomeration in a new process or the creator's process, for

local instantiation.<139> This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

Changeable: A YesNoProperty that indicates whether or not the conglomeration and its contained
objects are changeable (see write restrictions for this and other tables for a more formal

specification).<140> MUST be "N" for a protected conglomeration.

Deleteable: A YesNoProperty that indicates whether or not the conglomeration is deleteable (see
write restrictions for this table for a more formal specification).<141> MUST be "N" for a protected
conglomeration.

CreatedBy: If not null, a NameProperty providing an informational name of the user who created the
conglomeration.<142>

RoleBasedSecurityEnabled: A BooleanProperty (section 2.2.2.9) that indicates whether the ORB is

to enable role-based security for the conglomeration.<143> This property MUST be read-only if
IsProxyApp is TRUE (0x00000001).

ImpersonationLevel: A DefaultImpersonationLevelProperty (section 2.2.2.25) indicating the
impersonation level to be used by the ORB as the default for outgoing DCOM calls that are made from
instance containers associated with the conglomeration.<144> This property MUST be read-only if
IsProxyApp is TRUE (0x00000001).

ORBSecuritySettings: An ORBSecuritySettingsProperty (section 2.2.2.26) indicating security settings

to be used by the ORB for instance containers associated with the conglomeration.<145> This
property MUST be read-only if IsProxyApp is TRUE (0x00000001).

CRMEnabled: A BooleanProperty that indicates whether or not the ORB is to provide a compensating
resource manager for each instance container associated with the conglomeration.<146> This
property MUST be read-only if IsProxyApp is TRUE (0x00000001).

Enable3GigSupport: A BooleanProperty that indicates whether or not the ORB is to provide large

address space support to instance containers associated with the conglomeration.<147> This property

MUST be read-only if IsProxyApp is TRUE (0x00000001).

IsQueued: A BooleanProperty that indicates whether or not the ORB is to enable a queuing transport
(see section 3.1.1.1.5) for components configured in the conglomeration.<148> This property MUST
be read-only if IsProxyApp is TRUE (0x00000001).

QCListenerEnabled: A YesNoProperty that indicates whether or not the ORB is to provide a queue
listener for each instance container associated with the conglomeration.<149> If "Y", the IsQueued

property MUST be TRUE. This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

98 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

EventsEnabled: A BooleanProperty that indicates whether or not the ORB is to collect activity
statistics for instance containers associated with the conglomeration.<150> This property MUST be

read-only if IsProxyApp is TRUE (0x00000001).

IsProxyApp: A BooleanProperty that indicates whether or not the conglomeration is a Configured

Proxy.<151> If TRUE (0x00000001), this indicates that instance containers for this conglomeration
are to be hosted by a different ORB, located on the machine identified by ServerMachine.

CRMLogFile: An ImplementationSpecificPathProperty (section 2.2.2.2) providing the path to a log file,
to be used by compensating resource managers provided by the ORB for the conglomeration.<152>
This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

DumpEnabled: A BooleanProperty that indicates whether or not the ORB is to collect debugging data
for an instance container that encounters an exceptional condition.<153> If TRUE, property

DumpPath SHOULD be non-NULL. This property MUST be read-only if IsProxyApp is TRUE
(0x00000001).

DumpOnException: A BooleanProperty that indicates whether or not the ORB is to collect debugging

data when a critical application-specific error occurs.<154> If TRUE, DumpEnabled MUST be TRUE.
This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

DumpOnFailFast: A BooleanProperty that indicates whether or not the ORB is to collect debugging

data when a critical ORB-specific error occurs.<155> This property is only meaningful if DumpEnabled
has the value TRUE. This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

MaxDumpCount: A MaxDumpCountProperty (section 2.2.2.27) indicating the maximum count of
debugging data files the ORB is to collect for the conglomeration.<156> This property is only
meaningful if DumpEnabled has the value TRUE. This property MUST be read-only if IsProxyApp is
TRUE (0x00000001).

DumpPath: If not null, an ImplementationSpecificPathProperty providing a location where the ORB is

to create debugging data files.<157> This property is only meaningful if DumpEnabled has the value
TRUE. This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

IsEnabled: A BooleanProperty indicating whether or not the ORB is to allow instantiation of
components configured in the conglomeration.<158> This property MUST be read-only if IsProxyApp
is TRUE (0x00000001).

PartitionIdentifier: The partition identifier of the partition containing the conglomeration.

ConcurrentApps: A ConcurrentAppsProperty (section 2.2.2.28) indicating the maximum number of

instance containers the ORB is to create for the conglomeration at any given time.<159> This
property MUST be read-only if IsProxyApp is TRUE (0x00000001).

RecycleLifetimeLimit: A LongTimeoutInMinutesProperty (section 2.2.2.11.3) indicating the time that
the ORB is to allow an instance container to run before it is recycled.<160> A value of zero indicates
that recycling based on instance container lifetime is to be disabled. This property MUST be read-only
if IsProxyApp is TRUE (0x00000001).

RecycleCallLimit: A RecyclingCriterionLimitProperty (section 2.2.2.29) indicating the maximum

number of calls to component instances in an instance container that the ORB is to allow before it is
recycled.<161> This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

RecycleActivationLimit: A RecyclingCriterionLimitProperty indicating the maximum number of
activations of components in an instance container that the ORB is to allow before it is
recycled.<162> This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

RecycleMemoryLimit: A RecyclingCriterionLimitProperty indicating the maximum memory in

kilobytes consumed by an instance container that the ORB is to allow before it is recycled.<163> This
property MUST be read-only if IsProxyApp is TRUE (0x00000001).

99 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

RecycleExpirationTimeout: A ShortTimeoutInMinutesProperty (section 2.2.2.11.4) indicating the
time that the ORB is to wait after recycling an instance container before forcibly shutting it

down.<164> This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

QCListenerMaxThreads: A MaxThreadsProperty (section 2.2.2.30) indicating the maximum number

of threads the ORB-provided queue listener (section 3.1.1.1.5) is to use in a given instance
container.<165> If nonzero, QCListenerEnabled MUST be "Y". This property MUST be read-only if
IsProxyApp is TRUE (0x00000001).

QCAuthenticateMsgs: A BooleanProperty indicating whether the ORB is to authenticate messages in
an enabled queuing protocol (section 3.1.1.1.5).<166> If TRUE, EnableQueueing MUST be TRUE. This
property MUST be read-only if IsProxyApp is TRUE (0x00000001).

ApplicationDirectory: If not null, an ImplementationSpecificPathProperty providing a path that the

ORB is to use to locate additional ORB-specific files containing application-specified
configuration.<167> This property MUST be read-only if IsProxyApp is TRUE (0x00000001).

SRPTrustLevel: If SRPEnabled is TRUE, a TrustLevelProperty (section 2.2.2.24) indicating the trust

level that is to be used by the ORB in an ORB-specific manner to control instantiation of components
configured in the conglomeration.<168> Otherwise, this property has no meaning. This property
MUST be read-only if IsProxyApp is TRUE (0x00000001).

SRPEnabled: A BooleanProperty that indicates whether or not the ORB is to enforce its software
restriction policy (section 3.1.1.1.9) for the conglomeration.<169> This property MUST be read-only if
IsProxyApp is TRUE (0x00000001).

SoapActivated: A BooleanProperty that indicates whether or not the ORB is to expose components
configured in the conglomeration as SOAP [SOAP1.1] endpoints.<170> This property MUST be read-
only if IsProxyApp is TRUE (0x00000001).

SoapVRoot: If not null, an ORBSpecificWebServerVirtualDirectoryProperty (section 2.2.2.13.7)

providing a path to a virtual directory in a web server that the ORB is to use as the SOAP [SOAP1.1]
endpoint for components in the conglomeration.<171> If not null, SoapActivated MUST be TRUE. This
property MUST be read-only if IsProxyApp is TRUE (0x00000001).

SoapMailTo: If not null, a Simple Mail Transfer Protocol (SMTP), as specified in [RFC821], mailing
address that the ORB is to use as the SOAP, as specified in [SOAP1.1], endpoint for components in the
conglomeration.<172> If not null, SoapActivated MUST be TRUE. This property MUST be read-only if
IsProxyApp is TRUE (0x00000001).

SoapBaseUrl: If not null, a URL that the ORB is to use as the SOAP, as specified in [SOAP1.1],
endpoint for components in the conglomeration.<173> If not null, SoapActivated MUST be TRUE. This
property MUST be read-only if IsProxyApp is TRUE (0x00000001).

Replicable: A BooleanProperty indicating to replication client applications whether or not a
conglomeration is to be copied during replication in which this COMA server is the replication
source.<174> This value is advisory and intended for interpretation only by replication client

applications.<175>

3.1.1.3.7 Partitions Table

The entries in the Partitions table represent partitions.

Table identifier: {E4AD9FD6-D435-4CF5-95AD-20AD9AC6B59F}

AuxiliaryGuid: None.

Defined in catalog version: 4.00 and 5.00.

Hidden bitness property: No.

100 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Supported query templates: Empty query.

Primary key: PartitionIdentifier.

Other referential constraints: There MUST be exactly one entry if the server does not support
multiple partitions. For catalog version 5.00, there MUST be exactly one entry if the PartitionsEnabled

property in MachineSettings (section 3.1.1.3.8) has a value of FALSE (0x00000000).

Write restrictions: Add MUST be supported if and only if:

▪ Server supports multiple partitions.

▪ Catalog version 5.00: PartitionsEnabled in MachineSettings (section 3.1.1.3.8) has a value of TRUE
(0x00000001).

Update to the Changeable and Deleteable properties MUST be supported.

Update to properties other than Changeable and Deleteable MUST be supported if and only if the

Changeable property has a value of TRUE (0x00000001).

Remove MUST be supported if and only if:

▪ Deleteable has a value of TRUE (0x00000001).

▪ PartitionIdentifier is not the partition identifier of the global partition (section 1.9).

▪ There is no entry in the PartitionUsers Table (section 3.1.1.3.16) with an identical value of the
PartitionIdentifier property.

Cascade: On removal of an entry, all entries in the Conglomerations (section 3.1.1.3.6) and
PartitionRoles (section 3.1.1.3.17) with an identical value of PartitionIdentifier property MUST be
removed.

Populate: On addition of an entry, a server MAY<176> add an implementation-specific number of
entries to the PartitionRoles (section 3.1.1.3.17) table with PartitionIdentifier property set to the

partition identifier of the new partition.

Properties:

Index (4.00/5.00) Property name Type Size Flags Meta

0 PartitionIdentifier eDT_GUID 16 0x00000003 RO

1 Name eDT_LPWSTR variable 0x00000002

2 Description eDT_LPWSTR variable 0x00000000

3 Changeable eDT_LPWSTR 4 0x00000006

4 Deleteable eDT_LPWSTR 4 0x00000006

PartitionIdentifier: The partition identifier for the partition.<177>

Name: A NameProperty (section 2.2.2.6) providing a human-readable name for the partition.<178>

Description: A DescriptionProperty (section 2.2.2.7) providing a human-readable description for the
partition.<179>

Changeable: A YesNoProperty (section 2.2.2.19) indicating whether or not the partition and its

contained objects are changeable (see write restrictions for this and other tables for a more formal
specification).<180>

101 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Deleteable: A YesNoProperty indicating whether or not the partition is deleteable (see write
restrictions for this table for a more formal specification).<181>

3.1.1.3.8 MachineSettings Table

The single entry in the MachineSettings table represents the singleton machine settings object. The
properties of this object are server-wide configurations.

Table identifier: {61436562-EE01-11D1-BFE4-00C04FB9988E}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates: Empty query.

Primary key: Name

Other referential constraints: There MUST be exactly one entry.

Write restrictions: Update MUST be supported, add and remove MUST NOT be supported.

Cascade: N/A.

Populate: N/A.

Properties:

Index
(3.00)

Index
(4.00)

Index
(5.00) Property name Type Size Flags Meta

0 0 0 Name eDT_LPWSTR variable 0x00000001 RO

1 1 1 Description eDT_LPWSTR variable 0x00000000

2 2 2 TransactionTimeout eDT_ULONG 4 0x00000002

3 3 3 Internal2 eDT_LPWSTR variable 0x00000000 IN

4 4 4 ResourcePoolingEnabled eDT_LPWSTR variable 0x00000000

5 5 5 Internal3 eDT_LPWSTR variable 0x00000000 IN

6 6 6 RemoteServerName eDT_LPWSTR variable 0x00000000

7 7 7 Internal4 eDT_ULONG 4 0x00000002 IN

8 8 8 Internal5 eDT_ULONG 4 0x00000002 IN

9 9 9 Internal6 eDT_LPWSTR variable 0x00000000 IN

10 10 10 IsRouter eDT_LPWSTR variable 0x00000000

11 11 11 EnableDCOM eDT_LPWSTR variable 0x00000000

12 12 12 DefaultAuthenticationLevel eDT_ULONG 4 0x00000002

13 13 13 DefaultImpersonationLevel eDT_ULONG 4 0x00000002

102 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Index
(3.00)

Index
(4.00)

Index
(5.00) Property name Type Size Flags Meta

14 14 14 EnableSecurityTracking eDT_LPWSTR variable 0x00000000

15 15 15 EnableCIS eDT_LPWSTR variable 0x00000000

16 16 16 EnableSecureReferences eDT_LPWSTR variable 0x00000000

17 17 17 PortsInternetAvailable eDT_LPWSTR variable 0x00000000

18 18 18 UseInternetPorts eDT_LPWSTR variable 0x00000000

19 19 19 Ports eDT_LPWSTR variable 0x00000000

20 20 20 Internal7 eDT_BYTES variable 0x00000000 IN

21 21 21 Internal8 eDT_BYTES variable 0x00000000 IN

22 22 22 Internal9 eDT_LPWSTR variable 0x00000000 IN

- 23 23 LocalPartitionLookupEnabled eDT_LPWSTR variable 0x00000000

- 24 24 DSPartitionLookupEnabled eDT_LPWSTR variable 0x00000000

23 25 25 RpcProxyEnabled eDT_ULONG 4 0x00000002

24 26 26 OperatingSystem eDT_ULONG 4 0x00000002

25 27 27 LoadBalancingCLSID eDT_GUID 16 0x00000000

- 28 28 SaferRunningObjectChecks eDT_LPWSTR variable 0x00000000

- 29 29 SaferActivateAsActivatorChecks eDT_LPWSTR variable 0x00000000

- 30 30 Internal10 eDT_LPWSTR variable 0x00000000 IN

- - 31 PartitionsEnabled eDT_LPWSTR variable 0x00000002

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation-specific because
it does not affect interoperability.

Name: A ComputerNameProperty (section 2.2.2.15) representing the computer name of the server.

Description: A DescriptionProperty (section 2.2.2.7) providing a human-readable description of the
server machine with respect to COMA.<182>

TransactionTimeout: A ShortTimeoutInSecondsProperty (section 2.2.2.11.2) indicating the ORB-
global default timeout for components running in transactions.<183>

ResourcePoolingEnabled: A YesNoProperty (section 2.2.2.19) that indicates whether the ORB is to
enable a mechanism for pooling database connections.<184>

RemoteServerName: A ComputerNameOrAddressProperty (section 2.2.2.16) indicating the ORB-

global default remote computer name for configured proxies.

IsRouter: A YesNoProperty that indicates whether or not the ORB is configured as an instance load
balancing router.<185>

EnableDCOM: A YesNoProperty that indicates whether or not DCOM is to be enabled as a transport
for the ORB.<186> Note that if the COMA server is a component on the ORB, disabling this property
will make the COMA server inaccessible.

103 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

DefaultAuthenticationLevel: A DefaultAuthenticationLevelProperty (section 2.2.2.22) indicating the
authentication level that the ORB is to use as a machine-wide default for processes that are not

explicitly configured to use a specific level.<187>

DefaultImpersonationLevel: A DefaultImpersonationLevelProperty (section 2.2.2.25) indicating the

default impersonation level the ORB is to use for DCOM.<188>

EnableSecurityTracking: A YesNoProperty that indicates whether the ORB is to perform ORB-
specific security tracking.<189>

EnabledCIS: A YesNoProperty that indicates whether the ORB is to enable DCOM over Internet
protocols.<190>

EnableSecureReferences: A YesNoProperty that indicates whether the ORB is to perform ORB-
specific security tracking.<191>

PortsInternetAvailable: A YesNoProperty that indicates whether the ORB is to configure DCOM on
the server to use ports specified in the Ports property of this table for Internet (when "Y") or for
intranet (when "N").<192>

UseInternetPorts: A YesNoProperty that indicates whether the ORB is to configure DCOM on the
server to use Internet ports (when "Y") or Intranet ports (when "N").<193>

Ports: A PortsListProperty (section 2.2.2.31) describing the port ranges to be used by the server for

DCOM.<194>

LocalPartitionLookupEnabled: A YesNoProperty (section 2.2.2.19) that indicates whether the ORB
only allows partition lookups locally.

DSPartitionLookupEnabled: A YesNoProperty that indicates whether the ORB only allows partitions
from an active directory.<195>

RpcProxyEnabled: A YesNoProperty that indicates whether the ORB will enable RPC proxy for the
web server such that RPC calls can be accepted over HTTP.<196>

OperatingSystem: The implementation-specific version number of the operating system version the
server is running.<197>

LoadBalancingCLSID: The ORB-specific CLSID of the DCOM object that is to be used for performing
instance load balancing on the server.<198>

SaferRunningObjectChecks: A YesNoProperty that indicates whether the ORB is to perform trust
level checks for DCOM objects hosted on the server.<199>

SaferActivateAsActivatorChecks: A YesNoProperty that indicates whether the ORB is to perform

trust level checks for DCOM activations on the server.<200>

PartitionsEnabled: A YesNoProperty that indicates whether multiple-partition support is enabled on
the server.<201>

3.1.1.3.9 Roles Table

The entries in the Roles table represent roles.

Table identifier: {CD331D11-C739-11D1-9D35-006008B0E5CA}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

104 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Hidden bitness property: No.

Supported query templates:

Cell 1

ConglomerationIdentifier equals <A>

Primary key: ConglomerationIdentifier, RoleName.

Other referential constraints: There MUST exist a conglomeration with the conglomeration
identifier specified in ConglomerationIdentifier.

Write restrictions: Add, update, and remove MUST be supported if and only if:

▪ The conglomeration identified by ConglomerationIdentifier has the value "Y" for Changeable.

▪ The conglomeration identified by ConglomerationIdentifier has the value "N" for IsSystem.

▪ Catalog version 4.00 and catalog version 5.00: The partition containing the conglomeration
identified by ConglomerationIdentifier has the value "Y" for Changeable.

Cascade: On removal of an entry, all entries in the RoleMembers (section 3.1.1.3.10),

RolesForComponent (section 3.1.1.3.13), RolesForInterface (section 3.1.1.3.14), and
RolesForMethod (section 3.1.1.3.15) tables with identical values for ConglomerationIdentifier and
RoleName properties MUST be removed.

Populate: None.

Properties:

Index (3.00/4.00/5.00) Property name Type Size Flags Meta

0 ConglomerationIdentifier eDT_GUID 16 0x00000003 RO

1 RoleName eDT_LPWSTR variable 0x00000003 RO

2 Description eDT_LPWSTR variable 0x00000000 IN

ConglomerationIdentifier: The conglomeration associated with the role. There MUST be an entry
for this ID in the conglomeration table.

RoleName: A NameProperty (section 2.2.2.6) providing a human-readable name for the role.<202>
The RoleName MUST be unique for a given conglomerationID specified in the ConglomerationIdentifier
property.

Description: A DescriptionProperty (section 2.2.2.7) providing a human-readable description for the
role.<203>

3.1.1.3.10 RoleMembers Table

The entries in the RoleMembers table represent role members.

Table identifier: {CD331D10-C739-11D1-9D35-006008B0E5CA}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

105 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Hidden bitness property: No.

Supported query templates:

Cell 1 Cell 2

ConglomerationIdentifier equals <A>. RoleName equals .

Primary key: ConglomerationIdentifier, RoleName, RoleMemberName.

Other referential constraints: There MUST exist a role with identical values for
ConglomerationIdentifier and RoleName.

Write restrictions: Update MUST NOT be supported.

Add and remove MUST be supported if and only if:

▪ The conglomeration identified by ConglomerationIdentifier has the value "Y" for Changeable.

▪ Catalog version 4.00 and catalog version 5.00: The partition containing the conglomeration
identified by ConglomerationIdentifier has the value "Y" for Changeable.

Cascade: None.

Populate: None.

Properties:

Index (3.00/4.00/5.00) Property name Type Size Flags Meta

0 ConglomerationIdentifier eDT_GUID 16 0x00000003 RO

1 RoleName eDT_LPWSTR variable 0x00000003 RO

2 RoleMemberName eDT_LPWSTR variable 0x00000003 RO

3 Internal1 eDT_BYTES 43 0x00000000 IN

In the previous table, internal property (marked with IN in the Meta column) MUST NOT be written to
or interpreted by the client. The server's use of this property is implementation-specific because it
does not affect interoperability.

ConglomerationIdentifier: The conglomeration identifier of the conglomeration associated with the
role to which this role member belongs.

RoleName: A NameProperty (section 2.2.2.6) providing the human-readable name of the role to
which this role member belongs.

RoleMemberName: A SecurityPrincipalNameProperty (section 2.2.2.17) identifying the security
principal of the role member.<204>

3.1.1.3.11 ConfiguredInterfaces Table

The entries in the ConfiguredInterfaces table represent configured interfaces.

Table identifier: {D13B72C6-C426-11D1-8507-006008B0E79D}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

106 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

▪ Catalog version 3.00:

Cell 1

CLSID equals <A>.

▪ Catalog version 4.00 and catalog version 5.00:

Cell 1 Cell 2 Cell 3

CLSID equals <A>. PartitionIdentifier equals . ConfigurationBitness equals <C>.

Primary key:

▪ Catalog version 3.00: CLSID, IID

▪ Catalog version 4.00 and catalog version 5.00: CLSID, PartitionIdentifier, Reserved, IID,
ConfigurationBitness

Other referential constraints:

▪ Catalog version 3.00: There MUST exist a component full configuration entry in
ComponentsAndFullConfigurations (section 3.1.1.3.1) with an identical value for CLSID.

▪ Catalog version 4.00 and catalog version 5.00: There MUST exist a component full configuration
entry in ComponentsAndFullConfigurations (section 3.1.1.3.1) with identical values for CLSID,
PartitionIdentifier, and ConfigurationBitness.

Write restrictions: Add and remove MUST NOT be supported.

Update MUST be supported if and only if:

▪ The conglomeration in which the component full configuration associated with this interface is
configured has the value "Y" for Changeable.

▪ The conglomeration in which the component full configuration associated with this interface is
configured has the value "N" for IsSystem.

▪ Catalog version 4.00 and catalog version 5.00: The partition identified by PartitionIdentifier has
the value "Y" for Changeable.

Cascade: On removal of an entry, all entries in the ConfiguredMethods (section 3.1.1.3.12) and
RolesForInterface (section 3.1.1.3.14) tables with identical values of CLSID, PartitionIdentifier, and
ConfigurationBitness properties MUST be removed.

Populate: None.

Properties:

Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

- 1 PartitionIdentifier eDT_GUID 16 0x00000003 RO

107 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

- 2 Reserved eDT_GUID 16 0x00000003 RO

1 3 IID eDT_GUID 16 0x00000003 RO

- 4 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

- 5 Name eDT_LPWSTR variable 0x00000002 RO

2 6 Internal1 eDT_BYTES variable 0x00000000 IN

3 7 Internal2 eDT_GUID 16 0x00000000 IN

4 8 Internal3 eDT_ULONG 4 0x00000002 IN

5 9 IsQueueable eDT_ULONG 4 0x00000002

6 10 IsQueuingSupported eDT_ULONG 4 0x00000002 RO

7 11 Description eDT_LPWSTR variable 0x00000000

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation-specific because
it does not affect interoperability.

CLSID: The CLSID of the component configuration associated with the interface.

PartitionIdentifier: The partition in which the component associated with this interface resides.

Reserved: PlaceholderGuidProperty (section 2.2.2.1.2).

IID: The IID of the interface.<205>

ConfigurationBitness: A BitnessProperty (section 2.2.2.5) indicating the bitness of the component
configuration associated with the interface.

Name: A NameProperty (section 2.2.2.6) providing a human readable name of the interface.<206>

IsQueueable: A BooleanProperty (section 2.2.2.9) that indicates whether the interface is enabled for
queuing (section 3.1.1.1.5).<207> If TRUE, IsQueuingSupported MUST be TRUE.

IsQueuingSupported: A BooleanProperty that indicates whether or not queuing is possible for the
interface.<208>

Description: A DescriptionProperty (section 2.2.2.7) providing a human readable description of the
interface.<209>

3.1.1.3.12 ConfiguredMethods Table

The entries in the ConfiguredMethods table represent configured methods.

Table identifier: {D13B72C4-C426-11D1-8507-006008B0E79D}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

108 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Supported query templates:

▪ Catalog version 3.00:

Cell 1 Cell 2

CLSID equals <A>. IID equals .

▪ Catalog version 4.00 and catalog version 5.00:

Cell 1 Cell 2 Cell 3 Cell 4

CLSID equals <A>. PartitionIdentifier equals . ConfigurationBitness equals <C>. IID equals <D>.

Primary key:

▪ Catalog version 3.00: CLSID, IID, Opnum

▪ Catalog version 4.00 and catalog version 5.00: CLSID, PartitionIdentifier, Reserved, IID, Opnum,
ConfigurationBitness

Other referential constraints:

▪ Catalog version 3.00: There MUST exist a configured interface with identical values for CLSID and
IID properties.

▪ Catalog version 4.00 and catalog version 5.00: There MUST exist a configured interface with
identical values for CLSID, PartitionIdentifier, IID, and ConfigurationBitness properties.

Write restrictions: Add and remove MUST NOT be supported.

Update MUST be supported if and only if:

▪ The conglomeration in which the component full configuration associated with this interface is

configured has the value "Y" for Changeable.

▪ The conglomeration in which the component full configuration associated with this interface is
configured has the value "N" for IsSystem.

▪ Catalog version 4.00 and catalog version 5.00: The partition identified by PartitionIdentifier has

the value "Y" for Changeable.

Cascade: None.

Populate: None.

Properties:

Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

- 1 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 Reserved eDT_GUID 16 0x00000003 RO

1 3 IID eDT_GUID 16 0x00000003 RO

2 4 Opnum eDT_ULONG 4 0x00000003 RO

- 5 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

109 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

3 6 Internal1 eDT_BYTES variable 0x00000000 IN

4 7 Internal2 eDT_GUID 16 0x00000000 IN

5 8 Name eDT_LPWSTR variable 0x00000002 RO

6 9 Internal3 eDT_ULONG 4 0x00000002 IN

7 10 Internal4 eDT_ULONG 4 0x00000002 IN

8 11 AutoComplete eDT_ULONG 4 0x00000002

9 12 Description eDT_LPWSTR variable 0x00000000

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation-specific because
it does not affect interoperability.

CLSID: The CLSID of the component configuration associated with the method.<210>

PartitionIdentifier: The partition identifier of the partition in which the component configuration
associated with the method resides.

Reserved: PlaceholderGuidProperty (section 2.2.2.1.2).

IID: The Interface Identifier (IID) of the interface associated with the method.<211>

Opnum: The index of the method.<212>

ConfigurationBitness: A BitnessProperty (section 2.2.2.5) indicating the bitness of the component

configuration associated with the method.

Name: A NameProperty (section 2.2.2.6) providing a human-readable name of the method.<213>

AutoComplete: A BooleanProperty (section 2.2.2.9) indicating that a component instance is to be
deactivated by the ORB once a call to this method completes.<214>

Description: A DescriptionProperty (section 2.2.2.7) providing a human-readable description of the
method.<215>

3.1.1.3.13 RolesForComponent Table

The entries in the RolesForComponent table represent associations of roles and configured
components.

Table identifier: {CD331D12-C739-11D1-9D35-006008B0E5CA}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

▪ Catalog version 3.00.

110 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Cell 1

CLSID equals <A>.

▪ Catalog version 4.00 and catalog version 5.00.

Cell 1 Cell 2 Cell 3

CLSID equals <A>. PartitionIdentifier equals . ConfigurationBitness equals <C>.

Primary key:

▪ Catalog version 3.00: CLSID, Rolename

▪ Catalog version 4.00 and catalog version 5.00: CLSID, PartitionIdentifier, ConfigurationBitness,
RoleName

Other referential constraints:

Catalog
version Constraints

3.00 There MUST exist a component full configuration entry with an identical value of CLSID.

There MUST exist a role with an identical value of RoleName in the conglomeration containing
the component full configuration associated with this entry.

4.00/5.00 There MUST exist a component full configuration entry with identical values of CLSID,
PartitionIdentifier, and ConfigurationBitness.

There MUST exist a role with an identical value of RoleName in the conglomeration containing
the component full configuration associated with this entry.

Write restrictions: Update MUST NOT be supported.

Add and remove MUST be supported if and only if:

▪ The conglomeration in which the component full configuration associated with this entry is
configured has the value "Y" for Changeable.

▪ The conglomeration in which the component full configuration associated with this entry is
configured has the value "N" for IsSystem.

▪ Catalog version 4.00 and catalog version 5.00: The partition identified by PartitionIdentifier has
the value "Y" for Changeable.

Cascade: None.

Populate: None.

Properties:

 Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

- 1 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 Reserved eDT_GUID 16 0x00000003 RO

- 3 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

111 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

1 4 RoleName eDT_LPWSTR 510 0x00000000 RO

CLSID: The CLSID property of the component full configuration.

PartitionIdentifier: The PartitionIdentifier property of the component full configuration.

Reserved: A PlaceholderGuidProperty (section 2.2.2.1.2).

ConfigurationBitness: The ConfigurationBitness property of the component full configuration.

RoleName: The RoleName property of the role.<216>

3.1.1.3.14 RolesForInterface Table

The entries in the RolesForInterface table represent associations of roles and configured interfaces.

Table identifier: {CD331D13-C739-11D1-9D35-006008B0E5CA}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

▪ Catalog version 3.00.

Cell 1 Cell 2

CLSID equals <A>. IID equals .

▪ Catalog version 4.00 and catalog version 5.00.

Cell 1 Cell 2 Cell 3 Cell 4

CLSID equals <A>. IID equals . PartitionIdentifier equals <C>. ConfigurationBitness equals <D>.

Primary key:

▪ Catalog version 3.00: CLSID, IID, Rolename

▪ Catalog version 4.00 and catalog version 5.00: CLSID, PartitionIdentifier, Reserved, IID,
ConfigurationBitness, RoleName

Other referential constraints:

Catalog
version Constraints

3.00 There MUST exist a configured interface with identical values of CLSID and IID.

There MUST exist a role with an identical value of RoleName to this entry and an identical value of
ConglomerationIdentifier to the component full configuration identified by CLSID.

4.00/5.00 There MUST exist a configured interface with identical values of CLSID, PartitionIdentifier, IID, and
ConfigurationBitness.

112 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Catalog
version Constraints

There MUST exist a role with an identical value of RoleName to this entry and an identical value of
ConglomerationIdentifier to the component full configuration identified by CLSID,
PartitionIdentifier, and ConfigurationBitness.

Write restrictions: Update MUST NOT be supported.

Add and remove MUST be supported if and only if:

▪ The conglomeration containing the component full configuration identified by CLSID (and in
catalog version 4.00 and catalog version 5.00, PartitionIdentifier and ConfigurationBitness) has

the value "Y" for Changeable.

▪ The conglomeration containing the component full configuration identified by CLSID (and in
catalog version 4.00 and catalog version 5.00, PartitionIdentifier and ConfigurationBitness) has
the value "N" for IsSystem.

▪ Catalog version 4.00 and catalog version 5.00: The partition identified by PartitionIdentifier has
the value "Y" for Changeable.

Cascade: None.

Populate: None.

Properties:

Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

- 1 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 Reserved eDT_GUID 16 0x00000003 RO

1 3 IID eDT_GUID 16 0x00000003 RO

- 4 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

2 5 RoleName eDT_LPWSTR 510 0x00000000 RO

CLSID: The CLSID property of the configured interface.

PartitionIdentifier: The PartitionIdentifier property of the configured interface.

Reserved: A PlaceholderGuidProperty (section 2.2.2.1.2).

ConfigurationBitness: The ConfigurationBitness property of the configured interface.

IID: The IID property of the configured interface.

RoleName: The RoleName property of the role.<217>

3.1.1.3.15 RolesForMethod Table

The entries in the RolesForMethod table represent associations of roles and methods.

Table identifier: {CD331D14-C739-11D1-9D35-006008B0E5CA}

AuxiliaryGuid: None.

113 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

▪ Catalog version 3.00:

Cell 1 Cell 2 Cell 3

CLSID equals <A>. IID equals . Opnum equals <C>.

▪ Catalog version 4.00 and catalog version 5.00:

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

CLSID equals
<A>.

IID equals
.

Opnum equals
<C>.

PartitionIdentifier equals
<D>.

ConfigurationBitness equals
<E>.

Primary key:

▪ Catalog version 3.00: CLSID, IID, Opnum, RoleName

▪ Catalog version 4.00 and catalog version 5.00: CLSID, PartitionIdentifier, Reserved, IID, Opnum,
ConfigurationBitness, RoleName

Other referential constraints:

Catalog
version Constraints

3.00 There MUST exist a configured method with identical values of CLSID, IID, Opnum, and
MethodName.

There MUST exist a role with an identical value of RoleName to this entry and an identical value of
ConglomerationIdentifier to the component full configuration identified by CLSID.

4.00/5.00 There MUST exist a configured method with identical values of CLSID, PartitionIdentifier, IID,
Opnum, ConfigurationBitness, and MethodName.

There MUST exist a role with an identical value of RoleName to this entry and an identical value of
ConglomerationIdentifier to the component full configuration identified by CLSID,
PartitionIdentifier, and ConfigurationBitness.

Write restrictions: Update MUST NOT be supported.

Add and remove MUST be supported if and only if:

▪ The conglomeration containing the component full configuration identified by CLSID (and in
catalog version 4.00 and catalog version 5.00, PartitionIdentifier and ConfigurationBitness) has

the value "Y" for Changeable.

▪ The conglomeration containing the component full configuration identified by CLSID (and in
catalog version 4.00 and catalog version 5.00, PartitionIdentifier and ConfigurationBitness) has
the value "N" for IsSystem.

▪ Catalog version 4.00 and catalog version 5.00: The partition identified by PartitionIdentifier has
the value "Y" for Changeable.

Cascade: None.

114 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Populate: None.

Properties:

Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

- 1 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 Reserved eDT_GUID 16 0x00000003 RO

1 3 IID eDT_GUID 16 0x00000003 RO

2 4 Opnum eDT_ULONG 4 0x00000003 RO

- 5 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

3 6 MethodName eDT_LPWSTR 510 0x00000000 RO

4 7 Internal1 eDT_ULONG 4 0x00000000 IN

5 8 RoleName eDT_LPWSTR 510 0x00000000 RO

In the previous table, the internal property (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of this property is implementation-specific because it
does not affect interoperability.

CLSID: The CLSID property of the configured method.

PartitionIdentifier: The PartitionIdentifier property of the configured method.

Reserved: A PlaceholderGuidProperty (section 2.2.2.1.2).

ConfigurationBitness: The ConfigurationBitness property of the configured method.

IID: The IID property of the configured method.

MethodName: The MethodName property of the configured method.

RoleName: The RoleName property of the role.<218>

3.1.1.3.16 PartitionUsers Table

The entries in the PartitionUsers table represent associations of partitions and user accounts.

Table identifier: {0AF55FDC-30B5-4B6E-B258-A9DE4B64818C}

AuxiliaryGuid: None.

Defined in catalog version: 4.00 and 5.00.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates: Empty query.

Primary key: UserName

Other referential constraints: There MUST exist a partition with an identical value of
PartitionIdentifier.

115 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Write restrictions: Update MUST NOT be supported.

Add and remove MUST be supported if and only if the partition identified by PartitionIdentifier has the

value "Y" for Changeable.

Cascade: None.

Populate: None.

Properties:

Index (4.00/5.00) Property name Type Size Flags Meta

0 UserName eDT_LPWSTR variable 0x00000003 RO

1 Internal1 eDT_BYTES variable 0x00000000 IN

2 PartitionIdentifier eDT_GUID 16 0x00000002

In the previous table, the internal property (marked with IN in the Meta column) MUST NOT be written

to or interpreted by the client. The server's use of this property is implementation-specific as it does
not affect interoperability.

UserName: A SecurityPrincipalNameProperty (section 2.2.2.17) identifying the user.<219>

PartitionIdentifier: The partition identifier of the partition.<220>

3.1.1.3.17 PartitionRoles Table

The entries in the PartitionRoles table represent partition roles, which are implementation-specific
collections of users that can be associated with partitions.

Table identifier: {9D29E285-E24D-4096-98E1-44DBB2EAF7F0}

AuxiliaryGuid: None.

Defined in catalog version: 4.00 and 5.00.

Hidden bitness property: No.

Supported query templates:

Cell 1

PartitionIdentifier equals <A>.

Primary key: PartitionIdentifier, RoleName.

Other referential constraints: There MUST exist a partition with an identical value of
PartitionIdentifier.

Write restrictions: Add and remove MUST NOT be supported.

Update MUST be supported if and only if the partition identified by PartitionIdentifier has the value "Y"
for Changeable.

Cascade: On removal of an entry, all entries in PartitionRoleMembers (section 3.1.1.3.18) table with
identical values of PartitionIdentifier and RoleName MUST be removed.

Populate: None.

116 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Properties:

Index (4.00/5.00) Property name Type Size Flags Meta

0 PartitionIdentifier eDT_GUID 16 0x00000003 RO

1 RoleName eDT_LPWSTR variable 0x00000003 RO

2 Description eDT_LPWSTR variable 0x00000000 RO

PartitionIdentifier: The PartitionIdentifier of the partition associated with the role.

RoleName: A NameProperty (section 2.2.2.6) providing a human-readable name for the role.<221>

Description: If not null, a DescriptionProperty (section 2.2.2.7) providing a human-readable
description of the role.<222>

3.1.1.3.18 PartitionRoleMembers Table

The entries in the PartitionRoleMembers table represent partition role members.

Table identifier: {352131CD-E0FF-4C46-9675-C3808B249F69}

AuxiliaryGuid: None.

Defined in catalog version: 4.00 and 5.00.

Hidden bitness property: No.

Supported query templates:

Cell 1 Cell 2

PartitionIdentifier equals <A>. RoleName equals .

Primary key: PartitionIdentifier, RoleName, RoleMember.

Other referential constraints: There MUST exist a partition role with identical values of
PartitionIdentifier and RoleName.

Write restrictions: Update MUST NOT be supported.

Add and remove MUST be supported if and only if the partition identified by PartitionIdentifier has the
value "Y" for Changeable.

Cascade: None.

Populate: None.

Properties:

 Index (4.00/5.00) Property name Type Size Flags Meta

0 PartitionIdentifier eDT_GUID 16 0x00000003 RO

1 RoleName eDT_LPWSTR variable 0x00000003 RO

2 RoleMember eDT_LPWSTR variable 0x00000003 RO

PartitionIdentifier: The PartitionIdentifier property of the partition role.

117 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

RoleName: The RoleName property of the partition role.

RoleMemberName: A SecurityPrincipalNameProperty (section 2.2.2.17) identifying the name of the

security principal associated with the partition role identified by PartitionIdentifier and
RoleName.<223>

3.1.1.3.19 InstanceLoadBalancingTargets Table

The entries in the InstanceLoadBalancingTargets table represent instance load balancing targets that
participate in instance load balancing with the target ORB.

Table identifier: {B7EEEA91-B3B9-11D1-8B7E-00C04FD7A924}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: Instance load balancing support is installed on the server. See
ICapabilitySupport::IsInstalled (section 3.1.4.19.3).

Hidden bitness property: No.

Supported query templates: Empty query.

Primary key: MachineName.

Other referential constraints: None.

Write restrictions: Update MUST NOT be supported.

Add and remove MUST always be supported.

Cascade: None.

Populate: None.

Properties:

 Index (3.00/4.00/5.00) Property name Type Size Flags Meta

 0 MachineName eDT_LPWSTR variable 0x00000003 RO

MachineName: A ComputerNameOrAddressProperty (section 2.2.2.16) identifying the instance load
balancing target.<224>

3.1.1.3.20 ServerList Table

The entries in the ServerList table represent machines. This table is used by the COMA server for
implementation-specific<225> purposes not related to component or conglomeration configurations
on the server.

Table identifier: {2DAF1D50-BD53-11D1-8280-00A0C9231C29}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

118 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Supported query templates: Empty query.

Primary key: MachineName.

Other referential constraints: None.

Write restrictions: Update MUST NOT be supported.

Add and remove MUST be supported.

Cascade: None.

Populate: None.

Properties:

 Index (3.00/4.00/5.00) Property name Type Size Flags Meta

 0 MachineName eDT_LPWSTR variable 0x00000003 RO

MachineName: A ComputerNameOrAddressProperty (section 2.2.2.16) identifying a machine.<226>

3.1.1.3.21 InstanceContainers Table

The entries in the InstanceContainers table represent instance container. Unlike the other tables in the
catalog, this table represents runtime state and can change between reads, even in the same session.

Table identifier: {DF2FCC47-B7B7-4CB9-8B40-0B3D1E59E7DD}

AuxiliaryGuid: None.

Defined in catalog version: 4.00 and 5.00.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Cell 1 Cell 2

ConglomerationIdentifier equals <A>. PartitionIdentifier equals .

Primary key: ContainerIdentifier.

Other referential constraints: There MUST exist a conglomeration identified by
ConglomerationIdentifier in the partition identified by PartitionIdentifier.

Write restrictions: No writes supported.

Cascade: N/A.

Populate: N/A.

Properties:

 Index (4.00/5.00) Property name Type Size Flags Meta

0 ContainerIdentifier eDT_GUID 16 0x00000003 RO

119 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Index (4.00/5.00) Property name Type Size Flags Meta

1 ConglomerationIdentifier eDT_GUID 16 0x00000002 RO

2 PartitionIdentifier eDT_GUID 16 0x00000002 RO

3 ProcessIdentifier eDT_ULONG 4 0x00000002 RO

4 Paused eDT_ULONG 4 0x00000002 RO

5 Recycled eDT_ULONG 4 0x00000002 RO

ContainerIdentifier: The container identifier of the instance container.<227>

ConglomerationIdentifier: The conglomeration identifier of the conglomeration associated with the

instance container.<228>

PartitionIdentifier: The partition identifier of the partition containing the conglomeration associated
with the instance container.<229>

ProcessIdentifier: The process hosting the instance collection.<230>

Paused: A BooleanProperty (section 2.2.2.9) that indicates whether or not the instance container is
paused.<231>

Recycled: A BooleanProperty that indicates whether or not the instance container has been

recycled.<232>

3.1.1.3.22 EventClasses Table

The entries in the EventClasses table represent component full configurations of components that are
event classes.

Table identifier: {E12539AD-CDE0-4E46-9211-916018B8C4D2}

AuxiliaryGuid: None.

Defined in catalog version: 4.00 and 5.00.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

▪ Catalog version 3.00: Empty query.

Cell 1

IID equals.

▪ Catalog version 4.00 and catalog version 5.00.

Cell 1 Cell 2

PartitionIdentifier equals . IID equals null.

PartitionIdentifier equals . IID equals <A>.

Primary key: CLSID, ConglomerationIdentifier, PartitionIdentifier, ConfigurationBitness.

120 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Other referential constraints: A component full configuration entry MUST exist in the
ComponentsAndFullConfigurations (section 3.1.1.3.1) table with identical values for all common

properties (identified by identical property names), and for which the IsEventClass property has the
value TRUE (0x00000001).

Write restrictions: No writes supported.

Cascade: N/A.

Populate: N/A.

Properties:

 Index
(3.00)

 Index
(4.00/5.00) Property name Type Size Flags

Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

1 1 ConglomerationIdentifier eDT_GUID 16 0x00000003 RO

- 2 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 3 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

2 4 ProgID eDT_LPWSTR variable 0x00000000 RO

3 5 Description eDT_LPWSTR variable 0x00000000 RO

- 6 IsPrivate eDT_ULONG 4 0x00000002 RO

4 7 IID eDT_GUID 16 0x00000002 RO

CLSID: The CLSID of the event class.

ConglomerationIdentifier: The conglomeration in which the event class is configured.<233>

PartitionIdentifier: The PartitionIdentifier of the corresponding component full configuration entry.

ConfigurationBitness: A BitnessProperty (section 2.2.2.5) indicating the bitness for which the event
class is configured.<234>

ProgID: The ProgID property of the corresponding component full configuration entry.<235>

Description: The Description property of the corresponding component full configuration

entry.<236>

IsPrivate: The value of the IsPrivate property of the corresponding component full configuration
entry.<237>

IID: The IID associated with the event class.

3.1.1.3.23 Subscriptions Table

The entries in the Subscriptions table represent subscriptions to event classes in a publisher-
subscriber framework.

Table identifier: {5A84E823-7277-11D2-9029-3078302C2030}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

121 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Cell 1 Cell 2

SubscriberConglomerationIdentifier equals <A>. SubscriberCLSID equals .

Primary key: SubscriptionIdentifier

Other referential constraints:

There MUST be an entry in the ComponentsAndFullConfigurations table for which the values of the
CLSID, PublisherID, and ConglomerationIdentifier (and for catalog version 4.00 and catalog version
5.00 the PartitionIdentifier) properties are identical to this entry's EventClassID, PublisherIdentifier,
and EventClassConglomerationIdentifier (and EventClassPartitionIdentifier) properties, respectively.

Write restrictions: No restrictions.

Cascade:

On removal of an entry, all entries in the SubscriptionPublisherProperties and
SubscriptionSubscriberProperties with an identical value for SubscriptionIdentifier MUST be removed.

Populate: None.

Properties:

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

0 0 SubscriptionIdentifier eDT_GUID 16 0x00000003 RO

1 1 Name eDT_LPWSTR variable 0x00000002

2 2 EventClassId eDT_GUID 16 0x00000000 RO

3 3 MethodName eDT_LPWSTR variable 0x00000000

4 4 SubscriberCLSID eDT_GUID 16 0x00000000

5 5 PerUser eDT_ULONG 4 0x00000000

6 6 UserName eDT_LPWSTR variable 0x00000000

7 7 Enabled eDT_ULONG 4 0x00000000

8 8 Description eDT_LPWSTR variable 0x00000000

9 9 MachineName eDT_LPWSTR variable 0x00000000

10 10 PublisherIdentifier eDT_LPWSTR variable 0x00000000 RO

11 11 IID eDT_GUID 16 0x00000000

12 12 FilterCriteria eDT_LPWSTR variable 0x00000000

13 13 Internal1 eDT_LPWSTR variable 0x00000000 IN

14 14 SubscriberMoniker eDT_LPWSTR variable 0x00000000 TR

122 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

15 15 Queued eDT_ULONG 4 0x00000000

16 16 Internal2 eDT_BYTES 4 or 8 0x00000000 IN

- 17 EventClassPartitionIdentifier eDT_GUID 16 0x00000000

- 18 EventClassConglomerationIdentifier eDT_GUID 16 0x00000000

- 19 SubscriberPartitionIdentifier eDT_GUID 16 0x00000000 RO

- 20 SubscriberConglomerationIdentifier eDT_GUID 16 0x00000000

In the previous table, the internal property (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of this property is implementation-specific, because it
does not affect interoperability.

Internal1 can legally have a maximum size of 4 or 8, at the option of the server
implementation.<238> Note, however, that because this is a nonfixed size eDT_BYTES property, the
actual size of its value will always be explicitly given in its wire representation (see

TableDataFixed (section 2.2.1.10)).

SubscriptionIdentifier: This specifies the identity of the subscription.<239>

Name: A NameProperty (section 2.2.2.6) providing a human-readable name for the
subscription.<240>

EventClassId: The CLSID of the EventClass associated with the subscription.<241>

MethodName: If not null, a NameProperty that provides the name of the event method for which the
subscriber application wishes to receive events.<242>

SubscriberCLSID: The CLSID of the component that is the subscriber to the subscription.

PerUser: A BooleanProperty (section 2.2.2.9) that indicates whether or not the subscription is to be
bound to a user identity.<243>

UserName: A SecurityPrincipalNameProperty (section 2.2.2.17) identifying the security principal that
created the subscription.<244>

Enabled: A BooleanProperty that indicates whether or not the subscription is enabled such that the

publisher applications can publish events to it.<245>

Description: A DescriptionProperty (section 2.2.2.7) providing a human-readable description of the
subscription.<246>

MachineName: A ComputerNameOrAddressProperty (section 2.2.2.16) identifying the server on
which the subscriber component is hosted.<247>

PublisherIdentifier: If not null, a NameProperty identifying the publisher application for which the
subscription accepts events.<248>

IID: The IID of the event interface for which the subscription is created.<249>

FilterCriteria: An ORBSpecificSubscriptionFilterCriteriaProperty (section 2.2.2.13.8) representing
application provided criteria specified as a string in an ORB-specific syntax to filter events for the
subscription.<250>

123 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

SubscriberMoniker: An ORBSpecificAlternateActivationProperty (section 2.2.2.13.9) providing an
ORB-specific string used for activation of the subscriber component.<251>

Queued: A BooleanProperty that indicates whether or not the ORB is to deliver the event to the
subscriber using a queuing protocol.<252>

EventClassPartitionIdentifier: The partition identifier of the partition in which the configuration of
the event class resides.<253>

EventClassConglomerationIdentifier: The conglomeration identifier of the conglomeration in which
the event class is configured.

SubscriberPartitionIdentifier: The partition identifier of the partition in which the subscriber
resides.<254>

SubscriberConglomerationIdentifier: The conglomeration identifier of the conglomeration in which

the subscriber is configured.

3.1.1.3.24 SubscriptionPublisherProperties Table

The entries in the SubscriptionPublisherProperties table represent properties associated with the
publisher for a subscription in a publisher-subscriber framework.

Table identifier: {5A84E824-7277-11D2-9029-3078302C2030}

AuxiliaryGuid: {EB56EAE8-BA51-11D2-B121-00805FC73204}

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Catalog version 3.00.

Cell 1

SubscriptionIdentifier equals <A>.

Catalog version 4.00 and catalog version 5.00.

Cell 1 Cell 2 Cell 3

SubscriberConglomerationIdentifier equals
<A>.

SubscriberPartitionIdentifier equals
.

SubscriptionIdentifier equals
<C>

Primary key:

Catalog version 3.00: SubscriptionIdentifier, Name

Catalog version 4.00 and catalog version 5.00: SubscriptionIdentifier, SubscriberPartitionIdentifier,
SubscriberConglomerationIdentifier, Name

Other referential constraints:

Catalog version 3.00: There MUST exist an entry in the Subscriptions table with an identical value of
SubscriptionIdentifier.

124 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Catalog version 4.00 and catalog version 5.00: There MUST exist an entry in the Subscriptions table
with identical values of SubscriptionIdentifier, SubscriberPartitionIdentifier, and

SubscriberConglomerationIdentifier.

Write restrictions: No restrictions.

Cascade: None.

Populate: None.

Properties:

 Index
(3.00)

 Index
(4.00/5.00) Property name Type Size Flags Meta

0 0 SubscriptionIdentifier eDT_GUID 16 0x00000003 RO

- 1 SubscriberPartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 SubscriberConglomerationIdentifier eDT_GUID 16 0x00000003 RO

1 3 Name eDT_LPWSTR variable 0x00000003 RO

2 4 Type eDT_ULONG 4 0x00000002

3 5 Value eDT_BYTES variable 0x00000000

SubscriptionIdentifier: The SubscriptionIdentifier property of the subscription.

SubscriberPartitionIdentifier: The SubscriptionPartitionIdentifier property of the subscription.

SubscriberConglomerationIdentifier: The SubscriberConglomerationIdentifier property of the
subscription.

Name: A NameProperty (section 2.2.2.6) providing a human-readable name of the application-specific

publisher property.<255>

Type: A SubscriptionPropertyTypeProperty (section 2.2.2.32.1) identifying the type of the application-
specific publisher property.

Value: A SubscriptionPropertyValueProperty (section 2.2.2.32.2) containing an encoding of the
subscription property's value according to the type specified by the Type property.<256>

3.1.1.3.25 SubscriptionSubscriberProperties Table

The entries in the SubscriptionSubscriberProperties table represent properties associated with the

subscriber for a persistent subscription in a publisher-subscriber framework.

Table identifier: {5A84E825-7277-11D2-9029-3078302C2030}

AuxiliaryGuid: {EB56EAE8-BA51-11D2-B121-00805FC73204}

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

▪ Catalog version 3.00.

125 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Cell 1

SubscriptionIdentifier equals <A>.

▪ Catalog version 4.00 and catalog version 5.00.

Cell 1 Cell 2 Cell 3

SubscriberConglomerationIdentifier equals
<A>.

SubscriberPartitionIdentifier equals
.

SubscriptionIdentifier equals
<C>.

Primary key:

▪ Catalog version 3.00: SubscriptionIdentifier, Name

▪ Catalog version 4.00 and catalog version 5.00: SubscriptionIdentifier,
SubscriberPartitionIdentifier, SubscriberConglomerationIdentifier, Name

Other referential constraints:

▪ Catalog version 3.00: There MUST exist an entry in the Subscriptions table with an identical value
of SubscriptionIdentifier.

▪ Catalog version 4.00 and catalog version 5.00: There MUST exist an entry in the Subscriptions
table with identical values of SubscriptionIdentifier, SubscriberPartitionIdentifier, and
SubscriberConglomerationIdentifier.

Write restrictions: No restrictions.

Cascade: None.

Populate: None.

Properties:

 Index
(3.00)

 Index
(4.00/5.00) Property name Type Size Flags Meta

0 0 SubscriptionIdentifier eDT_GUID 16 0x00000003 RO

- 1 SubscriptionPartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 SubscriptionConglomerationIdentifier eDT_GUID 16 0x00000003 RO

1 3 Name eDT_LPWSTR variable 0x00000003 RO

2 4 Type eDT_ULONG 4 0x00000002

3 5 Value eDT_BYTES variable 0x00000000

SubscriptionIdentifier: The SubscriptionIdentifier property of the subscription.

SubscriberPartitionIdentifier: The partition of the Subscriber component.

SubscriberConglomerationIdentifier: The application of the Subscriber component.

Name: A NameProperty (section 2.2.2.6) providing a human-readable name of application-specific
subscriber property.<257>

Type: A SubscriptionPropertyTypeProperty (section 2.2.2.32.1) identifying the type of the application-

specific subscriber property.

126 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value: A SubscriptionPropertyValueProperty (section 2.2.2.32.2) containing an encoding of the
subscriber property's value according to the type specified by the Type property.<258>

3.1.1.3.26 Protocols Table

The entries in the Protocols table represent transport protocols supported for components by the
COMA server.

Table identifier: {61436563-EE01-11D1-BFE4-00C04FB9988E}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates: Empty query.

Primary key: Code.

Other referential constraints: None.

Write restrictions: No restrictions.

Cascade: None.

Populate: None.

Properties:

 Index (3.00/4.00/5.00) Property Type Size Flags Meta

0 Code eDT_LPWSTR variable 0x00000001 RO

1 Order eDT_ULONG 4 0x00000002

2 Name eDT_LPWSTR variable 0x00000000 RO

Code: An ORBSpecificProtocolSequenceMnemonicProperty (section 2.2.2.13.10) representing the RPC
protocol sequence for use by the ORB to configure DCOM.<259>

Order: The preference order of the protocol that the ORB will use when choosing a DCOM
protocol,<260> where 0 means that the protocol will be given highest preference.

Name: A NameProperty (section 2.2.2.6) providing the human-readable name for the protocol.<261>

3.1.1.3.27 FilesForImport Table

The entries in the FilesForImport table represent conglomerations in installer package files available

for import on the COMA server.

Table identifier: {E4053366-BF8F-4E84-B4B2-72B3C2626CC9}

AuxiliaryGuid: None.

Defined in catalog version: 4.00 and 5.00.

Prerequisites: None.

127 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Hidden bitness property: No.

Supported query templates:

Cell 1

InstallerPackageFileName equals <A>.

Primary key: InstallerPackageFileName, FileName.

Other referential constraints: None.

Write restrictions: No writes supported.

Cascade: N/A.

Populate: N/A.

Properties:

 Index (4.00/5.00) Property name Type Size Flags Meta

0 InstallerPackageFileName eDT_LPWSTR variable 0x00000003 RO

1 FileName eDT_LPWSTR variable 0x00000003 RO

2 ConglomerationName eDT_LPWSTR variable 0x00000000 RO

3 ConglomerationDescription eDT_LPWSTR variable 0x00000000 RO

4 HasUsers eDT_ULONG 4 0x00000002 RO

5 IsProxyApp eDT_ULONG 4 0x00000002 RO

6 IsAlternateLaunch eDT_ULONG 4 0x00000002 RO

7 PartitionName eDT_LPWSTR variable 0x00000000 RO

8 PartitionDescription eDT_LPWSTR variable 0x00000000 RO

9 PartitionIdentifier eDT_GUID 16 0x00000000 RO

InstallerPackageFileName: An ImplementationSpecificPathProperty (section 2.2.2.2) representing
the path to an installer package file containing the conglomeration configuration.<262>

FileName: An ImplementationSpecificPathProperty representing the file name of a module for the

conglomeration that is stored in the installer package file.<263>

ConglomerationName: A NameProperty (section 2.2.2.6) providing the human-readable name for
the conglomeration.<264>

ConglomerationDescription: A DescriptionProperty (section 2.2.2.7) providing the human-readable

description of the conglomeration.<265>

HasUsers: A BooleanProperty (section 2.2.2.9) indicating whether the conglomeration contains user
roles.<266>

IsProxyApp: A BooleanProperty indicating whether the conglomeration is a configured proxy (see
section 3.1.1.1.7).<267>

IsAlternateLaunch: A BooleanProperty indicating whether the conglomeration has an alternate
launch configuration.<268>

128 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

PartitionName: If not null, a NameProperty providing the human-readable name of the partition
associated with the conglomeration contained in the file if this information was included when the

conglomeration was exported.<269>

PartitionDescription: A DescriptionProperty providing the human-readable description of the

partition associated with the conglomeration contained in the file, if this information was included
when the conglomeration was exported.<270>

PartitionIdentifier: The partition identifier of the partition associated with the conglomeration
contained in the file, if this information was included when the conglomeration was exported.<271>

3.1.1.4 Alternate Launch Configurations

A server that supports the IAlternateLaunch (section 3.1.4.16) interface enables clients to create
alternate launch configurations for conglomerations. The meaning of such a configuration is
implementation-specific.<272>

An alternate launch configuration consists of the following properties, which are associated with the

conglomeration for which the alternate launch configuration was created.

 Property name Type Notes

AlternateLaunchName string A unique identifier for alternate launch configurations.

StartType 32-bit
unsigned
integer

An implementation-specific<273> value that indicates how the ORB is
to create instance containers for the conglomeration.

ErrorControl 32-bit
unsigned
integer

An implementation-specific<274> value that indicates how the ORB is
to handle serious errors for components in the conglomeration.

Dependencies string An implementation-specific<275> value that represents dependencies
that the ORB is to ensure are met before creating an instance
container for the conglomeration.

AlternateLaunchRunAs string The security principal to be used by the ORB when performing an
alternate launch.<276> Clients that configure alternate launch
configurations SHOULD set the RunAsUser property of the
conglomeration to the same value as AlternateLaunchRunAs.

AlternateLaunchPassword string The password for the security principal specified by the
AlternateLaunchRunAs property.<277> Clients that configure alternate
launch configurations SHOULD set the Password property of the
conglomeration to the same value as AlternateLaunchPassword.

DesktopOk boolean Indicates whether or not the ORB is to perform an alternate launch in
such a way that the components in the conglomeration are able to
interact with users interactively.<278>

Except for the AlternateLaunchName property, this configuration is not exposed in any of the tables in

the catalog. However, if the server also supports exporting and importing conglomerations, the
additional properties StartType, Dependencies, and DesktopOk SHOULD be represented in installer
package files that the server creates for conglomerations with alternate launch configurations, so that
a round trip of export and import results in an equivalent alternate launch configuration. For more

details on round-trip consistency, see IImport::ImportFromFile (section 3.1.4.12.1).

Alternate launch configurations are persistent; that is, they retain their state between sessions.

129 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.1.5 Per-Session State

A COMA server maintains the following state information per session. It is not retained between
sessions.

Negotiated catalog version: The catalog version that has been negotiated for the session, as
specified in section 3.1.4.1, if this negotiation has already been performed. In each session, the initial
value is a sentinel indicating that negotiation has not yet been performed.

Import target partition identifier: A GUID property, set via
IImport2::SetPartition (section 3.1.4.13.1), that affects the behavior of the
IImport::ImportFromFile (section 3.1.4.12.1) method. In each session, the initial value is the partition
identifier of the global partition.

3.1.1.6 Replication Directories

A COMA server that provides additional support for replication scenarios by implementing the
IReplicationUtil interface enables the creation of directories (as in local file systems) to back up

replication file shares. Such a server has the following additional server-wide property:

Base replication directory path: An ImplementationSpecificPathProperty (section 2.2.2.2), not set
via COMA, representing the base path from which paths to replication directories are to be derived by
a replication client application. Permitted derivations are specified in IReplicationUtil::CreateShare
(section 3.1.4.22.1) and IReplicationUtil::CreateEmptyDir (section 3.1.4.22.2). This property is
returned by the IReplicationUtil::CreateReplicationDir (section 3.1.4.22.6) method.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Message Processing Events and Sequencing Rules

This section specifies the capability negotiation mechanisms and each of the interfaces used by COMA.

All COMA servers MUST support the following interfaces:

▪ ICatalogSession (section 3.1.4.5)

▪ ICatalogTableInfo (section 3.1.4.7)

▪ ICatalogTableRead (section 3.1.4.8)

▪ ICatalogTableWrite (section 3.1.4.9)

▪ ICatalogUtils (section 3.1.4.17)

A COMA server MAY<279> additionally support one or more of the following interfaces:

▪ ICatalog64BitSupport (section 3.1.4.6)

▪ IRegister (section 3.1.4.10)

▪ IRegister2 (section 3.1.4.11)

▪ IImport (section 3.1.4.12)

130 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ IImport2 (section 3.1.4.13)

▪ IExport (section 3.1.4.14)

▪ IExport2 (section 3.1.4.15)

▪ IAlternateLaunch (section 3.1.4.16)

▪ ICatalogUtils2 (section 3.1.4.18)

▪ ICapabilitySupport (section 3.1.4.19)

▪ IContainerControl (section 3.1.4.20)

▪ IContainerControl2 (section 3.1.4.21)

▪ IReplicationUtil (section 3.1.4.22)

Except where otherwise stated, if a server supports an interface, it MUST implement all of the

methods specified for the interface.

3.1.4.1 Catalog Version Negotiation

All COMA servers MUST support catalog version negotiation. Catalog version negotiation is initiated by
the client and is performed as follows:

▪ The client sends the server the lowest and highest catalog version number it supports in a call to
ICatalogSession::InitializeSession (section 3.1.4.5.1).

▪ The server selects the negotiated catalog version and returns this catalog version in the response
to ICatalogSession::InitializeSession.

Each COMA server supports an implementation-specific range of catalog versions.<280> However, not
all possible supported ranges are recommended. In particular, the differences in the configuration
state models between catalog version 3.00 and version 4.00 are large enough such that no standard

mapping between these state models is defined. In addition, catalog version 4.00 does not provide a
reliable mechanism for clients to determine whether multiple-partition support (see section 3.1.4.3) is
enabled on the server. If the catalog server supports multiple partitions, supporting both catalog
version 4.00 and version 5.00 is recommended for maximum interoperability.

In summary, a server's supported range of catalog versions SHOULD be one of the following
combinations.

Versions Comments

3.00

4.00 Not recommended for servers that are capable of supporting multiple partitions.

4.00, 5.00

3.1.4.2 64-Bit QueryCell Marshaling Format Capability Negotiation

A COMA server MAY<281> support capability negotiation for the 64-bit QueryCell marshaling format
(as specified in section 2.2.1.4) capability. If the server supports this capability negotiation and it is
performed, the results determine the format that the server MUST accept for QueryCell structures in
subsequent calls to the ICatalogTableInfo::GetClientTableInfo (section 3.1.4.7.1),

131 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ICatalogTableRead::ReadTable (section 3.1.4.8.1), and ICatalogTableWrite::WriteTable (section
3.1.4.9.1) methods.

This capability negotiation is initiated by the COMA client and is performed as follows:

▪ The client sends the server a value indicating whether it supports the 64-bit QueryCell marshaling

format in a call to ICatalog64BitSupport::Initialize64BitQueryCellSupport (section 3.1.4.6.2).

▪ The server returns a value indicating whether it supports the 64-bit QueryCell marshaling format
in the response to ICatalog64BitSupport::Initialize64BitQueryCellSupport.

If both client and server support the 64-bit QueryCell marshaling format, then the 64-bit format MUST
be used, as specified in section 2.2.1.4.

3.1.4.3 Multiple-Partition Support Capability Negotiation

A COMA server MAY<282> support capability negotiation for the multiple-partition support capability.

This capability negotiation is initiated by the COMA client and is performed as follows:

▪ The client calls the ICatalogSession::GetServerInformation (section 3.1.4.5.2) method.

▪ The server returns a value indicating whether it is capable of multiple-partition support in the

response to ICatalogSession::GetServerInformation.

3.1.4.4 Multiple-Bitness Capability Negotiation

A COMA server MAY<283> support capability negotiation for the multiple-bitness capability.

This capability negotiation is initiated by the COMA client and is performed as follows:

▪ The client calls the ICatalog64BitSupport::SupportsMultipleBitness (section 3.1.4.6.1) method.

▪ The server returns a value indicating whether it supports the multiple-bitness capability in the

response to ICatalog64BitSupport::SupportsMultipleBitness.

3.1.4.5 ICatalogSession

The ICatalogSession interface provides methods for Catalog Version Negotiation (section 3.1.4.1) and
for Multiple-partition Support Capability Negotiation (section 3.1.4.3). This interface inherits from
IUnknown, as specified in [MS-DCOM] section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class
with the CLSID CLSID_COMAServer (see section 1.9) using the UUID {182C40FA-32E4-11D0-818B-
00A0C9231C29} for this interface.

Besides the methods of IUnknown, this interface includes the following methods.

Methods in RPC Opnum Order

Method Description

Opnum3NotUsedOnWire Reserved for local use.

Opnum: 3

Opnum4NotUsedOnWire Reserved for local use.

Opnum: 4

Opnum5NotUsedOnWire Reserved for local use.

132 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

Opnum: 5

Opnum6NotUsedOnWire Reserved for local use.

Opnum: 6

InitializeSession Performs catalog version negotiation.

Opnum: 7

GetServerInformation Performs capability negotiation for the multiple-partition support capability.

Opnum: 8

In the previous table, the phrase "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined because it does not affect interoperability.<284>

All methods MUST NOT throw exceptions.

3.1.4.5.1 InitializeSession (Opnum 7)

This method is called by a client to perform Catalog Version Negotiation (section 3.1.4.1).

 HRESULT InitializeSession(
 [in] float flVerLower,
 [in] float flVerUpper,
 [in] long reserved,
 [out] float* pflVerSession
);

flVerLower: The lowest catalog version supported by the client.

flVerUpper: The highest catalog version supported by the client.

reserved: MUST be set to zero when sent and MUST be ignored on receipt.

pflVerSession: A pointer to a variable that, upon successful completion, MUST be set to the

negotiated catalog version.

Return Values: This method MUST return S_OK (0x00000000) on success and a failure result, as
specified in [MS-ERREF] section 2.1 on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that flVerLower is less than or equal to
flVerUpper, and fail the call if not.

The server then MUST calculate the negotiated catalog version as the highest catalog version number

supported by both the client and the server, if such a catalog version exists, and store the value as
part of the session state (see section 3.1.1.5). If there is no catalog version supported by both the
client and the server, the server MUST fail the call.

The server then MUST set the value referenced by pflVerSession to the negotiated catalog version and

return S_OK (0x00000000).

3.1.4.5.2 GetServerInformation (Opnum 8)

This method is called by a client to perform capability negotiation for the Multiple-partition Support
Capability Negotiation (section 3.1.4.3).

 HRESULT GetServerInformation(
 [out] long* plReserved1,

133 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [out] long* plReserved2,
 [out] long* plReserved3,
 [out] long* plMultiplePartitionSupport,
 [out] long* plReserved4,
 [out] long* plReserved5
);

plReserved1: A pointer to a variable that is set to any arbitrary value when sent by the server and
MUST be ignored on receipt by the client.

plReserved2: A pointer to a variable that is set to any arbitrary value when sent by the server and
MUST be ignored on receipt by the client.

plReserved3: A pointer to a variable that is set to any arbitrary value when sent by the server and

MUST be ignored on receipt by the client.

plMultiplePartitionSupport: A pointer to a value that, upon successful completion, MUST be set to
one of the following values indicating support of multiple partitions.

Value Meaning

1 The server does not support multiple partitions.

2 The server supports multiple partitions.

3 The server supports multiple partitions and is also capable of managing the domain-controlled
PartitionRoles (section 3.1.1.3.17), PartitionRoleMembers (section 3.1.1.3.18), and
PartitionUsers (section 3.1.1.3.16) tables for other servers. This value SHOULD be treated the same
as 2, because it does not affect interoperability.

plReserved4: A pointer to a variable that is set to any arbitrary value when sent by the server and
MUST be ignored on receipt by the client.

plReserved5: A pointer to a variable that is set to any arbitrary value when sent by the server and
MUST be ignored on receipt by the client.

Return Values: This method MUST return S_OK (0x00000000) on success and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

A server that does not support catalog version 4.00 or catalog version 5.00 SHOULD immediately
return E_NOTIMPL (0x80004001) instead of implementing this method.

 Otherwise, the server MUST attempt to set the value referenced by plMultiplePartitionSupport to the
previously specified value that indicates its support of multiple partitions, and fail the call if it cannot
set the value.

3.1.4.6 ICatalog64BitSupport

The ICatalog64BitSupport interface provides methods for capability negotiation for the multiple-
bitness capability, as specified in section 3.1.4.4, and the 64-bit QueryCell marshaling format

capability, as specified in section 3.1.4.2. This interface inherits from IUnknown, as specified in [MS-
DCOM] section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class
with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {1D118904-94B3-
4A64-9FA6-ED432666A7B9} for this interface.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

134 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

SupportsMultipleBitness Performs capability negotiation for the multiple-bitness capability.

Opnum: 3

Initialize64BitQueryCellSupport Performs capability negotiation for the 64-bit QueryCell marshaling format
capability.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.4.6.1 SupportsMultipleBitness (Opnum 3)

This method is called by a client to perform capability negotiation for the Multiple-Bitness
Capability (section 3.1.4.4).

 HRESULT SupportsMultipleBitness(
 [out] BOOL* pbSupportsMultipleBitness
);

pbSupportsMultipleBitness: A pointer to a value that, upon successful completion, indicates
whether the server supports the multiple-bitness capability.

Return Values: This method MUST return S_OK (0x00000000) on success and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST attempt to set the value referenced by
pbSupportsMultipleBitness to indicate whether it supports the multiple-bitness capability, and fail the
call if it cannot set the value.

3.1.4.6.2 Initialize64BitQueryCellSupport (Opnum 4)

This method is called by a client to perform capability negotiation for the 64-bit QueryCell Marshaling
Format Capability (section 3.1.4.2).

 HRESULT Initialize64BitQueryCellSupport(
 [in] BOOL bClientSupports64BitQueryCells,
 [out] BOOL* pbServerSupports64BitQueryCells
);

bClientSupports64BitQueryCells: A BOOL value that indicates whether the client supports the 64-
bit QueryCell Marshaling Format.

pbServerSupports64BitQueryCells: A pointer to a BOOL value that, upon successful completion,
indicates whether the server supports the 64-bit QueryCell Marshaling Format.

Return Values: This method MUST return S_OK (0x00000000) on success and a failure result, as

specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST attempt to set the value referenced by
pbServerSupports64BitQueryCells to indicate whether it supports the 64-bit QueryCell marshaling
format, and fail the call if it cannot set the value.

135 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.7 ICatalogTableInfo

The ICatalogTableInfo interface provides a method to retrieve table metadata, as specified in section
3.1.1.2.1, for a catalog table. This interface inherits from IUnknown, as specified in [MS-DCOM]

section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class
with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {A8927A41-D3CE-
11D1-8472-006008B0E5CA} for this interface.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

GetClientTableInfo Returns metadata for a table.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.4.7.1 GetClientTableInfo (Opnum 3)

This method is called by a client to retrieve the table metadata (section 3.1.1.2.1) for a catalog table.

 HRESULT GetClientTableInfo(
 [in] GUID* pCatalogIdentifier,
 [in] GUID* pTableIdentifier,
 [in] DWORD tableFlags,
 [in, size_is(cbQueryCellArray), unique]
 char* pQueryCellArray,
 [in] ULONG cbQueryCellArray,
 [in, size_is(cbQueryComparison), unique]
 char* pQueryComparison,
 [in] ULONG cbQueryComparison,
 [in] DWORD eQueryFormat,
 [out] GUID* pRequiredFixedGuid,
 [out, size_is(, *pcbReserved1)]
 char** ppReserved1,
 [out] ULONG* pcbReserved1,
 [out, size_is(, *pcAuxiliaryGuid)]
 GUID** ppAuxiliaryGuid,
 [out] ULONG* pcAuxiliaryGuid,
 [out, size_is(, *pcProperties)]
 PropertyMeta** ppPropertyMeta,
 [out] ULONG* pcProperties,
 [out] IID* piid,
 [out, iid_is(piid)] void** pItf,
 [out, size_is(, *pcbReserved2)]
 char** ppReserved2,
 [out] ULONG* pcbReserved2
);

pCatalogIdentifier: The catalog identifier of the COMA catalog. MUST be set to {6E38D3C4-C2A7-
11D1-8DEC-00C04FC2E0C7}.

pTableIdentifier: The table identifier for one of the tables defined in section 3.1.1.3 for the
negotiated catalog version.

tableFlags: An fTableFlags (section 2.2.1.1) value supported by the table identified by
pTableIdentifier.

136 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pQueryCellArray: A QueryCellArray (section 2.2.1.5) structure, marshaled in the negotiated format,
as specified in section 2.2.1.5, for a supported query (see section 3.1.1.2) on the table identified

by pTableIdentifier.

cbQueryCellArray: The size in bytes of pQueryCellArray.

pQueryComparison: A QueryComparisonData (section 2.2.1.6) structure for a supported query (see
section 3.1.1.2) on the table identified by pTableIdentifier.

cbQueryComparison: The size in bytes of pQueryComparison.

eQueryFormat: MUST be set to eQUERYFORMAT_1 (0x00000001).

pRequiredFixedGuid: A pointer to a variable that, upon successful completion, MUST be set to
{92AD68AB-17E0-11D1-B230-00C04FB9473F} and SHOULD<285> be ignored on receipt.

ppReserved1: A pointer to a variable that, upon successful completion, MUST be set either to NULL

or to the location of an empty string and MUST be ignored on receipt.

pcbReserved1: A pointer to a variable that, upon successful completion, MUST be set to two if
ppReserved1 points to an empty string, or to zero if ppReserved1 points to NULL, and MUST be
ignored on receipt.

ppAuxiliaryGuid: A pointer to a variable that, upon successful completion, MUST be set to the
AuxiliaryGuid value specified in the definition of the table identified by pTableIdentifier, and NULL

if the table definition specifies no such value. This value SHOULD<286> be ignored on receipt.

pcAuxiliaryGuid: A pointer to a variable that, upon successful completion, MUST be the number of
elements in ppAuxiliaryGuids (zero or one).

ppPropertyMeta: A pointer to a variable that, upon successful completion, MUST be set to an array
of PropertyMeta (section 2.2.1.7) structures representing the schema (see section 3.1.1.1) for the
table identified by pTableIdentifier in the negotiated catalog version.

pcProperties: A pointer to a variable that, upon successful completion, MUST be set to the length of

the array returned in ppPropertyMeta.

piid: A pointer to a variable that, upon successful completion, MUST be set to IID_ICatalogTableRead
(see section 1.9).

pItf: A pointer to a variable that, upon successful completion, MUST be set to the
ICatalogTableRead (section 3.1.4.8) interface of the server.

ppReserved2: A pointer to a variable that, upon successful completion, MUST be set to NULL.

pcbReserved2: A pointer to a variable that, upon successful completion, MUST be set to zero.

Return Values: This method MUST return S_OK (0x00000000) on success and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been

performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server then MUST perform parameter validation as follows:

▪ The server SHOULD<287> verify that the value referenced by pCatalogIdentifier is the catalog

identifier of the COMA catalog, {6E38D3C4-C2A7-11D1-8DEC-00C04FC2E0C7}, and fail the call if
not.

137 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ The server SHOULD<288> verify that the value reference by pTableIdentifier is the table identifier
of a Table (section 3.1.1.3) defined in section 3.1.1.3 for the negotiated catalog version, and fail

the call if not.

▪ The server SHOULD <289> verify that tableFlags is a supported table flags value (see section

3.1.1.2.3) for the table identified by pTableIdentifier, and fail the call if not.

▪ The server SHOULD<290> verify that the query represented by the parameters pQueryCellArray,
cbQueryCellArray, pQueryComparison, and cbQueryComparison is a supported query (see section
3.1.1.2) on the table identified by pTableIdentifier, and fail the call if not.

▪ The server MUST verify that all other parameters meet the constraints previously specified.

The server then MUST set the values referenced by the out parameters as follows:

▪ The values referenced ppAuxiliaryGuid, pcAuxiliaryGuid, ppPropertyMeta, and pcProperties MUST

be set to the values specified in the table definition (see section 3.1.1.3) of the table identified by
pTableIdentifier for the negotiated catalog version, and fail if it cannot.

3.1.4.8 ICatalogTableRead

The ICatalogTableRead interface provides a method to read entries from a catalog table. This interface
inherits from IUnknown, as specified in [MS-DCOM] section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class
with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {0E3D6630-B46B-
11D1-9D2D-006008B0E5CA} for this interface.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

ReadTable Reads entries from a table.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.4.8.1 ReadTable (Opnum 3)

This method is called by a client to read entries from a catalog table according to a query.

 HRESULT ReadTable(
 [in] GUID* pCatalogIdentifier,
 [in] GUID* pTableIdentifier,
 [in] DWORD tableFlags,
 [in, size_is(cbQueryCellArray), unique]
 char* pQueryCellArray,
 [in] ULONG cbQueryCellArray,
 [in, size_is(cbQueryComparison), unique]
 char* pQueryComparison,
 [in] ULONG cbQueryComparison,
 [in] DWORD eQueryFormat,
 [out, size_is(, *pcbTableDataFixed)]
 char** ppTableDataFixed,
 [out] ULONG* pcbTableDataFixed,
 [out, size_is(, *pcbTableDataVariable)]
 char** ppTableDataVariable,
 [out] ULONG* pcbTableDataVariable,
 [out, size_is(, *pcbTableDetailedErrors)]

138 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 char** ppTableDetailedErrors,
 [out] ULONG* pcbTableDetailedErrors,
 [out, size_is(, *pcbReserved1)]
 char** ppReserved1,
 [out] ULONG* pcbReserved1,
 [out, size_is(, *pcbReserved2)]
 char** ppReserved2,
 [out] ULONG* pcbReserved2
);

pCatalogIdentifier: The catalog identifier of the COMA catalog. MUST be set to {6E38D3C4-C2A7-

11D1-8DEC-00C04FC2E0C7}.

pTableIdentifier: The table identifier for one of the tables defined in section 3.1.1.3 for the
negotiated catalog version.

tableFlags: An fTableFlags (section 2.2.1.1) value supported (see section 3.1.1.2.3) by the table
identified by pTableIdentifier.

pQueryCellArray: A QueryCellArray structure, marshaled in the negotiated format as specified in
section 2.2.1.5, for a supported query (see section 3.1.1.2.2) on the table identified by

pTableIdentifier.

cbQueryCellArray: The size in bytes of pQueryCellArray.

pQueryComparison: A QueryComparisonData (section 2.2.1.6) structure for a supported query (see
section 3.1.1.2.2) on the table identified by pTableIdentifier.

cbQueryComparison: The size in bytes of pQueryComparison.

eQueryFormat: MUST be set to eQUERYFORMAT_1 (0x00000001).

ppTableDataFixed: A pointer to a variable that, upon successful completion, MUST be set to a

TableDataFixed structure, marshaled as specified in section 2.2.1.10.

pcbTableDataFixed: A pointer to a value that, upon successful completion, MUST be set to the
length in bytes of the TableDataFixed structure returned in ppTableDataFixed.

ppTableDataVariable: A pointer to a pointer variable that, upon successful completion, MUST be set
to a TableDataVariable structure, marshaled as specified in section 2.2.1.15.

pcbTableDataVariable: A pointer to a value that, upon successful completion, MUST be the length in

bytes of the TableDataVariable structure returned in ppTableDataVariable.

ppTableDetailedErrors: A pointer to a variable that, upon successful completion, MUST be set to
NULL, and that upon partial failure MAY<291> be set to a TableDetailedErrorArray structure,
marshaled as specified in section 2.2.1.17.

pcbTableDetailedErrors: A pointer to a pointer variable that, upon completion, MUST be set to the
length in bytes of the TableDetailedErrorArray structure returned in ppTableDetailedErrors if such
a structure was returned, and MUST be set to zero otherwise.

ppReserved1: A pointer to a pointer variable that, upon successful completion, MUST be set to NULL
when sent by the server and MUST be ignored on receipt by the client.

pcbReserved1: A pointer to a variable that, upon successful completion, MUST be set to zero when
sent by the server and MUST be ignored on receipt by the client.

ppReserved2: A pointer to a pointer variable that, upon successful completion, MUST be set to NULL
when sent by the server and MUST be ignored on receipt by the client.

139 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pcbReserved2: A pointer to a variable that, upon successful completion, MUST be set to zero when
sent by the server and MUST be ignored on receipt by the client.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically, with

the exception of E_DETAILEDERRORS (0x80110802).

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.2.1.1), and fail the call if not.

The server then MUST perform parameter validation as follows:

▪ The server SHOULD<292> verify that the value referenced by pCatalogIdentifier is the catalog
identifier of the COMA catalog {6E38D3C4-C2A7-11D1-8DEC-00C04FC2E0C7}, and fail the call if
not.

▪ The server SHOULD<293> verify that the value referenced by pTableIdentifier is the table
identifier of a table defined in section 3.1.1.3 for the negotiated catalog version, and fail the call if
not.

▪ The server SHOULD<294> verify that tableFlags is a supported table flags value (see section
3.1.1.2.3) for the table identified by pTableIdentifier, and fail the call if not.

▪ The server SHOULD<295> verify that the query represented by the parameters pQueryCellArray,

cbQueryCellArray, pQueryComparison, and cbQueryComparison is a supported query (see section
3.1.1.2.2) on the table identified by pTableIdentifier, and fail the call if not.

▪ The server MUST verify that all other parameters meet the preceding constraints specified.

The server then MUST select from the entries in the table identified by pTableIdentifier the subset of
entries that match the query, as specified here. This conceptual procedure describes a possible
procedure for selection, provided to facilitate the explanation of how the protocol behaves. This
document does not mandate that implementations perform the procedure as described as long as their

external behavior is consistent with that described here.

Starting with the full set of entries in the table as the result set, the server MUST perform the
following:

▪ If the table as defined in section 3.1.1.3 is specified to use table flags as a constraint on a hidden
property (see section 3.1.1.2.3), the server MUST remove from the result set all entries that do
not conform to this constraint.

▪ For each QueryCell (section 2.2.1.4) structure and its corresponding comparison value (together

known as a query element) in the query represented by the parameters pQueryCellArray,
cbQueryCellArray, pQueryComparison, and cbQueryComparison, the server MUST perform the
following:

▪ If the IndexOrOption field of the QueryCell structure is a special query option value
(indicated by a value greater than or equal to 0xF00000000), the query element represents a
special option rather than a constraint. If this value is eSQO_OPTHINT (see section 2.2.1.3),

this option is an optimization hint and MUST NOT affect the results of this selection procedure.

Behavior of the server on receipt of special options other than eSQO_OPTHINT is undefined,
because clients MUST NOT send these values, and they do not affect interoperability.<296>

▪ If the IndexOrOption field of the QueryCell structure is an index of a property in the table
(indicated by a value strictly less than 0xF00000000), the query element represents a
constraint on the property. The server MUST remove from the result set all entries that do not
conform to this constraint.

140 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Having selected from the table the result set, the server then MUST construct the structures to be
returned in the values referenced by ppTableDataFixed, pcbTableDataFixed, ppTableDataVariable, and

pcbTableDataVariable. An empty result set MUST NOT be considered a failure.

The server MUST perform the following:

▪ The server MUST arbitrarily order the entries in the result set, assigning to each a unique, zero-
based index. These indices MUST be assigned consecutively.

▪ For each entry in the result set, in order by index, the server MUST perform the following:

▪ For each property in the table, in order by index, the server MUST perform the following:

▪ If the property is a non-fixed length property for which the value is non-NULL, the server
MUST add a field to the variable-length results as specified for the
TableEntryVariable (section 2.2.1.14) structure.

▪ The server MUST set the appropriate fields in the fixed-length results as specified for the
TableEntryFixed (section 2.2.1.9) structure.

▪ If for any reason the server was unable to retrieve the value of the property from its data
store, it MUST either fail the call immediately, setting no results and returning an
implementation-specific failure result, or replace the property value in the results with an
implementation-specific default value and continue. If the server does the latter, it MUST

add a TableDetailedError (section 2.2.1.16) record to the detailed error results, using the
zero-based index of the entry and the zero-based index of the property to indicate to the
client that the value of that property might not be accurate.

▪ The server then MUST append the fixed-length and variable-length results for the entry to the
TableDataFixed (section 2.2.1.10) and TableDataVariable (section 2.2.1.15) structures.

The server MUST then set the values referenced by the out parameters as follows:

▪ The server then MUST set the values referenced by ppTableDataFixed, pcbTableDataFixed,

ppTableDataVariable, and pcbTableDataVariable to the constructed TableDataFixed and

TableDataVariable structures.

▪ If the server generated any TableDetailedError records, it MUST set the values referenced by
ppTableDetailedErrors and pcbDetailedErrors to the constructed TableDetailedErrorArray structure.
Otherwise, it MUST set the value referenced by ppTableDetailedErrors to NULL and the value
referenced by pcbDetailedErrors to zero.

Upon success, the server MUST return S_OK (0x00000000). Upon partial failure (indicated by

returning detailed error results), the server MUST return E_DETAILEDERRORS (0x80110802).

3.1.4.9 ICatalogTableWrite

The ICatalogTableWrite interface provides a method to write entries to a catalog table. This interface

inherits from IUnknown, as specified in [MS-DCOM] section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class
with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {0E3D6631-B46B-
11D1-9D2D-006008B0E5CA} for this interface.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

141 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

WriteTable Writes entries to a table.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.4.9.1 WriteTable (Opnum 3)

This method is called by a client to write entries to a catalog table.

 HRESULT WriteTable(
 [in] GUID* pCatalogIdentifier,
 [in] GUID* pTableIdentifier,
 [in] DWORD tableFlags,
 [in, size_is(cbQueryCellArray), unique]
 char* pQueryCellArray,
 [in] ULONG cbQueryCellArray,
 [in, size_is(cbQueryComparison), unique]
 char* pQueryComparison,
 [in] ULONG cbQueryComparison,
 [in] DWORD eQueryFormat,
 [in, size_is(cbTableDataFixedWrite)]
 char* pTableDataFixedWrite,
 [in] ULONG cbTableDataFixedWrite,
 [in, size_is(cbTableDataVariable)]
 char* pTableDataVariable,
 [in] ULONG cbTableDataVariable,
 [in, size_is(cbReserved1)] char* pReserved1,
 [in] ULONG cbReserved1,
 [in, size_is(cbReserved2)] char* pReserved2,
 [in] ULONG cbReserved2,
 [in, size_is(cbReserved3)] char* pReserved3,
 [in] ULONG cbReserved3,
 [out, size_is(, *pcbTableDetailedErrors)]
 char** ppTableDetailedErrors,
 [out] ULONG* pcbTableDetailedErrors
);

pCatalogIdentifier: The catalog identifier of the COMA catalog. MUST be {6E38D3C4-C2A7-11D1-
8DEC-00C04FC2E0C7}.

pTableIdentifier: The table identifier for one of the tables defined in section 3.1.1.3 for the
negotiated catalog version.

tableFlags: An fTableFlags (section 2.2.1.1) value supported (see section 3.1.1.2.3) by the table
identified by pTableIdentifier.

pQueryCellArray: A QueryCellArray structure, marshaled in the negotiated format as specified in

section 2.2.1.5, for a supported query (see section 3.1.1.2.2) on the table identified by
pTableIdentifier.

cbQueryCellArray: The size in bytes of pQueryCellArray.

pQueryComparison: A QueryComparisonData (section 2.2.1.6) structure for a supported query (see
section 3.1.1.2) on the table identified by pTableIdentifier.

cbQueryComparison: The size in bytes of pQueryComparison.

eQueryFormat: MUST be set to eQUERYFORMAT_1 (0x00000001).

142 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pTableDataFixedWrite: A TableDataFixedWrite structure, marshaled as specified in section
2.2.1.13.

cbTableDataFixedWrite: The length in bytes of the TableDataFixedWrite structure passed in
pTableDataFixedWrite.

pTableDataVariable: A TableDataVariable structure, marshaled as specified in section 2.2.1.15.

cbTableDataVariable: The length in bytes of the TableDataVariable structure passed in
pTableDataVariable.

pReserved1: MUST be set to NULL when sent and MUST be ignored on receipt.

cbReserved1: MUST be set to zero when sent and MUST be ignored on receipt.

pReserved2: MUST be set to NULL when sent and MUST be ignored on receipt.

cbReserved2: MUST be set to zero when sent and MUST be ignored on receipt.

pReserved3: MUST be set to NULL when sent and MUST be ignored on receipt.

cbReserved3: MUST be set to zero when sent and MUST be ignored on receipt.

ppTableDetailedErrors: A pointer to a variable that, upon successful completion, MUST be set to
NULL, and that, upon partial failure, MAY<297> be set to a TableDetailedErrorArray structure,
marshaled as specified in section 2.2.1.17.

pcbTableDetailedErrors: A pointer to a variable that, upon completion, MUST be set to the length

in bytes of the TableDetailedErrorArray structure returned in ppTableDetailedErrors if such a
structure was returned and MUST be set to zero otherwise.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically, with
the exception of E_DETAILEDERRORS (0x80110802).

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server then MUST perform parameter validation as follows:

▪ The server SHOULD<298> verify that the value referenced by pCatalogIdentifier is the catalog
identifier of the COMA catalog {6E38D3C4-C2A7-11D1-8DEC-00C04FC2E0C7}, and fail the call if
not.

▪ The server SHOULD<299> verify that the value referenced by pTableIdentifier is the table
identifier of a table defined in section 3.1.1.3 for the negotiated catalog version, and fail the call if
not.

▪ The server SHOULD<300> verify that tableFlags is a supported table flags value (see section
3.1.1.2.3) for the table identified by pTableIdentifier, and fail the call if not.

▪ The server SHOULD<301> verify that the query represented by the parameters pQueryCellArray,
cbQueryCellArray, pQueryComparison, and cbQueryComparison are a supported query (see
section 3.1.1.2.2) on the table identified by pTableIdentifier, and fail the call if not.

▪ The server MUST verify that all other parameters meet the preceding constraints.

The server then SHOULD verify that the client is authorized to write to the table identified by
pTableIdentifier. Authorization MAY<302> be determined differently for different tables.

143 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The server then MAY verify that previously in the session,
ICatalogTableRead::ReadTable (section 3.1.4.8.1) was called for the same table and with an identical

query.

The parameters pTableDataFixedWrite, cbTableDataFixedWrite, pTableDataVariable, and

cbTableDataVariable specify writes to zero or more entries in the table identified by pTableIdentifier.
Each TableEntryFixedWrite (section 2.2.1.12) structure and the corresponding
TableEntryVariable (section 2.2.1.14) together specify a write to a single entry, known as an entry
write. The server MUST verify that these parameters are a properly formatted representation of zero
entry writes for the table and fail the call if not. A call to WriteTable specifying zero entry writes is
explicitly legal, although it results in no changes to the catalog. If a server receives a call specifying
zero entry writes, it MUST NOT make any changes to the catalog and MUST return S_OK

(0x00000000).

The server MUST validate and attempt to perform the specified entry writes, as described later in this
section. If validation fails for any of the entry writes (for example, if performing the entry write would
result in the constraints for one or more of the properties in the table being violated), the server
MAY<303> add one or more TableDetailedError (section 2.2.1.16) records to the detailed error

results, using the zero-based index of the entry write and the zero-based index of a property to

indicate to the client which specific change caused the failure. Additionally, if the server fails to
perform an entry write (for example, if the server is unable to write a property value to its data store),
the server MAY add one or more TableDetailedError records. Whether the server returns immediately
upon generating a TableDetailedError or continues to validate entry writes in order to generate a more
complete record of the reason for failure is implementation-specific.<304>

For the following description, each entry write is an add, update, or remove, indicated by the value of
the Action field of the TableEntryFixedWrite structure for the entry write, taken from the

eTableEntryAction (section 2.2.1.11) enumeration.

The server MUST validate the entry writes and, for updates and removes, select a target from the
existing entries in the table, as follows:

▪ If one or more adds are specified, the server SHOULD<305> verify that adds are supported for
the table, as specified in the table's definition (as specified in section 3.1.1.3), and fail the call if

not.

▪ If one or more updates are specified, the server SHOULD<306> verify that updates are supported

for the table, as specified in the table's definition (as specified in section 3.1.1.3), and fail the call
if not.

▪ If one or more removes are specified, the server SHOULD<307> verify that removes are
supported for the table, as specified in the table's definition (as specified in section 3.1.1.3), and
fail the call if not.

▪ For each entry write, the server MUST perform the following:

▪ For each QueryCell (section 2.2.1.4) structure and its corresponding comparison value
(together known as a query element) in the query represented by the parameters
pQueryCellArray, cbQueryCellArray, pQueryComparison, and cbQueryComparison, the server
MUST perform the following:

▪ If the IndexOrOption field of the QueryCell structure is a special query option value
(indicated by a value greater than or equal to 0xF00000000), the query element
represents a special option rather than a constraint. If this value is eSQO_OPTHINT (see

section 2.2.1.3), this option is an optimization hint and MUST NOT affect the results of
validation. Behavior of the server on receipt of special options other than eSQO_OPTHINT
is undefined, because clients MUST NOT send these values, and they do not affect
interoperability.<308>

144 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ If the IndexOrOption field of the QueryCell structure is an index of a property in the
table (indicated by a value strictly less than 0xF00000000), the query element represents

a constraint on the property. The server MUST verify that the value of this property in the
entry write conforms to the constraint specified by the query element, and fail the call if

not.

▪ The server MUST make a preliminary selection of zero or one existing entries in the table for
the entry write based on the primary key properties specified in the table's definition (as
specified in section 3.1.1.3), as follows:

▪ If there exists an existing entry in the table for which the values of each primary key
property are equal to the values specified for the properties in the entry write, the server
MUST preliminarily select that entry for the entry write (note that due to the primary key

constraints on the table, it is guaranteed that there will be at most one such entry).

▪ Otherwise, the server MUST preliminarily select no entry for that entry write.

▪ The server then MUST verify that each existing entry was preliminarily selected for at most one

entry write, and fail the call if not.

▪ For each add, the server MUST perform the following:

▪ The server MUST verify that no entry was preliminarily selected for the entry write, and fail

the call if not.

▪ For each primary key property and for each property constrained in the query (note that these
sets of properties will possibly overlap), the server MUST perform the following:

▪ The server MUST verify that the Changed bit (see section 2.2.1.8) is set in the Status
field for the property in the entry write, and fail the call if not.

▪ The server SHOULD<309> perform validation of constraints that are specified as a server
validation requirement in the definition of the property and its type and fail the call if any

constraint enforced by the server is violated.

▪ For each update or remove, the server MUST perform the following:

▪ The server MUST verify that an existing entry was preliminarily selected for the entry write,
and fail the call if not. This entry is now said to be selected for the entry write.

▪ For each primary key property and for each property constrained in the query (note that these
sets of properties will possibly overlap), the server MUST perform the following:

▪ The server MUST verify that the Changed bit (see section 2.2.1.8) is cleared in the Status

field for the property in the entry write, and fail the call if not.

▪ The server SHOULD<310> perform validation of constraints that are specified as a server
validation requirement in the definition of the property and its type and fail the call if any
constraint enforced by the server is violated.

The remainder of the protocol behavior specified for this method SHOULD be performed as an atomic

transaction; that is, either the operation SHOULD fully succeed or the server SHOULD make no

changes to the catalog. This described behavior is provided to facilitate the explanation of how the
protocol behaves. This document does not mandate that implementations adhere to this model as long
as their external behavior is consistent with that described in this document.

The server MUST attempt to perform each of the entry writes, specified as follows for each type of
entry write, in an order arbitrarily selected by the server.

For each add, the server MUST perform the following:

145 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ The server MUST attempt to create a new entry in the table, and fail if it cannot.

▪ For each property in the table, in a trigger-consistent order (see section 3.1.1.2.8) arbitrarily

selected by the server, the server MUST then perform the following:

▪ If the Changed bit (see section 2.2.1.8) is set in the Status field for the property in the entry

write, the server MUST perform the following:

▪ If the property is a read-only property (see section 3.1.1.2.8), the server SHOULD<311>
fail the call. If the server does not fail the call, the server's behavior is undefined as this
does not affect interoperability.

▪ If the property is an internal property (see section 3.1.1.2.7), the server's behavior is
undefined as this does not affect interoperability. In particular, the server MAY fail the call.

▪ If the property is neither a read-only property nor an internal property, the server MUST

attempt to set the value of the property in the newly created entry to the value specified
in the entry write, and fail the call if it cannot.

▪ If the server has a trigger (see section 3.1.1.2.8) for the property, the server MUST
attempt to perform the trigger, and fail the call if it cannot.

▪ If the Changed bit (see section 2.2.1.8) is cleared in the Status field for the property, the
server MUST attempt to set the value of the property in the newly created entry to an

implementation-specific default value (see section 3.1.1.2.6), and fail the call if it cannot.

▪ The server MUST verify that the newly created entry conforms to the constraints specified in the
table definition and any implementation-specific additional constraints (see section 3.1.1.2.5), and
fail the call if not.

▪ The server MUST verify that the newly created entry conforms to the add restrictions specified in
the table definition, and fail the call if not.

▪ If the table definition specifies an optional populate (see section 3.1.1.2.11), the server

MAY<312> attempt to perform this populate as specified in the table definition. If the server

attempts to perform a populate and is unable to do so, it SHOULD fail the call.

For each update, the server MUST perform the following:

▪ The server MUST verify that the selected entry conforms to the update restrictions specified in the
table definition, and fail the call if not.

▪ For each property in the table, in a trigger-consistent order (see section 3.1.1.2.8) arbitrarily
selected by the server, the server MUST then perform the following:

▪ If the Changed bit (see section 2.2.1.8) is set in the Status field for the property in the entry
write, the server MUST perform the following:

▪ If the property is a read-only property (see section 3.1.1.2.8), the server SHOULD<313>
fail the call. If the server does not fail the call, the server's behavior is undefined as this
does not affect interoperability.

▪ If the property is an internal property (see section 3.1.1.2.7), the server's behavior is

undefined, because this does not affect interoperability. In particular, the server MAY fail
the call.

▪ If the property is neither a read-only property nor an internal property, the server MUST
attempt to set the value of the property in the entry prototype to the value specified in the
entry write, and fail the call if it cannot.

146 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ If the server has a trigger (see section 3.1.1.2.8) for the property, the server MUST
attempt to perform the trigger, and fail the call if it cannot.

▪ The server MUST verify that the entry represented by the Entry field of the TableEntryFixedWrite
structure and the TableEntryVariable structure conforms to the query specified in pQueryCellArray,

cbQueryCellArray, pQueryComparison, and cbQueryComparison.

▪ The server MUST verify that there currently exists in the table an entry for which the values of the
primary key properties, as specified in the table's definition (as specified in section 3.1.1.3), are
equal to the values specified for these properties in the write entry.

▪ The server MUST verify that the existing entry allows updates, according to properties of the entry
and possibly properties of entries in other tables, as specified in the table's definition (as specified
in section 3.1.1.3).

▪ The server then MUST make changes to the entry as follows:

▪ Each property for which the Changed bit (see section 2.2.1.8) is set in the corresponding
Status subfield in the Entry field of the TableEntryFixedWrite structure is said to be marked

for update. For each property marked for update, the server MUST perform the following:

▪ The server SHOULD<314> verify that the property supports updates, as specified in the
table's definition, as specified in section 3.1.1.3.

▪ The server MUST attempt to set the value of the property in the entry to the value
specified in the write, and fail the call if it cannot.

▪ If an add/update trigger is specified for the property in the table's definition, as specified
in section 3.1.1.3, the server MUST attempt to modify the entry as specified for that
trigger, based on the value of the property, and fail the call if it cannot.

▪ The server MUST verify that the modified entry conforms to the constraints specified for the
table in its definition, as specified in section 3.1.1.3.

For each remove, the server MUST perform the following:

▪ The server MUST verify that the selected entry conforms to the remove restrictions specified in the
table definition, and fail the call if not.

▪ The server MUST attempt to remove the selected entry from the table and fail the call if it cannot.

▪ If a cascade (see section 3.1.1.2.10) is specified for the table in its definition, as specified in
section 3.1.1.3, the server MUST attempt to perform the cascade, and fail the call if not.

The server MUST then set the values referenced by the out parameters as follows:

▪ If the server generated any TableDetailedError (section 2.2.1.16) records, it MUST set the values
referenced by ppTableDetailedErrors and pcbDetailedErrors to the constructed
TableDetailedErrorArray (section 2.2.1.17) structure. Otherwise, it MUST set the value referenced
by ppTableDetailedErrors to NULL and the value referenced by pcbDetailedErrors to zero.

Upon success, before returning from the call, the server SHOULD guarantee that the changes will be
written to its data store. However, the server MAY<315> actually write changes to the data store

asynchronously after returning. For example, a server might write changes to a temporary store and
integrate these changes with its main data store asynchronously. In this case, it is possible for the
changes not to be visible to the client immediately. For more details about synchronization, see
section 3.1.4.17.2.

Upon success, the server MUST return S_OK (0x00000000). Upon failure in which detailed error
results are returned, the server MUST return E_DETAILEDERRORS (0x80110802).

147 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.10 IRegister

The IRegister interface provides a method for registration, as specified in section 1.3.6. This interface
inherits from IUnknown, as specified in [MS-DCOM] section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class
with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {8DB2180E-BD29-
11D1-8B7E-00C04FD7A924} for this interface.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

RegisterModule Registers the components in one or more modules.

Opnum: 3

Opnum4NotUsedOnWire Reserved for local use.

Opnum: 4

In the previous table, the phrase "Reserved for local use" means that the client MUST NOT send the
opnum and the server behavior is undefined because it does not affect interoperability.<316>

3.1.4.10.1 RegisterModule (Opnum 3)

This method is called by a client to register the components in one or more modules and to create
component full configurations for those modules in an existing conglomeration. This method supports
conglomerations in the global partition only.

Alternatively, this method can be called to verify modules without actually registering the components.
As a side effect, this method returns implementation-specific detailed results of the registration or
verification operation for informational purposes.

 HRESULT RegisterModule(
 [in] GUID ConglomerationIdentifier,
 [in, string, size_is(cModules,)]
 LPWSTR* ppModules,
 [in] DWORD cModules,
 [in] DWORD dwFlags,
 [in, size_is(cRequested), unique]
 GUID* pRequestedCLSIDs,
 [in] DWORD cRequested,
 [out, size_is(,cModules)] DWORD** ppModuleFlags,
 [out] DWORD* pcResults,
 [out, size_is(,*pcResults)] GUID** ppResultCLSIDs,
 [out, string, size_is(,*pcResults)]
 LPWSTR** ppResultNames,
 [out, size_is(,*pcResults)] DWORD** ppResultFlags,
 [out, size_is(,*pcResults)] LONG** ppResultHRs
);

ConglomerationIdentifier: The conglomeration identifier of an existing conglomeration on the
server, in which the component full configurations are to be created or against which the modules
are to be verified (as specified later).

ppModules: An array of one or more strings, each of which is a path in UNC to a file that the server

will recognize as a module.

cModules: The number of elements in ppModules.

148 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

dwFlags: A combination of zero or more of the following flags.

Value Meaning

fREGISTER_VERIFYONLY

0x00000020

The server SHOULD verify the modules but MUST NOT actually register any
components.

fREGISTER_EVENTCLASSES

0x00000400

The server MUST configure the components registered by this operation as
event classes.

pRequestedCLSIDs: Either an array of one or more CLSIDs of components to be registered (or

verified), or NULL to specify that all components in the modules are to be registered (or verified).

cRequested: The number of elements in pRequestedCLSIDs.

ppModuleFlags: A pointer to a variable that, upon successful completion, SHOULD be set to an array
of fModuleStatus (section 2.2.3) values that represent the detailed results of registration for the
modules located by the paths in ppModules, in the same order.

pcResults: A pointer to a variable that, upon successful completion, MUST be set to the number of
result items, as specified later.

ppResultCLSIDs: A pointer to a variable that, upon successful completion, MUST be set to an array
of GUID values, each being the CLSID of a result item, as specified later.

ppResultNames: A pointer to a variable that, upon successful completion, MUST be set to an array
of string values, each being an implementation-specific<317> name of a result item, as specified
later, in the same order as ppResultClsids.

ppResultFlags: A pointer to a variable that upon successful completion, MUST be set to an array of

fComponentStatus (section 2.2.4) values, each representing implementation-specific detailed
results for a result item, as specified later, in the same order as ppResultClsids.

ppResultHRs: A pointer to a variable that, upon successful completion, MUST be set to an array of

LONG values, each representing an HRESULT ([MS-ERREF] section 2.1) for a result item, as
specified later, in the same order as ppResultClsids.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (section 3.1.1.5), and fail the call if not.

The server then MUST perform parameter validation as follows:

▪ The server MUST verify that cModules is not 0, and fail the call if not.

▪ For each element of ppModules, the server MUST verify that its value is not NULL, and fail the call
if not.

▪ The server SHOULD<318> verify that dwFlags is a valid combination of the flags specified

previously, and fail the call if not.

A server MAY legally reject a call with a nonzero number of elements in pRequestedCLSIDs as
unsupported, returning a failure result immediately. A server also MAY<319> support a nonzero
number of elements in pRequestedCLSIDs for only a subset of the types of modules it supports,
returning a failure result after it has analyzed the modules.

If the fREGISTER_VERIFYONLY flag is not set in the dwFlags parameter, the server MUST verify that

there exists a conglomeration in the global partition with the conglomeration identifier specified in

149 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ConglomerationIdentifier and fail the call if not. The registration procedure specified later MUST be
performed with this conglomeration as the target conglomeration.

If the fREGISTER_VERIFYONLY flag is set in the dwFlags parameter, the server MUST determine
whether there exists a conglomeration in the global partition with the conglomeration identifier

specified in ConglomerationIdentifier. If there exists such a conglomeration, the verification procedure
MUST be performed as a targeted verification, as specified later, with this conglomeration as the
target conglomeration. If not, the verification procedure MUST be performed as an untargeted
verification, as specified later.

The remainder of the protocol behavior specified for this method SHOULD<320> be performed as an
atomic transaction; in other words, either the operation SHOULD fully succeed or the server SHOULD
make no changes to the catalog. This described behavior is provided to facilitate the explanation of

how the protocol behaves. This document does not mandate that implementations adhere to this
model as long as their external behavior is consistent with that described in this document.

The server MUST process each element of ppModules as specified later, in an arbitrary order selected
by the server. Any failure point below that specifies the server fail for the module indicates that the

server MAY<321> tolerate the failure and continue to the next element of ppModules. If the server
tolerates failures, and this failure tolerance results in the call returning S_OK (0x00000000), the

server MUST set the flags in the results returned in ppModuleFlags for each module as specified later,
so that the client can determine which elements succeeded and which elements failed.

As the server processes the elements of ppModules, it MUST construct a processed CLSIDs set,
starting with an empty set, which is used to determine the overall success or failure of the call once all
modules have been process.

For each element of ppModules, the server MUST perform the following:

▪ The server SHOULD<322> verify that the value of the element is a path in UNC, and fail for the

module if it cannot.

▪ The server then MUST determine whether the file located by the path exists and is accessible via
some implementation-specific mechanism, and fail for the module if it cannot.

▪ The server then MUST determine whether it recognizes the file as a module, and fail for the
module if it cannot.

▪ The server then MUST, using an implementation-specific mechanism, attempt to determine the set
of components contained in the module, and fail for the module if it cannot.

▪ If the client specified a list of CLSIDs in pRequestedCLSIDs, the server MUST select as the set of
processed CLSIDs for the module the intersection of the set of CLSIDs of the components
contained in the module and the set of CLSIDs in pRequestedCLSIDs. Otherwise, the server MUST
select as the set of processed CLSIDs for the module the set of CLSIDs of the components
contained in the module.

▪ If the fREGISTER_VERIFYONLY flag is set in the dwFlags parameter, the server MUST perform the

following:

▪ For each CLSID in the set of processed CLSIDs for the module, the server MUST perform the
following:

▪ If the server is performing a targeted verification, the server MUST verify that there is not
an existing component with this CLSID configured in the target conglomeration, and fail
for the module if the component exists. If the server is performing an untargeted
verification, then this requirement does not apply.

▪ The server MUST verify that there is not an existing component with this CLSID that has
an existing component legacy configuration, and fail the module if there is.

150 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ If the fREGISTER_VERIFYONLY flag is not set in the dwFlags parameter, the server MUST perform
the following:

▪ For each CLSID in the set of processed CLSIDs for the module, the server MUST perform the
following:

▪ The server MUST, via an implementation-specific mechanism, attempt to register the
component in the module with this CLSID, and fail for the module if it cannot. Whether or
not it is considered a failure to attempt to register a component that has the same CLSID
as a component that already exists is implementation-specific.

▪ The server MUST verify that it is possible, according to the constraints specified for
component configurations in sections 3.1.1.3.1 and 3.1.1.3.3, to create a component full
configuration for the newly registered component in the target conglomeration, and fail if

not.

▪ The server MUST attempt to create a component full configuration for that component in
the target conglomeration, using implementation-specific default values (see section

3.1.1.2.6) for properties except (IsEventClass (section 3.1.1.3.1), and fail for the module
if it cannot.

▪ If the fREGISTER_EVENTCLASSES flag is set in the dwFlags parameter, the server MUST

attempt to set the IsEventClass property of the newly created component full configuration
to the value TRUE (0x00000001), and fail for the module if it cannot.

▪ If the flag fREGISTER_EVENTCLASSES is not set in the dwFlags parameter, the server
MUST attempt to set the IsEventClass property of the newly created component full
configuration to the value FALSE (0x00000000), and fail for the module if it cannot.

▪ The server MAY<323> attempt to create configured interface and configured method
entries for the interfaces supported by the registered component, using implementation-

specific default values (see section 3.1.1.2.6) for properties, in the newly created
component full configuration, and fail for the module if it cannot.

▪ The server then MUST attempt to add the set of processed CLSIDs for the module to the set of
processed CLSIDs, and fail for the module if it cannot. Collisions SHOULD be tolerated for an
untargeted verification and SHOULD NOT be tolerated for a targeted verification. Note that
collisions are not possible for registration due to the constraints on component configurations.

Having processed all of the modules, the server MUST determine the success of the call as follows:

▪ If the client specified a list of CLSIDs in pRequestedCLSIDs, the server MUST verify that the set of
process CLSIDs is identical to the set of CLSIDs in pRequestedCLSIDs, and fail the call if not.

Upon successful completion of the call, the server SHOULD construct the detailed results to return to
the client, as specified later. Upon successful completion in which the server failed for any modules,
the server MUST do so. If the server constructs detailed results, this MUST be performed as follows:

▪ For each processed CLSID, the server MUST perform the following:

▪ The server SHOULD select an implementation-specific name string for the CLSID. If the CLSID

is the CLSID of a successfully registered component, this SHOULD be the value of the
ProgID (section 3.1.1.3.1) property of the component.

▪ The server SHOULD select an fModuleStatus (section 2.2.3) value that represents detailed
results of the registration or verification attempt for the CLSID for informational purposes.

▪ The server MUST select an HRESULT value representing the result of the registration or
verification attempt for the CLSID. This MUST be S_OK (0x00000000) to represent success, or

a failure result, as specified in [MS-ERREF] section 2.1, to represent failure.

151 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The server then MUST set the values referenced by the out parameters as follows:

▪ The server MUST set the value referenced by ppModuleFlags to an array of DWORD values, each

of which MUST use the flags specified previously with their indicated meaning.

▪ If the server constructed detailed results, it MUST set the values referenced by pcResults,

pcResultCLSIDs, pcResultNames, pcResultFlags, and pcResultHRs to represent the detailed results.
Otherwise, the server MUST set the value referenced by pcResults to zero and the values
referenced by pcResultCLSIDs, pcResultNames,pcResultFlags, and pcResultHRs to NULL.

The server then MUST return S_OK (0x00000000) on successful completion, and an implementation-
specific failure result, as specified in [MS-ERREF] section 2.1, on failure.

3.1.4.11 IRegister2

The IRegister2 interface provides methods for registration, as specified in section 1.3.6, and creating
component configurations. This interface inherits from IUnknown, as specified in [MS-DCOM] section
3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class

with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {971668DC-C3FE-
4EA1-9643-0C7230F494A1} for this interface.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

CreateFullConfiguration Creates a component full configuration for an existing component.

Opnum: 3

CreateLegacyConfiguration Creates a component legacy configuration for an existing component.

Opnum: 4

PromoteLegacyConfiguration Converts a component legacy configuration into a component full configuration.

Opnum: 5

Opnum6NotUsedOnWire Reserved for local use.

Opnum: 6

Opnum7NotUsedOnWire Reserved for local use.

Opnum: 7

RegisterModule2 Registers the components in one or more modules.

Opnum: 8

Opnum9NotUsedOnWire Reserved for local use.

Opnum: 9

In the previous table, the phrase "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined since it does not affect interoperability.<324>

All methods MUST NOT throw exceptions.

3.1.4.11.1 CreateFullConfiguration (Opnum 3)

This method is called by a client to create a component full configuration for an existing component in
an existing conglomeration in the global partition.

152 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 HRESULT CreateFullConfiguration(
 [in, string] LPCWSTR pwszConglomerationIdOrName,
 [in, string] LPCWSTR pwszCLSIDOrProgId,
 [in] eComponentType ctComponentType
);

pwszConglomerationIdOrName: A string containing either the Curly Braced GUID String Syntax
([MS-DTYP] section 2.3.4.3) representation of a conglomeration identifier or the Name property
(see section 3.1.1.3.3) of a conglomeration.

pwszCLSIDOrProgId: A string containing either the Curly Braced GUID String Syntax ([MS-DTYP]
section 2.3.4.3) representation of a CLSID or the ProgID property (see section 3.1.1.3.1) of a
component.

ctComponentType: An eComponentType (section 2.2.5) value to select the bitness of the
component, when there might be multiple bitnesses.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as

specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server then MUST perform parameter validation as follows:

▪ The server MUST verify that ctComponentType is a valid eComponentType (section 2.2.5) value
and that it represents a bitness that is supported by the server.

The server then MUST select a target conglomeration based on the value of
pwszConglomerationIdOrName as follows:

▪ If pwszConglomerationIdOrName is in Curly Braced GUID String Syntax ([MS-DTYP] section
2.3.4.3), the server MUST do the following:

▪ The server MUST convert this string to a GUID.

▪ If this GUID is the conglomeration identifier of a conglomeration that exists on the server, the
server MUST select that conglomeration. Otherwise, the server MUST return a failure result, as
specified in [MS-ERREF] section 2.1.

▪ If pwszConglomerationIdOrName is not in Curly Braced GUID String Syntax ([MS-DTYP] section
2.3.4.3), the server MUST verify that there exists a conglomeration with the value
pwszConglomerationIdOrName for the Name property (see section 3.1.1.3.3). If so, the server

MUST select that conglomeration.

The server then MUST verify that the target conglomeration is contained in the global partition.

The server then MUST select a component and bitness to configure, based on the value of
pwszCLSIDOrProgId as follows:

▪ If the server supports the Multiple-bitness Capability Negotiation (section 3.1.4.4) and the value of
ctComponentType is eCT_UNKNOWN (0x00000000), the server MUST perform the following:

▪ If there exists a component that has a native bitness and for which the value of the ProgID

(see section 3.1.1.3.1) property of the native bitness is pwszCLSIDOrProgId, the server MUST
select that component and the native bitness.

▪ Otherwise, if pwszCLSIDOrProgId is in Curly Braced GUID String Syntax ([MS-DTYP] section
2.3.4.3), and there exists a component with the CLSID represented by pwszCLSIDOrProgId
that has a native bitness, the server MUST select that component and the native bitness.

153 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ Otherwise, if there exists a component that has a non-native bitness and for which the value
of the ProgID (see section 3.1.1.3.1) property of the non-native bitness is

pwszCLSIDOrProgId, the server MUST select that component and the non-native bitness.

▪ Otherwise, if pwszCLSIDOrProgId is in Curly Braced GUID String Syntax ([MS-DTYP] section

2.3.4.3), and there exists a component with the CLSID represented by pwszCLSIDOrProgId
that has a non-native bitness, the server MUST select that component and the non-native
bitness.

▪ Otherwise, the server MUST return a failure result, as specified in [MS-ERREF] section 2.1.

▪ If the server does not support the multiple-bitness capability negotiation, as specified in section
3.1.4.4, or the value of ctComponentType specifies the bitness, the server MUST perform the
following:

▪ If there exists a component that has the specified bitness and for which the value of the
ProgID (see section 3.1.1.3.1) property of the non-native bitness is pwszCLSIDOrProgId, the
server MUST select that component and the specified bitness.

▪ Otherwise, if pwszCLSIDOrProgId is in Curly Braced GUID String Syntax ([MS-DTYP] section
2.3.4.3), and there exists a component with the CLSID represented by pwszCLSIDOrProgId
that has the specified bitness, the server MUST select that component and the specified

bitness.

▪ Otherwise, the server MUST return a failure result (as specified in [MS-ERREF] section 2.1).

The server then MUST verify that creating a component full configuration for the selected component
and bitness in the selected conglomeration would not violate the constraints specified for component
configurations in sections 3.1.1.3.1 and 3.1.1.3.3.

The server then MUST attempt to create a component full configuration for the selected component
and bitness in the selected conglomeration, using implementation-specific default values for the

properties, and fail the call if it cannot.

3.1.4.11.2 CreateLegacyConfiguration (Opnum 4)

This method is called by a client to create a component legacy configuration for an existing component
in an existing conglomeration in the global partition.

 HRESULT CreateLegacyConfiguration(
 [in, string] LPCWSTR pwszConglomerationIdOrName,
 [in, string] LPCWSTR pwszCLSIDOrProgId,
 [in] eComponentType ctComponentType
);

pwszConglomerationIdOrName: A string containing either the Curly Braced GUID String Syntax
([MS-DTYP] section 2.3.4.3) representation of a conglomeration identifier or the Name property
(see section 3.1.1.3.3) of a conglomeration.

pwszCLSIDOrProgId: A string containing either the Curly Braced GUID String Syntax ([MS-DTYP]

section 2.3.4.3) representation of a CLSID or the ProgID property (see section 3.1.1.3.1) of a
component.

ctComponentType: An eComponentType (section 2.2.5) value to select the bitness of the component
when there might be multiple bitnesses. This value MUST NOT be eCT_UNKNOWN or eCT_ANY.

Return Values: This method MUST return S_OK (0x00000000) on success and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

154 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server then MUST perform parameter validation as follows:

▪ The server MUST verify that ctComponentType is a valid eComponentType (section 2.2.5) value

and that it represents a bitness that is supported by the server.

The server then MUST select a target conglomeration based on the value of
pwszConglomerationIdOrName as follows:

▪ If pwszConglomerationIdOrName is in Curly Braced GUID String Syntax ([MS-DTYP] section
2.3.4.3), the server MUST do the following:

▪ The server MUST convert this string to a GUID.

▪ If this GUID is the conglomeration identifier of a conglomeration that exists on the server, the

server MUST select that conglomeration. Otherwise, the server MUST return a failure result. as
specified in [MS-ERREF] section 2.1.

▪ If pwszConglomerationIdOrName is not in Curly Braced GUID String Syntax ([MS-DTYP] section
2.3.4.3), the server MUST verify that there exists a conglomeration with the value
pwszConglomerationIdOrName for the Name property (see section 3.1.1.3.3). If so, the server
MUST select that conglomeration.

The server then MUST verify that the target conglomeration is contained in the global partition.

The server then MUST select a component and bitness to configure, based on the value of
pwszCLSIDOrProgId as follows:

▪ If the server does not support the multiple-bitness capability (section 3.1.4.4) or the value of
ctComponentType specifies the bitness, the server MUST perform the following:

▪ If the first character of pwszCLSIDOrProgId is not "{", the server MUST determine whether or
not there exists a component that has the specified bitness and for which the value of the

ProgID (see section 3.1.1.3.1) property of the non-native bitness is pwszCLSIDOrProgId. If
such a component exists, the server MUST select that component and the specified bitness. If
no such component exists, the server MUST return a failure result (as specified in [MS-
ERREF] (section 2.1)).

▪ If the first character of pwszCLSIDOrProgId is "{", the server MUST verify that
pwszCLSIDOrProgId is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3). The
server then MUST determine whether or not there exists a component with the CLSID

represented by pwszCLSIDOrProgId that has the specified bitness. If such a component exists,
the server MUST select that component and the specified bitness. If no such component
exists, the server MUST return a failure result, as specified in [MS-ERREF] section 2.1.

The server then MUST verify that creating a component legacy configuration for the selected
component and bitness in the selected conglomeration would not violate the constraints specified for
component configurations in sections 3.1.1.3.1 and 3.1.1.3.3.

The server then MUST attempt to create a component legacy configuration for the selected component
and bitness in the selected conglomeration, using implementation-specific default values for the
properties, and fail the call if it cannot.

3.1.4.11.3 PromoteLegacyConfiguration (Opnum 5)

This method is called by a client to convert an existing component legacy configuration for a
component into a component full configuration for that component.

155 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 HRESULT PromoteLegacyConfiguration(
 [in, string] LPCWSTR pwszConglomerationIdOrName,
 [in, string] LPCWSTR pwszCLSIDOrProgId,
 [in] eComponentType ctComponentType
);

pwszConglomerationIdOrName: A string containing either the Curly Braced GUID String Syntax
([MS-DTYP] section 2.3.4.3) representation of a conglomeration identifier or the Name property
(see section 3.1.1.3.3) of a conglomeration.

pwszCLSIDOrProgId: A string containing either the Curly Braced GUID String Syntax ([MS-DTYP]
section 2.3.4.3) representation of a CLSID or the ProgID property (see section 3.1.1.3.1) of a
component.

ctComponentType: An eComponentType (section 2.2.5) value to select the bitness of the
component, when there might be multiple bitnesses.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result (as

specified in [MS-ERREF] section 2.1) on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server then MUST perform parameter validation as follows:

▪ The server MUST verify that ctComponentType is a valid eComponentType value, that it is not
eCT_UNKNOWN, and that it represents a bitness that is supported by the server.

The server then MUST select a target conglomeration based on the value of
pwszConglomerationIdOrName as follows:

▪ If pwszConglomerationIdOrName is in Curly Braced GUID String Syntax ([MS-DTYP] section
2.3.4.3), the server MUST do the following:

▪ The server MUST convert this string to a GUID.

▪ If this GUID is the conglomeration identifier of a conglomeration that exists on the server,
then the server MUST select that conglomeration. Otherwise, the server MUST return a failure
result, as specified in [MS-ERREF] section 2.1.

▪ If pwszConglomerationIdOrName is not in Curly Braced GUID String Syntax ([MS-DTYP] section
2.3.4.3), the server MUST verify that there exists a conglomeration with the value
pwszConglomerationIdOrName for the Name property (see section 3.1.1.3.3). If so, the server

MUST select that conglomeration.

The server then MUST verify that the target conglomeration is contained in the global partition.

The server then MUST select a component to configure, based on the value of pwszCLSIDOrProgId as
follows:

▪ If the first character of pwszCLSIDOrProgId is not "{", the server MUST determine whether or not
there exists a component legacy configuration in the selected conglomeration for which the value
of the ProgID (see section 3.1.1.3.1) property is pwszCLSIDOrProgId. If such a component exists,

then the server MUST select that component. If no such component exists, the server MUST return
a failure result (as specified in [MS-ERREF] (section 2.1)).

▪ If the first character of pwszCLSIDOrProgId is "{", the server MUST verify that
pwszCLSIDOrProgId is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3). The
server then MUST determine whether or not there exists a component legacy configuration in the
selected conglomeration with the CLSID represented by pwszCLSIDOrProgId. If such a component

156 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

exists, then the server MUST select that component. If no such component exists, the server
MUST return a failure result, as specified in [MS-ERREF] section 2.1.

The server then MUST verify that the existing component legacy configuration for the selected
component has the component full configuration specified by ctComponentType.

The server then MUST attempt to remove the existing component legacy configuration for the selected
component and create a component full configuration for the selected component and component full
configuration in the same conglomeration, using implementation-specific default values for the
properties, and fail the call if it cannot.

3.1.4.11.4 RegisterModule2 (Opnum 8)

This method is called by a client to register the components in one or more modules and to create

component full configurations for those modules in an existing conglomeration. This method supports
conglomerations in any partition.

Alternatively, this method can be called to verify modules without actually registering the components.

As a side effect, this method returns implementation-specific detailed results of the registration or
verification operation for informational purposes.

 HRESULT RegisterModule2(
 [in] GUID ConglomerationIdentifier,
 [in] GUID PartitionIdentifier,
 [in, string, size_is(cModules,)]
 LPWSTR* ppModules,
 [in] DWORD cModules,
 [in] DWORD dwFlags,
 [in, size_is(cRequested), unique]
 GUID* pRequestedCLSIDs,
 [in] DWORD cRequested,
 [out, size_is(,cModules)] DWORD** ppModuleFlags,
 [out] DWORD* pcResults,
 [out, size_is(,*pcResults)] GUID** ppResultCLSIDs,
 [out, string, size_is(,*pcResults)]
 LPWSTR** ppResultNames,
 [out, size_is(,*pcResults)] DWORD** ppResultFlags,
 [out, size_is(,*pcResults)] LONG** ppResultHRs
);

ConglomerationIdentifier: The conglomeration identifier of an existing conglomeration on the
server, in which the component full configurations are to be created, or against which the modules
are to be verified.

PartitionIdentifier: The partition identifier of the partition in which the conglomeration identified by
ConglomerationIdentifier is contained, or against which the modules are to be verified.

ppModules: An array of one or more strings, each of which is a path in UNC to a file that the server
will recognize as a module.

cModules: The number of elements in ppModules.

dwFlags: A combination of zero or more of the following flags.

Flag Meaning

fREGISTER_VERIFYONLY

0x00000020

The server SHOULD verify the modules, but MUST NOT actually register any
components.

fREGISTER_EVENTCLASSES The server MUST configure the components registered by this operation as
event classes.

157 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Flag Meaning

0x00000400

pRequestedCLSIDs: Either an array of one or more CLSIDs of components to be registered (or
verified), or NULL to specify that all components in the modules are to be registered (or verified).

cRequested: The number of elements in pRequestedCLSIDs.

ppModuleFlags: A pointer to a variable that, upon successful completion, SHOULD be set to an array
of fModuleStatus (section 2.2.3) values representing the detailed results of registration for the

modules located by the paths in ppModules, in the same order.

pcResults: A pointer to a variable that, upon successful completion, MUST be set to the number of
result items, as specified later.

ppResultCLSIDs: A pointer to a variable that, upon successful completion, MUST be set to an array
of GUID values, each being the CLSID of a result item, as specified later.

ppResultNames: A pointer to a variable that, upon successful completion, MUST be set to an array

of string values, each being an implementation-specific<325> name of a result item, as specified
later, in the same order as ppResultCLSIDs.

ppResultFlags: A pointer to a variable that, upon successful completion, MUST be set to an array of
fComponentStatus (section 2.2.4) values, each representing detailed results for a result item, as
specified later, in the same order as ppResultCLSIDs.

ppResultHRs: A pointer to a variable that, upon successful completion, MUST be set to an array of
values, each representing an HRESULT ([MS-ERREF] section 2.1) for a result item, as specified

later, in the same order as ppResultCLSIDs.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server then MUST perform parameter validation as follows:

▪ If cModules is zero, the server MUST fail the call.

▪ For each element of ppModules, the server MUST verify that its value is not NULL. If ppModules is
NULL, the server MUST fail the call.

▪ The server SHOULD<326> verify that dwFlags is a valid combination of the flags specified
previously, and fail the call if not.

A server MAY legally reject a call with a nonzero number of elements in pRequestedCLSIDs as
unsupported, returning a failure result immediately. A server also MAY<327> support a nonzero

number of elements in pRequestedCLSIDs for only a subset of the types of modules it supports,
returning a failure result after it has analyzed the modules.

If the fREGISTER_VERIFYONLY flag is not set in the dwFlags parameter, the server MUST verify that
there exists a partition with the partition identifier specified in PartitionIdentifier, and that there exists
a conglomeration in this partition with the conglomeration identifier specified in
ConglomerationIdentifier, and fail the call if not. The registration procedure specified later MUST be
performed with this conglomeration as the target conglomeration.

If the fREGISTER_VERIFYONLY flag is set in the dwFlags parameter, the server MUST determine
whether there exists a partition with the partition identifier specified in PartitionIdentifier and, if so,

158 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

whether there exists a conglomeration in this partition with the conglomeration identifier specified in
ConglomerationIdentifier. If there exists such a conglomeration, the verification procedure MUST be

performed as a targeted verification, as specified later, with this conglomeration as the target
conglomeration. If not, the verification procedure MUST be performed as an untargeted verification, as

specified later.

The remainder of the protocol behavior specified for this method SHOULD<328> be performed as an
atomic transaction; in other words, either the operation SHOULD fully succeed or the server SHOULD
make no changes to the catalog. This described behavior is provided to facilitate the explanation of
how the protocol behaves. This document does not mandate that implementations adhere to this
model as long as their external behavior is consistent with that described in this document.

The server MUST process each element of ppModules as specified later, in an arbitrary order selected

by the server. Any failure point that follows in this section that specifies the server fail for the module
indicates that the server MAY<329> tolerate the failure and continue to the next element of
ppModules. If the server tolerates failures, and this failure tolerance results in the call returning S_OK
(0x00000000), the server MUST set the flags in the results returned in ppModuleFlags for each
module as specified later, so that the client can determine which elements succeeded and which

elements failed.

As the server processes the elements of ppModules, it MUST construct a processed CLSIDs set,
starting with an empty set, which is used to determine the overall success or failure of the call once all
modules have been process.

For each element of ppModules, the server MUST perform the following:

▪ The server SHOULD<330> verify that the value of the element is a path in UNC, and fail for the
module if not.

▪ The server then SHOULD<331> determine whether the file located by the path exists and is

accessible via some implementation-specific mechanism, and fail for the module if not.

▪ If the file does exist, the server then SHOULD<332> determine whether it recognizes the file as a
module, and fail for the module if not.

▪ If the file is recognized as a module, the server then MUST, by using an implementation-specific
mechanism, attempt to determine the set of components contained in the module, and fail for the
module if it cannot.

▪ If the client specified a list of CLSIDs in pRequestedCLSIDs, the server MUST select as the set of

processed CLSIDs for the module the intersection of the set of CLSIDs of the components
contained in the module and the set of CLSIDs in pRequestedCLSIDs. Otherwise, the server MUST
select as the set of processed CLSIDs for the module the set of CLSIDs of the components
contained in the module.

▪ If the fREGISTER_VERIFYONLY flag is set in the dwFlags parameter, the server MUST perform the
following:

▪ For each CLSID in the set of processed CLSIDs for the module, the server MUST perform the
following:

▪ If the server is performing a targeted verification, the server MUST verify that there is not
an existing component with this CLSID configured in the target conglomeration, and fail
for the module if so. If the server is performing an untargeted verification, then this
requirement does not apply.

▪ The server MUST verify that there is not an existing component with this CLSID that has

an existing component legacy configuration, and fail the module if there is.

159 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ If the fREGISTER_VERIFYONLY flag is not set in the dwFlags parameter, the server MUST perform
the following:

▪ For each CLSID in the set of processed CLSIDs for the module, the server MUST perform the
following:

▪ The server MUST, via an implementation-specific mechanism, attempt to register the
component in the module with this CLSID, and fail for the module if it cannot. Whether or
not it is considered a failure to attempt to register a component that has the same CLSID
as a component that already exists is implementation-specific.

▪ The server MUST verify that it is possible, according to the constraints specified for
component configurations in sections 3.1.1.3.1 and 3.1.1.3.3, to create a component full
configuration for the newly registered component in the target conglomeration, and fail if

not.

▪ The server MUST attempt to create a component full configuration for that component in
the target conglomeration, using implementation-specific default values (see section

3.1.1.2.6) for properties except IsEventClass (section 3.1.1.3.1), and fail for the module if
it cannot.

▪ If the fREGISTER_EVENTCLASSES flag is set in the dwFlags parameter, the server MUST

attempt to set the IsEventClass property of the newly created component full configuration
to the value TRUE (0x00000001), and fail for the module if it cannot.

▪ If the flag fREGISTER_EVENTCLASSES is not set in the dwFlags parameter, the server
MUST attempt to set the IsEventClass property of the newly created component full
configuration to the value FALSE (0x00000000), and fail for the module if it cannot.

▪ The server MAY<333> attempt to create configured interface and configured method
entries for the interfaces supported by the registered component, using implementation-

specific default values (see section 3.1.1.2.6) for properties, in the newly created
component full configuration, and fail for the module if it cannot.

▪ The server then MUST attempt to add the set of processed CLSIDs for the module to the set of
processed CLSIDs, and fail for the module if it cannot. Collisions SHOULD be tolerated for an
untargeted verification and SHOULD NOT be tolerated for a targeted verification. Note that
collisions are not possible for registration due to the constraints on component configurations.

Having processed all of the modules, the server MUST determine the success of the call as follows:

▪ If the client specified a list of CLSIDs in pRequestedCLSIDs, the server MUST verify that the set of
process CLSIDs is identical to the set of CLSIDs in pRequestedCLSIDs, and fail the call if not.

Upon successful completion of the call, the server SHOULD construct the detailed results to return to
the client, as specified later. Upon successful completion in which the server failed for any modules,
the server MUST do so. If the server constructs detailed results, this MUST be performed as follows:

▪ For each processed CLSID, the server MUST perform the following:

▪ The server SHOULD select an implementation-specific name string for the CLSID. If the CLSID

is the CLSID of a successfully registered component, this SHOULD be the value of the ProgID
(see section 3.1.1.3.1) property of the component.

▪ The server SHOULD select an fModuleStatus (section 2.2.3) value that representing the
detailed results of the registration or verification attempt for the CLSID for informational
purposes.

160 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ The server MUST select an HRESULT value representing the result of the registration or
verification attempt for the CLSID. This MUST be S_OK (0x00000000) to represent success, or

a failure result, as specified in [MS-ERREF] section 2.1, to represent failure.

The server then MUST set the values referenced by the out parameters as follows:

▪ The server MUST set the value referenced by ppModuleFlags to an array of DWORD values, each
of which MUST use the flags specified previously with their indicated meaning.

▪ If the server constructed detailed results, it MUST set the values referenced by pcResults,
pcResultCLSIDs, pcResultNames, pcResultFlags, and pcResultHRs to represent the detailed results.
Otherwise, the server MUST set the value referenced by pcResults to zero and the values
referenced by pcResultCLSIDs, pcResultNames, pcResultFlags, and pcResultHRs to NULL.

The server MUST then return S_OK (0x00000000) on successful completion, and an implementation-

specific failure result, as specified in [MS-ERREF] section 2.1, on failure.

3.1.4.12 IImport

The IImport interface provides methods for importing, as specified in Export and

Import (section 1.3.7), conglomerations and partitions from installer package files and returning
information about installer package files. This interface inherits from IUnknown, as specified in [MS-
DCOM] section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class
with the CLSID CLSID_COMAServer (see section 1.9) using the UUID {C2BE6970-DF9E-11D1-8B87-
00C04FD7A924} for this interface.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

ImportFromFile Imports a conglomeration from a file.

Opnum: 3

QueryFile Returns information about an installer package file.

Opnum: 4

Opnum5NotUsedOnWire Reserved for local use.

Opnum: 5

Opnum6NotUsedOnWire Reserved for local use.

Opnum: 6

In the previous table, the phrase "Reserved for local use" means that the client MUST NOT send the
opnum and the server behavior is undefined since it does not affect interoperability.<334>

All methods MUST NOT throw exceptions.

3.1.4.12.1 ImportFromFile (Opnum 3)

This method is called by a client to import one or more conglomerations from an installer package file.
Importing a conglomeration from an installer package file conceptually consists of installation of
modules, including the registration of the components in those modules, and creating a
conglomeration and component configurations equivalent to the conglomeration and the component
configurations that were exported to create the installer package file. As a side effect, this method

161 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

returns implementation-specific detailed results of the registration operation for informational
purposes.

 HRESULT ImportFromFile(
 [in, string, unique] WCHAR* pwszModuleDestination,
 [in, string] WCHAR* pwszInstallerPackage,
 [in, string, unique] WCHAR* pwszUser,
 [in, string, unique] WCHAR* pwszPassword,
 [in, string, unique] WCHAR* pwszRemoteServerName,
 [in] DWORD dwFlags,
 [in] GUID* reserved1,
 [in] DWORD reserved2,
 [out] DWORD* pcModules,
 [out, size_is(,*pcModules)] DWORD** ppModuleFlags,
 [out, string, size_is(,*pcModules)]
 LPWSTR** ppModules,
 [out] DWORD* pcComponents,
 [out, size_is(,*pcComponents)] GUID** ppResultCLSIDs,
 [out, string, size_is(,*pcComponents)]
 LPWSTR** ppResultNames,
 [out, size_is(,*pcComponents)] DWORD** ppResultFlags,
 [out, size_is(,*pcComponents)] LONG** ppResultHRs
);

pwszModuleDestination: Either a path in UNC to a directory that is to be used as the installation
target location for modules and other files, or NULL to indicate that a directory is to be selected by
the server.

pwszInstallerPackage: A path in UNC to a file that the server will recognize as an installer package
file.

pwszUser: Either a user account name to be used as the RunAsUser property (see section 3.1.1.3.6)

for the newly created conglomerations, or NULL to specify that the RunAsUser property for each
conglomeration represented in the installer package file is to be used.

pwszPassword: Either a password to be used as the Password property (see section 3.1.1.3.3) for

the newly created conglomerations, or NULL to specify that the Password property is to be set to
NULL.

pwszRemoteServerName: Either a remote server name to be used as the ServerName property

(see section 3.1.1.3.6) for the newly created conglomerations if the conglomerations represented
in the installer package file are proxy conglomerations; that is, if they have the IsProxyApp
property (see section 3.1.1.3.27) set to TRUE (0x00000001)), or NULL for nonproxy
conglomerations.

dwFlags: MUST be a combination of zero or more of the following flags.

Flag Meaning

fIMPORT_OVERWRITE

0x00000001

The server is requested to overwrite existing files when installing modules.

fIMPORT_WITHUSERS

0x00000010

The server is requested to create the role members represented in the installer
package file.

reserved1: A pointer to a GUID value that MUST be GUID_NULL and MUST be ignored on receipt.

reserved2: MUST be set to zero when sent and MUST be ignored on receipt.

pcModules: A pointer to a variable that, upon successful completion, MUST be set to the number of
modules installed from the installer package file.

162 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ppModuleFlags: A pointer to a variable that upon successful completion, MUST be set to an array of
fModuleStatus (section 2.2.3) values representing the detailed results of registration for the

modules in ppModules, in the same order.

ppModules: A pointer to a variable that, upon successful completion, MUST be set to an array of

strings representing file names of modules installed from the installer package file.

pcComponents: A pointer to a variable that, upon successful completion, MUST be set to the
number of components that the server registered or attempted to register.

ppResultCLSIDs: A pointer to a variable that, upon successful completion, MUST be set to an array
of GUID values, each being the CLSID of a component that the server registered or attempted to
register.

ppResultNames: A pointer to a variable that, upon successful completion, SHOULD be set to an

array of string values, each being an implementation-specific name of a component that the
server registered or attempted to register, in the same order as ppResultClsids.

ppResultFlags: A pointer to a variable that, upon successful completion, SHOULD be set to an array

of fComponentStatus (section 2.2.4) values, each representing detailed results for a component
that the server registered or attempted to register, in the same order as ppResultClsids.

ppResultHRs: A pointer to a variable that, upon successful completion, SHOULD be set to an array

of LONG values, each representing an HRESULT ([MS-ERREF] section 2.1) for a component that
the server registered or attempted to register, in the same order as ppResultClsids.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Return value/code Description

0x00000000

S_OK

The call was successful.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server then MUST perform parameter validation as follows:

▪ If pwszModuleDestination is not NULL, the server SHOULD<335> verify that it is a path in UNC,

and fail the call if not.

▪ The server SHOULD<336> verify that pwszInstallerPackage is a path in UNC, and fail the call if
not.

▪ The server SHOULD<337> verify that dwFlags is a valid combination of the flags specified
previously, and fail the call if not.

The server then MUST verify that the file located by the path exists and is accessible, and that the

server recognizes the file as an installer package file, and fail the call if not.

The server then MUST select a GUID to use as the partition identifier for the target partition, as
follows:

▪ If the import target partition identifier (section 3.1.1.5) is not the partition identifier of the
global partition, the server MUST select the import target partition identifier. This behavior
enables clients to explicitly specify a target partition.

163 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ If the client did not explicitly specify a target partition by setting the import target partition
identifier, but the installer package file was created by a call to IExport2::ExportPartition (opnum

3) (section 3.1.4.15.1), the server MUST select the partition identifier of the exported partition.

▪ If the target partition is not explicitly specified by the client or by an installer package file created

by a call to, the server MUST select the partition identifier of the global partition.

The remainder of the protocol behavior specified for this method SHOULD be performed as an atomic
transaction, in other words either the operation fully succeeds or the server makes no changes to the
catalog. This described behavior is provided to facilitate the explanation of how the protocol behaves.
This document does not mandate that implementations adhere to this model as long as their external
behavior is consistent with that described in this document.

The server MUST select an existing partition as the target partition, or create a new partition, which

will be the target partition, as follows:

▪ If the GUID selected previously is the partition identifier of an existing partition on the server, the
server MUST perform the following:

▪ If the value of the Changeable property (see section 3.1.1.3.6) of the partition is TRUE
(0x00000001), the server MUST select the partition as the target partition.

▪ Otherwise, the server MUST fail the call.

▪ If the GUID selected previously is not the partition identifier of an existing partition, the server
MUST perform the following:

▪ If the server does not support the multiple-partition capability, as specified in section 3.1.4.3,
the server MUST fail the call.

▪ If the value of the PartitionsEnabled property (see section 3.1.1.3.8) of the machine settings is
FALSE (0x00000000), the server MUST fail the call.

▪ Otherwise, the server MUST attempt to create a new partition with the selected GUID as the

partition identifier and implementation-specific default values for the rest of the properties,

and fail the call if it cannot.

Having selected a target partition, the server then MUST select a GUID to be used as the
conglomeration identifier for each conglomeration represented in the installer package file as follows:

▪ For each conglomeration represented in the installer package file, the server MUST perform the
following:

▪ If the conglomeration identifier of the conglomeration represented in the installer package file

is equal to the conglomeration identifier of an existing conglomeration on the server, the
server MUST perform the following:

▪ If the existing conglomeration is in the target partition, the server MUST fail the call.

▪ Otherwise, the server MUST attempt to generate a GUID using the mechanism as specified
in [C706] section A.2.5, and fail the call if it cannot.

▪ Otherwise, the server MUST select the conglomeration identifier of the conglomeration

represented in the installer package file.

For each conglomeration represented in the installer package file, the server then MUST attempt to
perform an implementation-specific import procedure, and fail the call if it cannot. This document does
not specify how this procedure is performed, except that the implementation's export and import
procedures SHOULD have round-trip consistency, defined as follows:

164 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ If a conglomeration on a server is successfully exported to an installer package file by a call to
either IExport::ExportConglomeration (opnum 3) (section 3.1.4.14.1) or a call to

IExport2::ExportPartition (opnum 3)), and the conglomeration is then successfully imported onto
a second server, identical to the first except that the conglomeration possibly does not exist on

the second server, then the newly created conglomeration on the second server SHOULD have
identical configuration as visible via COMA, with the following exceptions:

▪ The partition in which the conglomeration is created MUST be selected as specified previously.

▪ The conglomeration identifier of the newly created conglomeration MUST be selected as
specified previously.

▪ The locations of the files, including modules, created as part of the import operation SHOULD
be the location specified by pwszModuleDestination if so specified, and an implementation-

specific location if not. Those properties of the entries created that represent paths to files
(properties of type ImplementationSpecificPathProperty) SHOULD therefore be based on this
destination regardless of their original values on the first server.

▪ Files that already exist at the location specified above SHOULD be overwritten only if at least
one of the following is true:

▪ The fIMPORT_OVERWRITE flag is set in the dwFlags parameter.

▪ The installer package file contains an overwrite directive taht was set by a call to
IExport::ExportConglomeration (opnum 3) with fEXPORT_OVERWRITE passed in its
dwFlags Parameter

▪ If neither of the previous conditions is true, and if the import requires that existing files be
overwritten, then the server SHOULD fail the call.

▪ The RunAsUser property (see section 3.1.1.3.6) SHOULD be the value specified by pwszUser if
not NULL.

▪ The Password property (see section 3.1.1.3.3) SHOULD be the value specified by
pwszPassword.

▪ If the exported conglomeration was created as a proxy (see sections 3.1.4.14.1 and
3.1.4.15.1) the IsProxyApp property SHOULD be set to TRUE (0x00000001).

▪ The ServerName property (see section 3.1.1.3.6) SHOULD be the value specified by
pwszRemoteServerName.

▪ If the fIMPORT_WITHUSERS (0x00000010) flag is not set in dwFlags, or if the installer

package file was created without exporting user account information (see sections 3.1.4.14.1
and 3.1.4.15.1), each of the newly created conglomeration's roles SHOULD be empty.

The server then SHOULD construct detailed results to return to the client for informational purposes. If
the server constructs detailed results, this MUST be performed as follows:

▪ If the import was a success, the server MUST select as the set of processed CLSIDs the set of
CLSIDs of components that were registered as part of the import. Otherwise, the set of processed

CLSIDs SHOULD represent the components that the server attempted to register as part of the
import.

▪ For each component, the server MUST perform the following:

▪ The server SHOULD select an implementation-specific name string for the CLSID. If the CLSID
is the CLSID of a successfully registered component, this SHOULD be the value of the ProgID
(see section 3.1.1.3.1) property of the component.

165 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ The server SHOULD select an implementation-specific DWORD value representing detailed
results of the registration or verification attempt for the CLSID for informational purposes.

▪ The server MUST select an HRESULT value representing the result of the registration or
verification attempt for the CLSID. This MUST be S_OK (0x00000000) to represent success, or

a failure result, as specified in [MS-ERREF] section 2.1, to represent failure.

The server then MUST set the values referenced by the out parameters as follows:

▪ The server SHOULD set the value reference by ppModules to an array of strings representing file
names of modules in the import package file.

▪ The server SHOULD set the value referenced by ppModuleFlags to an array of fModuleStatus
values, each of which represents the detailed results of the registration or attempt to register a
module. If the server constructed detailed results, it MUST set the values referenced by pcResults,

pcResultCLSIDs, pcResultNames,pcResultFlags, and pcResultHRs to represent the detailed results.
Otherwise, the server MUST set the value referenced by pcResults to zero and the values
referenced by pcResultCLSIDs, pcResultNames,pcResultFlags, and pcResultHRs to NULL.

The server MUST then return S_OK (0x00000000) on successful completion, and an implementation-
specific failure result, as specified in [MS-ERREF] section 2.1, on failure.

3.1.4.12.2 QueryFile (Opnum 4)

This method is called by a client to retrieve information about an installer package file.

 HRESULT QueryFile(
 [in, string] WCHAR* pwszInstallerPackage,
 [out] DWORD* pdwConglomerations,
 [out, string, size_is(, *pdwConglomerations)]
 LPWSTR** ppNames,
 [out, string, size_is(, *pdwConglomerations)]
 LPWSTR** ppDescriptions,
 [out] DWORD* pdwUsers,
 [out] DWORD* pdwIsProxy,
 [out] DWORD* pcModules,
 [out, string, size_is(, *pcModules)]
 LPWSTR** ppModules
);

pwszInstallerPackage: A path in UNC to a file that the server will recognize as an installer package
file.

pdwConglomerations: A pointer to a variable that, upon successful completion, MUST be set to the
number of conglomerations represented in the installer package file.

ppNames: A pointer to a variable that, upon successful completion, MUST be set to an array of string
values, each of which is the value of the Name property (see section 3.1.1.3.3) of a
conglomeration represented in the installer package file.

ppDescriptions: A pointer to a variable that, upon successful completion, MUST be set to an array of

string values, each of which is the value of the Description property (see section 3.1.1.3.1) of a
conglomeration represented in the installer package file.

pdwUsers: A pointer to a variable that, upon successful completion, MUST be set to the value TRUE
(0x00000001) if the installer package file contains configuration for user accounts, and FALSE
(0x00000000) otherwise.

166 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pdwIsProxy: A pointer to a variable that, upon successful completion, MUST be set to the value
TRUE (0x00000001) if the installer package file contains a proxy conglomeration, and FALSE

(0x00000000) otherwise.

pcModules: A pointer to a variable that, upon successful completion, MUST be set to the number of

module contained in the installer package file.

ppModules: A pointer to a variable that, upon successful completion, MUST be set to an array of
strings, one for each module contained in the installer package file, each representing a file name
for the module.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Return value/code Description

0x00000000

S_OK

The call was successful.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been

performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server MUST then perform parameter validation as follows:

▪ The server SHOULD<338> verify that pwszInstallerPackage is a path in UNC and fail the call if
not.

The server MUST then verify that the file located by the path exists and is accessible, and that the
server recognizes the file as an installer package file, and fail the call if not.

The server MUST then attempt to determine the following information about the installer package file

and set the values referenced by the out parameters, failing the call if it cannot:

▪ The server MUST set the value referenced by pdwConglomerations to the number of

conglomerations in the installer package file, and the values referenced by ppNames and
ppDescriptions to arrays of Name and Description properties of these conglomerations.

▪ The server MUST set the values referenced by pdwUsers to indicate whether or not the installer
package file contains configuration for user accounts, and pdwIsProxy to indicate whether any of
the conglomerations are proxy conglomerations; in other words, the IsProxyApp property is set to

TRUE (0x00000001).

▪ The server MUST set the value referenced by pcModules to the number of modules contained in
the installer package file, and ppModules to strings representing file names for these modules.

3.1.4.13 IImport2

The IImport2 interface provides a method for setting the import target partition, as specified in Per-
Session State (section 3.1.1.5). This interface inherits from IUnknown, as specified in [MS-DCOM]

section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class
with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {1F7B1697-ECB2-
4CBB-8A0E-75C427F4A6F0} for this interface.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

167 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

SetPartition Sets the partition into which conglomerations will be imported.

Opnum: 3

Opnum4NotUsedOnWire Reserved for local use.

Opnum: 4

Opnum5NotUsedOnWire Reserved for local use.

Opnum: 5

In the previous table, the phrase "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined because it does not affect interoperability.<339>

All methods MUST NOT throw exceptions.

3.1.4.13.1 SetPartition (Opnum 3)

This method is called by a client to set the import target partition (as specified in section 3.1.1.5).

 HRESULT SetPartition(
 [in] GUID* pPartitionIdentifier,
 [out] GUID* pReserved
);

pPartitionIdentifier: A pointer to a variable containing a GUID to be used as the partition identifier
for the import target partition.

pReserved: A pointer to a variable that is set to any arbitrary value when sent by the server and
MUST be ignored on receipt by the client.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result (as
specified in [MS-ERREF], section 2.1) on failure. All failure results MUST be treated identically.

Return value/code Description

0x00000000

S_OK

The call was successful.

Upon receiving a call to this method, the server MUST attempt to set the import target partition

identifier (as specified in section 3.1.1.5) to the value specified in pPartitionIdentifier, and fail the call
if it cannot.

3.1.4.14 IExport

The IExport interface provides a method for exporting, as specified in Export and Import section 1.3.7,

a conglomeration to an installer package file. This interface inherits from IUnknown, as specified in

[MS-DCOM] section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class
with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {CFADAC84-E12C-
11D1-B34C-00C04F990D54} for this interface.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

168 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

ExportConglomeration Exports a conglomeration to an installer package file.

Opnum: 3

Opnum4NotUsedOnWire Reserved for local use.

Opnum: 4

Opnum5NotUsedOnWire Reserved for local use.

Opnum: 5

Opnum6NotUsedOnWire Reserved for local use.

Opnum: 6

In the previous table, the phrase "Reserved for local use" means that the client MUST NOT send the
opnum and the server behavior is undefined because it does not affect interoperability.<340>

All methods MUST NOT throw exceptions.

3.1.4.14.1 ExportConglomeration (Opnum 3)

This method is called by a client to export a conglomeration to an installer package file.

 HRESULT ExportConglomeration(
 [in] GUID* pConglomerationIdentifier,
 [in] LPCWSTR pwszInstallerPackage,
 [in] LPCWSTR pwszReserved,
 [in] DWORD dwFlags
);

pConglomerationIdentifier: The conglomeration identifier of a conglomeration on the server.

pwszInstallerPackage: A path in UNC that is to be used as the location for the server to create an

installer package file.

pwszReserved: MUST be an empty (zero-length) string.

dwFlags: MUST be a combination of zero or more of the following flags.

Flag Meaning

fEXPORT_OVERWRITE

0x00000001

The server SHOULD mark the installer package file with a directive that existing files
be overwritten on import (section 3.1.4.12.1).

fEXPORT_WITHUSERS

0x00000010

The server SHOULD include user account information in the installer package file.

fEXPORT_PROXY

0x00000020

The server SHOULD mark the exported conglomeration as a proxy conglomeration
by setting the IsProxyApp property to TRUE (0x00000001).

fEXPORT_CATVER300

0x00000080

The server SHOULD only include configuration that is defined in catalog version
3.00.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

169 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000000

S_OK

The call was successful.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (as specified in section 3.1.1.5), and fail the call
if not.

The server MUST then attempt to perform an implementation-specific<341>export procedure that
creates an installer package file that the server will recognize. This document does not specify the

contents of this file, except that it SHOULD contain enough information to make round-trip consistent
import (see section 3.1.4.12.1) possible.

3.1.4.15 IExport2

The IExport2 interface provides a method for exporting, as specified in Export and

Import (section 1.3.7), a partition to an installer package file. This interface inherits from IUnknown,
as specified in [MS-DCOM] section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class
with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {F131EA3E-B7BE-
480E-A60D-51CB2785779E} for this interface.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

ExportPartition Exports a partition to an installer package file.

Opnum: 3

All methods MUST NOT throw exceptions.

3.1.4.15.1 ExportPartition (Opnum 3)

This method is called by a client to export all conglomerations in a partition at once to an installer
package file.

 HRESULT ExportPartition(
 [in] GUID* pPartitionIdentifier,
 [in] LPCWSTR pwszInstallerPackage,
 [in] LPCWSTR pwszReserved,
 [in] DWORD dwFlags
);

pPartitionIdentifier: The partition identifier of a partition other than the global partition on the
server.

pwszInstallerPackage: A path in UNC that is to be used as the location for the server to create an
installer package file.

pwszReserved: MUST be an empty (zero-length) string.

dwFlags: MUST be a combination of zero or more of the following flags.

170 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Flag Meaning

fEXPORT_OVERWRITE

0x00000001

The server SHOULD mark the installer package file with a directive that existing files
be overwritten on import (section 3.1.4.12.1).

fEXPORT_WITHUSERS

0x00000010

The server SHOULD include user account information in the installer package file.

fEXPORT_PROXY

0x00000020

The server SHOULD mark the exported conglomeration as a proxy conglomeration
by setting the IsProxyApp property is set to TRUE (0x00000001).

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF], section 2.1, on failure. All failure results MUST be treated identically.

Return value/code Description

0x00000000

S_OK

The call was successful.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version, as specified in section 3.1.1.5, and fail the call
if not.

The server MUST then attempt to perform an implementation-specific<342>export procedure that
creates an installer package file that the server will recognize. This document does not specify the

contents of this file, except that it SHOULD contain enough information to make round-trip consistent
import (see section 3.1.4.12.1) possible.

3.1.4.16 IAlternateLaunch

The IAlternateLaunch interface provides methods for creating and deleting Alternate launch
configurations (section 3.1.1.4). This interface inherits from IUnknown, as specified in [MS-DCOM]

section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class
with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {7F43B400-1A0E-
4D57-BBC9-6B0C65F7A889} for this interface.

Methods in RPC Opnum Order

Method Description

CreateConfiguration Creates an alternate launch configuration for a conglomeration.

Opnum: 3

DeleteConfiguration Removes an alternative launch configuration for a conglomeration.

Opnum: 4

All methods MUST NOT throw exceptions.

3.1.4.16.1 CreateConfiguration (Opnum 3)

This method is called by a client to create an alternate launch configuration, as specified in section
3.1.1.4, for a conglomeration.

 HRESULT CreateConfiguration(
 [in] GUID ConglomerationIdentifier,

171 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in] BSTR bstrConfigurationName,
 [in] DWORD dwStartType,
 [in] DWORD dwErrorControl,
 [in] BSTR bstrDependencies,
 [in] BSTR bstrRunAs,
 [in] BSTR bstrPassword,
 [in] VARIANT_BOOL bDesktopOk
);

ConglomerationIdentifier: The conglomeration identifier of a conglomeration on the server.

bstrConfigurationName: A value to be used as the AlternateLaunchName property of the alternate
launch configuration.

dwStartType: A value to be used as the StartType property of the alternate launch configuration.

dwErrorControl: A value to be used as the ErrorControl property of the alternate launch

configuration.

bstrDependencies: A value to be used as the Dependencies property of the alternate launch
configuration.

bstrRunAs: A value to be used as the AlternateLaunchRunAs property of the alternate launch
configuration.

bstrPassword: A value to be used as the AlternateLaunchPassword property of the alternate launch
configuration.

bDesktopOk: A value to be used as the DesktopOk property of the alternate launch configuration.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF], section 2.1, on failure. All failure results MUST be treated identically.

Return value/code Description

0x00000000

S_OK

The call was successful.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version, as specified in section 3.1.1.5, and fail the call
if not.

The server then MUST verify that there exists in the Conglomerations Table a conglomeration

identified by ConglomerationIdentifier, that this conglomeration allows updates, and that this
conglomeration does not have an alternate launch configuration, failing the call if not.

The server then MUST attempt to create an alternate launch configuration for the conglomeration,
using the values specified for the properties, and fail the call if it cannot.

3.1.4.16.2 DeleteConfiguration (Opnum 4)

This method is called by a client to delete an alternate launch configuration (see section 3.1.1.4) for a

conglomeration.

 HRESULT DeleteConfiguration(
 [in] GUID ConglomerationIdentifier
);

ConglomerationIdentifier: The conglomeration identifier of a conglomeration on the server.

172 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Return value/code Description

0x00000000

S_OK

The call was successful.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server then MUST verify that there exists in the Conglomerations Table a conglomeration

identified by ConglomerationIdentifier, that this conglomeration allows updates, and that this
conglomeration has an alternate launch configuration, failing the call if not.

The server then MUST attempt to remove the alternate launch configuration for the conglomeration,
and fail the call if it cannot.

3.1.4.17 ICatalogUtils

The ICatalogUtils interface is a miscellaneous utility interface. This interface inherits from IUnknown,
as specified in [MS-DCOM] section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class
with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {456129E2-1078-
11D2-B0F9-00805FC73204} for this interface.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

ValidateUser Verifies a user account name and password.

Opnum: 3

WaitForEndWrites Waits for writes to the catalog to complete.

Opnum: 4

GetEventClassesForIID Returns the event classes associated with an interface identifier (IID).

Opnum: 5

All methods MUST NOT throw exceptions.

3.1.4.17.1 ValidateUser (Opnum 3)

This method is called by a client to verify that a user account and password are valid.

 HRESULT ValidateUser(
 [in, string, unique] LPWSTR pwszPrincipalName,
 [in, string, unique] LPWSTR pwszPassword
);

pwszPrincipalName: The principal name of the user account.

pwszPassword: A password for the user account.

173 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: This method MUST return a value in the table below on success, or a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Return value/code Description

0x00000000

S_OK

The user account and password are valid.

0x00000001

S_FALSE

 The user account was not found or the password was invalid.

Upon receiving a call to this method, a server MUST attempt to verify that the principal name
identifies a user account and that the password specified is valid for that account, and fail the call if
not.

The server MUST then return S_OK if the user account and password are valid, or S_FALSE if not.

3.1.4.17.2 WaitForEndWrites (Opnum 4)

This method is called by a COMA client to synchronize with the server after performing a write

operation.

 HRESULT WaitForEndWrites();

This method has no parameters.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as

specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Return value/code Description

0x00000000

S_OK

The call was successful.

Upon receiving a call to this method, the server MUST attempt to wait until it can guarantee that the
state of the catalog for subsequent reads from and writes to the catalog will reflect all previous writes,
and fail if it cannot.

If the server makes this guarantee on return from ICatalogTableWrite::WriteTable (section 3.1.4.9.1),
the server SHOULD immediately return S_OK (0x00000000).

3.1.4.17.3 GetEventClassesForIID (Opnum 5)

This method is called by a client to get information about the event classes associated with an IID that
are configured in the Global Partition.

 HRESULT GetEventClassesForIID(
 [in, string, unique] LPWSTR wszIID,
 [out] DWORD* pcClasses,
 [out, string, size_is(, *pcClasses)]
 LPWSTR** pawszCLSIDs,
 [out, string, size_is(, *pcClasses)]
 LPWSTR** pawszProgIDs,
 [out, string, size_is(, *pcClasses)]
 LPWSTR** pawszDescriptions
);

174 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

wszIID: The Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3) representation of an IID
for which event classes will be retrieved, or NULL for an empty (zero-length) string to indicate all

event classes.

pcClasses: A pointer to a value that, upon successful completion, MUST be set to the number of

event classes for which information was returned.

pawszCLSIDs: A pointer to a value that, upon successful completion, MUST be set to an array of
Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3) representations of CLSIDs of event
classes.

pawszProgIDs: A pointer to a value that, upon successful completion, MUST be set to an array of
ProgIDs of event classes, in the same order as pawszCLSIDs.

pawszDescriptions: A pointer to a value that, upon successful completion, MUST be set to an array

of descriptions of event classes, in the same order as pawszCLSIDs.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Return value/code Description

0x00000000

S_OK

The call was successful.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

Upon receiving this method, the server MUST verify that all parameters conform to the preceding
specifications, and fail the call if not.

The server then MUST perform the following:

▪ If wszIID is NULL or an empty string, the server MUST attempt to retrieve from its catalog the

values of the CLSID, ProgID, and Description properties of all entries in the EventClasses
table (section 3.1.1.3.22) for which the PartitionIdentifier property is equal to the partition
identifier of the Global partition, and fail the call if it cannot.

▪ Otherwise, the server then MUST attempt to select all entries from the EventClasses
table (section 3.1.1.3.22) for which the IID property is equal to that specified in wszIID, and for

which the PartitionIdentifier property is equal to the partition identifier of the Global Partition, and
for those entries retrieve the values of the CLSID, ProgID, and Description properties, and fail the
call if it cannot.

The server then MUST attempt to set the values referenced by the out parameters as follows:

▪ The server MUST attempt to set the value referenced by pcClasses to the number of event classes
selected, and the values referenced by pawszCLSIDs, pawszProgIDs, and pawszDescriptions to

arrays of values for the CLSID, ProgID, and Descriptions properties for the selected event classes,
and fail the call if it cannot.

3.1.4.18 ICatalogUtils2

The ICatalogUtils2 interface is a miscellaneous utility interface. This interface inherits from IUnknown,

as specified in [MS-DCOM] section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class
with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {C726744E-5735-
4F08-8286-C510EE638FB6} for this interface.

175 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

CopyConglomerations Copies one or more conglomerations from one partition into another partition.

Opnum: 3

CopyComponentConfiguration Copies a component configuration from one conglomeration into another
conglomeration.

Opnum: 4

AliasComponent Creates an alias component configuration.

Opnum: 5

MoveComponentConfiguration Moves a component configuration from one conglomeration into another
conglomeration.

Opnum: 6

GetEventClassesForIID2 Returns the event classes associated with an interface identifier (IID).

Opnum: 7

IsSafeToDelete Determines whether it is safe to delete a file.

Opnum: 8

FlushPartitionCache Flushes a server's local cache of partition user information.

Opnum: 9

EnumerateSRPLevels Returns a list of software restriction policy levels supported by the server.

Opnum: 10

GetComponentVersions Returns a list of component configurations for a component.

Opnum: 11

All methods MUST NOT throw exceptions.

3.1.4.18.1 CopyConglomerations (Opnum 3)

This method is called by a client to copy one or more conglomerations from one partition to another.

 HRESULT CopyConglomerations(
 [in, string] LPCWSTR pwszSourcePartition,
 [in, string] LPCWSTR pwszDestPartition,
 [in] DWORD cConglomerations,
 [in, string, size_is(cConglomerations,)]
 LPCWSTR* ppwszConglomerationNamesOrIds
);

pwszSourcePartition: Either the Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3)

representation of the partition identifier or the Name property of a partition, from which
conglomerations are to be copied.

pwszDestPartition: Either the Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3)
representation of the partition identifier or the Name property of a partition, to which
conglomerations are to be copied.

cConglomerations: The number of elements in ppwszConglomerationNamesOrIds.

176 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ppwszConglomerationNamesOrIds: An array of values, each of which is either the Curly Braced
GUID String Syntax ([MS-DTYP] section 2.3.4.3) representation of the conglomeration identifier or

the Name property of a conglomeration to be copied.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as

specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server then MUST select the source partition as follows:

▪ If pwszSourcePartition is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3), the
server MUST select the partition with partition identifier equal to the GUID represented, and fail
the call if no such partition exists.

▪ Otherwise, the server MUST select the partition with the Name property equal to
pwszSourcePartition, and fail the call if no such partition exists.

The server then MUST select the destination partition as follows:

▪ If pwszDestPartition is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3), the
server MUST select the partition with the partition identifier equal to the GUID represented, and
fail the call if no such partition exists.

▪ Otherwise, the server MUST select the partition with the Name property equal to
pwszDestPartition, and fail the call if no such partition exists.

For each element of ppwszConglomerationNamesOrIds, the server then MUST select the
conglomeration to copy as follows:

▪ If the value of the element is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3), the
server MUST select the conglomeration with the conglomeration identifier equal to the GUID
represented, and fail the call if no such conglomeration exists.

▪ Otherwise, the server MUST select the conglomeration with the Name property equal to the value
of the element, and fail the call if no such conglomeration exists.

The server then MUST verify that the specified copy operation is valid, as follows:

▪ The server MUST verify that the destination partition is changeable, in other words, the
Changeable property is equal to TRUE (0x00000001), and fail the call if not.

▪ For each conglomeration selected, the server MUST perform the following:

▪ The server MUST verify that the conglomeration is contained in the source partition, and fail

the call if not.

▪ The server MUST verify that the conglomeration does not contain any component legacy
configurations, and fail the call if not.

▪ For each component full configuration in the conglomeration, the server MUST verify that
there does not already exist in the destination partition a component configuration for the
same component, and fail the call if not.

The remainder of the protocol behavior specified for this method SHOULD be performed as an atomic
transaction, in other words, either the operation SHOULD fully succeed or the server SHOULD make no
changes to the catalog. This described behavior is provided to facilitate the explanation of how the
protocol behaves. This document does not mandate that implementations adhere to this model as long
as their external behavior is consistent with that described in this document.

177 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

For each conglomeration, the server then MUST attempt to perform a copy operation, as follows:

▪ The server MUST attempt to generate a GUID, using the mechanism specified in [C706] section 3,

to be the conglomeration identifier of the copy, and fail if it cannot.

▪ The server then MUST attempt to create a new conglomeration in the destination partition with the

generated GUID as its conglomeration identifier, and fail the call if it cannot.

▪ The server then MUST attempt to copy the properties, other than PartitionIdentifier and
ConglomerationIdentifier, of the conglomeration into the copy, and fail the call if it cannot.

▪ For each component full configuration in the conglomeration, the server then MUST attempt to
create a new component full configuration in the conglomeration copy, copying all properties other
than PartitionIdentifier and ConglomerationIdentifier from the original component full
configuration, and fail the call if it cannot.

3.1.4.18.2 CopyComponentConfiguration (Opnum 4)

This method is called by a client to copy a component full configuration from one conglomeration to
another.

 HRESULT CopyComponentConfiguration(
 [in, string] LPCWSTR pwszSourceConglomeration,
 [in, string] LPCWSTR pwszComponent,
 [in, string] LPCWSTR pwszDestConglomeration
);

pwszSourceConglomeration: The Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3)
representation of the conglomeration identifier or the Name property of a conglomeration from
which the component configuration is to be copied.

pwszComponent: The Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3) representation
of the CLSID or the ProgID property of a component configured in the conglomeration specified by

pwszSourceConglomeration.

pwszDestConglomeration: The Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3)
representation of the conglomeration identifier or the Name property of a conglomeration into
which the component configuration is to be copied.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been

performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server then MUST select the source conglomeration as follows:

▪ If pwszSourceConglomeration is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3),
the server MUST select the conglomeration with a conglomeration identifier equal to the GUID
represented, and fail the call if no such conglomeration exists.

▪ Otherwise, the server MUST select the conglomeration with a Name property equal to

pwszSourceConglomeration, and fail the call if no such conglomeration exists.

The server then MUST select the destination conglomeration as follows:

▪ If pwszDestConglomeration is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3),
the server MUST select the conglomeration with a conglomeration identifier equal to the GUID
represented, and fail the call if no such conglomeration exists.

178 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ Otherwise, the server MUST select the conglomeration with a Name property equal to
pwszDestConglomeration, and fail the call if no such conglomeration exists.

The server then MUST select the component configuration to be copied as follows:

▪ If pwszComponent is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3), the server

MUST select the component with a CLSID equal to the GUID represented, and fail the call if no
such component exists.

▪ Otherwise, the server MUST select the component with a ProgID property equal to
pwszComponent, and fail the call if no such component exists.

▪ The server then MUST select the component full configuration for the selected component in the
source conglomeration, and fail the call if no such component full configuration exists.

The server then MUST verify that the copy operation specified is valid as follows:

▪ The server MUST verify that the source conglomeration and the destination conglomeration are
not contained in the same partition, and fail the call if not.

▪ The server MUST verify that the component of the component configuration to be copied is not
already configured in the destination conglomeration, and fail the call if this is already configured.

▪ The server MUST verify that the Changeable property (see section 3.1.1.3.6) of the destination
conglomeration is set to TRUE (0x00000001), and fail the call if not.

The remainder of the protocol behavior specified for this method SHOULD be performed as an atomic
transaction, in other words, either the operation SHOULD fully succeed or the server SHOULD make no
changes to the catalog. This described behavior is provided to facilitate the explanation of how the
protocol behaves. This document does not mandate that implementations adhere to this model as long
as their external behavior is consistent with that described in this document.

The server MUST attempt to create a new component full configuration for the component in the
destination conglomeration, copying all properties other than PartitionIdentifier and

ConglomerationIdentifier from the original component full configuration, and fail the call if it cannot.

3.1.4.18.3 AliasComponent (Opnum 5)

This method is called by a client to create an alias component full configuration, a component full
configuration of a virtual aliased component equivalent to the original component except in CLSID and
ProgID.

 HRESULT AliasComponent(
 [in, string] LPCWSTR pwszSourceConglomeration,
 [in, string] LPCWSTR pwszComponent,
 [in, string] LPCWSTR pwszDestConglomeration,
 [in] GUID* pNewCLSID,
 [in, string] LPCWSTR pwszNewProgID
);

pwszSourceConglomeration: The Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3)
representation of the conglomeration identifier or the Name property of a conglomeration from
which the component configuration is to be copied.

pwszComponent: The Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3) representation
of the CLSID or the ProgID property of a component configured in the specified by
pwszSourceConglomeration.

179 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pwszDestConglomeration: The Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3)
representation of the conglomeration identifier or the Name property of a conglomeration into

which the component configuration is to be copied.

pNewCLSID: A GUID to use as the CLSID of the aliased component.

pwszNewProgID: A string to be used as the ProgID of the aliased component.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server then MUST select the source conglomeration as follows:

▪ If pwszSourceConglomeration is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3),

the server MUST select the conglomeration with a conglomeration identifier equal to the GUID
represented, and fail the call if no such conglomeration exists.

▪ Otherwise, the server MUST select the conglomeration with a Name property equal to
pwszSourceConglomeration, and fail the call if no such conglomeration exists.

The server then MUST select the destination conglomeration as follows:

▪ If pwszDestConglomeration is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3),

the server MUST select the conglomeration with a conglomeration identifier equal to the GUID
represented, and fail the call if no such conglomeration exists.

▪ Otherwise, the server MUST select the conglomeration with a Name property equal to
pwszDestConglomeration, and fail the call if no such conglomeration exists.

The server then MUST select the component configuration to be aliased as follows:

▪ If pwszComponent is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3), the server

MUST select the component with a CLSID equal to the GUID represented, and fail the call if no

such component exists.

▪ Otherwise, the server MUST select the component with a ProgID property equal to
pwszComponent, and fail the call if no such component exists.

▪ The server then MUST select the component full configuration for the selected component in the
source conglomeration, and fail the call if no such component full configuration exists.<343>

The server then MUST verify that the alias operation specified is valid as follows:

▪ The server MUST verify that the source conglomeration and the destination conglomeration are

contained in the same partition, and fail the call if not.

▪ The server MUST verify that there does not exist a component with the CLSID specified in
pNewCLSID, and fail the call if this component does exist.

▪ The server MUST verify that there does not exist a component with the ProgID specified in
pwszNewProgID, and fail the call if this component does exist.

▪ The server MUST verify that the Changeable property (see section 3.1.1.3.6) of the destination

conglomeration is set to TRUE (0x00000001), and fail the call if not.

The remainder of the protocol behavior specified for this method SHOULD be performed as an atomic
transaction, in other words, either the operation SHOULD fully succeed or the server SHOULD make no
changes to the catalog. This described behavior is provided to facilitate the explanation of how the

180 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

protocol behaves. This document does not mandate that implementations adhere to this model as long
as their external behavior is consistent with that described in this document.

The server MUST attempt to create a new component full configuration for an implementation-
specific<344> aliased component in the destination conglomeration, copying all properties other than

CLSID, ProgID, PartitionIdentifier, and ConglomerationIdentifier from the original component full
configuration, and fail the call if it cannot.

3.1.4.18.4 MoveComponentConfiguration (Opnum 6)

This method is called by a client to move a component configuration from one conglomeration to
another.

 HRESULT MoveComponentConfiguration(
 [in, string] LPCWSTR pwszSourceConglomeration,
 [in, string] LPCWSTR pwszComponent,
 [in, string] LPCWSTR pwszDestinationConglomeration
);

pwszSourceConglomeration: The Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3)
representation of the conglomeration identifier or the Name property of a conglomeration from
which the component configuration is to be moved.

pwszComponent: The Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3) representation
of the CLSID or the ProgID property of a component configured in the conglomeration specified by
pwszSourceConglomeration.

pwszDestinationConglomeration: The Curly Braced GUID String Syntax ([MS-DTYP] section
2.3.4.3) representation of the conglomeration identifier or the Name property of a conglomeration
into which the component configuration is to be moved.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as

specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server then MUST select the source conglomeration as follows:

▪ If pwszSourceConglomeration is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3),
the server MUST select the conglomeration with a conglomeration identifier equal to the GUID
represented, and fail the call if no such conglomeration exists.

▪ Otherwise, the server MUST select the conglomeration with a Name property equal to
pwszSourceConglomeration, and fail the call if no such conglomeration exists.

The server then MUST select the destination conglomeration as follows:

▪ If pwszDestConglomeration is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3),
the server MUST select the conglomeration with a conglomeration identifier equal to the GUID

represented, and fail the call if no such conglomeration exists.

▪ Otherwise, the server MUST select the conglomeration with a Name property equal to
pwszDestConglomeration, and fail the call if no such conglomeration exists.

The server then MUST select the component configuration to be moved as follows:

▪ If pwszComponent is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3), the server
MUST select the component with a CLSID equal to the GUID represented, and fail the call if no
such component exists.

181 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ Otherwise, the server MUST select the component with a ProgID property equal to
pwszComponent, and fail the call if no such component exists.

▪ The server then MUST select the component full configuration for the selected component in the
source conglomeration, and fail the call if no such component full configuration exists.

The server then MUST verify that the move operation specified is valid as follows:

▪ The server MUST verify that the component of the component configuration to be moved is not
already configured in the destination conglomeration, and fail the call if this is already configured.

▪ The server MUST verify that the Changeable property (section 3.1.1.3.6) of the source
conglomeration is set to TRUE (0x00000001), and fail the call if not.

▪ The server MUST verify that the Changeable property (section 3.1.1.3.6) of the destination
conglomeration is set to TRUE (0x00000001), and fail the call if not.

The remainder of the protocol behavior specified for this method SHOULD be performed as an atomic
transaction, in other words, either the operation SHOULD fully succeed or the server SHOULD make no

changes to the catalog. This described behavior is provided to facilitate the explanation of how the
protocol behaves. This document does not mandate that implementations adhere to this model as long
as their external behavior is consistent with that described in this document.

The server MUST attempt to create a new component full configuration for the component in the

destination conglomeration, copying all properties other than PartitionIdentifier and
ConglomerationIdentifier from the original component full configuration, and fail the call if it cannot.

The server then MUST attempt to remove the original component full configuration, and fail the call if
it cannot.

3.1.4.18.5 GetEventClassesForIID2 (Opnum 7)

This method is called by a client to get information about the event classes associated with an IID that

are configured in a specified partition.

 HRESULT GetEventClassesForIID2(
 [in, string, unique] LPWSTR wszIID,
 [in] GUID* PartitionId,
 [out] DWORD* pcClasses,
 [out, string, size_is(, *pcClasses)]
 LPWSTR** pawszCLSIDs,
 [out, string, size_is(, *pcClasses)]
 LPWSTR** pawszProgIDs,
 [out, string, size_is(, *pcClasses)]
 LPWSTR** pawszDescriptions,
 [out, string, size_is(, *pcClasses)]
 LPWSTR** pawszConglomerationIDs,
 [out, size_is(, *pcClasses)] DWORD** padwIsPrivate
);

wszIID: The Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3) representation of the IID

for which event classes will be retrieved, or NULL or an empty (zero-length) string to indicate all
event classes.

PartitionId: The partition identifier of a partition within which to limit the selection of configurations

of event classes.

pcClasses: A pointer to a value that, upon successful completion, MUST be set to the number of
event classes for which information was returned.

182 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pawszCLSIDs: A pointer to a value that, upon successful completion, MUST be set to an array of
Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3) representations of CLSIDs of event

classes.

pawszProgIDs: A pointer to a value that, upon successful completion, MUST be set to an array of

ProgIDs of event classes, in the same order as pawszCLSIDs.

pawszDescriptions: A pointer to a value that, upon successful completion, MUST be set to an array
of descriptions of event classes, in the same order as pawszCLSIDs.

pawszConglomerationIDs: A pointer to a value that, upon successful completion, MUST be set to an
array of Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3) representations of the
conglomerations in which the event classes are configuration, in the same order as pawszCLSIDs.

padwIsPrivate: A pointer to a value that, upon successful completion, MUST be set to an array of

value indicating whether the configurations are private, in other words the IsPrivate property has
the value TRUE (0x000000001), in the same order as pawszCLSIDs.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as

specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

Upon receiving this method, the server MUST verify that all parameters conform to the preceding
specifications, and fail the call if not.

The server then MUST perform the following:

▪ If wszIID is NULL or an empty string, the server MUST attempt to select from its catalog all entries
in the EventClasses table (section 3.1.1.3.22), and fail the call if it cannot.

▪ Otherwise, the server then MUST attempt to select all entries from the EventClasses table for
which the IID property is equal to that specified in wszIID, and Description properties, and fail the

call if it cannot.

The server then MUST remove from the selection all event classes that do not have a component
configuration in the partition specified in PartitionId, and for the remaining event classes select the
component configuration of the event class in that partition, and fail the call if it cannot.

The server then MUST attempt to set the values referenced by the out parameters as follows:

▪ The server MUST attempt to set the value referenced by pcClasses to the number of configured
event classes selected, and the values referenced by pawszCLSIDs, pawszProgIDs,

pawszDescriptions, pawszConglomerationIDs, and padwIsPrivate to arrays of values for the
CLSID, ProgID, Description, ConglomerationIdentifier, and IsPrivate properties for the selected
component configurations, and fail the call if it cannot.

3.1.4.18.6 IsSafeToDelete (Opnum 8)

This method is called by a client application to determine if a file is safe to delete. For historical

reasons, the results of this method are likely to be interpreted by a client application or user as a
guarantee that deleting a file will not cause problems on a server. Because it is usually impossible for
a server to reliably make such a determination, a server SHOULD simply ignore the file name specified
and return a result that indicates the file is not safe to delete.

 HRESULT IsSafeToDelete(
 [in] BSTR bstrFile,
 [out, retval] long* pInUse
);

183 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

bstrFile: MUST be a path to a file in a format the server will understand, which SHOULD<345> be
ignored on receipt.

pInUse: A pointer to a value that, upon successful completion, MUST be set to one of the values in
the following table.

Value Meaning

0x00000000 The file is safe to delete.

0x00000001 The file is not safe to delete because it is referenced in the catalog, or it is not possible to
determine whether the file is safe to delete.

0x00000002 The server determined that the file is not safe to delete, but was unable to determine the
reason.

0x00000003 The file is not safe to delete because it contains support code for communication between
components.

0x00000004 The file is not safe to delete because a type library in the file is in use.

0x00000005 The file is not safe to delete because it is referenced by a system resource.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server SHOULD<346> immediately set the value referenced
by pInUse to 1 to indicate that the file is not safe to delete, and return S_OK (0x00000000).

A server MAY<347> instead, by some implementation-specific mechanism, attempt to determine if
the file is safe to delete, and fail the call if it cannot.

The server then MUST set the value referenced by pInUse to the value previously specified that
indicates whether the file is safe to delete, and if not, the reason the file is not safe to delete.

3.1.4.18.7 FlushPartitionCache (Opnum 9)

This method is called by a client to request that the server clear its local cache of the entries in
domain-controlled PartitionRoles (section 3.1.1.3.17), PartitionRoleMembers (section 3.1.1.3.18), and
PartitionUsers (section 3.1.1.3.16) tables, if the server does such lookups with an active directory.

 HRESULT FlushPartitionCache();

This method has no parameters.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, if the server is not configured to use active directory lookups for
these tables (see the DSPartitionLookupEnabled property in the table in section 3.1.1.3.8), it SHOULD

immediately return S_OK.

Otherwise, the server SHOULD remove all entries from its cache, and fail if it cannot do so.

3.1.4.18.8 EnumerateSRPLevels (Opnum 10)

This method is called by a client to get an enumeration of software restriction policy (see section
3.1.1.1.9) trust levels supported by the server.

184 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 HRESULT EnumerateSRPLevels(
 [in] LCID Locale,
 [out] int* cLevels,
 [out, size_is(,*cLevels)] SRPLevelInfo** aSRPLevels
);

Locale: The language code identifier, as specified in [MS-LCID], for the language into which the
descriptive strings for each level are to be translated, if possible.

cLevels: A pointer to a variable that, upon successful completion, MUST be set to the number of
elements in aSRPLevels.

aSRPLevels: A pointer to a variable that, upon successful completion, MUST be set to an array of
SRPLevelInfo (section 2.2.6) structures representing the software restriction policy levels that the

server defines.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

The server SHOULD, by some implementation-specific mechanism, attempt to translate the names of
the software restriction policy levels it supports to the language specified by Locale, and SHOULD fall
back to a default language if it cannot.

The server then MUST attempt to set the values referenced by the out parameters as follows: The

server MUST attempt to set the value referenced by cLevels to the number of software restriction
policy levels the server supports, and the value referenced by aSRPLevels to an array of SRPLevelInfo
structures, each of which describes a software restriction policy level, and fail the call if it cannot.

3.1.4.18.9 GetComponentVersions (Opnum 11)

This method is called by a client to get a list of component full configurations for a component.

 HRESULT GetComponentVersions(
 [in] LPCWSTR pwszClsidOrProgId,
 [out] DWORD* pdwVersions,
 [out, size_is(, *pdwVersions)] GUID** ppPartitionIDs,
 [out, size_is(, *pdwVersions)] GUID** ppConglomerationIDs,
 [out, size_is(, *pdwVersions)] BOOL** ppIsPrivate,
 [out, size_is(, *pdwVersions)] LONG** ppBitness
);

pwszClsidOrProgId: A string containing either the Curly Braced GUID String Syntax ([MS-DTYP]
section 2.3.4.3) representation of a CLSID or the ProgID property of a component.

pdwVersions: A pointer to a variable that, upon successful completion, MUST be set to the number of
component full configurations that exist for the component.

ppPartitionIDs: A pointer to a variable that, upon successful completion, MUST be set to an array of
partition identifiers of the partitions in which the component full configurations reside.

ppConglomerationIDs: A pointer to a variable that, upon successful completion, MUST be set to an

array of conglomeration identifiers of the conglomerations containing the component full
configurations, in the same order as ppPartitionIDs.

ppIsPrivate: A pointer to a variable that, upon successful completion, MUST be set to an array of the
values of the IsPrivate (see section 3.1.1.3.1) property of the component full configurations, in the
same order as ppPartitionIDs.

185 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ppBitness: A pointer to a variable that, upon successful completion, MUST be set to an array of the
values of the ConfigurationBitness (see section 3.1.1.3.1) property of the component full

configurations, in the same order as ppPartitionIDs.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as

specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that catalog version negotiation has been
performed by checking the negotiated catalog version (see section 3.1.1.5), and fail the call if not.

The server then MUST select the component as follows:

▪ If pwszComponent is in Curly Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3), the server
MUST select the component with CLSID equal to the GUID represented, and fail the call if no such
component exists.

▪ Otherwise, the server MUST select the component with ProgID property equal to pwszComponent,
and fail the call if no such component exists.

The server then MUST verify that the component has at least one component full configuration, and
fail the call if not.

The server then MUST attempt to set the values referenced by the out parameters as follows:

▪ The server MUST attempt to set the value referenced by pdwVersions to the number of component

full configurations that exist for the component, and the values referenced by ppPartitionIDs,
ppConglomerationIDs, ppIsPrivate, and ppBitness to arrays of the values of the PartitionIdentifier,
ConglomerationIdentifier, IsPrivate, and ConfigurationBitness properties, respectively, of the
component full configurations, and fail the call if it cannot.

3.1.4.19 ICapabilitySupport

The ICapabilitySupport interface provides methods for starting and stopping optional, dynamically
controllable, catalog-related capabilities of a COMA server. This version of COMA defines one such

capability, instance load balancing (section 1.3.9). This interface inherits from IUnknown, as specified
in [MS-DCOM] section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class

with the CLSID CLSID_COMAServer, specified in section 1.9, using the UUID {47CDE9A1-0BF6-11D2-
8016-00C04FB9988E} for this interface.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

Start Starts instance load balancing.

Opnum: 3

Stop Stops instance load balancing.

Opnum: 4

Opnum5NotUsedOnWire Reserved for local use.

Opnum: 5

Opnum6NotUsedOnWire Reserved for local use.

Opnum: 6

186 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

IsInstalled Determines whether instance load balancing support is installed.

Opnum: 7

IsRunning Determines whether instance load balancing is running.

Opnum: 8

Opnum9NotUsedOnWire Reserved for local use.

Opnum: 9

In the previous table, the phrase "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined since it does not affect interoperability.<348>

All methods MUST NOT throw exceptions.

3.1.4.19.1 Start (Opnum 3)

This method is called by a client to start instance load balancing.

 HRESULT Start(
 [in] CatSrvServices i_css
);

i_css: MUST be set to css_lb (see section 2.2.7).

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that the parameters are valid, as
specified previously, and fail the call if not.

If the server does not support instance load balancing, or if instance load balancing support is not

installed, the server MUST immediately fail the call.

Otherwise, the server MUST attempt to determine if instance load balancing support is running, and
fail the call if it cannot.

If instance load balancing support is already running, the server MUST return S_OK (0x00000000).

Otherwise, the server MUST attempt to start instance load balancing support, and fail the call if it
cannot.

3.1.4.19.2 Stop (Opnum 4)

This method is called by a client to stop instance load balancing.

 HRESULT Stop(
 [in] CatSrvServices i_css
);

i_css: MUST be set to css_lb (see section 2.2.7).

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

187 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Upon receiving a call to this method, the server MUST verify that the parameters are valid, as
specified previously, and fail the call if not.

If the server does not support instance load balancing, the server MUST immediately fail the call.

Otherwise, the server MUST attempt to determine if instance load balancing support is running, and

fail the call if it cannot.

If instance load balancing support is not running, the server MUST return S_OK (0x00000000).

Otherwise, the server MUST attempt to stop instance load balancing support, and fail the call if it
cannot.

3.1.4.19.3 IsInstalled (Opnum 7)

This method is called by a client to determine whether instance load balancing is installed.

 HRESULT IsInstalled(
 [in] CatSrvServices i_css,
 [out] ULONG* pulStatus
);

i_css: MUST be set to css_lb (see section 2.2.7).

pulStatus: A pointer to a variable that, upon a successful return, MUST be set to TRUE (0x00000001)
or FALSE (0x000000000) to indicate whether component load balancing support is installed.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that the parameters are valid, as

specified previously, and fail the call if not.

If the server does not support instance load balancing, the server MUST immediately fail the call.

Otherwise, the server MUST attempt to determine whether instance load balancing support is already
installed, and fail the call if it cannot.

The server then MUST set the value referenced by pulStatus to indicate whether instance load
balancing support is installed.

3.1.4.19.4 IsRunning (Opnum 8)

This method is called by a client to determine whether instance load balancing is running.

 HRESULT IsRunning(
 [in] CatSrvServices i_css,
 [out] CatSrvServiceState* pulStates
);

i_css: MUST be set to css_lb (see section 2.2.7).

pulStates: A pointer to a variable that, upon a successful return, MUST be set to the
CatSrvServiceState (section 2.2.8) value that indicates the current running state of instance load
balancing.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

188 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Upon receiving a call to this method, the server MUST verify that the parameters are valid, as
specified previously, and fail the call if not.

If the server does not support instance load balancing, the server MUST immediately fail the call.

Otherwise, the server MUST attempt to determine whether instance load balancing support is

installed. If the server is unable to determine whether instance load balancing support is installed, or if
support is not installed, the server SHOULD set the value referenced by pulStatus to
css_serviceUnknownState (see section 2.2.8) and return S_OK (0x00000000).

Otherwise, the server MUST attempt to determine if instancing load balancing support is running and,
if so, what state it is in. If the server is unable to do so, it SHOULD set the value referenced by
pulStatus to css_serviceUnknownState (section 2.2.8) and return S_OK (0x00000000).

Otherwise, the server MUST set the value referenced by pulStates to the

CatSrvServiceState (section 2.2.8) value that indicates the current running state of instance load
balancing.

3.1.4.20 IContainerControl

The IContainerControl interface provides methods for creating and controlling an
InstanceContainer (section 2.2.9). This interface inherits from IUnknown, as specified in [MS-DCOM]
section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {3F3B1B86-DBBE-
11D1-9DA6-00805F85CFE3} for this interface.

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

CreateContainer Creates an instance container for a conglomeration.

Opnum: 3

ShutdownContainers Shuts down all instance containers for a conglomeration.

Opnum: 4

RefreshComponents Performs implementation-specific repairs to the catalog.

Opnum: 5

All methods MUST NOT throw exceptions.

3.1.4.20.1 CreateContainer (Opnum 3)

This method is called by a client to create an instance container for a conglomeration.

 HRESULT CreateContainer(
 [in] GUID* pConglomerationIdentifier
);

pConglomerationIdentifier: The conglomeration identifier of a conglomeration.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

189 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000000

S_OK

The call was successful.

Upon receiving a call to this method, the server MUST verify that there exists a conglomeration with
the conglomeration identifier specified in pConglomerationIdentifier, and fail the call if not.

The server then MUST attempt to create a new instance container for the conglomeration, and fail the
call if it cannot.

3.1.4.20.2 ShutdownContainers (Opnum 4)

This method is called by a client to shut down all instance containers for a conglomeration.

 HRESULT ShutdownContainers(
 [in] GUID* pConglomerationIdentifier
);

pConglomerationIdentifier: The conglomeration identifier of a conglomeration.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that there exists a conglomeration with
the conglomeration identifier specified in pConglomerationIdentifier, and fail the call if not.

The server then MUST attempt to shut down all instance containers for that conglomeration, and fail
the call if it cannot.

3.1.4.20.3 RefreshComponents (Opnum 5)

This method is called by a client to perform implementation-specific repairs on the server's catalog.

 HRESULT RefreshComponents();

This method has no parameters.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving the call, if the server does not need to perform any repairs on its catalog, it SHOULD
immediately return S_OK (0x00000000).

Otherwise, the server MUST attempt to perform implementation-specific<349> repairs on its catalog,
and fail if it cannot.

3.1.4.21 IContainerControl2

The IContainerControl2 interface provides methods for controlling InstanceContainers (section 2.2.9).
This interface inherits from IUnknown, as specified in [MS-DCOM] section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM Object Class

with the CLSID CLSID_COMAServer, specified in section 1.9, using the UUID {6C935649-30A6-4211-
8687-C4C83E5FE1C7} for this interface.

190 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

This interface includes the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

Method Description

ShutdownContainer Shuts down an instance container.

Opnum: 3

PauseContainer Pauses an instance container.

Opnum: 4

ResumeContainer Resumes a paused instance container.

Opnum: 5

IsContainerPaused Determines whether an instance container is paused.

Opnum: 6

GetRunningContainers Returns a list of running instance containers for a conglomeration.

Opnum: 7

GetContainerIDFromProcessID Returns the instance container identifier corresponding to a process
identifier.

Opnum: 8

RecycleContainer Forces an instance container to be recycled.

Opnum: 9

GetContainerIDFromConglomerationID Returns the instance container identifier of an instance container for a
conglomeration.

Opnum: 10

All methods MUST NOT throw exceptions.

3.1.4.21.1 ShutdownContainer (Opnum 3)

This method is called by a client to shut down an instance container.

 HRESULT ShutdownContainer(
 [in] GUID* ContainerIdentifier
);

ContainerIdentifier: The container identifier of an instance container.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that there exists an instance container

with the container identifier specified in ContainerIdentifier, and fail the call if not.

The server then MUST attempt to shut down the instance container, and fail the call if it cannot.

3.1.4.21.2 PauseContainer (Opnum 4)

This method is called by a client to pause an instance container.

 HRESULT PauseContainer(
 [in] GUID* ContainerIdentifier

191 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

);

ContainerIdentifier: The container identifier of an instance container.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that there exists an instance container
with the container identifier specified in ContainerIdentifier, and fail the call if not.

The server then MUST attempt to pause the instance container, and fail the call if it cannot.

3.1.4.21.3 ResumeContainer (Opnum 5)

This method is called by a client to resume a paused instance container.

 HRESULT ResumeContainer(
 [in] GUID* ContainerIdentifier
);

ContainerIdentifier: The container identifier of an instance container.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that there exists an instance container
with the container identifier specified in ContainerIdentifier, and fail the call if not.

The server then MUST attempt to resume the instance container, and fail the call if it cannot.

3.1.4.21.4 IsContainerPaused (Opnum 6)

This method is called by a client to determine if an instance container is paused.

 HRESULT IsContainerPaused(
 [in] GUID* ContainerIdentifier,
 [out] BOOL* bPaused
);

ContainerIdentifier: The container identifier of an instance container.

bPaused: A pointer to a variable that, upon successful completion, MUST be set to indicate whether
or not the instance container is paused.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that there exists an instance container

with the container identifier specified in ContainerIdentifier, and fail the call if not.<350>

The server then MUST attempt to determine if the instance container is paused, and fail the call if it
cannot.

The server then MUST set the value referenced by bPaused to indicate whether the instance container
is paused.

3.1.4.21.5 GetRunningContainers (Opnum 7)

192 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

This method is called by a client to get a list of instance containers for a conglomeration, or to get a
list of all running instance containers.

 HRESULT GetRunningContainers(
 [in] GUID* PartitionId,
 [in] GUID* ConglomerationId,
 [out] DWORD* pdwNumContainers,
 [out, size_is(,*pdwNumContainers)]
 InstanceContainer** ppContainers
);

PartitionId: The partition identifier of a partition.

ConglomerationId: The conglomeration identifier of a conglomeration, or GUID_NULL for all instance
containers.

pdwNumContainers: A pointer to a variable that, upon successful completion, MUST be set to the

number of elements in ppContainers.

ppContainers: An array of InstanceContainer (section 2.2.9) structures, each of which represents an
instance container for the conglomeration specified in ConglomerationId.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST attempt to select instance containers as follows:

▪ If ConglomerationId is GUID_NULL, the server MUST attempt to select all instance containers, and

fail if it cannot.

▪ If ConglomerationId is not GUID_NULL, the server MAY verify that there exists a conglomeration
with the conglomeration identifier specified in ConglomerationId in the partition identified by
PartitionId, and fail the call if not.

▪ If ConglomerationId is not GUID_NULL, the server MUST attempt to select all instance containers
for the conglomeration identifier specified in ConglomerationId, and fail the call if it cannot.

If no such instance containers exist, the server SHOULD set the value referenced by pdwNum to 0 and

the value referenced by ppContainers to NULL, and return S_OK (0x00000000). In particular, the
server MUST NOT fail the call because there are no such instance containers.

Otherwise, the server MUST attempt to construct an array of InstanceContainer (section 2.2.9)
structures for the instance containers, and fail the call if it cannot.

The server then MUST set the value referenced by pdwNum to the number of instance containers, and
the value referenced by ppContainers to the constructed InstanceContainer structures.

3.1.4.21.6 GetContainerIDFromProcessID (Opnum 8)

This method is called by a client to find the instance container for a process ID.

 HRESULT GetContainerIDFromProcessID(
 [in] DWORD dwPID,
 [out, retval] BSTR* pbstrContainerID
);

dwPID: The ProcessIdentifier (see section 3.1.1.3.21) of an instance container.

193 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pbstrContainerID: A pointer to a value that, upon successful completion, MUST be set to the Curly
Braced GUID String Syntax ([MS-DTYP] section 2.3.4.3) representation of the container identifier

of an instance container.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as

specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that there exists an instance container
with the value dwPID for the ProcessIdentifier property (see section 3.1.1.3.21), and fail the call if
not.

The server then MUST attempt to set the value referenced by pbstrContainerID to the Curly Braced
GUID String Syntax ([MS-DTYP] section 2.3.4.3) representation of the container identifier of the
instance container, and fail the call if it cannot.

3.1.4.21.7 RecycleContainer (Opnum 9)

This method is called by a client to recycle an instance container.

 HRESULT RecycleContainer(
 [in] GUID* ContainerIdentifier,
 [in] long lReasonCode
);

ContainerIdentifier: The container identifier of an instance container.

lReasonCode: A value representing an application-specific informational reason code for why the
instance container is being recycled.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that there exists an instance container

with the container identifier specified in ContainerIdentifier, and fail the call if not.

The server then MUST attempt to recycle the instance container, and fail the call if it cannot.

The server SHOULD produce an implementation-specific<351> log record of the instance container

being recycled, including lReasonCode in the log record.

3.1.4.21.8 GetContainerIDFromConglomerationID (Opnum 10)

This method is called by a client to find the container identifier for the single instance container for a
conglomeration.

 HRESULT GetContainerIDFromConglomerationID(
 [in] GUID* ConglomerationIdentifier,
 [out] GUID* ContainerIdentifier
);

ConglomerationIdentifier: The conglomeration identifier of a conglomeration.

ContainerIdentifier: A pointer to a variable that, upon successful completion, MUST be set to the

container identifier of the single instance container for the conglomeration specified in
ConglomerationIdentifier.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

194 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Upon receiving a call to this method, the server MUST verify that there exists a conglomeration with
the conglomeration identifier specified in ConglomerationIdentifier, and fail the call if not.

The server then MUST verify that there exists exactly one instance container for the conglomeration,
and fail the call if not.

The server then MUST attempt to set the value referenced by ContainerIdentifier to the container
identifier of the single instance container for the conglomeration, and fail if it cannot.

3.1.4.22 IReplicationUtil

The IReplicationUtil interface provides methods for miscellaneous tasks specific to replication
scenarios. This interface inherits from IUnknown, as specified in [MS-DCOM] section 3.1.1.5.8.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSID CLSID_COMAServer, as specified in section 1.9, using the UUID {98315903-7BE5-
11D2-ADC1-00A02463D6E7} for this interface.

This interface includes the following methods beyond those of IUnknown:

Methods in RPC Opnum Order

Method Description

CreateShare Creates a file share for copying installer package files.

Opnum: 3

CreateEmptyDir Creates an empty directory.

Opnum: 4

RemoveShare Removes a previously created file share.

Opnum: 5

BeginReplicationAsTarget Creates the file share for a new replication operation, optionally managing
replication history information and/or backup state.

Opnum: 6

QueryConglomerationPassword Returns the Password property of a conglomeration.

Opnum: 7

CreateReplicationDir Ensures that the base replication directory exists, and returns its path.

Opnum: 8

All methods MUST NOT throw exceptions.

3.1.4.22.1 CreateShare (Opnum 3)

 This method is called by a replication client application to create a Common Internet File System
(CIFS) [MS-CIFS] file share for copying installer package files.

 HRESULT CreateShare(
 [in] LPCWSTR pwszShareName,
 [in] LPCWSTR pwszPath
);

pwszShareName: The share name (as specified for a path in UNC syntax) of the file share to create.
This MUST be a SourceShareName or TargetNewShareName, according to the following ABNF
syntax, as specified in [RFC4234].

195 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 SourceShareName = "ReplicaSource" CurlyBracedGuidString
 TargetNewShareName = "ReplicaTargetNew" CurlyBracedGuidString

Where CurlyBracedGuidString is in Curly Braced GUID String Syntax ([MS-DTYP] section

2.3.4.3).

These formats have the following usage.

Format Usage

SourceShareName Used when the server is a replication source.

TargetNewShareName Used when the server is a replication target.

pwszPath: An ImplementationSpecificPathProperty (section 2.2.2.2) representing the path to the

directory that is to back the file share. This MUST be derived from the server's base replication
directory path by appending one of the following strings.

Value Meaning

"\ReplicaSource" The server is a replication source.

"\ReplicaNew" The server is a replication target.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MAY verify that pwszShareName and pwszPath are

valid, and fail the call if they are not valid.

The server then MUST verify that the directory represented by pwszPath exists, and fail the call if does
not exist.

The server then MUST attempt to create a CIFS file share with the provided name and back it by the
directory represented by pwszPath, ensuring that the COMA client's user identity is granted read and
write access, and fail the call if it cannot.

 The server MUST then return success.

3.1.4.22.2 CreateEmptyDir (Opnum 4)

This method is called by a replication client application to create an empty directory to back up a
replication file share.

 HRESULT CreateEmptyDir(
 [in] LPCWSTR pwszPath
);

pwszPath: An ImplementationSpecificPathProperty (section 2.2.2.2) representing the path to the
directory that is to be created by the server. This MUST be derived from the server’s base
replication directory path by appending one of the following strings.

Value Meaning

"\ReplicaSource" The server is a replication source.

"\ReplicaNew" The server is a replication target.

196 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MAY verify that pwszPath is valid, and fail the call if
not.

If there already exists a directory with the provided path, the server MUST attempt to delete the
contents of this directory, and fail the call if it cannot. Otherwise, the server MUST attempt to create a
directory with the provided path, and fail the call if it cannot.

The server MUST then return success.

3.1.4.22.3 RemoveShare (Opnum 5)

This method is called by a replication client application to remove a file share that was used during

replication and is no longer needed.

 HRESULT RemoveShare(
 [in] LPCWSTR pwszShareName
);

pwszShareName: The share name (as specified for a path in UNC syntax) of the file share to
remove. This MUST be a SourceShareName, TargetNewShareName, or TargetCurrentShareName,

according to the following Augmented Backus-Naur Form (ABNF) syntax, as specified in
[RFC4234].

 SourceShareName = "ReplicaSource" CurlyBracedGuidString
 TargetNewShareName = "ReplicaTargetNew" CurlyBracedGuidString
 TargetCurrentShareName = "ReplicaTargetCurrent"

Where CurlyBracedGuidString is in Curly Braced GUID String Syntax ([MS-DTYP] section

2.3.4.3).

These formats have the following usage.

Format Usage

SourceShareName Used when the server is a replication source and the replication client application
is finished copying files from the server.

TargetNewShareName Used when the server is a replication target and the replication client application
is finished copying files to the server.

TargetCurrentShareName Used when the server is a replication target and the replication client application
is finished importing conglomerations from the share.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as

specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MAY verify that pwszShareName is valid, and fail the
call if not.

The server then MUST attempt to remove the file share with the provided name, and fail the call if it
cannot.

If pwszShareName is the TargetCurrentShareName, the server MAY infer that a replication operation
has concluded and perform implementation-specific local actions to manage replication history and/or

backup state accordingly.

197 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The server MUST then return success.

3.1.4.22.4 BeginReplicationAsTarget (Opnum 6)

This method is called by a replication client application to request that a server perform the actions

necessary to begin a replication operation in which the server is a replication target. This typically
happens after the application has copied import package files for the conglomerations to be copied to
a replication target file share on the server. As part of the handling of the method, the server sets up
a replication working directory and file share. The server's handling of the method might also include
management of replication history and backup state.

 HRESULT BeginReplicationAsTarget(
 [in] LPCWSTR pwszBaseReplicationDir
);

pwszBaseReplicationDir: The server's base replication directory path.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MAY verify that pwszBaseReplicationDir is the server's
base replication directory path, and fail the call if not.

The server then MAY<352> attempt to perform implementation-specific management of replication
history and/or backup state, and fail the call if it cannot do so.

 The server then MUST attempt to set up a replication working directory as described in the following
steps. This described behavior is provided to facilitate the explanation of how the protocol behaves.
This document does not mandate that implementations adhere to this model as long as their external
behavior is consistent with that described in this document:

▪ If there already exists a directory whose path is derived from the base replication directory path
by appending "\ReplicaCurrent", the server MUST attempt to either remove or rename this

directory, and fail the call if it cannot.

▪ The server then MUST attempt to rename the directory whose path is derived from the base
replication directory path by appending "\ReplicaNew" (the directory that previously backed the
replication target share) such that its new path is derived from the base replication directory by
appending "\ReplicaCurrent", and fail the call if it cannot.

The server then MUST attempt to create a CIFS file share with the name "ReplicaTargetCurrent",
backed by the replication working directory, and ensure that the COMA client's user identity is granted
at least read access, and fail the call if it cannot. Upon failure at this point in the server's handling of
the method call, it is implementation-specific<353> whether the server attempts to perform any
cleanup of the actions already performed.

The server MUST then return success.

3.1.4.22.5 QueryConglomerationPassword (Opnum 7)

This method is called by a replication client application to obtain the value of the Password property
of a conglomeration.

 HRESULT QueryConglomerationPassword(
 [in] REFGUID ConglomerationId,
 [out, size_is(, *pcbPassword)] char** ppvPassword,
 [out] ULONG* pcbPassword
);

198 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ConglomerationId: The conglomeration identifier of the conglomeration whose Password property
is requested.

ppvPassword: A pointer to a variable that, upon successful completion, MUST be set to an array of
bytes containing a null-terminated array of wchar_t in little-endian byte order.

pcbPassword: A pointer to a variable that, upon successful completion, MUST be set to the length of
ppvPassword.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server SHOULD<354> verify that there exists a
conglomeration with the conglomeration identifier specified in ConglomerationId, and fail the call if
not.

The server then MUST attempt to retrieve the value of the conglomeration's Password property,
possibly by accessing an encrypted secret store, and fail the call if it cannot.

The server then MUST set ppvPassword to this value and return success.

3.1.4.22.6 CreateReplicationDir (Opnum 8)

This method is called by a replication client application to ensure that the server's base replication

directory exists and to get its path.

 HRESULT CreateReplicationDir(
 [out] LPWSTR* ppwszBaseReplicationDir
);

ppwszBaseReplicationDir: A pointer to a variable that, upon successful completion, MUST contain
the server's base replication directory path.

Return Values: This method MUST return S_OK (0x00000000) on success, and a failure result, as
specified in [MS-ERREF] section 2.1, on failure. All failure results MUST be treated identically.

Upon receiving a call to this method, the server MUST verify that its base replication directory exists.
If not, it MUST attempt to create this directory, and fail the call if it cannot.

The server then MUST set ppwszBaseReplicationDir to the path of this directory and return success.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

3.2 Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

199 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

adhere to this model as long as their external behavior is consistent with that described in this
document.

3.2.1.1 Per-Session State

A COMA client maintains the following state information per session. This information is not retained
between sessions.

Negotiated catalog version: The catalog version that has been negotiated for the session, as
specified in section 3.1.4.1, if this negotiation has already been performed. In each session, the

initial value is a sentinel indicating that negotiation has not yet been performed.

64-bit QueryCell format: A value that indicates whether the 64-bit QueryCell (section 2.2.1.4)
marshaling format capability negotiation has been performed and, if so, whether the 64-bit format
is to be used. In each session, the initial value is a sentinel indicating that negotiation has not yet
been performed.

Server supports multiple partitions: A value that indicates whether multiple-partition support

capability negotiation has been performed and, if so, whether the server supports multiple

partitions. In each session, the initial value is a sentinel indicating that negotiation has not yet
been performed.

Partitions enabled on server: A value that indicates whether multiple partition support is enabled
on the server. In each session, the initial value is a sentinel indicating that the COMA client has
not yet determined this information.

Server supports multiple bitnesses: A value that indicates whether multiple-bitness capability
negotiation has been performed and, if so, whether the server supports multiple bitnesses. In

each session, the initial value is a sentinel indicating that negotiation has not yet been performed.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Message Processing Events and Sequencing Rules

A COMA client MUST provide an implementation-specific mechanism by which a client application can
request that it perform implementation-defined configuration tasks by making one or more calls to a
COMA server. Additionally, it SHOULD provide a mechanism by which a client application can
separately request that it establish a session. Establishing a session, whether implicit in a request to
perform configuration tasks, or as an explicit request from the client application, consists of DCOM

activation of the COMA server, optionally catalog version negotiation (see section 3.2.4.1 for a list of
methods that do not require this), and optionally capability negotiation.

A COMA client also MUST provide an implementation-specific mechanism by which a client application
can request that it end a session (by releasing all references to the COMA server's interfaces). This
mechanism might be implicit, for example destroying the COMA client object if the COMA client
provides an object-oriented interface for client applications.

This section covers sequencing rules for method calls made by a COMA client, including catalog
version and capability negotiation.

200 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.2.4.1 Catalog Version Negotiation

Before making any calls to the server, a COMA server MUST ensure that it has performed catalog
version negotiation, by checking the value of the negotiated catalog version for the session, as

specified in section 3.2.1.1, with the following exceptions.

Exception Notes

ICatalogSession::InitializeSession Used for catalog version negotiation.

ICatalogSession::GetServerInformation Used for capability negotiation.

ICatalog64BitSupport::SupportsMultipleBitness Used for capability negotiation.

ICatalog64BitSupport::Initialize64BitQueryCellSupport Used for capability negotiation.

IImport2::SetPartition Sets the import target partition identifier, as
specified in section 3.1.1.5.

ICatalogUtils::ValidateUser Used to validate a user account name and
password.

ICatalogUtils::WaitForEndWrites Used to synchronize with the server.

ICatalogUtils2::IsSafeToDelete Used to determine if a file is safe to delete.

ICatalogUtils2::FlushPartitionCache Used to flush the server's local cache of partition
user information.

ICatalogUtils2::EnumerateSRPLevels Used to get a list of software restriction policy
levels supported by the server.

ICatalogUtils2::GetComponentVersions Used to get a list of component configurations for a
component.

ICapabilitySupport::Start Used to control instance load balancing.

ICapabilitySupport::Stop Used to control instance load balancing.

ICapabilitySupport::IsInstalled Used to control instance load balancing.

ICapabilitySupport::IsRunning Used to control instance load balancing.

IContainerControl::CreateContainer Used to obtain information about and control
instance containers.

IContainerControl::ShutdownContainers Used to obtain information about and control
instance containers.

IContainerControl::RefreshComponents Used to obtain information about and control
instance containers.

IContainerControl2::ShutdownContainer Used to obtain information about and control
instance containers.

IContainerControl2::PauseContainer Used to obtain information about and control
instance containers.

IContainerControl2::ResumeContainer Used to obtain information about and control
instance containers.

IContainerControl2::IsContainerPaused Used to obtain information about and control
instance containers.

201 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Exception Notes

IContainerControl2::GetRunningContainers Used to obtain information about and control
instance containers.

IContainerControl2::GetContainerIDFromProcessID Used to obtain information about and control
instance containers.

IContainerControl2::RecycleContainer Used to obtain information about and control
instance containers.

IContainerControl2::GetContainerIDFromConglomerationID Used to obtain information about and control
instance containers.

IReplicationUtil::CreateShare Specific to replication.

IReplicationUtil::CreateEmptyDir Specific to replication.

IReplicationUtil::RemoveShare Specific to replication.

IReplicationUtil::BeginReplicationAsTarget Specific to replication.

IReplicationUtil::QueryConglomerationPassword Specific to replication.

IReplicationUtil::CreateReplicationDir Specific to replication.

Catalog version negotiation is described in more detail in section 3.1.4.1. On successful completion,
the client MUST set the negotiated catalog version for the session in its per-session state.

Each COMA client supports an implementation-specific range of catalog versions.<355> However, not

all possible supported ranges are recommended.

For the client, maximum interoperability is provided by supporting multiple catalog versions. In
particular, supporting both catalog versions 4.00 and 5.00 enables configuration of servers that
support catalog version 4.00 only, and enables configuration of multiple-partition support on servers
that support catalog version 5.00.

In summary, a client's supported range of catalog versions SHOULD be one of the following

combinations.

Versions Comments

3.00

3.00, 4.00 Not recommended for clients that configure multiple partitions on a server.<356>

3.00, 4.00, 5.00

4.00 Not recommended for clients that configure multiple partitions on a server.

4.00, 5.00

3.2.4.2 64-Bit QueryCell Marshaling Format Capability Negotiation

A COMA client MAY<357> attempt to perform capability negotiation for the 64-bit QueryCell
marshaling format capability, as specified in section 2.2.1.4. If this capability negotiation is
successfully performed, the results determine the format that the client MUST use for QueryCell
structures in subsequent calls to the ICatalogTableInfo::GetClientTableInfo (section 3.1.4.7.1),
ICatalogTableRead::ReadTable (section 3.1.4.8.1)), and

202 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ICatalogTableWrite::WriteTable (section 3.1.4.9.1) methods. The 64-bit QueryCell marshaling format
capability negotiation is described in more detail in section 3.1.4.2.

On successful completion of 64-bit QueryCell marshaling format capability negotiation, the client MUST
set the 64-bit QueryCell format value in its per-session state to indicate the results of the negotiation.

If this capability negotiation fails because the COMA server does not implement the
ICatalog64BitSupport interface, the COMA client SHOULD tolerate this failure and set the 64-bit
QueryCell format value in its per-session state to false. The COMA client MUST make any subsequent
calls as if the capability negotiation was not attempted, using the default 32-bit QueryCell marshaling
format.

3.2.4.3 Multiple-Partition Support Capability Negotiation

A COMA client MAY<358> attempt to perform capability negotiation for the multiple-partition support
capability. This negotiation MUST be performed before the client attempts to change the configuration
of partitions other than the global partition. Multiple-partition support capability negotiation is
specified in section 3.1.4.3.

On successful completion of multiple-partition support capability negotiation, the client SHOULD set
the "server supports multiple partitions" value in its per-session state to indicate the results of the
negotiation.

If the COMA server is not capable of multiple-partition support, or if capability negotiation fails
because the server returns a failure result from the call to
ICatalogSession::GetServerInformation (section 3.1.4.5.2), the client MUST NOT attempt to change
the configuration of partitions other than the global partition.

It is important to note that a server that is capable of multiple-partition support does not necessarily
have multiple-partition support enabled.

In catalog version 5.00, multiple-partition support enabled is indicated by the PartitionsEnabled
property of the machine settings. If the negotiated catalog version is 5.00, the COMA client MAY
attempt to determine whether multiple-partition support is enabled by reading this property by calling

the ICatalogSession::GetServerInformation method, before attempting to change the configuration of

partitions other than the global partition, and MAY set the partitions enabled on server value in its per
session state.

If multiple-partition support is disabled on the server and a client application requests to change the
configuration of partitions other than the global partition, the COMA client MAY attempt to enable
multiple-partition support on the server by setting this property before attempting these configuration
changes and SHOULD NOT attempt these configuration changes if it fails to do so.

3.2.4.4 Multiple-Bitness Capability Negotiation

A COMA client MAY<359> attempt to perform capability negotiation for the multiple-bitness capability.

This negotiation MUST be performed before the client attempts to change the configuration of the non-
native bitness of any component. Multiple-bitness capability negotiation is described in more detail in

section 3.1.4.4.

On successful completion of multiple-partition support capability negotiation, the client SHOULD
indicate the results of the negotiation by setting the "server supports multiple bitnesses" value in its
per-session state.

If the COMA server does not support the multiple-bitness capability, or if capability negotiation fails
because the server does not implement the ICatalog64BitSupport (section 3.1.4.6) interface, the
client MUST NOT attempt to change the configuration of the non-native bitness of any component.

203 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.2.4.5 Reads and Writes

Before writing to a table via ICatalogTableWrite::WriteTable (section 3.1.4.9.1) that includes updates
to any entries, a COMA client SHOULD first make a call to

ICatalogTableRead::ReadTable (section 3.1.4.8.1) for the same table and with the same query, to
minimize the chances that the write might overwrite recently changed property values when this was
not intended by the client application. However, COMA provides no guarantees whatsoever that such
overwriting won't happen.

3.2.4.6 Write Validation

For historical reasons, COMA does not require server implementations to validate all constraints on
property values, putting some of the responsibility instead on COMA clients. Property type
specifications include client validation requirements in addition to validity constraints. COMA clients
that call ICatalogTableWrite::WriteTable (section 3.1.4.9.1) MUST perform the validation specified in
these client validation requirements, even if performing writes on behalf of a client application that

might request invalid values to be written.

3.2.4.7 Write Synchronization

After making a successful call to ICatalogTableWrite::WriteTable (section 3.1.4.9.1), a COMA client
SHOULD call ICatalogUtils::WaitForEndWrites (section 3.1.4.17.2) to synchronize with the server.

3.2.4.8 IsSafeToDelete

The server method ICatalogUtils2::IsSafeToDelete (section 3.1.4.18.6) can be used to determine if a
file is safe to delete, but it is usually impossible for a server to reliably make such a determination.

A COMA client MUST NOT call the ICatalogUtils2::IsSafeToDelete method unless it receives an explicit
request from a client application to do so, and MUST return the results of the call unaltered to the
client application.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

204 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

4 Protocol Examples

4.1 Catalog Session and Capabilities Initialization

Figure 6: Session and capabilities negotiation

The preceding figure shows the sequence for a COMA client (that supports catalog versions 3.00 to
5.00) initializing a session with the COMA server (that supports catalog version 5.00) and determining

its capabilities, on behalf of a client application that requested the COMA client to establish a session
with the COMA server.

▪ The COMA client starts by performing DCOM activation for the COMA server object on the server
by using the CLSID CLSID_COMAServer.

▪ The COMA client calls ICatalogSession::InitializeSession (section 3.1.4.5.1) method on the COMA
server DCOM object.

 HRESULT

205 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 ICatalogSession::InitializeSession(
 [in] float flVerLower = 3.0,
 [in] float flVerUpper = 5.0,
 [in] long reserved = 0x00000000,
 [out] float* pflVerSession =
 {pointer to uninitialized memory});

▪ The server checks to see if it supports any version in the range 3.0 and 5.0. In this case, it does
support version 5.0; thus, it sets the pflVerSession parameter to 5.0 and returns S_OK.

 HRESULT = S_OK
 ICatalogSession::InitializeSession(
 [in] float flVerLower = {unchanged},
 [in] float flVerUpper = {unchanged},
 [in] long reserved = {unchanged},
 [out] float* pflVerSession = 5.0);

▪ The COMA client stores the version number of the server and ensures that for further
communication with the server it will use the schema for catalog version 5.00.

▪ The COMA client then tries to determine the capabilities of the server by calling the
ICatalogSession::GetServerInformation (section 3.1.4.5.2) method on the COMA server DCOM
object.

 HRESULT
 ICatalogSession::GetServerInformation(
 [out] long * plReserved1 = NULL,
 [out] long * plReserved1 = NULL,
 [out] long * plReserved1 = NULL,
 [out] long * plMultiplePartitionSupport =
 {pointer to uninitialized memory},
 [out] long * plReserved1 = NULL,
 [out] long * plReserved1 = NULL);

▪ The COMA server determines if it supports multiple partitions. In this case, it does, so it sets
plMultiplePartitionSupport = 0x00000002 and returns S_OK.

 HRESULT = S_OK
 ICatalogSession::GetServerInformation(
 [out] long * plReserved1 = {unchanged},
 [out] long * plReserved1 = {unchanged},
 [out] long * plReserved1 = {unchanged},
 [out] long * plMultiplePartitionSupport = 0x00000002,
 [out] long * plReserved1 = {unchanged},
 [out] long * plReserved1 = {unchanged});

▪ The COMA client now checks to see if the COMA server supports non-native bitness. It does so by
calling the ICatalog64BitSupport::SupportsMultipleBitness method on the COMA server DCOM

object.

 ICatalog64BitSupport::SupportsMultipleBitness(
 [out] int * pbSupportsMultipleBitness = {pointer to
 uninitialized memory for the returned bitness value});

206 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ The COMA server determines whether it supports non-native bitness. In this case, it does not, so
it sets pbSupportsMultipleBitness to 0x00000000 and returns S_OK.

 HRESULT = S_OK
 ICatalog64BitSupport::SupportsMultipleBitness(
 [out] int * pbSupportsMultipleBitness = 0x00000000);

▪ The COMA client remembers that the server does not support multiple bitnesses.

4.2 Reading a Table

Figure 7: Reading a table

The preceding figure shows the sequence for a COMA client (which has already initialized a session
with the COMA server) trying to read the Partitions table (section 3.1.1.3.7) from a COMA server on
behalf of a client application that requested this information. During this phase, it has already

determined that the COMA server supports multiple partitions.

▪ The COMA client calls IClientTableInfo::GetClientTableInfo to determine the metadata for the
table. Before making the call, the client performs the following steps:

▪ The client passes in the catalog identifier for the COMA catalog (section 1.9).

▪ The client determines the GUID for the table that it wants to query. In this case, it is the

Partitions table.

▪ The client then determines the appropriate query to pass in order to retrieve all rows in the

Partitions table.

▪ The client ensures that it passes in eQUERYFORMAT_1 for the eQueryFormat parameter.

 HRESULT
 IClientTableInfo::GetClientTableInfo(
 [in] GUID* pCatalogIdentifier = {

207 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 6e38d3c4-c2a7-11d1-8dec-00c04fc2e0c7},
 [in] GUID* pTableIdentifier = {
 e4ad9fd6-d435-4cf5-95ad-20ad9ac6b59f},
 [in] DWORD tableFlags = 0x00000000,
 [in, size_is(cbQueryCellArray), unique]
 char* pQueryCellArray = NULL,
 [in] ULONG cbQueryCellArray = 0x00000000,
 [in, size_is(cbQueryComparison), unique]
 char* pQueryComparison = NULL,
 [in] ULONG cbQueryComparison = 0x00000000,
 [in] DWORD eQueryFormat = 0x00000001,
 [out] GUID* pRequiredFixedGuid =
 {pointer to uninitialized memory for the GUID},
 [out, size_is(, *pcbReserved1)] char** ppReserved1 =
 {pointer to uninitialized memory},
 [out] ULONG* pcbReserved1 =
 {pointer to uninitialized memory},
 [out, size_is(, *pcAuxiliaryGuid)] GUID** ppAuxiliaryGuid =
 {pointer to uninitialized memory
 to receive a pointer to an array of GUIDs},
 [out] ULONG* pcAuxiliaryGuid =
 {pointer to uninitialized memory to receive
 the count of number of elements in ppAuxiliaryGuid},
 [out, size_is(, *pcProperties)]
 PropertyMeta** ppPropertyMeta =
 {pointer to uninitialized memory to receive
 a pointer to an array of PropertyMeta},
 [out] ULONG* pcProperties =
 {pointer to uninitialized memory to
 receive a count of elements in ppPropertyMeta},
 [out] IID* piid =
 {pointer to uninitialized memory to receive
 the IID of the interface returned by pItf},
 [out, iid_is(o_piid)] void** pItf =
 {pointer to the memory to receive
 the interface to read the table},
 [out, size_is(, *pcbReserved)] char** ppReserved2 =
 {pointer to uninitialized memory},
 [out] ULONG* pcbReserved2 =
 {pointer to uninitialized memory});

▪ The server performs the following verification steps:

▪ The server verifies that the arguments conform to the syntax specified in section 3.1.4.7.1.

▪ The server then verifies that pTableIdentifier matches the tables it supports. In this case, it is
the table identifier for the Partitions table.

▪ The server further verifies that the passed-in value for tableFlags is supported for the
Partitions table.

▪ It then verifies that the queries specified by pQueryCellArray and pQueryComparision array
are indeed supported for the Partitions table.

▪ After verification, the server performs the following steps:

▪ The server determines that no auxiliary GUID needs to be passed back to the client for this

table, so it zeros out the ppAuxiliaryGuid and pcAuxiliaryGuid parameters.

▪ The server then determines the metadata for the Partitions table and populates pcProperties
and ppProperties. The following is the tabular listing of the data filled into the array.

208 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 DataType cbSize Flags

eDT_GUID 0x10 fPROPERTY_PRIMARYKEY |

fPROPERTY_NOTNULLABLE

eDT_LPWSTR Variable size fPROPERTY_NOTNULLABLE

eDT_LPWSTR Variable size No constraints.

eDT_LPWSTR 4 fPROPERTY_FIXEDLENGTH |

fPROPERTY_NOTNULLABLE

eDT_LPWSTR 4 fPROPERTY_FIXEDLENGTH |

fPROPERTY_NOTNULLABLE

▪ The server finally sets pItf to the interface pointer to the object implementing

ICatalogTableRead for the client to use for reading the table.

▪ The server then returns S_OK.

 HRESULT = S_OK
 IClientTableInfo::GetClientTableInfo(
 [in] GUID* pCatalogIdentifier = {unchanged},
 [in] GUID* pTableIdentifier = {unchanged},
 [in] DWORD tableFlags = {unchanged},
 [in, size_is(cbQueryCellArray), unique]
 char* pQueryCellArray = {unchanged},
 [in] ULONG cbQueryCellArray = {unchanged},
 [in, size_is(cbQueryComparison), unique]
 char* pQueryComparison = {unchanged},
 [in] ULONG cbQueryComparison = {unchanged},
 [in] DWORD eQueryFormat = {unchanged},
 [out] GUID* pRequiredFixedGuid =
 {92AD68AB-17E0-11D1-B230-00C04FB9473F},
 [out, size_is(, *pcbReserved1)]
 char** ppReserved1 = NULL,
 [out] ULONG* pcbReserved1 = 0x00000000,
 [out, size_is(, *pcAuxiliaryGuid)]
 GUID** ppAuxiliaryGuid = NULL,
 [out] ULONG* pcAuxiliaryGuid = 0x00000000,
 [out, size_is(, *pcProperties)]
 PropertyMeta** ppPropertyMeta =
 {an array of PropertyMeta, see above for details},
 [out] ULONG* pcProperties = 0x00000005,
 [out] IID* piid = {0e3d6630-b46b-11d1-9d2d-006008b0e5ca},
 [out, iid_is(o_piid)] void** pItf =
 {ICatalogTableRead interface pointer},
 [out, size_is(, *pcbReserved)] char** ppReserved2 = NULL,
 [out] ULONG* pcbReserved2 = 0x00000000);

▪ The COMA client remembers the column metadata passed back to it through an array of

PropertyMeta.

▪ The client then calls ICatalogTableRead::ReadTable (section 3.1.4.8.1) using the interface pointer
that it received previously through IClientTableInfo::GetClientTableInfo, using a query for the
Partitions table to get all rows appropriately, such that the query is one of the queries allowed for
the Partitions table.

 HRESULT
 ICatalogTableRead::ReadTable(
 [in] GUID* pCatalogIdentifier =

209 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 {6e38d3c4-c2a7-11d1-8dec-00c04fc2e0c7},
 [in] GUID* pTableIdentifier =
 {e4ad9fd6-d435-4cf5-95ad-20ad9ac6b59f},
 [in] DWORD tableFlags = 0x00000000,
 [in, size_is(cbQueryCellArray), unique]
 char* pQueryCellArray = NULL,
 [in] ULONG cbQueryCellArray = 0x0000000,
 [in, size_is(cbQueryComparison), unique]
 char* pQueryComparison = NULL,
 [in] ULONG cbQueryComparison = 0x00000000,
 [in] DWORD eQueryFormat = 0x00000001,
 [out, size_is(, *pcbTableDataFixed)]
 char** ppTableDataFixed = {pointer to
 uninitialized memory for fixed size table data},
 [out] ULONG* pcbTableDataFixed = {pointer to uninitialized
 memory for size of fixed size table data},
 [out, size_is(, *pcbTableDataVariable)]
 char** ppTableDataVariable = {pointer to
 uninitialized memory for variable size table data},
 [out] ULONG* pcbTableDataVariable = {pointer to uninitialized
 memory for size of variable size table data},
 [out, size_is(, *pcbTableDetailedErrors)]
 char** ppTableDetailedErrors = {pointer to
 uninitialized memory for detailed query errors},
 [out] ULONG* pcbTableDetailedErrors =
 {pointer to uninitialized memory for size
 of detailed query errors},
 [out, size_is(, *pcbReserved1)] char** ppReserved1 =
 {pointer to uninitialized memory},
 [out] ULONG* pcbReserved1 =
 {pointer to uninitialized memory},
 [out, size_is(, *pcbReserved2)] char** ppReserved2 =
 {pointer to uninitialized memory},
 [out] ULONG* pcbReserved2 =
 {pointer to uninitialized memory});

▪ The server receives the call and verifies that all the parameters are correct. For details, see the

previous example.

▪ The server then proceeds to process the query. If no error occurs during processing, then the
query used in this example gets all the rows from the Partitions table. In this case, these rows in
tabular form are the following.

 PartitionIdentifier Name

Description

Changeable

Deleteable

{41e90f3e-56c1-4633-81c3-
6e8bac8bdd70}

"Base Application
Partition"

"" "Y" "N"

▪ The server then marshals the values appropriately, as specified by their metadata description
agreed upon with the client through a previous call to IClientTableInfo::GetClientTableInfo.

▪ After successfully marshaling the data into ppTableDataFixed and ppTableDataVariable, the server

returns S_OK.

 HRESULT = S_OK
 ICatalogTableRead::ReadTable(
 [in] GUID* pCatalogIdentifier = {unchanged},
 [in] GUID* pTableIdentifier = {unchanged},
 [in] DWORD tableFlags = {unchanged},
 [in, size_is(cbQueryCellArray), unique]
 char* pQueryCellArray = {unchanged},
 [in] ULONG cbQueryCellArray = {unchanged},
 [in, size_is(cbQueryComparison), unique] char*

210 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 pQueryComparison = {unchanged},
 [in] ULONG cbQueryComparison = {unchanged},
 [in] DWORD eQueryFormat = {unchanged},
 [out, size_is(, *pcbTableDataFixed)]
 char** ppTableDataFixed =
 {pointer to fixed size data of the partition table},
 [out] ULONG* pcbTableDataFixed = 0x00000028,
 [out, size_is(, *pcbTableDataVariable)]
 char** ppTableDataVariable = {pointer to variable
 size data of the partition table},
 [out] ULONG* pcbTableDataVariable = 0x0000003c,
 [out, size_is(, *pcbTableDetailedErrors)]
 char** ppTableDetailedErrors = NULL,
 [out] ULONG* pcbTableDetailedErrors = 0x00000000,
 [out, size_is(, *pcbReserved1)] char** ppReserved1 = NULL,
 [out] ULONG* pcbReserved1 = 0x00000000,
 [out, size_is(, *pcbReserved2)] char** ppReserved2 = NULL,
 [out] ULONG* pcbReserved2 = 0x00000000);

▪ The client on return of the call processes the ppTableDataFixed and ppTableDataVariable buffers.

▪ The following is the layout of the ppTableDataFixed buffer received by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1 Padding

0x41E90F3E

0x463356C1

0x8B6EC381

0x70DD8BAC

0x00000000

0x00000038

0x00000059

0x0000004E

▪ The first 5 bytes represent the status bit field for each field. The client determined the type

and count of these fields from the previous call to IClientTableInfo::GetClientTableInfo.

▪ The client uses the first 5 bytes to parse through each fStatusProperty bit field (section
2.2.1.8) for each property. These map out to the following.

 Property Status Value Meaning

PartitionIdentifier 0 0 0 0 0 0 1 1 Changed/Non-null

211 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 Property Status Value Meaning

Name 0 0 0 0 0 0 1 1 Changed/Non-null

Description 0 0 0 0 0 0 1 1 Changed/Non-null

Deleteable 0 0 0 0 0 0 1 1 Changed/Non-null

Changeable 0 0 0 0 0 0 1 1 Changed/Non-null

▪ Because the table does not contain any variable-size properties that require size specification,
no size information follows the status bit fields.

▪ Because the client has detected the metadata for the Partitions table properties, it determines
that the ppTableFixedSize buffer does not contain any size specifications for any properties.

Therefore, the client interprets the rest of the data as defined by the following table.

 TableFieldName Value Offset

PartitionIdentifier {41e90f3e-56c1-4633-81c3-6e8bac8bdd70} -

Name - 0x00

Description - 0x38

Deleteable "Y" -

Changeable "N" -

▪ The client now has enough information to extract name and description properties from the
ppTableVariableSize buffer.

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 B a s e A p p

10 L i c a t i o n

20 P a r t i t i

30 O n \0 \0 \0

▪ The COMA client extracts the Name property by scanning from its offset (0x00) until it reaches
the terminating null character at offset 0x34, reading the string "Base Application Partition".

▪ The COMA client extracts the Description property by scanning from its offset (0x38) until it
reaches the terminating null character, which it finds immediately at offset 0x38. It reads an
empty string, "".

▪ This completes the client query of the table.

212 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

4.3 Writing to a Table

Figure 8: Writing to a table

The preceding figure shows the sequence for a COMA client that attempts to update a description of
the partition in the Partitions table on behalf of a client application that requests to make this change.

The COMA client has already performed the initialization and read table steps, as shown in section 4.1
and section 4.2. It is after performing these steps that the client is now attempting a table write
operation.

▪ The client calls the ICatalogTableWrite::WriteTable (section 3.1.4.9.1) method by setting the
parameters, as follows:

▪ The client determines the query appropriate to do an update. In this case, pQueryCellArray
is set to NULL with its size cbQueryCellArray set to zero.

▪ The client sets pQueryComparision to NULL and sets its size cbQueryComparision to 0.

▪ The client first determines the property that it wishes to modify. In this case this is the
Description field of the Partitions table (section 3.1.1.3.7). The old values and the new
values of the field are given in the following table.

 Property Old value New value

PartitionIdentifier {41e90f3e-56c1-4633-81c3-6e8bac8bdd70} {41e90f3e-56c1-4633-81c3-
6e8bac8bdd70}

Name "Base Application Partition" "Base Application Partition"

Description "" "The base application partition"

Deleteable "Y" "Y"

Changeable "N" "N"

213 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ As the client is only changing the Description field, it sets up the
fPropertyStatus (section 2.2.1.8) values for the ppTableDataFixedWriteBuffer, as follows.

 Property fPropertyStatus Meaning

PartitionIdentifier 0x01 Not null

Name 0x01 Not null

Description 0x03 Not null and changed

Deleteable 0x01 Not null

Changeable 0x01 Not null

▪ This is all the information the client needs to prepare the ppTableDataFixedWriteBuffer buffer,
which it does in the following way.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 Padding

0x41E90F3E

0x463356C1

0x8B6EC381

0x70DD8BAC

0x00000000

0x00000038

0x00000059

0x0000004E

▪ The client now prepares the ppTableDataVariable buffer.

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 B a s e A p p

10 l I c a t I o n

20 P a r t I t I

30 o n \0 \0 T h e

40 b a s e a p p

50 l I c a t I o n

214 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

60 P a r t I t I

70 o n \0 \0

▪ The client sets the reserved parameters pReserved1, pReserved2, and pReserved3 to NULL.

▪ The client then makes the call.

 HRESULT ICatalogTableWrite::WriteTable(
 [in] GUID* pCatalogIdentifier = {
 6e38d3c4-c2a7-11d1-8dec-00c04fc2e0c7},
 [in] GUID* pTableIdentifier = {
 e4ad9fd6-d435-4cf5-95ad-20ad9ac6b59f},
 [in] DWORD tableFlags = 0x00000000,
 [in, size_is(cbQueryCellArray), unique] char* pQueryCellArray =
 NULL,
 [in] ULONG cbQueryCellArray = 0x00000000,
 [in, size_is(cbQueryComparison), unique] char* pQueryComparison =
 { Pointer to zero sized buffer},
 [in] ULONG cbQueryComparison = 0x00000000,
 [in] DWORD eQueryFormat = 0x00000001,
 [in, size_is(cbTableDataFixedWrite)] char* pTableDataFixedWrite =
 { Buffer containing the fixed size data},
 [in] ULONG cbTableDataFixedWrite = ,
 [in, size_is(cbTableDataVariable)] char* pTableDataVariable = {
 Buffer containing the variable size data},
 [in] ULONG cbTableDataVariable = ,
 [in, size_is(cbReserved1)] char* pReserved1 = NULL,
 [in] ULONG cbReserved1 = 0x00000000,
 [in, size_is(cbReserved2)] char* pReserved2 = NULL,
 [in] ULONG cbReserved2 = 0x00000000,
 [in, size_is(cbReserved3)] char* pReserved3 = NULL,
 [in] ULONG cbReserved3 = 0x00000000,
 [out, size_is(, *pcbTableDetailedErrors)] char**
 ppTableDetailedErrors = {Pointer to receive the
 buffer for detailed errors},
 [out] ULONG* pcbTableDetailedErrors = {Pointer to receive the
 size of ppTableDetailedErrors}
);

▪ The server receives the call and performs the following verification steps:

▪ It verifies that the arguments conform to the syntax specified in section 3.1.4.9.1.

▪ It verifies that the pTableIdentifier matches a table that it supports. In this case, it matches
the Partitions table.

▪ It verifies that the tableFlags are supported for the Partitions table.

▪ It verifies that the query passed in is supported for the Partitions table.

▪ It verifies the query specified is indeed allowed for the Partitions table.

The server then unmarshals the pTableDataFixedWrite and pTableDataVariable buffers to get
the updates. It appropriately updates its store. Since in this case everything succeeds, the
server returns S_OK.

 HRESULT = S_OK.
 ICatalogTableWrite::WriteTable(
 [in] GUID* pCatalogIdentifier = {unchanged},
 [in] GUID* pTableIdentifier = {unchanged},

215 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in] DWORD tableFlags = {unchanged},
 [in, size_is(cbQueryCellArray), unique] char*
 pQueryCellArray = {unchanged},
 [in] ULONG cbQueryCellArray = {unchanged},
 [in, size_is(cbQueryComparison), unique] char*
 pQueryComparison = {unchanged},
 [in] ULONG cbQueryComparison = {unchanged},
 [in] DWORD eQueryFormat = {unchanged},
 [in, size_is(cbTableDataFixedWrite)] char*
 pTableDataFixedWrite = {unchanged},
 [in] ULONG cbTableDataFixedWrite = {unchanged},
 [in, size_is(cbTableDataVariable)] char*
 pTableDataVariable = {unchanged},
 [in] ULONG cbTableDataVariable = {unchanged},
 [in, size_is(cbReserved1)] char* pReserved1 = {
 unchanged},
 [in] ULONG cbReserved1 = {
 unchanged},
 [in, size_is(cbReserved2)] char* pReserved2 = {
 unchanged},
 [in] ULONG cbReserved2 = {unchanged},
 [in, size_is(cbReserved3)] char* pReserved3 = {
 unchanged},
 [in] ULONG cbReserved3 = {unchanged},
 [out, size_is(, *pcbTableDetailedErrors)] char**
 ppTableDetailedErrors = NULL,
 [out] ULONG* pcbTableDetailedErrors = 0x00000000
);

▪ The COMA client, on successful completion of the call, now calls
ICatalogUtils::WaitForEndWrites (section 3.1.4.17.2).

▪ The server receives the call and ensures that all pending writes on its store are completed. The
server then returns S_OK.

4.4 Registration

216 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 9: Registration

The preceding figure shows the sequence for a COMA client that attempts registration of a component

on a COMA server, on behalf of a client application. The client has already performed session and
capability negotiation, as shown in example 4.1. It is assumed that the COMA server has a partition
{41e90f3e-56c1-4633-81c3-6e8bac8bdd70} with conglomeration {3fe02b83-6551-410b-a58a-
b231fd7c0c2e}. It is also assumed that the client knows about the partition and the conglomeration
on the COMA server by means of a query on a COMA server or by some other way. It is also assumed
that the module file path is something that a COMA client acquired beforehand by its own custom

means. For example, the client application might be an administrative tool, and an administrative user
provided the path when requesting registration.

▪ The client calls IRegister2::RegisterModule2 (section 3.1.4.11.4) as follows:

▪ The client sets the ConglomerationIdentifier and the PartitionIdentifier parameters to specify
the conglomeration of the component belonging to the module.

▪ The client passes in an array of string to specify the path of the module for the COMA server in

ppModules. Since in this case there is only one module, the client puts it in an array of 1

element. It sets cModules to 1.

▪ No special flags are needed for this registration. Thus the client sets dwFlags to 0.

▪ The client wants to register all the components in the module, so it does not specify any
requested CLSIDs using the pRequestedCLSID and cRequested parameter.

▪ The client passes in buffers for the rest of the parameters to receive data from the server.

The client initiates the call.

 HRESULT RegisterModule2(
 [in] GUID ConglomerationIdentifier = {
 3fe02b83-6551-410b-a58a-b231fd7c0c2e},
 [in] GUID PartitionIdentifier = {
 41e90f3e-56c1-4633-81c3-6e8bac8bdd70},
 [in, string, size_is(cModules,)] LPWSTR* ppModules =
 {"SomeModule.dll"},
 [in] DWORD cModules = 0x0000001,
 [in] DWORD dwFlags = 0x00000000,
 [in, size_is(cRequested), unique] GUID* pRequestedCLSIDs = NULL,
 [in] DWORD cRequested = 0x00000000,
 [out, size_is(,cModules)] DWORD** ppModuleFlags = {Pointer to
 uninitialized memory to hold a pointer to an
 array of Module Flags},
 [out] DWORD* pcResults = {Pointer to uninitialized memory to hold the
 count of
 components registered},
 [out, size_is(,*pcResults)] GUID** ppResultCLSIDs = {Pointer to
 uninitialized memory to hold an array of CLSIDs of
 the registered components},
 [out, string, size_is(,*pcResults)] LPWSTR** ppResultNames = {
 Pointer to uninitialized memory to hold an array of
 names of the registered components},
 [out, size_is(,*pcResults)] DWORD** ppResultFlags = {Pointer to
 uninitialized memory to hold an array of
 implementation-specific flags
 relating to the registered components},
 [out, size_is(,*pcResults)] LONG** ppResultHRs = {Pointer to
 uninitialized memory to hold an array of HRESULT
 for registration success or failure of the
 components}
);

217 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The server receives the call and performs the following validation steps:

▪ It validates that both the conglomeration and the partition exist, and that the conglomeration

specified is associated with the partition.

▪ It verifies that the path to the modules given is valid and that they are compatible with the

COMA server implementation.

▪ The server then proceeds with the registration process as follows:

▪ It creates the entry for the components in the module in the component full configuration
table.

▪ It creates entries for the interfaces for each component in the module into the interfaces table.

▪ It makes entries for each of the methods in the interfaces to the methods table.

▪ The server populates the ppModule flags to fMODULE_LOADED as the module was successfully

loaded by it.

▪ The server then gathers the CLSID, names of the components, implementation-specific settings
associated with the components, and the individual HRESULT associated with their registration. It
populates these values into ppRequestCLSIDs, ppResultNames, ppResultFlags, and ppResultHRs
arrays.

▪ The server returns S_OK.

 HRESULT = S_OK
 RegisterModule2(
 [in] GUID ConglomerationIdentifier = {unchanged},
 [in] GUID PartitionIdentifier = {unchanged},
 [in, string, size_is(cModules,)] LPWSTR* ppModules = {unchanged},
 [in] DWORD cModules = {unchanged},
 [in] DWORD dwFlags = {unchanged},
 [in, size_is(cRequested), unique] GUID* pRequestedCLSIDs = {
 unchanged},
 [in] DWORD cRequested = {unchanged},
 [out, size_is(,cModules)] DWORD** ppModuleFlags = {fMODULE_LOADED},
 [out] DWORD* pcResults = 0x00000001,
 [out, size_is(,*pcResults)] GUID** ppResultCLSIDs = {{
 463575e4-a992-11d2-a8e2-0000f805c6d2}},
 [out, string, size_is(,*pcResults)] LPWSTR** ppResultNames ={
 "SomeComponent"} ,
 [out, size_is(,*pcResults)] DWORD** ppResultFlags = {
 Implementation-specific flag},
 [out, size_is(,*pcResults)] LONG** ppResultHRs = {{S_OK}}
);

▪ The client, on successful completion of the call, now calls

ICatalogUtils::WaitForEndWrites (section 3.1.4.17.2)).

▪ The server receives the call and ensures that all pending writes on its store are completed. If all
goes well, which it does in this case, the server returns S_OK.

218 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

5 Security

5.1 Security Considerations for Implementers

Implementers need to ensure that authorization checks exist on the COMA catalog stores.

Since COMA passes sensitive data (including passwords) on the wire, all COMA messages use an
encrypted transport, as specified in section 2.1.

The Changeable and Deleteable properties specified for the conglomerations table (section 3.1.1.3.6)
and partitions table (section 3.1.1.3.7) are not usable as security measures.

Table properties marked with fPROPERTY_NOTPERSISTABLE need to be treated as secrets and stored
in an encrypted store.

5.2 Index of Security Parameters

COMA uses the following security parameters.

Security parameter Section

AuthenticationLevel 3.1.1.3.3

This protocol also configures a number of security parameters used by other protocols.

Security parameter Section

AccessPermissions 3.1.1.3.3

Authentication 3.1.1.3.6

AuthenticationCapability 3.1.1.3.6

AuthenticationLevel 3.1.1.3.3

DefaultAuthenticationLevel 3.1.1.3.8

DefaultImpersonationLevel 3.1.1.3.8

EnableSecureReferences 3.1.1.3.8

EnableSecurityTracking 3.1.1.3.8

ImpersonationLevel 3.1.1.3.6

LaunchPermissions 3.1.1.3.3

Password (for security principal specified in RunAs) 3.1.1.3.3

Password (for security principal specified in RunAsUser) 3.1.1.3.6

pwszPassword 3.1.4.17.1

ppvPassword 3.1.4.22.5

QCAuthenticateMsgs 3.1.1.3.6

RoleBasedSecurityEnabled 3.1.1.3.6

RoleMemberName 3.1.1.3.10

219 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Security parameter Section

RunAs 3.1.1.3.3

RunAsUser 3.1.1.3.6

SaferActivateAsActivatorChecks 3.1.1.3.8

SaferRunningObjectChecks 3.1.1.3.8

SRPEnabled 3.1.1.3.6

SRPLevel 3.1.1.3.3

SRPTrustLevel 3.1.1.3.6

220 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

6 Appendix A: Full IDL

For ease of implementation, the full Interface Definition Language (IDL) is provided below, where "ms-
dtyp.idl" refers to the IDL found in [MS-DTYP] Appendix A, and "ms-oaut.idl" refers to the IDL found in
[MS-OAUT] Appendix A.

The syntax uses the IDL syntax extensions defined in [MS-RPCE] sections 2.2.4 and 3.1.1.5. For
example, as noted in [MS-RPCE] section 2.2.4.8, a pointer_default declaration is not required and

pointer_default(unique) is assumed.

 import "ms-dtyp.idl";
 import "ms-oaut.idl";

 typedef struct
 {
 DWORD dataType;
 ULONG cbSize;
 DWORD flags;
 } PropertyMeta;

 typedef enum
 {
 eCT_UNKNOWN = 0x00000000,
 eCT_32BIT = 0x00000001,
 eCT_64BIT = 0x00000002,
 eCT_NATIVE = 0x00001000
 } eComponentType;

 typedef struct
 {
 DWORD dwSRPLevel;
 [string] WCHAR* wszFriendlyName;
 } SRPLevelInfo;

 typedef enum
 {
 css_lb = 1
 } CatSrvServices;

 typedef enum
 {
 css_serviceStopped = 0,
 css_serviceStartPending = 1,
 css_serviceStopPending = 2,
 css_serviceRunning = 3,
 css_serviceContinuePending = 4,
 css_servicePausePending = 5,
 css_servicePaused = 6,
 css_serviceUnknownState = 7
 } CatSrvServiceState;

 typedef struct
 {
 GUID ConglomerationID;
 GUID PartitionID;
 GUID ContainerID;
 DWORD dwProcessID;
 BOOL bPaused;
 BOOL bRecycled;
 } InstanceContainer;

221 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [
 object,
 uuid(182C40FA-32E4-11D0-818B-00A0C9231C29),
 pointer_default(unique)
]
 interface ICatalogSession: IUnknown
 {
 HRESULT Opnum3NotUsedOnWire();
 HRESULT Opnum4NotUsedOnWire();
 HRESULT Opnum5NotUsedOnWire();
 HRESULT Opnum6NotUsedOnWire();

 HRESULT InitializeSession(
 [in] float flVerLower,
 [in] float flVerUpper,
 [in] long reserved,
 [out] float* pflVerSession
);

 HRESULT GetServerInformation(
 [out] long* plReserved1,
 [out] long* plReserved2,
 [out] long* plReserved3,
 [out] long* plMultiplePartitionSupport,
 [out] long* plReserved4,
 [out] long* plReserved5
);
 };

 [
 object,
 uuid(1D118904-94B3-4A64-9FA6-ED432666A7B9),
 pointer_default(unique)
]
 interface ICatalog64BitSupport: IUnknown
 {
 HRESULT SupportsMultipleBitness(
 [out] BOOL* pbSupportsMultipleBitness
);

 HRESULT Initialize64BitQueryCellSupport(
 [in] BOOL bClientSupports64BitQueryCells,
 [out] BOOL* pbServerSupports64BitQueryCells
);
 };

 [
 object,
 uuid(A8927A41-D3CE-11D1-8472-006008B0E5CA),
 pointer_default(unique)
]
 interface ICatalogTableInfo: IUnknown
 {
 HRESULT GetClientTableInfo(
 [in] GUID* pCatalogIdentifier,
 [in] GUID* pTableIdentifier,
 [in] DWORD tableFlags,
 [in, size_is(cbQueryCellArray), unique] char* pQueryCellArray,
 [in] ULONG cbQueryCellArray,
 [in, size_is(cbQueryComparison), unique] char* pQueryComparison,
 [in] ULONG cbQueryComparison,
 [in] DWORD eQueryFormat,
 [out] GUID* pRequiredFixedGuid,
 [out, size_is(, *pcbReserved1)] char** ppReserved1,
 [out] ULONG* pcbReserved1,
 [out, size_is(, *pcAuxiliaryGuid)] GUID** ppAuxiliaryGuid,
 [out] ULONG* pcAuxiliaryGuid,

222 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [out, size_is(, *pcProperties)] PropertyMeta** ppPropertyMeta,
 [out] ULONG* pcProperties,
 [out] IID* piid,
 [out, iid_is(piid)] void** pItf,
 [out, size_is(, *pcbReserved2)] char** ppReserved2,
 [out] ULONG* pcbReserved2
);
 };

 [
 object,
 uuid(0E3D6630-B46B-11D1-9D2D-006008B0E5CA),
 pointer_default(unique)
]
 interface ICatalogTableRead: IUnknown
 {
 HRESULT ReadTable(
 [in] GUID* pCatalogIdentifier,
 [in] GUID* pTableIdentifier,
 [in] DWORD tableFlags,
 [in, size_is(cbQueryCellArray), unique] char* pQueryCellArray,
 [in] ULONG cbQueryCellArray,
 [in, size_is(cbQueryComparison), unique] char* pQueryComparison,
 [in] ULONG cbQueryComparison,
 [in] DWORD eQueryFormat,
 [out, size_is(, *pcbTableDataFixed)] char** ppTableDataFixed,
 [out] ULONG* pcbTableDataFixed,
 [out, size_is(, *pcbTableDataVariable)] char** ppTableDataVariable,
 [out] ULONG* pcbTableDataVariable,
 [out, size_is(, *pcbTableDetailedErrors)] char** ppTableDetailedErrors,
 [out] ULONG* pcbTableDetailedErrors,
 [out, size_is(, *pcbReserved1)] char** ppReserved1,
 [out] ULONG* pcbReserved1,
 [out, size_is(, *pcbReserved2)] char** ppReserved2,
 [out] ULONG* pcbReserved2
);
 };

 [
 object,
 uuid(0E3D6631-B46B-11D1-9D2D-006008B0E5CA),
 pointer_default(unique)
]
 interface ICatalogTableWrite: IUnknown
 {
 HRESULT WriteTable(
 [in] GUID* pCatalogIdentifier,
 [in] GUID* pTableIdentifier,
 [in] DWORD tableFlags,
 [in, size_is(cbQueryCellArray), unique] char* pQueryCellArray,
 [in] ULONG cbQueryCellArray,
 [in, size_is(cbQueryComparison), unique] char* pQueryComparison,
 [in] ULONG cbQueryComparison,
 [in] DWORD eQueryFormat,
 [in, size_is(cbTableDataFixedWrite)] char* pTableDataFixedWrite,
 [in] ULONG cbTableDataFixedWrite,
 [in, size_is(cbTableDataVariable)] char* pTableDataVariable,
 [in] ULONG cbTableDataVariable,
 [in, size_is(cbReserved1)] char* pReserved1,
 [in] ULONG cbReserved1,
 [in, size_is(cbReserved2)] char* pReserved2,
 [in] ULONG cbReserved2,
 [in, size_is(cbReserved3)] char* pReserved3,
 [in] ULONG cbReserved3,
 [out, size_is(, *pcbTableDetailedErrors)] char** ppTableDetailedErrors,
 [out] ULONG* pcbTableDetailedErrors
);
 };

223 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [
 object,
 uuid(8DB2180E-BD29-11D1-8B7E-00C04FD7A924),
 pointer_default(unique)
]
 interface IRegister: IUnknown
 {
 HRESULT RegisterModule(
 [in] GUID ConglomerationIdentifier,
 [in, string, size_is(cModules,)] LPWSTR* ppModules,
 [in] DWORD cModules,
 [in] DWORD dwFlags,
 [in, size_is(cRequested), unique] GUID* pRequestedCLSIDs,
 [in] DWORD cRequested,
 [out, size_is(,cModules)] DWORD** ppModuleFlags,
 [out] DWORD* pcResults,
 [out, size_is(,*pcResults)] GUID** ppResultCLSIDs,
 [out, string, size_is(,*pcResults)] LPWSTR** ppResultNames,
 [out, size_is(,*pcResults)] DWORD** ppResultFlags,
 [out, size_is(,*pcResults)] LONG** ppResultHRs
);

 HRESULT Opnum4NotUsedOnWire();
 };

 [
 object,
 uuid(971668DC-C3FE-4EA1-9643-0C7230F494A1),
 pointer_default(unique)
]
 interface IRegister2: IUnknown
 {
 HRESULT CreateFullConfiguration(
 [in, string] LPCWSTR pwszConglomerationIdOrName,
 [in, string] LPCWSTR pwszCLSIDOrProgId,
 [in] eComponentType ctComponentType
);

 HRESULT CreateLegacyConfiguration(
 [in, string] LPCWSTR pwszConglomerationIdOrName,
 [in, string] LPCWSTR pwszCLSIDOrProgId,
 [in] eComponentType ctComponentType
);

 HRESULT PromoteLegacyConfiguration(
 [in, string] LPCWSTR pwszConglomerationIdOrName,
 [in, string] LPCWSTR pwszCLSIDOrProgId,
 [in] eComponentType ctComponentType
);

 HRESULT Opnum6NotUsedOnWire();
 HRESULT Opnum7NotUsedOnWire();

 HRESULT RegisterModule2(
 [in] GUID ConglomerationIdentifier,
 [in] GUID PartitionIdentifier,
 [in, string, size_is(cModules,)] LPWSTR* ppModules,
 [in] DWORD cModules,
 [in] DWORD dwFlags,
 [in, size_is(cRequested), unique] GUID* pRequestedCLSIDs,
 [in] DWORD cRequested,
 [out, size_is(,cModules)] DWORD** ppModuleFlags,
 [out] DWORD* pcResults,
 [out, size_is(,*pcResults)] GUID** ppResultCLSIDs,
 [out, string, size_is(,*pcResults)] LPWSTR** ppResultNames,
 [out, size_is(,*pcResults)] DWORD** ppResultFlags,
 [out, size_is(,*pcResults)] LONG** ppResultHRs

224 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

);

 HRESULT Opnum9NotUsedOnWire();
 };

 [
 object,
 uuid(C2BE6970-DF9E-11D1-8B87-00C04FD7A924),
 pointer_default(unique)
]
 interface IImport: IUnknown
 {
 HRESULT ImportFromFile(
 [in, string, unique] WCHAR* pwszModuleDestination,
 [in, string] WCHAR* pwszInstallerPackage,
 [in, string, unique] WCHAR* pwszUser,
 [in, string, unique] WCHAR* pwszPassword,
 [in, string, unique] WCHAR* pwszRemoteServerName,
 [in] DWORD dwFlags,
 [in] GUID* reserved1,
 [in] DWORD reserved2,
 [out] DWORD* pcModules,
 [out, size_is(,*pcModules)] DWORD** ppModuleFlags,
 [out, string, size_is(,*pcModules)] LPWSTR** ppModules,
 [out] DWORD* pcComponents,
 [out, size_is(,*pcComponents)] GUID** ppResultCLSIDs,
 [out, string, size_is(,*pcComponents)] LPWSTR** ppResultNames,
 [out, size_is(,*pcComponents)] DWORD** ppResultFlags,
 [out, size_is(,*pcComponents)] LONG** ppResultHRs
);

 HRESULT QueryFile(
 [in, string] WCHAR* pwszInstallerPackage,
 [out] DWORD* pdwConglomerations,
 [out, string, size_is(, *pdwConglomerations)] LPWSTR** ppNames,
 [out, string, size_is(, *pdwConglomerations)] LPWSTR** ppDescriptions,
 [out] DWORD* pdwUsers,
 [out] DWORD* pdwIsProxy,
 [out] DWORD* pcModules,
 [out, string, size_is(,*pcModules)] LPWSTR** ppModules
);

 HRESULT Opnum5NotUsedOnWire();
 HRESULT Opnum6NotUsedOnWire();
 };

 [
 object,
 uuid(1F7B1697-ECB2-4CBB-8A0E-75C427F4A6F0),
 pointer_default(unique)
]
 interface IImport2: IUnknown
 {
 HRESULT SetPartition(
 [in] GUID* pPartitionIdentifier,
 [out] GUID* pReserved
);

 HRESULT Opnum4NotUsedOnWire();
 HRESULT Opnum5NotUsedOnWire();
 };

 [
 object,
 uuid(CFADAC84-E12C-11D1-B34C-00C04F990D54),
 pointer_default(unique)
]

225 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 interface IExport: IUnknown
 {
 HRESULT ExportConglomeration(
 [in] GUID* pConglomerationIdentifier,
 [in] LPCWSTR pwszInstallerPackage,
 [in] LPCWSTR pwszReserved,
 [in] DWORD dwFlags
);

 HRESULT Opnum4NotUsedOnWire();
 HRESULT Opnum5NotUsedOnWire();
 HRESULT Opnum6NotUsedOnWire();
 };

 [
 object,
 uuid(F131EA3E-B7BE-480E-A60D-51CB2785779E),
 pointer_default(unique)
]
 interface IExport2: IUnknown
 {
 HRESULT ExportPartition(
 [in] GUID* pPartitionIdentifier,
 [in] LPCWSTR pwszInstallerPackage,
 [in] LPCWSTR pwszReserved,
 [in] DWORD dwFlags
);
 };

 [
 object,
 uuid(7F43B400-1A0E-4D57-BBC9-6B0C65F7A889),
 pointer_default(unique)
]
 interface IAlternateLaunch: IUnknown
 {
 HRESULT CreateConfiguration(
 [in] GUID ConglomerationIdentifier,
 [in] BSTR bstrConfigurationName,
 [in] DWORD dwStartType,
 [in] DWORD dwErrorControl,
 [in] BSTR bstrDependencies,
 [in] BSTR bstrRunAs,
 [in] BSTR bstrPassword,
 [in] VARIANT_BOOL bDesktopOk
);

 HRESULT DeleteConfiguration(
 [in] GUID ConglomerationIdentifier
);
 };

 [
 object,
 uuid(456129E2-1078-11D2-B0F9-00805FC73204),
 pointer_default(unique)
]
 interface ICatalogUtils: IUnknown
 {
 HRESULT ValidateUser(
 [in, string, unique] LPWSTR pwszPrincipalName,
 [in, string, unique] LPWSTR pwszPassword
);

 HRESULT WaitForEndWrites();

 HRESULT GetEventClassesForIID(

226 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in, string, unique] LPWSTR wszIID,
 [out] DWORD* pcClasses,
 [out, string, size_is(, *pcClasses)] LPWSTR** pawszCLSIDs,
 [out, string, size_is(, *pcClasses)] LPWSTR** pawszProgIDs,
 [out, string, size_is(, *pcClasses)] LPWSTR** pawszDescriptions
);
 };

 [
 object,
 uuid(C726744E-5735-4F08-8286-C510EE638FB6),
 pointer_default(unique)
]
 interface ICatalogUtils2: IUnknown
 {
 HRESULT CopyConglomerations(
 [in, string] LPCWSTR pwszSourcePartition,
 [in, string] LPCWSTR pwszDestPartition,
 [in] DWORD cConglomerations,
 [in, string, size_is(cConglomerations,)] LPCWSTR* ppwszConglomerationNamesOrIds
);

 HRESULT CopyComponentConfiguration(
 [in, string] LPCWSTR pwszSourceConglomeration,
 [in, string] LPCWSTR pwszComponent,
 [in, string] LPCWSTR pwszDestConglomeration
);

 HRESULT AliasComponent(
 [in, string] LPCWSTR pwszSourceConglomeration,
 [in, string] LPCWSTR pwszComponent,
 [in, string] LPCWSTR pwszDestConglomeration,
 [in] GUID* pNewCLSID,
 [in, string] LPCWSTR pwszNewProgID
);

 HRESULT MoveComponentConfiguration(
 [in, string] LPCWSTR pwszSourceConglomeration,
 [in, string] LPCWSTR pwszComponent,
 [in, string] LPCWSTR pwszDestinationConglomeration
);

 HRESULT GetEventClassesForIID2(
 [in, string, unique] LPWSTR wszIID,
 [in] GUID* PartitionId,
 [out] DWORD* pcClasses,
 [out, string, size_is(, *pcClasses)] LPWSTR** pawszCLSIDs,
 [out, string, size_is(, *pcClasses)] LPWSTR** pawszProgIDs,
 [out, string, size_is(, *pcClasses)] LPWSTR** pawszDescriptions,
 [out, string, size_is(, *pcClasses)] LPWSTR** pawszConglomerationIDs,
 [out, size_is(, *pcClasses)] DWORD** padwIsPrivate
);

 HRESULT IsSafeToDelete(
 [in] BSTR bstrFile,
 [out, retval] long* pInUse
);

 HRESULT FlushPartitionCache();

 HRESULT EnumerateSRPLevels(
 [in] LCID Locale,
 [out] int *cLevels,
 [out, size_is(,*cLevels)] SRPLevelInfo **aSRPLevels
);

 HRESULT GetComponentVersions(
 [in] LPCWSTR pwszClsidOrProgId,
 [out] DWORD* pdwVersions,

227 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [out, size_is(, *pdwVersions)] GUID** ppPartitionIDs,
 [out, size_is(, *pdwVersions)] GUID** ppConglomerationIDs,
 [out, size_is(, *pdwVersions)] BOOL** ppIsPrivate,
 [out, size_is(, *pdwVersions)] LONG** ppBitness
);
 };

 [
 object,
 uuid(47CDE9A1-0BF6-11D2-8016-00C04FB9988E),
 pointer_default(unique)
]
 interface ICapabilitySupport: IUnknown
 {
 HRESULT Start(
 [in] CatSrvServices i_css
);

 HRESULT Stop(
 [in] CatSrvServices i_css
);

 HRESULT Opnum5NotUsedOnWire();
 HRESULT Opnum6NotUsedOnWire();

 HRESULT IsInstalled(
 [in] CatSrvServices i_css,
 [out] ULONG* pulStatus
);

 HRESULT IsRunning(
 [in] CatSrvServices i_css,
 [out] CatSrvServiceState* pulStates
);

 HRESULT Opnum9NotUsedOnWire();
 };

 [
 object,
 uuid(3F3B1B86-DBBE-11D1-9DA6-00805F85CFE3),
 pointer_default(unique)
]
 interface IContainerControl: IUnknown
 {
 HRESULT CreateContainer(
 [in] GUID* pConglomerationIdentifier
);

 HRESULT ShutdownContainers(
 [in] GUID* pConglomerationIdentifier
);

 HRESULT RefreshComponents();
 };

 [
 object,
 uuid(6C935649-30A6-4211-8687-C4C83E5FE1C7),
 pointer_default(unique)
]
 interface IContainerControl2: IUnknown
 {
 HRESULT ShutdownContainer(
 [in] GUID* ContainerIdentifier
);

228 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 HRESULT PauseContainer(
 [in] GUID* ContainerIdentifier
);

 HRESULT ResumeContainer(
 [in] GUID* ContainerIdentifier
);

 HRESULT IsContainerPaused(
 [in] GUID* ContainerIdentifier,
 [out] BOOL* bPaused
);

 HRESULT GetRunningContainers(
 [in] GUID* PartitionId,
 [in] GUID* ConglomerationId,
 [out] DWORD* pdwNumContainers,
 [out, size_is(,*pdwNumContainers)] InstanceContainer** ppContainers
);

 HRESULT GetContainerIDFromProcessID(
 [in] DWORD dwPID,
 [out, retval] BSTR* pbstrContainerID
);

 HRESULT RecycleContainer(
 [in] GUID* ContainerIdentifier,
 [in] long lReasonCode
);

 HRESULT GetContainerIDFromConglomerationID(
 [in] GUID* ConglomerationIdentifier,
 [out] GUID* ContainerIdentifier
);
 };

 [
 object,
 uuid(98315903-7BE5-11D2-ADC1-00A02463D6E7),
 pointer_default(unique)
]
 interface IReplicationUtil: IUnknown
 {
 HRESULT CreateShare(
 [in] LPCWSTR pwszShareName,
 [in] LPCWSTR pwszPath
);

 HRESULT CreateEmptyDir(
 [in] LPCWSTR pwszPath
);

 HRESULT RemoveShare(
 [in] LPCWSTR pwszShareName
);

 HRESULT BeginReplicationAsTarget(
 [in] LPCWSTR pwszBaseReplicationDir
);

 HRESULT QueryConglomerationPassword(
 [in] REFGUID ConglomerationId,
 [out, size_is(, *pcbPassword)] char** ppvPassword,
 [out] ULONG* pcbPassword
);

 HRESULT CreateReplicationDir(
 [out] LPWSTR* ppwszBaseReplicationDir
);

229 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 };

230 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

Windows Client Releases

▪ Windows 2000 Professional operating system

▪ Windows XP operating system

▪ Windows Vista operating system

▪ Windows 7 operating system

▪ Windows 8 operating system

▪ Windows 8.1 operating system

▪ Windows 10 operating system

Windows Server Releases

▪ Windows 2000 Server operating system

▪ Windows Server 2003 operating system

▪ Windows Server 2008 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows Server 2012 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the

product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 2.1: Windows clients attempt to use RPC_C_IMP_LEVEL_DELEGATE, as specified in [MS-

RPCE] section 2.2.1.1.9, and if that fails, attempt to use RPC_C_IMP_LEVEL_IMPERSONATE, as
specified in [MS-RPCE] section 2.2.1.1.9.

<2> Section 2.1: Windows 2000 operating system and Windows XP clients first attempt to use
Kerberos (for more information, see [MS-KILE]) and, failing that, attempt to use NTLM (for more
information, see [MS-NLMP].

231 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<3> Section 2.2.1.3: Applicable Windows Server releases internally maintain some of the tables in the
catalog as a relational join of multiple internal tables. The amount of time that it takes to perform read

operations on these tables can be greatly affected by the order in which the join is computed.
Applicable Windows Server releases interpret the presence of this special option as a hint that the join

should be computed in a particular order. Applicable Windows Server releases accept comparison
values other than 1 for this special option, intended for local use only. These additional values are
never sent by Windows clients.

<4> Section 2.2.1.4: The following versions of Windows support the 64-bit QueryCell marshaling
format: Windows XP (x64 and Itanium Editions), Windows Server 2003 (x64 and Itanium Editions),
Windows Vista (x64 Editions), Windows Server 2008 (x64 and Itanium Editions), Windows 7 (x64
Editions), Windows Server 2008 R2 operating system (x64 and Itanium Editions), Windows 8 (x64

Editions), and Windows Server 2012 (x64 and Itanium Editions).

<5> Section 2.2.1.8: The Windows 10 and earlier and Windows Server 2016 and earlier do not set the
Write bit in cases that do not strictly require it.

<6> Section 2.2.1.8: Rather than ignoring the Read and Write bits, Windows 10 and earlier and

Windows Server 2016 and earlier rely on them as hints when extracting data from these structures.

<7> Section 2.2.1.8: Windows 10 and earlier and Windows Server 2016 and earlier do not set the

Read bit in cases that do not strictly require it.

<8> Section 2.2.1.8: Rather than ignoring the Read and Write bits, Windows 10 and earlier and
Windows Server 2016 and earlier rely on them as hints when extracting data from these structures.

<9> Section 2.2.1.9: Windows uses this field as scratch space when constructing or processing
TableDataFixed and TableDataFixedWrite structures, and in some cases sends these structures with
this field set to a nonzero value for a null-valued property. This field is always ignored on receipt for a
null-valued property.

<10> Section 2.2.1.9: Windows uses this field as scratch space when constructing or processing
TableDataFixed and TableDataFixedWrite structures, and in some cases sends these structures with
this field set to a nonzero value for a null-valued property. This field is always ignored on receipt for a

null-valued property.

<11> Section 2.2.2.2: Windows also accepts local paths.

<12> Section 2.2.2.3: For more information on how the thread is selected for calls to MTA-hosted
component instances on Windows, see [MSDN-ThreadMDLS].

<13> Section 2.2.2.3: For more information on how the thread is selected for calls to neutral-hosted
component instances on Windows, see [MSDN-ThreadMDLS].

<14> Section 2.2.2.3.1: For more information on how Windows selects an STA thread to host the
component instance, see [MSDN-ThreadMDLS].

<15> Section 2.2.2.13.1: On Windows, an ORBSpecificExceptionClassProperty is a Curly Braced GUID
String Syntax ([MS-DTYP], section 2.3.4.3) representation of a CLSID, a ProgId, or a COM moniker

(for more information, see [MSDN-COMMonikers]).

<16> Section 2.2.2.13.2: On Windows, an ORBSpecificModuleIdentifierProperty type is an assembly
name for a managed assembly (for more information, see [MSDN-Assemblies]).

<17> Section 2.2.2.13.3: On Windows, an ORBSpecificTypeIdentifierProperty type is a class name of
a class in a managed assembly (for more information, see [MSDN-Assemblies]).

<18> Section 2.2.2.13.4: On Windows, an ORBSpecificAlternateLaunchNameProperty is the service
name of a Windows service (for more information, see [MSDN-WINSVC]).

232 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<19> Section 2.2.2.13.5: On Windows, an ORBSpecificAlternateLaunchParametersProperty is service-
specific command line string passed to a Windows service when starting it (for more information, see

[MSDN-WINSVC]).

<20> Section 2.2.2.13.6: On Windows, an ORBSpecificCommandLineProperty is the lpCommandLine

parameter of CreateProcess (for more information, see [MSDN-CreateProcess]). This property is
intended to be used for debugging purposes, where the command line is modified to a value that runs
the original system-provided command line under a debugger. Any other value produces undefined
results.

<21> Section 2.2.2.13.7: On Windows, an ORBSpecificWebServerVirtualDirectoryProperty type is an
Internet Information Services (IIS) virtual root (for more information, see [MSDN-IIS]).

<22> Section 2.2.2.13.8: On Windows, an ORBSpecificSubscriptionFilterCriteriaProperty type is a

COM+ Event System filter criteria query (for more information, see [MS-COMEV] section 2.2.1).

<23> Section 2.2.2.13.9: On Windows, an ORBSpecificAlternateActivationProperty is a COM moniker
(for more information, see [MSDN-COMMonikers]).

<24> Section 2.2.2.13.10: On Windows, an ORBSpecificProtocolSequenceMnemonicProperty type
MUST be one of the values in the following table. The set of values considered valid by the COMA
server on Windows is version-specific. The set of values representing RPC protocol sequences that are

supported transports for DCOM on Windows is also version-specific and is not necessarily equal to the
set of values considered valid by the COMA server. Those values that do not correspond to a
supported RPC protocol sequences are simply ignored as possible transports by the DCOM protocol
implementation on Windows.

Value Description

Versions
considered
valid by COMA
server Versions supported protocol sequence for DCOM

* Default System
Protocols

Windows 2000

Windows XP

Windows Server
2003

Windows Vista

Windows Server
2008

Windows 7

Windows Server
2008 R2

Windows 8

Windows Server
2012

Windows 8.1

Windows Server
2012 R2

Windows 10

Windows Server
2016

None. For historical reasons, the COMA server on
Windows accepts this as a valid value but it does not
correspond to a valid RPC protocol sequence.

ncacn_ip_tcp Connection-
oriented TCP/IP

Windows 2000

Windows XP

Windows Server
2003

Windows Vista

Windows 2000

Windows XP

Windows Server 2003

Windows Vista

Windows Server 2008

233 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Description

Versions
considered
valid by COMA
server Versions supported protocol sequence for DCOM

Windows Server
2008

Windows 7

Windows Server
2008 R2

Windows 8

Windows Server
2012

Windows 8.1

Windows Server
2012 R2

Windows 10

Windows Server
2016

Windows 7

Windows Server 2008 R2

Windows 8

Windows Server 2012

Windows 8.1

Windows Server 2012 R2

Windows 10

Windows Server 2016

ncacn_http Tunneling
TCP/IP

Windows 2000

Windows XP

Windows Server
2003

Windows Vista

Windows Server
2008

Windows 7

Windows Server

2008 R2

Windows 8

Windows Server
2012

Windows 8.1

Windows Server
2012 R2

Windows 10

Windows Server
2016

Windows 2000

Windows XP

Windows Server 2003

Windows Vista

Windows Server 2008

Windows 7

Windows Server 2008 R2

Windows 8

Windows Server 2012

Windows 8.1

Windows Server 2012 R2

Windows 10

Windows Server 2016

ncacn_nb_tcp Connection-
oriented
NetBIOS over
TCP

Windows 2000

Windows XP

Windows Server
2003

Windows 2000

ncacn_nb_ipx Connection-

oriented
NetBIOS over
IPX

Windows 2000

Windows XP

Windows Server
2003

Windows 2000

ncacn_nb_nb Connection-
oriented
NetBEUI

Windows 2000

Windows XP

Windows Server
2003

Windows 2000

ncacn_np Connection-
oriented named

Windows 2000 Windows 2000

234 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Description

Versions
considered
valid by COMA
server Versions supported protocol sequence for DCOM

pipes Windows XP

Windows Server
2003

Windows XP

Windows Server 2003

ncacn_spx Connection-
oriented SPX

Windows 2000

Windows XP

Windows Server
2003

Windows 2000

Windows Server 2003 (x86 editions)

ncacn_dnet_nsp Connection-

oriented DECnet
transport

Windows 2000

Windows XP

Windows Server
2003

Windows 2000

Windows XP

Windows Server 2003

ncacn_at_dsp AppleTalk DSP Windows 2000

Windows XP

Windows Server
2003

Windows 2000

Windows XP

Windows Server 2003

ncacn_vnns_spp Connection-
oriented Vines
SPP transport

Windows 2000

Windows XP

Windows Server
2003

None. For historical reasons, the COMA server on
Windows 2000, Windows XP, and Windows Server 2003
accepts this value to represent Banyan Vines SPP
instead of the value "ncacn_vns_spp" used by the RPC
and DCOM protocol implementations on Windows. It
does not represent a valid RPC protocol sequence.

ncadg_ip_udp Datagram
UDP/IP

Windows 2000

Windows XP

Windows Server
2003

None.

ncadg_ipx Datagram IPX Windows 2000

Windows XP

Windows Server
2003

None.

<25> Section 2.2.2.21.4: Windows XP operating system Service Pack 2 (SP2), Windows XP operating
system Service Pack 3 (SP3), Windows Server 2003 operating system with Service Pack 1 (SP1),
Windows Server 2003 operating system with Service Pack 2 (SP2), Windows Vista through Windows
10 and Windows Server 2008 through Windows Server 2016 interpret NewVersionComponentDACLs.

<26> Section 2.2.2.21.4: Windows Vista through Windows 10 and Windows Server 2008 through
Windows Server 2016 interpret ComponentSACLs.

<27> Section 2.2.2.22: Applicable Windows Server releases do not enforce constraints on values of
type DefaultAuthenticationLevelProperty. Windows clients never pass invalid values of this type.

<28> Section 2.2.2.23: Applicable Windows Server releases do not enforce constraints on values of
type ActivationTypeProperty. Windows clients never pass invalid values of this type.

<29> Section 2.2.2.24: For more information about the software restriction property on Windows, see
[MSDN-SOFTWRSTRPOLICY].

235 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<30> Section 2.2.2.25: Applicable Windows Server releases do not enforce constraints on values of
type DefaultImpersonationLevelProperty. Windows clients never pass invalid values of this type.

<31> Section 2.2.3: On Windows, "DllGetClassObject".

<32> Section 2.2.3: On Windows, a proxy/stub DLL. For more information about proxies and stubs on

Windows, see [MSDN-MarshalDetails].

<33> Section 2.2.3: For information about type libraries on Windows, see [MSDN-TypeLibraries].

<34> Section 2.2.3: On Windows, "DllRegisterServer".

<35> Section 2.2.3: On Windows, "DllUnregisterServer".

<36> Section 2.2.4: For information about type libraries on Windows, see [MSDN-TypeLibraries].

<37> Section 3: In Windows, if an activation request for the COMA server object class is received in
which the client context contains a transaction context property (see [MS-COM] section 2.2.2.1), the

transaction will propagate to the COMA server object's client context. Windows clients never send such

an activation request. To avoid inadvertently causing a situation in which the COMA server terminates
a client application's transaction, it is recommended that COMA clients never send an activation
request in which the client context contains a transaction context property.

<38> Section 3.1.1.1: In Windows, the COMA server configures COM+, also known as Component
Services, on the server machine. For more information, see [MSDN-COM+].

<39> Section 3.1.1.1.1: In Windows, this is the transactional functionality of the COM+ protocol. For
more information, see [MS-COM].

<40> Section 3.1.1.1.1: Windows provides this facility. For more information, see [MSDN-COM+].

<41> Section 3.1.1.1.2: Windows provides this facility, known as application pooling. For more
information, see [MSDN-COM+].

<42> Section 3.1.1.1.2: Windows provides this facility, known as object pooling. For more

information, see [MSDN-COM+].

<43> Section 3.1.1.1.3: Windows provides this facility. For more information, see [MSDN-COM+].

<44> Section 3.1.1.1.4: Windows provides this facility, known as COM+ events. For more
information, see [MSDN-COM+].

<45> Section 3.1.1.1.5: Windows provides this facility. For more information, see [MSDN-COM+].

<46> Section 3.1.1.1.5: Windows provides this facility. For more information, see [MSDN-COM+].

<47> Section 3.1.1.1.6: Windows does not provide this facility natively, but supports this
configuration for the Component Load Balancing feature of Microsoft Application Center. Note that

Microsoft Application Center 2000 is only supported in Windows 2000, Windows XP, and Windows
Server 2003.

<48> Section 3.1.1.1.7: Windows provides this facility. For more information, see [MSDN-COM+].

<49> Section 3.1.1.2.3: The following versions of Windows support the multiple-bitness capability:

▪ Windows XP (x64 and Itanium Editions)

▪ Windows Server 2003 (x64 and Itanium Editions)

▪ Windows Vista (x64 Editions)

▪ Windows Server 2008 (x64 and Itanium Editions)

236 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ Windows 7 (x64 Editions)

▪ Windows Server 2008 R2 (x64 and Itanium Editions)

▪ Windows 8 (x64 Editions)

▪ Windows Server 2012 (x64 and Itanium Editions)

▪ Windows 8.1

▪ Windows Server 2012 R2

▪ Windows 10

▪ Windows Server 2016

<50> Section 3.1.1.2.7: Windows does this.

<51> Section 3.1.1.2.7: Windows does not enforce this for all internal properties.

<52> Section 3.1.1.2.9: Windows does this.

<53> Section 3.1.1.2.9: Windows does this.

<54> Section 3.1.1.2.9: Windows does this.

<55> Section 3.1.1.2.11: Windows does this.

<56> Section 3.1.1.3.1: On Windows platforms, this is the "CLSID" property of the components
collection; see [MSDN-COMADMIN].

<57> Section 3.1.1.3.1: On Windows platforms, this is the "DLL" property of the components

collection; see [MSDN-COMADMIN].

<58> Section 3.1.1.3.1: On Windows platforms, this is the "ThreadingModel" property of the
components collection; see [MSDN-COMADMIN].

<59> Section 3.1.1.3.1: On Windows platforms, this is the "Name" property of the components
collection; see [MSDN-COMADMIN].

<60> Section 3.1.1.3.1: On Windows platforms, this is the "Description" property of the components
collection; see [MSDN-COMADMIN].

<61> Section 3.1.1.3.1: On Windows platforms, this is the "Bitness" property of the components
collection; see [MSDN-COMADMIN].

<62> Section 3.1.1.3.1: On Windows platforms, this is the "VersionMajor" property of the components
collection; see [MSDN-COMADMIN].

<63> Section 3.1.1.3.1: On Windows platforms, this is the "VersionMinor" property of the components
collection; see [MSDN-COMADMIN].

<64> Section 3.1.1.3.1: On Windows platforms, this is the "VersionBuild" property of the components

collection; see [MSDN-COMADMIN].

<65> Section 3.1.1.3.1: On Windows platforms, this is the "VersionSubBuild" property of the
components collection; see [MSDN-COMADMIN].

<66> Section 3.1.1.3.1: On Windows platforms, this is the "InitializesServerApplication" property of
the components collection; see [MSDN-COMADMIN].

237 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<67> Section 3.1.1.3.1: On Windows platforms, this is the "Transaction" property of the components
collection; see [MSDN-COMADMIN].

<68> Section 3.1.1.3.1: On Windows platforms, this is the "Synchronization" property of the
components collection; see [MSDN-COMADMIN].

<69> Section 3.1.1.3.1: On Windows platforms, this is the "IISIntrinsics" property of the components
collection; see [MSDN-COMADMIN].

<70> Section 3.1.1.3.1: On Windows platforms, this is the "COMTIIntrinsics" property of the
components collection; see [MSDN-COMADMIN].

<71> Section 3.1.1.3.1: On Windows platforms, this is the "JustInTimeActivation" property of the
components collection; see [MSDN-COMADMIN].

<72> Section 3.1.1.3.1: On Windows platforms, this is the "ComponentAccessChecksEnabled"

property of the components collection; see [MSDN-COMADMIN].

<73> Section 3.1.1.3.1: On Windows platforms, this is the "MinPoolSize" property of the components

collection; see [MSDN-COMADMIN].

<74> Section 3.1.1.3.1: On Windows platforms, this is the "MaxPoolSize" property of the components
collection; see [MSDN-COMADMIN].

<75> Section 3.1.1.3.1: On Windows platforms, this is the "CreationTimeout" property of the

components collection; see [MSDN-COMADMIN].

<76> Section 3.1.1.3.1: On Windows platforms, this is the "ConstructorString" property of the
components collection; see [MSDN-COMADMIN].

<77> Section 3.1.1.3.1: On Windows platforms, this is the "MustRunInDefaultContext" property of the
components collection; see [MSDN-COMADMIN].

<78> Section 3.1.1.3.1: On Windows platforms, this is the "MustRunInClientContext" property of the
components collection; see [MSDN-COMADMIN].

<79> Section 3.1.1.3.1: On Windows platforms, this is the "EventTrackingEnabled" property of the
components collection; see [MSDN-COMADMIN]. The activity statistics collected for the component
can be retrieved by a client via the COM+ Tracking Service (COMT) Protocol. For more information;
see [MS-COMT].

<80> Section 3.1.1.3.1: On Windows platforms, this is the "LoadBalancingSupported" property of the
components collection; see [MSDN-COMADMIN].

<81> Section 3.1.1.3.1: On Windows platforms, this is the "ConstructionEnabled" property of the

components collection; see [MSDN-COMADMIN].

<82> Section 3.1.1.3.1: On Windows platforms, this is the "ObjectPoolingEnabled" property of the
components collection; see [MSDN-COMADMIN].

<83> Section 3.1.1.3.1: On Windows platforms, this is the "ExceptionClass" property of the

components collection; see [MSDN-COMADMIN].

<84> Section 3.1.1.3.1: On Windows platforms, this is the "IsEventClass" property of the components

collection; see [[MSDN-COMADMIN].

<85> Section 3.1.1.3.1: On Windows platforms, this is the "PublisherID" property of the components
collection; see [MSDN-COMADMIN].

<86> Section 3.1.1.3.1: On Windows platforms, this is the "MultiInterfacePublisherFilterCLSID"
property of the components collection; see [MSDN-COMADMIN].

238 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<87> Section 3.1.1.3.1: On Windows platforms, this is the "AllowInprocSubscribers" property of the
components collection; see [MSDN-COMADMIN].

<88> Section 3.1.1.3.1: On Windows platforms, this is the "FireInParallel" property of the
components collection; see [MSDN-COMADMIN].

<89> Section 3.1.1.3.1: On Windows platforms, this is the "TransactionTimeout" property of the
components collection; see [MSDN-COMADMIN]. This is used to configure the timeout of COM+
transactions on a per-component basis. For more information, see [MS-COM] section 1.3.2.

<90> Section 3.1.1.3.1: On Windows platforms, this is the "IsEnabled" property of the components
collection; see [MSDN-COMADMIN].

<91> Section 3.1.1.3.1: On Windows platforms, this is the "TxIsolationLevel" property of the
components collection; see [MSDN-COMADMIN].

<92> Section 3.1.1.3.1: On Windows platforms, this is the "IsPrivateComponent" property of the
components collection; see [MSDN-COMADMIN].

<93> Section 3.1.1.3.1: On Windows platforms, this is the "SoapAssemblyName" property of the
components collection; see [MSDN-COMADMIN].

<94> Section 3.1.1.3.1: On Windows platforms, this is the "SoapTypeName" property of the
components collection; see [MSDN-COMADMIN].

<95> Section 3.1.1.3.3: On Windows platforms, this is the "CLSID" property of the legacy
components collection; see [MSDN-COMADMIN].

<96> Section 3.1.1.3.3: On Windows platforms, this is the "Bitness" property of the legacy collection;
see [MSDN-COMADMIN].

<97> Section 3.1.1.3.3: On Windows platforms, this is the "Description" property of the legacy
components collection; see [MSDN-COMADMIN].

<98> Section 3.1.1.3.3: On Windows platforms, this is the "ProgID" property of the legacy

components collection; see [MSDN-COMADMIN].

<99> Section 3.1.1.3.3: On Windows platforms, this is the "InprocServer32" property of the legacy
components collection; see [MSDN-COMADMIN].

<100> Section 3.1.1.3.3: On Windows platforms, this is the "InprocHandler32" property of the legacy
components collection; see [MSDN-COMADMIN].

<101> Section 3.1.1.3.3: On Windows platforms, this is the "ThreadingModel" property of the legacy
components collection; see [MSDN-COMADMIN].

<102> Section 3.1.1.3.3: On Windows platforms, this is the "DLL" property of the components
collection; see [MSDN-COMADMIN].

<103> Section 3.1.1.3.3: On Windows platforms this is the "LocalServer32" property of the legacy
components collection, see [MSDN-COMADMIN].

<104> Section 3.1.1.3.3: On Windows platforms, this is the "AppID" property of the legacy
components collection; see [MSDN-COMADMIN].

<105> Section 3.1.1.3.3: On Windows platforms, this is the "ClassName" property of the legacy
components collection; see [MSDN-COMADMIN].

<106> Section 3.1.1.3.3: On Windows platforms, this is the "RemoteServer" property of the legacy
components collection; see [MSDN-COMADMIN].

239 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<107> Section 3.1.1.3.3: On Windows platforms, this is the "LocalService" property of the legacy
components collection; see [MSDN-COMADMIN].

<108> Section 3.1.1.3.3: On Windows platforms, this is the "ServiceParameters" property of the
legacy components collection; see [MSDN-COMADMIN].

<109> Section 3.1.1.3.3: On Windows platforms, this is the "DllSurrogate" property of the legacy
components collection; see [MSDN-COMADMIN].

<110> Section 3.1.1.3.3: On Windows platforms, this is the "RunAs" property of the legacy
components collection; see [MSDN-COMADMIN].

<111> Section 3.1.1.3.3: On Windows platforms, this is the "Password" property of the legacy
components collection; see [MSDN-COMADMIN].

<112> Section 3.1.1.3.3: On Windows platforms, this is the "ActivateAtStorage" property of the

legacy components collection; see [MSDN-COMADMIN].

<113> Section 3.1.1.3.3: On Windows platforms, this is the "AccessPermissions" property of the

legacy components collection; see [MSDN-COMADMIN].

<114> Section 3.1.1.3.3: On Windows platforms, this is the "LaunchPermissions" property of the
legacy components collection; see [MSDN-COMADMIN].

<115> Section 3.1.1.3.3: On Windows platforms, this is the "AuthenticationLevel" property of the

legacy components collection; see [MSDN-COMADMIN].

<116> Section 3.1.1.3.3: On Windows platforms, this is the "SRPTrustLevel" property of the legacy
components collection; see [MSDN-COMADMIN].

<117> Section 3.1.1.3.4: On Windows platforms, this is the "CLSID" property of the
WowInprocServers, WowLegacyServers, InprocServers, or LegacyServers collection; see [MSDN-
COMADMIN].

<118> Section 3.1.1.3.4: On Windows platforms, this is the "InprocServer32" property of the

WowInprocServers, WowLegacyServers, InprocServers, or LegacyServers collection; see [MSDN-
COMADMIN].

<119> Section 3.1.1.3.4: On Windows platforms, this is the "LocalServer32" property of the
WowLegacyServers or LegacyServers collection; see [MSDN-COMADMIN].

<120> Section 3.1.1.3.4: On Windows platforms, this is the "ProgID" property of the
WowInprocServers, WowLegacyServers, InprocServers, or LegacyServers collection; see [MSDN-
COMADMIN].

<121> Section 3.1.1.3.5: On Windows platforms, this is the "CLSID" property of the
WowInprocServers, WowLegacyServers, InprocServers, or LegacyServers collection; see [MSDN-
COMADMIN].

<122> Section 3.1.1.3.5: On Windows platforms, this is the "InprocServer32" property of the
WowInprocServers, WowLegacyServers, InprocServers, or LegacyServers collection; see [MSDN-

COMADMIN].

<123> Section 3.1.1.3.5: On Windows platforms, this is the "LocalServer32" property of the
WowLegacyServers or LegacyServers collection; see [MSDN-COMADMIN].

<124> Section 3.1.1.3.5: On Windows platforms, this is the "ProgID" property of the
WowInprocServers, WowLegacyServers, InprocServers, or LegacyServers collection; see [MSDN-
COMADMIN].

240 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<125> Section 3.1.1.3.6: Windows uses only the reserved container identifiers for protected
conglomeration.

<126> Section 3.1.1.3.6: On Windows platforms, this is the "ID" property of the Applications
collection; see [MSDN-COMADMIN].

<127> Section 3.1.1.3.6: On Windows platforms, this is the "Name" property of the Applications
collection; see [MSDN-COMADMIN].

<128> Section 3.1.1.3.6: On Windows platforms, this is the "ApplicationProxyServerName" property
of the Applications collection; see [MSDN-COMADMIN].

<129> Section 3.1.1.3.6: On Windows platforms, this is the "CommandLine" property of the
Applications collection; see [MSDN-COMADMIN].

<130> Section 3.1.1.3.6: On Windows platforms, this is the "SeviceName" property of the

Applications collection; see [MSDN-COMADMIN].

<131> Section 3.1.1.3.6: On Windows platforms, this is the "Identity" property of the Applications

collection; see [MSDN-COMADMIN].

<132> Section 3.1.1.3.6: On Windows platforms, this is the "Description" property of the Applications
collection; see [MSDN-COMADMIN].

<133> Section 3.1.1.3.6: On Windows platforms, this is the "IsSystem" property of the Applications

collection; see [MSDN-COMADMIN].

<134> Section 3.1.1.3.6: On Windows platforms, this is the "Authentication" property of the
Applications collection; see [MSDN-COMADMIN].

<135> Section 3.1.1.3.6: On Windows platforms, for conglomerations with Activation set to "Inproc",
the Authentication property is constrained to the following values and has the special meanings
described below.

Value Special meaning for Activation set to FALSE

RPC_C_AUTHN_LEVEL_DEFAULT Windows applies the creating process's authentication level for both incoming
DCOM calls to and outgoing DCOM calls from instance containers associated
with the conglomeration.

RPC_C_AUTHN_LEVEL_NONE Windows applies the creating process's authentication level for outgoing DCOM
calls from instance containers associated with the conglomeration. Windows
accepts incoming DCOM calls to these instance containers at any

authentication level. Furthermore, Windows allows calls to these instance
containers to bypass the access check normally applied to incoming DCOM
calls to the process.

<136> Section 3.1.1.3.6: On Windows platforms, this is the "ShutdownAfter" property of the
Applications collection; see [MSDN-COMADMIN].

<137> Section 3.1.1.3.6: On Windows platforms, this is the "RunForever" property of the Applications
collection; see [MSDN-COMADMIN].

<138> Section 3.1.1.3.6: On Windows platforms, this is the "Password" property of the Applications
collection; see [MSDN-COMADMIN].

<139> Section 3.1.1.3.6: On Windows platforms, this is the "Activation" property of the Applications
collection; see [MSDN-COMADMIN].

241 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<140> Section 3.1.1.3.6: On Windows platforms, this is the "Changeable" property of the Applications
collection; see [MSDN-COMADMIN].

<141> Section 3.1.1.3.6: On Windows platforms, this is the "Deleteable" property of the Applications
collection; see [MSDN-COMADMIN].

<142> Section 3.1.1.3.6: On Windows platforms, this is the "CreatedBy" property of the Applications
collection; see [MSDN-COMADMIN].

<143> Section 3.1.1.3.6: On Windows platforms, this is the "ApplicationAccessChecksEnabled"
property of the Applications collection; see [MSDN-COMADMIN].

<144> Section 3.1.1.3.6: On Windows platforms, this is the "ImpersonationLevel" property of the
Applications collection; see [MSDN-COMADMIN].

<145> Section 3.1.1.3.6: On Windows platforms, this is the "AuthenticationCapabilities" property of

the Applications collection; see [MSDN-COMADMIN].

<146> Section 3.1.1.3.6: On Windows platforms, this is the "CRMEnabled" property of the

Applications collection; see [MSDN-COMADMIN].

<147> Section 3.1.1.3.6: On Windows platforms, this is the "3GigSupportEnabled" property of the
Applications collection; see [MSDN-COMADMIN].

<148> Section 3.1.1.3.6: On Windows platforms, this is the "QueuingEnabled" property of the

Applications collection; see [MSDN-COMADMIN].

<149> Section 3.1.1.3.6: On Windows platforms, this is the "QCListenerEnabled" property of the
Applications collection; see [MSDN-COMADMIN].

<150> Section 3.1.1.3.6: On Windows platforms, this is the "EnableEvents" property of the
Applications collection; see [MSDN-COMADMIN].

<151> Section 3.1.1.3.6: On Windows platforms, this is the "ApplicationProxy" property of the
Applications collection; see [MSDN-COMADMIN].

<152> Section 3.1.1.3.6: On Windows platforms, this is the "CRMLogFile" property of the Applications
collection; see [MSDN-COMADMIN].

<153> Section 3.1.1.3.6: On Windows platforms, this is the "DumpEnabled" property of the
Applications collection; see [MSDN-COMADMIN].

<154> Section 3.1.1.3.6: On Windows platforms, this is the "DumpOnException" property of the
Applications collection; see [MSDN-COMADMIN].

<155> Section 3.1.1.3.6: On Windows platforms, this is the "DumpOnFailFast" property of the

Applications collection; see [MSDN-COMADMIN].

<156> Section 3.1.1.3.6: On Windows platforms, this is the "MaxDumpCount" property of the
Applications collection; see [MSDN-COMADMIN].

<157> Section 3.1.1.3.6: On Windows platforms, this is the "DumpPath" property of the Applications
collection; see [MSDN-COMADMIN].

<158> Section 3.1.1.3.6: On Windows platforms, this is the "IsEnabled" property of the Applications

collection; see [MSDN-COMADMIN].

<159> Section 3.1.1.3.6: On Windows platforms, this is the "ConcurrentApps" property of the
Applications collection; see [MSDN-COMADMIN].

242 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<160> Section 3.1.1.3.6: On Windows platforms, this is the "RecyclingLifetimeLimit" property of the
Applications collection; see [MSDN-COMADMIN].

<161> Section 3.1.1.3.6: On Windows platforms, this is the "RecycleCallLimit" property of the
Applications collection; see [MSDN-COMADMIN].

<162> Section 3.1.1.3.6: On Windows platforms, this is the "RecycleActivationLimit" property of the
Applications collection; see [MSDN-COMADMIN].

<163> Section 3.1.1.3.6: On Windows platforms, this is the "RecycleMemoryLimit" property of the
Applications collection; see [MSDN-COMADMIN].

<164> Section 3.1.1.3.6: On Windows platforms, this is the "RecycleExpirationTimeout" property of
the Applications collection; see [MSDN-COMADMIN].

<165> Section 3.1.1.3.6: On Windows platforms, this is the "QCListenerEnabled" property of the

Applications collection; see [MSDN-COMADMIN].

<166> Section 3.1.1.3.6: On Windows platforms, this is the "QcAuthenticateMsgs" property of the

Applications collection; see [MSDN-COMADMIN].

<167> Section 3.1.1.3.6: On Windows platforms, this is the "ApplicationDirectory" property of the
legacy components collection; see [MSDN-COMADMIN].

<168> Section 3.1.1.3.6: On Windows platforms, this is the "SRPTrustLevel" property of the legacy

components collection; see [MSDN-COMADMIN].

<169> Section 3.1.1.3.6: On Windows platforms, this is the "SRPEnabled" property of the legacy
components collection; see [MSDN-COMADMIN].

<170> Section 3.1.1.3.6: On Windows platforms, this is the "SoapActivated" property of the legacy
components collection; see [MSDN-COMADMIN].

<171> Section 3.1.1.3.6: On Windows platforms, this is the "SoapVRoot" property of the legacy
components collection; see [MSDN-COMADMIN].

<172> Section 3.1.1.3.6: On Windows platforms, this is the "SoapMailTo" property of the legacy
components collection; see [MSDN-COMADMIN].

<173> Section 3.1.1.3.6: On Windows platforms, this is the "SoapBaseUrl" property of the legacy
components collection; see [MSDN-COMADMIN].

<174> Section 3.1.1.3.6: On Windows platforms, this is the "Replicable" property of the legacy
components collection; see [MSDN-COMADMIN].

<175> Section 3.1.1.3.6: The replication client applications provided with Windows platforms do not

replicate conglomerations whose Replicable property has a value of FALSE (0x00000000).

<176> Section 3.1.1.3.7: Windows adds a single entry with the Name property "Activators" to the
PartitionRoles table for each partition created.

<177> Section 3.1.1.3.7: On Windows platforms, this is the "ID" property of the Partitions collection;
see [MSDN-COMADMIN].

<178> Section 3.1.1.3.7: On Windows platforms, this is the "Name" property of the Partitions

collection; see [MSDN-COMADMIN].

<179> Section 3.1.1.3.7: On Windows platforms, this is the "Description" property of the Partitions
collection; see [MSDN-COMADMIN].

243 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<180> Section 3.1.1.3.7: On Windows platforms, this is the "Changeable" property of the Partitions
collection; see [MSDN-COMADMIN].

<181> Section 3.1.1.3.7: On Windows platforms, this is the "Deleteable" property of the Partitions
collection; see [MSDN-COMADMIN].

<182> Section 3.1.1.3.8: On Windows platforms, this is the "Description" property of the
LocalComputer collection; see [MSDN-COMADMIN].

<183> Section 3.1.1.3.8: On Windows platforms, this is the "TransactionTimeout" property of the
LocalComputer collection; see [MSDN-COMADMIN].

<184> Section 3.1.1.3.8: On Windows platforms, this is the "ResourcePoolingEnabled" property of the
LocalComputer collection; see [MSDN-COMADMIN].

<185> Section 3.1.1.3.8: On Windows platforms, this is the "IsRouter" property of the LocalComputer

collection; see [MSDN-COMADMIN].

<186> Section 3.1.1.3.8: On Windows platforms, this is the "EnableDCOM" property of the

LocalComputer collection; see [MSDN-COMADMIN].

<187> Section 3.1.1.3.8: On Windows platforms, this is the "DefaultAuthenticationLevel" property of
the LocalComputer collection; see [MSDN-COMADMIN].

<188> Section 3.1.1.3.8: On Windows platforms, this is the "DefaultImpersonationLevel" property of

the LocalComputer collection; see [MSDN-COMADMIN].

<189> Section 3.1.1.3.8: On Windows platforms, this is the "SecurityTrackingEnabled" property of the
LocalComputer collection; see [MSDN-COMADMIN].

<190> Section 3.1.1.3.8: On Windows platforms, this is the "CISEnabled" property of the
LocalComputer collection; see [MSDN-COMADMIN].

<191> Section 3.1.1.3.8: On Windows platforms, this is the "SecureReferenceEnabled" property of
the LocalComputer collection; see [MSDN-COMADMIN].

<192> Section 3.1.1.3.8: On Windows platforms, this is the "InternetPortsListed" property of the
LocalComputer collection; see [MSDN-COMADMIN].

<193> Section 3.1.1.3.8: On Windows platforms, this is the "DefaultToInternetPorts" property of the
LocalComputer collection; see [MSDN-COMADMIN].

<194> Section 3.1.1.3.8: On Windows platforms, this is the "Ports" property of the LocalComputer
collection; see [MSDN-COMADMIN].

<195> Section 3.1.1.3.8: On Windows platforms, this is the "DSPartitionLookupEnabled" property of

the LocalComputer collection; see [MSDN-COMADMIN].

<196> Section 3.1.1.3.8: On Windows platforms, this is the "RpcProxyEnabled" property of the
LocalComputer collection; see [MSDN-COMADMIN].

<197> Section 3.1.1.3.8: On Windows platforms, this is the "OperatingSystem" property of the
LocalComputer collection; see [MSDN-COMADMIN].

<198> Section 3.1.1.3.8: On Windows platforms, this is the "LoadBalancingCLSID" property of the

LocalComputer collection; see [MSDN-COMADMIN].

<199> Section 3.1.1.3.8: On Windows platforms, this is the "SRPRunningObjectChecks" property of
the LocalComputer collection; see [MSDN-COMADMIN].

244 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<200> Section 3.1.1.3.8: On Windows platforms, this is the "SRPActivateAsActivatorChecks" property
of the LocalComputer collection; see [MSDN-COMADMIN].

<201> Section 3.1.1.3.8: On Windows platforms, this is the "PartitionsEnabled" property of the
LocalComputer collection; see [MSDN-COMADMIN].

<202> Section 3.1.1.3.9: On Windows platforms, this is the "Name" property of the Roles collection;
see [MSDN-COMADMIN].

<203> Section 3.1.1.3.9: On Windows platforms, this is the "Description" property of the Roles
collection; see [MSDN-COMADMIN].

<204> Section 3.1.1.3.10: On Windows platforms, this is the "User" property of the UserInRole
collection; see [MSDN-COMADMIN].

<205> Section 3.1.1.3.11: On Windows platforms, this is the "IID" property of the

InterfacesForComponent collection; see [MSDN-COMADMIN].

<206> Section 3.1.1.3.11: On Windows platforms, this is the "Name" property of the

InterfacesForComponent collection; see [MSDN-COMADMIN].

<207> Section 3.1.1.3.11: On Windows platforms, this is the "QueuingEnabled" property of the
InterfacesForComponent collection; see [MSDN-COMADMIN].

<208> Section 3.1.1.3.11: On Windows platforms, this is the "QueuingSupported" property of the

InterfacesForComponent collection; see [MSDN-COMADMIN].

<209> Section 3.1.1.3.11: On Windows platforms, this is the "Description" property of the
InterfacesForComponent collection; see [MSDN-COMADMIN].

<210> Section 3.1.1.3.12: On Windows platforms, this is the "CLSID" property of the
MethodsForInterface collection; see [MSDN-COMADMIN].

<211> Section 3.1.1.3.12: On Windows platforms, this is the "IID" property of the
MethodsForInterface collection; see [MSDN-COMADMIN].

<212> Section 3.1.1.3.12: On Windows platforms, this is the "Index" property of the
MethodsForInterface collection; see [MSDN-COMADMIN].

<213> Section 3.1.1.3.12: On Windows platforms, this is the "Name" property of the
MethodsForInterface collection; see [MSDN-COMADMIN].

<214> Section 3.1.1.3.12: On Windows platforms, this is the "AutoComplete" property of the
MethodsForInterface collection; see [MSDN-COMADMIN].

<215> Section 3.1.1.3.12: On Windows platforms, this is the "Description" property of the

MethodsForInterface collection; see [MSDN-COMADMIN].

<216> Section 3.1.1.3.13: On Windows platforms, this is the "Name" property of the
RolesForComponent collection; see [MSDN-COMADMIN].

<217> Section 3.1.1.3.14: On Windows platforms, this is the "Name" property of the
RolesForInterface collection; see [MSDN-COMADMIN].

<218> Section 3.1.1.3.15: On Windows platforms, this is the "Name" property of the RolesForMethod

collection; see [MSDN-COMADMIN].

<219> Section 3.1.1.3.16: On Windows platforms, this is the "AccountName" property of the
PartitionUsers collection; see [MSDN-COMADMIN].

245 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<220> Section 3.1.1.3.16: On Windows platforms, this is the "DefaultPartitionID" property of the
PartitionUsers collection; see [MSDN-COMADMIN].

<221> Section 3.1.1.3.17: On Windows platforms, this is the "Name" property of the
RolesForPartition collection; see [MSDN-COMADMIN].

<222> Section 3.1.1.3.17: On Windows platforms, this is the "Description" property of the
RolesForPartition collection; see [MSDN-COMADMIN].

<223> Section 3.1.1.3.18: On Windows platforms, this is the "User" property of the
UserInPartitionRole collection; see [MSDN-COMADMIN].

<224> Section 3.1.1.3.19: On Windows platforms, this is the "Name" property of the
ApplicationCluster collection; see [MSDN-COMADMIN].

<225> Section 3.1.1.3.20: On Windows, this table is used to provide the list of server machines

displayed in the Component Services MMC snap-in on the local machine.

<226> Section 3.1.1.3.20: On Windows platforms, this is the "Name" property of the ComputerList

collection; see [MSDN-COMADMIN].

<227> Section 3.1.1.3.21: On Windows platforms, this is the "InstanceID" property of the
ApplicationInstances collection; see [MSDN-COMADMIN].

<228> Section 3.1.1.3.21: On Windows platforms, this is the "Application" property of the

ApplicationInstances collection; see [MSDN-COMADMIN].

<229> Section 3.1.1.3.21: On Windows platforms, this is the "PartitionID" property of the
ApplicationInstances collection; see [MSDN-COMADMIN].

<230> Section 3.1.1.3.21: On Windows platforms, this is the "ProcessID" property of the
ApplicationInstances collection; see [MSDN-COMADMIN].

<231> Section 3.1.1.3.21: On Windows platforms, this is the "IsPaused" property of the
ApplicationInstances collection; see [MSDN-COMADMIN].

<232> Section 3.1.1.3.21: On Windows platforms, this is the "HasRecycled" property of the
ApplicationInstances collection; see [MSDN-COMADMIN].

<233> Section 3.1.1.3.22: On Windows platforms, this is the "Application" property of the
EventClassesForIID collection; see [MSDN-COMADMIN].

<234> Section 3.1.1.3.22: On Windows platforms, this is the "Bitness" property of the
EventClassesForIID collection; see [MSDN-COMADMIN].

<235> Section 3.1.1.3.22: On Windows platforms, this is the "Name" property of the

EventClassesForIID collection; see [MSDN-COMADMIN].

<236> Section 3.1.1.3.22: On Windows platforms, this is the "Description" property of the
EventClassesForIID collection; see [MSDN-COMADMIN].

<237> Section 3.1.1.3.22: On Windows platforms, this is the "IsPrivateComponent" property of the
EventClassesForIID collection; see [MSDN-COMADMIN].

<238> Section 3.1.1.3.23: The size of the Internal1 property is given as follows for different versions

of Windows.

Windows version Size of Internal1

Windows 2000 4

246 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Windows version Size of Internal1

Windows XP (x86 Editions) 4

Windows XP (x64 and Itanium Editions) 8

Windows Server 2003 (x86 Editions) 4

Windows Server 2003 (x64 and Itanium Editions) 8

Windows Vista (x86 Editions) 4

Windows Vista (x64 Editions) 8

Windows Server 2008 (x86 Editions) 4

Windows Server 2008 (x64 and Itanium Editions) 8

Windows 7 (x86 Editions)

4

Windows 7 (x64 Editions) 8

Windows Server 2008 R2 (x86 Editions) 4

Windows Server 2008 R2 (x64 and Itanium Editions) 8

Windows 8 (x86 Editions) 4

Windows 8 (x64 Editions) 8

Windows Server 2012 (x86 Editions) 4

Windows Server 2012 (x64 and Itanium Editions) 8

Windows 8.1 4

Windows Server 2012 R2 8

Windows 10 4

Windows Server 2016 8

<239> Section 3.1.1.3.23: On Windows platforms, this is the "ID" property of the
SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<240> Section 3.1.1.3.23: On Windows platforms, this is the "Name" property of the
SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<241> Section 3.1.1.3.23: On Windows platforms, this is the "EventCLSID" property of the

SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<242> Section 3.1.1.3.23: On Windows platforms, this is the "MethodName" property of the
SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<243> Section 3.1.1.3.23: On Windows platforms, this is the "PerUser" property of the
SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<244> Section 3.1.1.3.23: On Windows platforms, this is the "UserName" property of the
SubscriptionsForComponent collection; see [MSDN-COMADMIN].

247 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<245> Section 3.1.1.3.23: On Windows platforms, this is the "Enabled" property of the
SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<246> Section 3.1.1.3.23: On Windows platforms, this is the "Description" property of the
SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<247> Section 3.1.1.3.23: On Windows platforms, this is the "MachineName" property of the
SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<248> Section 3.1.1.3.23: On Windows platforms, this is the "PublisherID" property of the
SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<249> Section 3.1.1.3.23: On Windows platforms, this is the "InterfaceID" property of the
SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<250> Section 3.1.1.3.23: On Windows platforms, this is the "FilterCriteria" property of the

SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<251> Section 3.1.1.3.23: On Windows platforms, this is the "SubscriberMoniker" property of the

SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<252> Section 3.1.1.3.23: On Windows platforms, this is the "Queued" property of the
SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<253> Section 3.1.1.3.23: On Windows platforms, this is the "EventClassPartitionID" property of the

SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<254> Section 3.1.1.3.23: On Windows platforms, this is the "SubscriberPartitionID" property of the
SubscriptionsForComponent collection; see [MSDN-COMADMIN].

<255> Section 3.1.1.3.24: On Windows platforms, this is the "Name" property of the
PublisherProperties collection; see [MSDN-COMADMIN].

<256> Section 3.1.1.3.24: On Windows platforms, this is the "Value" property of the
PublisherProperties collection; see [MSDN-COMADMIN].

<257> Section 3.1.1.3.25: On Windows platforms, this is the "Name" property of the
SubscriberProperties collection, see [MSDN-COMADMIN].

<258> Section 3.1.1.3.25: On Windows platforms, this is the "Value" property of the
SubscriberProperties collection, see [MSDN-COMADMIN].

<259> Section 3.1.1.3.26: On Windows platforms, this is the "ProtocolCode" property of the DCOM
Protocols collection; see [MSDN-COMADMIN].

<260> Section 3.1.1.3.26: On Windows platforms, this is the "Order" property of the DCOMProtocols

collection; see [MSDN-COMADMIN].

<261> Section 3.1.1.3.26: On Windows platforms, this is the "Name" property of the DCOM Protocols
collection; see [MSDN-COMADMIN].

<262> Section 3.1.1.3.27: On Windows platforms, this is the "ApplicationFileName" property of the
FilesForImport collection; see [MSDN-COMADMIN].

<263> Section 3.1.1.3.27: On Windows platform, this is the "FileName" property of the

FilesForImport collection; see [MSDN-COMADMIN].

<264> Section 3.1.1.3.27: On Windows platforms, this is the "ApplicationName" property of the
FilesForImport collection; see [MSDN-COMADMIN].

248 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<265> Section 3.1.1.3.27: On Windows platforms, this is the "Description" property of the
FilesForImport collection; see [MSDN-COMADMIN].

<266> Section 3.1.1.3.27: On Windows platforms, this is the "HasUsers" property of the
FilesForImport collection; see [MSDN-COMADMIN].

<267> Section 3.1.1.3.27: On Windows platforms, this is the "IsProxy" property of the FilesForImport
collection; see [MSDN-COMADMIN].

<268> Section 3.1.1.3.27: On Windows platforms, this is the "IsService" property of the
FilesForImport collection; see [MSDN-COMADMIN].

<269> Section 3.1.1.3.27: On Windows platforms ,this is the "PartitionName" property of the
FilesForImport collection; see [MSDN-COMADMIN].

<270> Section 3.1.1.3.27: On Windows platforms, this is the "PartitionDescription" property of the

FilesForImport collection; see [MSDN-COMADMIN].

<271> Section 3.1.1.3.27: On Windows platforms, this is the "PartitionID" property of the

FilesForImport collection; see [MSDN-COMADMIN].

<272> Section 3.1.1.4: On Windows, an alternate launch configuration is used to configure a
Windows service.

<273> Section 3.1.1.4: On Windows, this maps to the dwStartType field of the

QUERY_SERVICE_CONFIGW structure as specified in [MS-SCMR] section 2.2.15.

<274> Section 3.1.1.4: On Windows, this maps to the dwErrorControl field of the
QUERY_SERVICE_CONFIGW structure as specified in [MS-SCMR] section 2.2.15.

<275> Section 3.1.1.4: On Windows, this maps to the lpDependencies field of the
QUERY_SERVICE_CONFIGW structure as specified in [MS-SCMR] section 2.2.15.

<276> Section 3.1.1.4: On Windows, this maps to the ObjectName field for a service as specified in
[MS-SCMR] section 3.1.1.

<277> Section 3.1.1.4: On Windows, this maps to the Password field for a service as specified in
[MS-SCMR] section 3.1.1.

<278> Section 3.1.1.4: On Windows, this maps to the SERVICE_INTERACTIVE_PROCESS flag for the
dwServiceType field of the QUERY_SERVICE_CONFIGW structure as specified in [MS-SCMR] section
2.2.15.

<279> Section 3.1.4: Different versions of Windows support the COMA interfaces as follows:

Win
dow
s
200
0

Win
dow
s XP

Win
dow
s
Serv
er
200
3

Win
dow
s
Vist
a

Win
dow
s
Serv
er
200
8

Win
dow
s 7

Win
dow
s
Serv
er
200
8 R2

Win
dow
s 8

Win
dow
s
Serv
er
201
2

Win
dow
s
8.1

Win
dow
s
Serv
er
201
2 R2

Win
dow
s 10

Win
dow
s
Serv
er
201
6

ICatalogS
ession

X X X X X X X X X X X X X

ICatalog6
4BitSuppo
rt

 X X X X X X X X X X X X

ICatalogTa X X X X X X X X X X X X X

249 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Win
dow
s
200
0

Win
dow
s XP

Win
dow
s
Serv
er
200
3

Win
dow
s
Vist
a

Win
dow
s
Serv
er
200
8

Win
dow
s 7

Win
dow
s
Serv
er
200
8 R2

Win
dow
s 8

Win
dow
s
Serv
er
201
2

Win
dow
s
8.1

Win
dow
s
Serv
er
201
2 R2

Win
dow
s 10

Win
dow
s
Serv
er
201
6

bleInfo

ICatalogTa
bleRead

X X X X X X X X X X X X X

ICatalogTa
bleWrite

X X X X X X X X X X X X X

IRegister X X X X X X X X X X X X X

IRegister2 X X X X X X X X X X X X

IImport X X X X X X X X X X X X X

IImport2 X X X X X X X X X X X X

IExport X X X X X X X X X X X X X

IExport2 X X X X X X X X X X X X

IAlternate
Launch

X X X X X X X X X X X X X

ICatalogUt
ils

X X X X X X X X X X X X X

ICatalogUt
ils2

 X X X X X X X X X X X X

ICapability
Support

X X X X X X X X X X X X X

IContainer

Control

X X X X X X X X X X X X X

IContainer
Control2

 X X X X X X X X X X X X

IReplicatio
nUtil

X X X X X X X X X X X X X

<280> Section 3.1.4.1: Applicable Windows Server releases support the following catalog versions.

Windows version Catalog versions

Windows 2000 3.00

Windows XP (x86 Editions) 4.00

Windows XP (x64 and Itanium Editions) 4.00, 5.00

Windows Server 2003 4.00, 5.00

Windows Vista 4.00, 5.00

250 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Windows version Catalog versions

Windows Server 2008 4.00, 5.00

Windows 7 4.00, 5.00

Windows Server 2008 R2 4.00, 5.00

Windows 8 4.00, 5.00

Windows Server 2012 4.00, 5.00

Windows 8.1 4.00, 5.00

Windows Server 2012 R2 4.00, 5.00

Windows 10 4.00, 5.00

Windows Server 2016 4.00, 5.00

<281> Section 3.1.4.2: For Windows XP through Windows 10 and Windows Server 2003 through
Windows Server 2016, the server supports capability negotiation for the 64-bit
QueryCell (section 2.2.1.4) marshaling format capability.

<282> Section 3.1.4.3: On Windows XP through Windows 10 and Windows Server 2003 through
Windows Server 2016, the client initiates, and the server supports, capability negotiation for the

multiple-partition support capability.

<283> Section 3.1.4.4: On Windows XP through Windows 10 and Windows Server 2003 through
Windows Server 2016, the client initiates, and the server supports, capability negotiation for the
multiple-bitness support capability.

<284> Section 3.1.4.5: Opnums reserved for local use apply to Windows as follows:

Opnum Description

3 Not used by Windows

4 Not used by Windows

5 Not used by Windows

6 Not used by Windows

<285> Section 3.1.4.7.1: Windows clients interpret this value as the CLSID of the COM class

providing functionality appropriate for processing the table.

<286> Section 3.1.4.7.1: Windows clients interpret this value as the CLSID of the COM class

providing functionality appropriate for processing the table.

<287> Section 3.1.4.7.1: Applicable Windows Server releases allow additional values for this
parameter, intended for local use only. These additional values are never sent by Windows clients.

<288> Section 3.1.4.7.1: Applicable Windows Server releases allow additional values for this

parameter, intended for local use only. These additional values are never sent by Windows clients.

<289> Section 3.1.4.7.1: Applicable Windows Server releases allow additional values for this
parameter, intended for local use only. These additional values are never sent by Windows clients.

251 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<290> Section 3.1.4.7.1: Applicable Windows Server releases allow additional queries for some
tables, intended for local use only. These additional queries are never sent by Windows clients.

<291> Section 3.1.4.8.1: Windows COMA servers use multiple stores for the catalog. If these stores
become out of sync with each other (for example, due to changes to one of the stores unrelated to

this protocol) and the server detects such an error while performing a read, it provides additional error
information about which property is mismatched.

<292> Section 3.1.4.8.1: Applicable Windows Server releases allow additional values for this
parameter, intended for local use only. These additional values are never sent by Windows clients.

<293> Section 3.1.4.8.1: Applicable Windows Server releases allow additional values for this
parameter, intended for local use only. These additional values are never sent by Windows clients.

<294> Section 3.1.4.8.1: Applicable Windows Server releases allow additional values for this

parameter, intended for local use only. These additional values are never sent by Windows clients.

<295> Section 3.1.4.8.1: Applicable Windows Server releases allow additional queries for some
tables, intended for local use only. These additional queries are never sent by Windows clients.

<296> Section 3.1.4.8.1: Applicable Windows Server releases accept additional special option values,
intended for local use only. These additional special option values are never sent by Windows clients.

<297> Section 3.1.4.9.1: If a client attempts to make an invalid write (for example, attempts to

move a component configuration into or out of a non-changeable conglomeration), Windows COMA
servers provide additional information, when available, about which property write is invalid. In
addition, Windows COMA servers use multiple stores for the catalog. If these stores become out of
sync with each other (for example, due to changes to one of the stores unrelated to this protocol) and
the server detects such an error while performing a write, it provides additional error information
about which property is mismatched.

<298> Section 3.1.4.9.1: Applicable Windows Server releases do not enforce that no adds are written

to tables that do not support adds, although these invalid writes might fail during subsequent
processing. Windows clients never send these invalid writes.

<299> Section 3.1.4.9.1: Applicable Windows Server releases do not enforce that no adds are written
to tables that do not support adds, although these invalid writes might fail during subsequent
processing. Windows clients never send these invalid writes.

<300> Section 3.1.4.9.1: Applicable Windows Server releases do not enforce that no adds are written
to tables that do not support adds, although these invalid writes might fail during subsequent

processing. Windows clients never send these invalid writes.

<301> Section 3.1.4.9.1: Applicable Windows Server releases allow additional queries for some
tables, intended for local use only. These additional queries are never sent by Windows clients.

<302> Section 3.1.4.9.1: Applicable Windows Server releases use role-based security configuration
for the System Application to determine authorization for writes to tables as follows.

Table Allowed roles

ServerList table "Administrator", "Reader"

All other tables "Administrator"

<303> Section 3.1.4.9.1: If a client attempts to make an invalid write (for example, attempts to
move a component configuration into or out of a non-changeable conglomeration), Windows COMA
servers provide additional information, when available, about which property write is invalid. In

252 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

addition, Windows COMA servers use multiple stores for the catalog. If these stores become out of
sync with each other (for example, due to changes to one of the stores unrelated to this protocol) and

the server detects such an error while performing a write, it provides additional error information
about which property is mismatched.

<304> Section 3.1.4.9.1: Applicable Windows Server releases are able to generate multiple detailed
errors, but do not guarantee that the detailed error results are complete.

<305> Section 3.1.4.9.1: Applicable Windows Server releases do not enforce that no adds are written
to tables that do not support adds, although these invalid writes might fail during subsequent
processing. Windows clients never send these invalid writes.

<306> Section 3.1.4.9.1: Applicable Windows Server releases do not enforce that no updates are
written to tables that do not support updates, although these invalid writes might fail during

subsequent processing. Windows clients never send these invalid writes.

<307> Section 3.1.4.9.1: Applicable Windows Server releases do not enforce that no removes are
written to tables that do not support removes, although these invalid writes might fail during

subsequent processing. Windows clients never send these invalid writes.

<308> Section 3.1.4.9.1: Applicable Windows Server releases accept additional special option values,
intended for local use only. These additional special option values are never sent by Windows clients.

<309> Section 3.1.4.9.1: Applicable Windows Server releases do not enforce restrictions on the
values of properties written to the tables. Applicable Windows Server releases do not enforce
restrictions on the values of properties written to the tables. Windows clients never send these invalid
writes. Windows clients never send these invalid writes.

<310> Section 3.1.4.9.1: Applicable Windows Server releases do not enforce restrictions on the
values of properties written to the tables. Applicable Windows Server releases do not enforce
restrictions on the values of properties written to the tables. Windows clients never send these invalid

writes. Windows clients never send these invalid writes.

<311> Section 3.1.4.9.1: Applicable Windows Server releases do not enforce the restriction that read-

only properties must not be written. Windows clients never send these invalid writes.

<312> Section 3.1.4.9.1: Windows does this for the Partitions table.

<313> Section 3.1.4.9.1: Applicable Windows Server releases do not enforce the restriction that read-
only properties must not be written. Windows clients never send these invalid writes.

<314> Section 3.1.4.9.1: Applicable Windows Server releases do not enforce the restriction that read-

only properties must not be written. Windows clients never send these invalid writes.

<315> Section 3.1.4.9.1: Applicable Windows Server releases do this.

<316> Section 3.1.4.10: Opnums reserved for local use apply to Windows as follows.

opnum Description

4 Just returns E_NOTIMPL. It is never used.

<317> Section 3.1.4.10.1: Applicable Windows Server releases return the ProgID of the component if
it was able to determine this. Otherwise, they return the Curly Braced GUID String Syntax ([MS-DTYP]
section 2.3.4.3) representation of the CLSID.

<318> Section 3.1.4.10.1: Applicable Windows Server releases allow additional values for this
parameter, intended for local use only. These additional values are never sent by Windows clients.

253 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<319> Section 3.1.4.10.1: Windows does not support a nonzero number of elements if any of the
modules are managed (.NET) assemblies (for more information, see [MSDN-Assemblies]).

<320> Section 3.1.4.10.1: If any of the modules are managed (.NET) assemblies (for more
information, see [MSDN-Assemblies]), Windows performs the registration procedure separately for

each managed assembly as a separate transaction, failing the call if any of these operations fail. The
remainder of the modules are then registered in a separate transaction, according to the transactional
semantics specified.

<321> Section 3.1.4.10.1: Windows does this when a verification is being performed and one of the
modules cannot be found.

<322> Section 3.1.4.10.1: Windows also allows local paths, intended for local use. Applicable
Windows Server releases always send UNC paths.

<323> Section 3.1.4.10.1: Windows also allows local paths, intended for local use. Applicable
Windows Server releases always send Universal Naming Convention paths.

<324> Section 3.1.4.11: Opnums reserved for local use apply to Windows as follows.

opnum Description

6 Not used by Windows.

7 Not used by Windows.

9 Just returns E_NOTIMPL. It is never used.

<325> Section 3.1.4.11.4: Applicable Windows Server releases return the ProgID of the component if
it was able to determine this. Otherwise, they return the Curly Braced GUID String Syntax ([MS-DTYP]
section 2.3.4.3) representation of the CLSID.

<326> Section 3.1.4.11.4: Applicable Windows Server releases allow additional values for this

parameter, intended for local use only. These additional values are never sent by Windows clients.

<327> Section 3.1.4.11.4: Windows does not support a nonzero number of elements if any of the
modules are managed (.NET) assemblies (for more information, see [MSDN-Assemblies]).

<328> Section 3.1.4.11.4: If any of the modules are managed (.NET) assemblies (for more
information, see [MSDN-Assemblies]), Windows performs the registration procedure separately for
each managed assembly as a separate transaction, failing the call if any of these operations fail. The
remainder of the modules are then registered in a separate transaction, according to the transactional
semantics specified.

<329> Section 3.1.4.11.4: Windows does this when a verification is being performed and one of the
modules cannot be found.

<330> Section 3.1.4.11.4: Windows also allows local paths, intended for local use. Applicable
Windows Server releases always send UNC paths.

<331> Section 3.1.4.11.4: Applicable Windows Server releases do not enforce this restriction when
fREGISTER_VERIFYONLY is set in the dwFlags parameter. Windows clients do not pass names of non-

existent files when calling this method.

<332> Section 3.1.4.11.4: Applicable Windows Server releases do not enforce this restriction when
fREGISTER_VERIFYONLY is set in the dwFlags parameter. Applicable Windows Server releases use
internal means to convey to Windows clients that a give file is not recognized as a module.

254 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<333> Section 3.1.4.11.4: Windows also allows local paths, intended for local use. Applicable
Windows Server releases always send UNC paths.

<334> Section 3.1.4.12: Opnums reserved for local use apply to Windows as follows:

opnum Description

5 Not used by Windows.

6 Not used by Windows.

<335> Section 3.1.4.12.1: Windows also allows local paths, intended for local use. Applicable
Windows Server releases always send UNC paths.

<336> Section 3.1.4.12.1: Windows also allows local paths, intended for local use. Applicable
Windows Server releases always send the UNC paths.

<337> Section 3.1.4.12.1: Applicable Windows Server releases allow additional values for this

parameter, intended for local use only. These additional values are never sent by Windows clients.

<338> Section 3.1.4.12.2: Windows also allows local paths, intended for local use. Applicable
Windows Server releases always send UNC paths.

<339> Section 3.1.4.13: Opnums reserved for local use apply to Windows as follows.

opnum Description

4 Not used by Windows.

5 Not used by Windows.

<340> Section 3.1.4.14: Opnums reserved for local use apply to Windows as follows.

opnum Description

4 Not used by Windows.

5 Not used by Windows.

6 Not used by Windows.

<341> Section 3.1.4.14.1: Applicable Windows Server releases export conglomerations to a Windows

Installer [MSDN-WindowsInstaller] format, also known as MSI.

<342> Section 3.1.4.15.1: Applicable Windows Server releases export conglomerations to a Windows
Installer [MSDN-WindowsInstaller] format, also known as MSI.

<343> Section 3.1.4.18.3: For Windows XP and later and Windows Server 2003 and later, servers do
not verify that the source component is configured in the source conglomeration.

A call to AliasComponent in which the source component is configured in a conglomeration other than
the specified source conglomeration has undefined behavior on these versions of Windows.

255 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Windows COMA clients act as a pass-through and do not validate this requirement. It is the
responsibility of Windows client applications to provide valid parameters when making such a request.

<344> Section 3.1.4.18.3: Windows uses an internal property in the
ComponentsAndFullConfigurations table to associate the new CLSID with the original component.

<345> Section 3.1.4.18.6: Windows XP does not ignore this parameter.

<346> Section 3.1.4.18.6: Windows XP does not do this.

<347> Section 3.1.4.18.6: Windows XP does this.

<348> Section 3.1.4.19: Opnums reserved for local use apply to Windows as follows.

opnum Description

5 Only used locally by Windows, never remotely.

6 Only used locally by Windows, never remotely.

9 Only used locally by Windows, never remotely.

<349> Section 3.1.4.20.3: Applicable Windows Server releases fix broken CLSID references from the
component configuration. This is to support development of components locally on the server using
Microsoft Visual Basic, which regenerates CLSIDs each time they are compiled.

<350> Section 3.1.4.21.4: For Windows XP and later and Windows Server 2003 and later, servers do

not enforce this requirement; that is, a server will not fail the call if a client passes it an
invalid/unknown container identifier.

Windows COMA clients act as a pass-through and do not validate this requirement. It is the
responsibility of Windows client applications to provide valid parameters when making such a request.

<351> Section 3.1.4.21.7: Applicable Windows Server releases use the system event log.

<352> Section 3.1.4.22.4: Applicable Windows Server releases keep a local backup of files copied to
target replication shares by replication client applications for the two most recent replications in which

the server is a replication target. (This action also serves to provide a limited record of replication
history). For the purposes of this backup, a replication begins with a call to
IReplicationUtil::BeginReplicationAsTarget. If a replication client application either fails to call
IReplicationUtil::BeginReplicationAsTarget or copies conglomerations to the server in any other
manner except by copying the installer package files to a target replication share, backups might not
provide an accurate record of replication history, and some files might not be in the location expected
by client applications or administrators. However, this has no direct effect on COMA protocol behavior.

<353> Section 3.1.4.22.4: Applicable Windows Server releases do not attempt to perform any
cleanup.

<354> Section 3.1.4.22.5: For Windows 2000 Professional and later and Windows 2000 Server and

later, the COMA server does not fail the call if the conglomeration does not exist.

Instead, they return a null value for ppvPassword. Windows clients never call this method with a
ConglomerationId that was not previously verified to exist by reading the Conglomerations

Table (section 3.1.1.3.6).

<355> Section 3.2.4.1: Windows clients support the following catalog versions.

256 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Windows version Catalog versions

Windows 2000 3.00

Windows XP (x86 Editions) 3.00, 4.00

Windows XP (x64 and Itanium Editions) 3.00, 4.00, 5.00

Windows Server 2003 3.00, 4.00, 5.00

Windows Vista 3.00, 4.00, 5.00

Windows Server 2008 3.00, 4.00, 5.00

Windows 7 3.00, 4.00, 5.00

Windows Server 2008 R2 3.00, 4.00, 5.00

Windows 8 3.00, 4.00, 5.00

Windows Server 2012 3.00, 4.00, 5.00

Windows 8.1 3.00, 4.00, 5.00

Windows Server 2012 R2 3.00, 4.00, 5.00

<356> Section 3.2.4.1: Windows XP clients support this range of catalog versions and enable
configuration of multiple partitions on a server.

<357> Section 3.2.4.2: For Windows XP and later and Windows Server 2003 and later, the client
attempts to perform capability negotiation for the 64-bit QueryCell marshaling format capability.

<358> Section 3.2.4.3: For Windows XP and later and Windows Server 2003 and later, the client
initiates, and the server supports, capability negotiation for the multiple-partition support capability.

<359> Section 3.2.4.4: For Windows XP and later and Windows Server 2003 and later, the client
initiates, and the server supports, capability negotiation for the multiple-partition support capability.

257 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

8 Change Tracking

This section identifies No table of changes that were made to this is available. The document is either
new or has had no changes since theits last release. Changes are classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

7 Appendix B: Product
Behavior

Added Windows Server to the list of applicable products and
modified several product behavior notes.

Major

258 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

9 Index
6

64-bit QueryCell marshaling format capability negotiation
 client 201
 server 130
64-Bit QueryCell Marshaling Format Capability Negotiation method (section 3.1.4.2 130, section 3.2.4.2 201)

A

Abstract data model
 client 198
 overview 198
 per-session state 199
 server 69
 alternate launch configurations 128
 configuration and ORB 69
 overview 69
 per-session state 129

 replication directories 129
 table definitions 76
 tables 73
ActivationTypeProperty 60
AliasComponent method 178
Alternate launch configurations 128
Applicability 25
ApplicationSpecificStringProperty 51

B

Background 17
BeginReplicationAsTarget method 197
Bitness 21
BitnessProperty 47
BooleanProperty
 BooleanBitProperty 49
 overview 49

C

Capability negotiation 26
 64-bit QueryCell marshaling format
 client 201
 server 130
 multiple-bitness
 client 202
 server 131
 multiple-partition
 client 202
 server 131
Cascades 76
Catalog 17

Catalog session and capabilities initialization example 204
Catalog version negotiation
 client 200
 server 130
Catalog Version Negotiation method (section 3.1.4.1 130, section 3.2.4.1 200)
Catalog versions 19
CatSrvServices 66
CatSrvServices enumeration 66
CatSrvServiceState 67
CatSrvServiceState enumeration 67

259 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Change tracking 257
Client
 64-Bit QueryCell Marshaling Format Capability Negotiation method 201
 abstract data model 198
 overview 198
 per-session state 199
 Catalog Version Negotiation method 200
 initialization 199
 IsSafeToDelete method 203
 local events 203
 message processing 199
 64-bit QueryCell marshaling format capability negotiation 201
 catalog version negotiation 200
 IsSafeToDelete method 203
 multiple-bitness capability negotiation 202
 multiple-partition capability negotiation 202
 overview 199
 reads and writes 203
 write synchronization 203
 write validation 203
 Multiple-Bitness Capability Negotiation method 202
 Multiple-Partition Support Capability Negotiation method 202
 Reads and Writes method 203

 sequencing rules 199
 64-bit QueryCell marshaling format capability negotiation 201
 catalog version negotiation 200
 IsSafeToDelete method 203
 multiple-bitness capability negotiation 202
 multiple-partition capability negotiation 202
 overview 199
 reads and writes 203
 write synchronization 203
 write validation 203
 timer events 203
 timers 199
 Write Synchronization method 203
 Write Validation method 203
Common data types 30
Component access control list types
 ComponentSACL 59
 NewVersionComponentDACL 59
 OldVersionComponentDACL 58
 overview 58
Component access mask types
 component access constants 56
 NewVersionComponentAccessMask 57
 OldVersionComponentAccessMask 57
 overview 56
Component ACE types
 ComponentMandatoryLabelACE 58
 NewVersionComponentAccessAllowedACE 57
 NewVersionComponentAccessDeniedACE 58
 OldVersionComponentAccessAllowedACE 57
 OldVersionComponentAccessDeniedACE 58
 overview 57
ComponentFullConfigurationsReadOnly table 85
ComponentLegacyConfigurations table 88
ComponentMandatoryLabelACE 58
ComponentNativeBitness table 91
ComponentNonNativeBitness table 92
ComponentSACL 59
ComponentsAndFullConfigurations table 77
ComponentSecurityDescriptor 59
ComputerNameOrAddressProperty 54
ComputerNameProperty 54

260 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ConcurrentAppsProperty 62
Configuration
 alternate launch 128
 and ORB
 configured proxies 71
 crash dump 72
 instance load balancing 71
 overview 69
 partitions and users 72
 pooling 70
 publisher-subscriber framework 70
 role-based security 70
 software restriction policy 72
 system services 73
 transactions 69
 transport protocols 70
 transport security 72
Configuration state - protection 23
Configured proxies 71
ConfiguredInterfaces table 105
ConfiguredMethods table 107
Conglomerations table 93
ContextFacilityProperty 48

CopyComponentConfiguration method 177
CopyConglomerations method 175
Crash dump 72
CreateConfiguration method 170
CreateContainer method 188
CreateEmptyDir method 195
CreateFullConfiguration method 151
CreateLegacyConfiguration method 153
CreateReplicationDir method 198
CreateShare method 194

D

Data model - abstract
 client 198
 overview 198
 per-session state 199
 server 69
 alternate launch configurations 128
 configuration and ORB 69
 overview 69
 per-session state 129
 replication directories 129
 table definitions 76
 tables 73
Data types 30
 common - overview 30
DefaultAuthenticationLevelProperty 60
DefaultImpersonationLevelProperty 60
DeleteConfiguration method 171
DescriptionProperty 48

E

eACTION_ADD 39
eACTION_REMOVE 39
eACTION_UPDATE 39
eComponentType 66
eComponentType enumeration 66
eDT_BYTES 31
eDT_GUID 31
eDT_LPWSTR 31

261 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

eDT_ULONG 31
EnumerateSRPLevels method 183
eSQO_OPTHINT 32
EventClasses table 119
Events 23
 local
 server 198
 local - client 203
 local - server 198
 timer
 server 198
 timer - client 203
 timer - server 198
Examples
 catalog session and capabilities initialization 204
 reading a table 206
 reading table 206
 registration 215
 writing to a table 212
 writing to table 212
Export 21
ExportConglomeration method 168
ExportPartition method 169

F

fComponentStatus 65
Fields - vendor-extensible 26
FilesForImport table 126
Flags 74
FlushPartitionCache method 183
fMODULE_ALREADYINSTALLED 64
fMODULE_BADTYPELIB 64
fMODULE_CONTAINSCOMP 64
fMODULE_CUSTOMFAILED 64
fMODULE_CUSTOMSUPPORTED 64
fMODULE_CUSTOMUNSUPPORTED 64
fMODULE_DOESNOTEXIST 64
fMODULE_INSTANTIATE 64
fMODULE_LOADED 64
fMODULE_LOADFAILED 64
fMODULE_SELFREG 64
fMODULE_SELFREGFAILED 64
fMODULE_SELFUNREG 64
fMODULE_SUPPORTCODE 64
fMODULE_TYPELIB 64
fMODULE_TYPELIBFAILED 64
fModuleStatus 64
fPropertyStatus packet 36
fTABLE_32BIT 31
fTABLE_64BIT 31
fTABLE_UNSPECIFIED 31
Full IDL 220

G

GetClientTableInfo method 135

GetComponentVersions method 184
GetContainerIDFromConglomerationID method 193
GetContainerIDFromProcessID method 192
GetEventClassesForIID method 173
GetEventClassesForIID2 method 181
GetRunningContainers method 191
GetServerInformation method 132
Glossary 10

262 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

I

IAlternateLaunch method 170
ICapabilitySupport method 185
ICatalog64BitSupport method 133
ICatalogSession method 131
ICatalogTableInfo method 135
ICatalogTableRead method 137
ICatalogTableWrite method 140
ICatalogUtils method 172
ICatalogUtils2 method 174
IContainerControl method 188
IContainerControl2 method 189
IDL 220
IExport method 167
IExport2 method 169

IImport method 160
IImport2 method 166
ImplementationSpecificPathProperty 45
Implementer - security considerations 218
Import 21
ImportFromFile method 160
Index of security parameters 218
Informative references 15
Initialization
 client 199
 server 129
Initialize64BitQueryCellSupport method 134
InitializeSession method 132
Instance load balancing (section 1.3.9 23, section 3.1.1.1.6 71)
InstanceContainer 67
InstanceContainer structure 67
InstanceContainers table 118
InstanceLoadBalancingTargets table 117
Instantiation concepts 22
Introduction 10
IRegister method 147
IRegister2 method 151
IReplicationUtil method 194
IsContainerPaused method 191
IsInstalled method 187
IsRunning method 187
IsSafeToDelete method (section 3.1.4.18.6 182, section 3.2.4.8 203)

L

Launch configurations 128
Load balancing 71
Load balancing - instance 23
Local events
 client 203
 server 198
Local events - client 203
LongTimeoutInMinutesProperty 50
LongTimeoutInSecondsProperty 50

M

MachineSettings table 101
Marshaling format - 64-bit QueryCell
 client 201
 server 130
MaxDumpCountProperty 62
MaxPoolSizeProperty 49

263 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

MaxThreadsProperty 63
Message processing
 client 199
 64-bit QueryCell marshaling format capability negotiation 201
 catalog version negotiation 200
 IsSafeToDelete method 203
 multiple-bitness capability negotiation 202
 multiple-partition capability negotiation 202
 overview 199
 reads and writes 203
 write synchronization 203
 write validation 203
 server 129
 64-bit QueryCell marshaling format capability negotiation 130
 catalog version negotiation 130
 multiple-bitness capability negotiation 131
 multiple-partition capability negotiation 131
 overview 129
Messages
 common data types 30
 data types 30
 transport 30
Methods

 64-Bit QueryCell Marshaling Format Capability Negotiation (section 3.1.4.2 130, section 3.2.4.2 201)
 Catalog Version Negotiation (section 3.1.4.1 130, section 3.2.4.1 200)
 IAlternateLaunch 170
 ICapabilitySupport 185
 ICatalog64BitSupport 133
 ICatalogSession 131
 ICatalogTableInfo 135
 ICatalogTableRead 137
 ICatalogTableWrite 140
 ICatalogUtils 172
 ICatalogUtils2 174
 IContainerControl 188
 IContainerControl2 189
 IExport 167
 IExport2 169
 IImport 160
 IImport2 166
 IRegister 147
 IRegister2 151
 IReplicationUtil 194
 IsSafeToDelete 203
 Multiple-Bitness Capability Negotiation (section 3.1.4.4 131, section 3.2.4.4 202)
 Multiple-Partition Support Capability Negotiation (section 3.1.4.3 131, section 3.2.4.3 202)
 Reads and Writes 203
 Write Synchronization 203
 Write Validation 203
MinPoolSizeProperty 49
MoveComponentConfiguration method 180
Multiple-bitness capability negotiation
 client 202
 server 131
Multiple-Bitness Capability Negotiation method (section 3.1.4.4 131, section 3.2.4.4 202)
Multiple-partition capability negotiation
 client 202
 server 131
Multiple-Partition Support Capability Negotiation method (section 3.1.4.3 131, section 3.2.4.3 202)

N

NameProperty 48
NewVersionComponentAccessAllowedACE 57
NewVersionComponentAccessDeniedACE 58

264 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

NewVersionComponentAccessMask 57
NewVersionComponentDACL 59
Normative references 14

O

OldVersionComponentAccessAllowedACE 57
OldVersionComponentAccessDeniedACE 58
OldVersionComponentAccessMask 57
OldVersionComponentDACL 58
ORB - configuration and
 configured proxies 71
 crash dump 72
 instance load balancing 71
 overview 69
 partitions and users 72
 pooling 70

 publisher-subscriber framework 70
 role-based security 70
 software restriction policy 72
 system services 73
 transactions 69
 transport protocols 70
 transport security 72
ORBSecuritySettingsProperty 61
ORB-specific property formats
 ORBSpecificAlternateActivationProperty 53
 ORBSpecificAlternateLaunchNameProperty 52
 ORBSpecificAlternateLaunchParametersProperty 52
 ORBSpecificCommandLineProperty 52
 ORBSpecificExceptionClassProperty 51
 ORBSpecificModuleIdentifierProperty 51
 ORBSpecificProtocolSequenceMnemonicProperty 53
 ORBSpecificSubscriptionFilterCriteriaProperty 53
 ORBSpecificTypeIdentifierProperty 51
 ORBSpecificWebServerVirtualDirectoryProperty 52
 overview 51
Overview (synopsis) 16

P

Parameters - security index 218
Partition support 19
PartitionRoleMembers table 116
PartitionRoles table 115
Partitions - users associated with 72
Partitions table 99
PartitionUsers table 114
PasswordProperty 55
PauseContainer method 190
Per-session state
 client 199
 server 129
Placeholder property formats
 overview 44
 PlaceholderGuidProperty 44
 PlaceholderIntegerProperty 45

 PlaceholderPartitionIdProperty 44
 PlaceholderStringProperty 44
Pool size property formats
 MaxPoolSizeProperty 49
 MinPoolSizeProperty 49
 overview 49
Pooling 70
PortsListProperty 63

265 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Preconditions 25
Prerequisites 25
Product behavior 230
PromoteLegacyConfiguration method 154
Property formats
 ActivationTypeProperty 60
 ApplicationSpecificStringProperty 51
 BitnessProperty 47
 BooleanProperty
 BooleanBitProperty 49
 overview 49
 ComputerNameOrAddressProperty 54
 ComputerNameProperty 54
 ConcurrentAppsProperty 62
 ContextFacilityProperty 48
 DefaultAuthenticationLevelProperty 60
 DefaultImpersonationLevelProperty 60
 DescriptionProperty 48
 ImplementationSpecificPathProperty 45
 MaxDumpCountProperty 62
 MaxThreadsProperty 63
 NameProperty 48
 ORBSecuritySettingsProperty 61

 ORB-specific
 ORBSpecificAlternateActivationProperty 53
 ORBSpecificAlternateLaunchNameProperty 52
 ORBSpecificAlternateLaunchParametersProperty 52
 ORBSpecificCommandLineProperty 52
 ORBSpecificExceptionClassProperty 51
 ORBSpecificModuleIdentifierProperty 51
 ORBSpecificProtocolSequenceMnemonicProperty 53
 ORBSpecificSubscriptionFilterCriteriaProperty 53
 ORBSpecificTypeIdentifierProperty 51
 ORBSpecificWebServerVirtualDirectoryProperty 52
 overview 51
 overview 43
 PasswordProperty 55
 placeholder
 overview 44
 PlaceholderGuidProperty 44
 PlaceholderIntegerProperty 45
 PlaceholderPartitionIdProperty 44
 PlaceholderStringProperty 44
 pool size
 MaxPoolSizeProperty 49
 MinPoolSizeProperty 49
 overview 49
 PortsListProperty 63
 RecyclingCriterionLimitProperty 62
 ScriptingProgramIdProperty 47
 SecurityDescriptorProperty
 component access control list types 58
 component access mask types 56
 component ACE types 57
 ComponentSecurityDescriptor 59
 overview 56
 SecurityPrincipalNameProperty 55
 subscription property typed value
 overview 63
 SubscriptionPropertyTypeProperty 63
 SubscriptionPropertyValueProperty 64
 threading model
 overview 45
 ThreadingModelEnumerationProperty 46
 ThreadingModelStringProperty 47

266 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 timeout
 LongTimeoutInMinutesProperty 50
 LongTimeoutInSecondsProperty 50
 overview 50
 ShortTimeoutInMinutesProperty 50
 ShortTimeoutInSecondsProperty 50
 TransactionIsolationLevelProperty 53
 TrustLevelProperty 60
 YesNoProperty 55
PropertyMeta structure 35
Protection - configuration state 23
Protocol Details
 overview 69
Protocols table 126
Proxies - configured 71
Publisher-subscriber framework 70

Q

Queries - supported 73
QueryCell packet 32
QueryCellArray packet 33
QueryComparisonData packet 34
QueryConglomerationPassword method 197
QueryFile method 165

R

Reading a table example 206
Reading table example 206
Reads 203
Reads and Writes method 203
ReadTable method 137
RecycleContainer method 193
RecyclingCriterionLimitProperty 62
References 14
 informative 15
 normative 14
RefreshComponents method 189
RegisterModule method 147
RegisterModule2 method 156
Registration 21
Registration example 215
Relationship to other protocols 24
RemoveShare method 196
Replication 24
Replication directories 129
ResumeContainer method 191
Role-based security 70
Role-based security configuration 19
RoleMembers table 104
Roles table 103
RolesForComponent table 109
RolesForInterface table 111
RolesForMethod table 112

S

ScriptingProgramIdProperty 47
Security
 implementer considerations 218
 parameter index 218
 role-based 70
 software restriction policy 72
Security configuration - role-based 19

267 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

SecurityDescriptorProperty
 component access control list types
 ComponentSACL 59
 NewVersionComponentDACL 59
 OldVersionComponentDACL 58
 overview 58
 component access mask types
 component access constants 56
 NewVersionComponentAccessMask 57
 OldVersionComponentAccessMask 57
 overview 56
 component ACE types
 ComponentMandatoryLabelACE 58
 NewVersionComponentAccessAllowedACE 57
 NewVersionComponentAccessDeniedACE 58
 OldVersionComponentAccessAllowedACE 57
 OldVersionComponentAccessDeniedACE 58
 overview 57
 ComponentSecurityDescriptor 59
 overview 56
SecurityPrincipalNameProperty 55
Sequencing rules
 client 199

 64-bit QueryCell marshaling format capability negotiation 201
 catalog version negotiation 200
 IsSafeToDelete method 203
 multiple-bitness capability negotiation 202
 multiple-partition capability negotiation 202
 overview 199
 reads and writes 203
 write synchronization 203
 write validation 203
 server 129
 64-bit QueryCell marshaling format capability negotiation 130
 catalog version negotiation 130
 multiple-bitness capability negotiation 131
 multiple-partition capability negotiation 131
 overview 129
Server
 64-Bit QueryCell Marshaling Format Capability Negotiation method 130
 abstract data model 69
 alternate launch configurations 128
 configuration and ORB 69
 overview 69
 per-session state 129
 replication directories 129
 table definitions 76
 tables 73
 Catalog Version Negotiation method 130
 IAlternateLaunch method 170
 ICapabilitySupport method 185
 ICatalog64BitSupport method 133
 ICatalogSession method 131
 ICatalogTableInfo method 135
 ICatalogTableRead method 137
 ICatalogTableWrite method 140
 ICatalogUtils method 172
 ICatalogUtils2 method 174
 IContainerControl method 188
 IContainerControl2 method 189
 IExport method 167
 IExport2 method 169
 IImport method 160
 IImport2 method 166
 initialization 129

268 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 IRegister method 147
 IRegister2 method 151
 IReplicationUtil method 194
 local events 198
 message processing 129
 64-bit QueryCell marshaling format capability negotiation 130
 catalog version negotiation 130
 multiple-bitness capability negotiation 131
 multiple-partition capability negotiation 131
 overview 129
 Multiple-Bitness Capability Negotiation method 131
 Multiple-Partition Support Capability Negotiation method 131
 sequencing rules 129
 64-bit QueryCell marshaling format capability negotiation 130
 catalog version negotiation 130
 multiple-bitness capability negotiation 131
 multiple-partition capability negotiation 131
 overview 129
 timer events 198
 timers 129
ServerList table 117
SetPartition method 167
ShortTimeoutInMinutesProperty 50

ShortTimeoutInSecondsProperty 50
ShutdownContainer method 190
ShutdownContainers method 189
Software restriction policy 72
SRPLevelInfo 66
SRPLevelInfo structure 66
Standards assignments 26
Start method 186
Stop method 186
Subscription property typed value formats
 overview 63
 SubscriptionPropertyTypeProperty 63
 SubscriptionPropertyValueProperty 64
SubscriptionPublisherProperties table 123
Subscriptions table 120
SubscriptionSubscriberProperties table 124
Supported queries 73
SupportsMultipleBitness method 134
System services 73

T

Table definitions
 ComponentFullConfigurationsReadOnly table 85
 ComponentLegacyConfigurations table 88
 ComponentNativeBitness table 91
 ComponentNonNativeBitness table 92
 ComponentsAndFullConfigurations table 77
 ConfiguredInterfaces table 105
 ConfiguredMethods table 107
 Conglomerations table 93
 EventClasses table 119
 FilesForImport table 126
 InstanceContainers table 118
 InstanceLoadBalancingTargets table 117
 MachineSettings table 101
 overview 76
 PartitionRoleMembers table 116
 PartitionRoles table 115

 Partitions table 99
 PartitionUsers table 114
 Protocols table 126

269 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 RoleMembers table 104
 Roles table 103
 RolesForComponent table 109
 RolesForInterface table 111
 RolesForMethod table 112
 ServerList table 117
 SubscriptionPublisherProperties table 123
 Subscriptions table 120
 SubscriptionSubscriberProperties table 124
Table formats 31
TableDataFixed packet 39
TableDataFixedWrite packet 40
TableDataVariable packet 42
TableDetailedError packet 42
TableDetailedErrorArray packet 43
TableEntryFixed packet 37
TableEntryFixedWrite packet 40
TableEntryVariable packet 41
Tables
 cascades 76
 constraints 74
 default values 74
 flags 74

 internal properties 75
 metadata 73
 multiple-bitness support 73
 overview 73
 populates 76
 supported queries 73
 triggers 75
 write restrictions 75
Threading model property formats
 overview 45
 ThreadingModelEnumerationProperty 46
 ThreadingModelStringProperty 47
Timeout property formats
 LongTimeoutInMinutesProperty 50
 LongTimeoutInSecondsProperty 50
 overview 50
 ShortTimeoutInMinutesProperty 50
 ShortTimeoutInSecondsProperty 50
Timer events
 client 203
 server 198
Timer events - client 203
Timers
 client 199
 server 129
Tracking changes 257
TransactionIsolationLevelProperty 53
Transactions 69
Transport 30
 overview 30
 protocols 70
 security 72
Triggers 75
TrustLevelProperty 60

U

Users - associated with partitions 72

V

ValidateUser method 172

270 / 270

[MS-COMA-Diff] - v20171201
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Vendor-extensible fields 26
Version negotiation
 client 200
 server 130
Versioning 26

W

WaitForEndWrites method 173
Write restrictions - tables 75
Write synchronization 203
Write Synchronization method 203
Write validation 203
Write Validation method 203
Writes 203
WriteTable method 141
Writing to a table example 212

Writing to table example 212

Y

YesNoProperty 55

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Background
	1.3.2 Catalog
	1.3.3 Catalog Versions and Partition Support
	1.3.4 Role-Based Security Configuration
	1.3.5 Bitness
	1.3.6 Registration
	1.3.7 Export and Import
	1.3.8 Instantiation Concepts
	1.3.9 Instance Load Balancing
	1.3.10 Protection of Configuration State
	1.3.11 Events
	1.3.12 Replication

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Table Formats
	2.2.1.1 fTableFlags
	2.2.1.2 eDataType
	2.2.1.3 eSpecialQueryOption
	2.2.1.4 QueryCell
	2.2.1.5 QueryCellArray
	2.2.1.6 QueryComparisonData
	2.2.1.7 PropertyMeta
	2.2.1.8 fPropertyStatus
	2.2.1.9 TableEntryFixed
	2.2.1.10 TableDataFixed
	2.2.1.11 eTableEntryAction
	2.2.1.12 TableEntryFixedWrite
	2.2.1.13 TableDataFixedWrite
	2.2.1.14 TableEntryVariable
	2.2.1.15 TableDataVariable
	2.2.1.16 TableDetailedError
	2.2.1.17 TableDetailedErrorArray

	2.2.2 Property Formats
	2.2.2.1 Placeholder Property Formats
	2.2.2.1.1 PlaceholderPartitionIdProperty
	2.2.2.1.2 PlaceholderGuidProperty
	2.2.2.1.3 PlaceholderStringProperty
	2.2.2.1.4 PlaceholderIntegerProperty

	2.2.2.2 ImplementationSpecificPathProperty
	2.2.2.3 Threading Model Property Formats
	2.2.2.3.1 ThreadingModelEnumerationProperty
	2.2.2.3.2 ThreadingModelStringProperty

	2.2.2.4 ScriptingProgramIdProperty
	2.2.2.5 BitnessProperty
	2.2.2.6 NameProperty
	2.2.2.7 DescriptionProperty
	2.2.2.8 ContextFacilityProperty
	2.2.2.9 BooleanProperty
	2.2.2.9.1 BooleanBitProperty

	2.2.2.10 Pool Size Property Formats
	2.2.2.10.1 MinPoolSizeProperty
	2.2.2.10.2 MaxPoolSizeProperty

	2.2.2.11 Timeout Property Formats
	2.2.2.11.1 LongTimeoutInSecondsProperty
	2.2.2.11.2 ShortTimeoutInSecondsProperty
	2.2.2.11.3 LongTimeoutInMinutesProperty
	2.2.2.11.4 ShortTimeoutInMinutesProperty

	2.2.2.12 ApplicationSpecificStringProperty
	2.2.2.13 ORB-Specific Property Formats
	2.2.2.13.1 ORBSpecificExceptionClassProperty
	2.2.2.13.2 ORBSpecificModuleIdentifierProperty
	2.2.2.13.3 ORBSpecificTypeIdentifierProperty
	2.2.2.13.4 ORBSpecificAlternateLaunchNameProperty
	2.2.2.13.5 ORBSpecificAlternateLaunchParametersProperty
	2.2.2.13.6 ORBSpecificCommandLineProperty
	2.2.2.13.7 ORBSpecificWebServerVirtualDirectoryProperty
	2.2.2.13.8 ORBSpecificSubscriptionFilterCriteriaProperty
	2.2.2.13.9 ORBSpecificAlternateActivationProperty
	2.2.2.13.10 ORBSpecificProtocolSequenceMnemonicProperty

	2.2.2.14 TransactionIsolationLevelProperty
	2.2.2.15 ComputerNameProperty
	2.2.2.16 ComputerNameOrAddressProperty
	2.2.2.17 SecurityPrincipalNameProperty
	2.2.2.18 PasswordProperty
	2.2.2.19 YesNoProperty
	2.2.2.20 LegacyYesNoProperty
	2.2.2.21 SecurityDescriptorProperty
	2.2.2.21.1 Component Access Mask Types
	2.2.2.21.1.1 Component Access Constants
	2.2.2.21.1.2 OldVersionComponentAccessMask
	2.2.2.21.1.3 NewVersionComponentAccessMask

	2.2.2.21.2 Component ACE Types
	2.2.2.21.2.1 OldVersionComponentAccessAllowedACE
	2.2.2.21.2.2 NewVersionComponentAccessAllowedACE
	2.2.2.21.2.3 OldVersionComponentAccessDeniedACE
	2.2.2.21.2.4 NewVersionComponentAccessDeniedACE
	2.2.2.21.2.5 ComponentMandatoryLabelACE

	2.2.2.21.3 Component Access Control List Types
	2.2.2.21.3.1 OldVersionComponentDACL
	2.2.2.21.3.2 NewVersionComponentDACL
	2.2.2.21.3.3 ComponentSACL

	2.2.2.21.4 ComponentSecurityDescriptor

	2.2.2.22 DefaultAuthenticationLevelProperty
	2.2.2.23 ActivationTypeProperty
	2.2.2.24 TrustLevelProperty
	2.2.2.25 DefaultImpersonationLevelProperty
	2.2.2.26 ORBSecuritySettingsProperty
	2.2.2.27 MaxDumpCountProperty
	2.2.2.28 ConcurrentAppsProperty
	2.2.2.29 RecyclingCriterionLimitProperty
	2.2.2.30 MaxThreadsProperty
	2.2.2.31 PortsListProperty
	2.2.2.32 Subscription Property Typed Value Formats
	2.2.2.32.1 SubscriptionPropertyTypeProperty
	2.2.2.32.2 SubscriptionPropertyValueProperty

	2.2.3 fModuleStatus
	2.2.4 fComponentStatus
	2.2.5 eComponentType
	2.2.6 SRPLevelInfo
	2.2.7 CatSrvServices
	2.2.8 CatSrvServiceState
	2.2.9 InstanceContainer

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Configuration and the ORB
	3.1.1.1.1 Transactions
	3.1.1.1.2 Pooling
	3.1.1.1.3 Role-Based Security
	3.1.1.1.4 Publisher-Subscriber Framework
	3.1.1.1.5 Transport Protocols
	3.1.1.1.6 Instance Load Balancing
	3.1.1.1.7 Configured Proxies
	3.1.1.1.8 Transport Security
	3.1.1.1.9 Software Restriction Policy
	3.1.1.1.10 Crash Dump
	3.1.1.1.11 Partitions and Users
	3.1.1.1.12 System Services

	3.1.1.2 Tables
	3.1.1.2.1 Table Metadata
	3.1.1.2.2 Supported Queries
	3.1.1.2.3 Multiple-Bitness Support
	3.1.1.2.4 Table Flags
	3.1.1.2.5 Constraints
	3.1.1.2.6 Default Values
	3.1.1.2.7 Internal Properties
	3.1.1.2.8 Write Restrictions
	3.1.1.2.9 Triggers
	3.1.1.2.10 Cascades
	3.1.1.2.11 Populates

	3.1.1.3 Table Definitions
	3.1.1.3.1 ComponentsAndFullConfigurations Table
	3.1.1.3.2 ComponentFullConfigurationsReadOnly Table
	3.1.1.3.3 ComponentLegacyConfigurations Table
	3.1.1.3.4 ComponentNativeBitness Table
	3.1.1.3.5 ComponentNonNativeBitness Table
	3.1.1.3.6 Conglomerations Table
	3.1.1.3.7 Partitions Table
	3.1.1.3.8 MachineSettings Table
	3.1.1.3.9 Roles Table
	3.1.1.3.10 RoleMembers Table
	3.1.1.3.11 ConfiguredInterfaces Table
	3.1.1.3.12 ConfiguredMethods Table
	3.1.1.3.13 RolesForComponent Table
	3.1.1.3.14 RolesForInterface Table
	3.1.1.3.15 RolesForMethod Table
	3.1.1.3.16 PartitionUsers Table
	3.1.1.3.17 PartitionRoles Table
	3.1.1.3.18 PartitionRoleMembers Table
	3.1.1.3.19 InstanceLoadBalancingTargets Table
	3.1.1.3.20 ServerList Table
	3.1.1.3.21 InstanceContainers Table
	3.1.1.3.22 EventClasses Table
	3.1.1.3.23 Subscriptions Table
	3.1.1.3.24 SubscriptionPublisherProperties Table
	3.1.1.3.25 SubscriptionSubscriberProperties Table
	3.1.1.3.26 Protocols Table
	3.1.1.3.27 FilesForImport Table

	3.1.1.4 Alternate Launch Configurations
	3.1.1.5 Per-Session State
	3.1.1.6 Replication Directories

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Catalog Version Negotiation
	3.1.4.2 64-Bit QueryCell Marshaling Format Capability Negotiation
	3.1.4.3 Multiple-Partition Support Capability Negotiation
	3.1.4.4 Multiple-Bitness Capability Negotiation
	3.1.4.5 ICatalogSession
	3.1.4.5.1 InitializeSession (Opnum 7)
	3.1.4.5.2 GetServerInformation (Opnum 8)

	3.1.4.6 ICatalog64BitSupport
	3.1.4.6.1 SupportsMultipleBitness (Opnum 3)
	3.1.4.6.2 Initialize64BitQueryCellSupport (Opnum 4)

	3.1.4.7 ICatalogTableInfo
	3.1.4.7.1 GetClientTableInfo (Opnum 3)

	3.1.4.8 ICatalogTableRead
	3.1.4.8.1 ReadTable (Opnum 3)

	3.1.4.9 ICatalogTableWrite
	3.1.4.9.1 WriteTable (Opnum 3)

	3.1.4.10 IRegister
	3.1.4.10.1 RegisterModule (Opnum 3)

	3.1.4.11 IRegister2
	3.1.4.11.1 CreateFullConfiguration (Opnum 3)
	3.1.4.11.2 CreateLegacyConfiguration (Opnum 4)
	3.1.4.11.3 PromoteLegacyConfiguration (Opnum 5)
	3.1.4.11.4 RegisterModule2 (Opnum 8)

	3.1.4.12 IImport
	3.1.4.12.1 ImportFromFile (Opnum 3)
	3.1.4.12.2 QueryFile (Opnum 4)

	3.1.4.13 IImport2
	3.1.4.13.1 SetPartition (Opnum 3)

	3.1.4.14 IExport
	3.1.4.14.1 ExportConglomeration (Opnum 3)

	3.1.4.15 IExport2
	3.1.4.15.1 ExportPartition (Opnum 3)

	3.1.4.16 IAlternateLaunch
	3.1.4.16.1 CreateConfiguration (Opnum 3)
	3.1.4.16.2 DeleteConfiguration (Opnum 4)

	3.1.4.17 ICatalogUtils
	3.1.4.17.1 ValidateUser (Opnum 3)
	3.1.4.17.2 WaitForEndWrites (Opnum 4)
	3.1.4.17.3 GetEventClassesForIID (Opnum 5)

	3.1.4.18 ICatalogUtils2
	3.1.4.18.1 CopyConglomerations (Opnum 3)
	3.1.4.18.2 CopyComponentConfiguration (Opnum 4)
	3.1.4.18.3 AliasComponent (Opnum 5)
	3.1.4.18.4 MoveComponentConfiguration (Opnum 6)
	3.1.4.18.5 GetEventClassesForIID2 (Opnum 7)
	3.1.4.18.6 IsSafeToDelete (Opnum 8)
	3.1.4.18.7 FlushPartitionCache (Opnum 9)
	3.1.4.18.8 EnumerateSRPLevels (Opnum 10)
	3.1.4.18.9 GetComponentVersions (Opnum 11)

	3.1.4.19 ICapabilitySupport
	3.1.4.19.1 Start (Opnum 3)
	3.1.4.19.2 Stop (Opnum 4)
	3.1.4.19.3 IsInstalled (Opnum 7)
	3.1.4.19.4 IsRunning (Opnum 8)

	3.1.4.20 IContainerControl
	3.1.4.20.1 CreateContainer (Opnum 3)
	3.1.4.20.2 ShutdownContainers (Opnum 4)
	3.1.4.20.3 RefreshComponents (Opnum 5)

	3.1.4.21 IContainerControl2
	3.1.4.21.1 ShutdownContainer (Opnum 3)
	3.1.4.21.2 PauseContainer (Opnum 4)
	3.1.4.21.3 ResumeContainer (Opnum 5)
	3.1.4.21.4 IsContainerPaused (Opnum 6)
	3.1.4.21.5 GetRunningContainers (Opnum 7)
	3.1.4.21.6 GetContainerIDFromProcessID (Opnum 8)
	3.1.4.21.7 RecycleContainer (Opnum 9)
	3.1.4.21.8 GetContainerIDFromConglomerationID (Opnum 10)

	3.1.4.22 IReplicationUtil
	3.1.4.22.1 CreateShare (Opnum 3)
	3.1.4.22.2 CreateEmptyDir (Opnum 4)
	3.1.4.22.3 RemoveShare (Opnum 5)
	3.1.4.22.4 BeginReplicationAsTarget (Opnum 6)
	3.1.4.22.5 QueryConglomerationPassword (Opnum 7)
	3.1.4.22.6 CreateReplicationDir (Opnum 8)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 Per-Session State

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Catalog Version Negotiation
	3.2.4.2 64-Bit QueryCell Marshaling Format Capability Negotiation
	3.2.4.3 Multiple-Partition Support Capability Negotiation
	3.2.4.4 Multiple-Bitness Capability Negotiation
	3.2.4.5 Reads and Writes
	3.2.4.6 Write Validation
	3.2.4.7 Write Synchronization
	3.2.4.8 IsSafeToDelete

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Catalog Session and Capabilities Initialization
	4.2 Reading a Table
	4.3 Writing to a Table
	4.4 Registration

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

