
1 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

[MS-CMP]:

MSDTC Connection Manager: OleTx Multiplexing Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Revision Summary

Date
Revision
History

Revision
Class Comments

4/3/2007 1.0 New Version 1.0 release

7/3/2007 2.0 Major MLonghorn+90

7/20/2007 3.0 Major Updated and revised the technical content.

8/10/2007 3.0.1 Editorial Changed language and formatting in the technical content.

9/28/2007 4.0 Major Made a change to the IDL.

10/23/2007 5.0 Major Updated and revised the technical content.

11/30/2007 5.0.1 Editorial Changed language and formatting in the technical content.

1/25/2008 5.0.2 Editorial Changed language and formatting in the technical content.

3/14/2008 5.1 Minor Clarified the meaning of the technical content.

5/16/2008 5.1.1 Editorial Changed language and formatting in the technical content.

6/20/2008 6.0 Major Updated and revised the technical content.

7/25/2008 6.1 Minor Clarified the meaning of the technical content.

8/29/2008 7.0 Major Updated and revised the technical content.

10/24/2008 7.0.1 Editorial Changed language and formatting in the technical content.

12/5/2008 7.0.2 Editorial Editorial Update.

1/16/2009 8.0 Major Updated and revised the technical content.

2/27/2009 9.0 Major Updated and revised the technical content.

4/10/2009 10.0 Major Updated and revised the technical content.

5/22/2009 10.1 Minor Clarified the meaning of the technical content.

7/2/2009 10.1.1 Editorial Changed language and formatting in the technical content.

8/14/2009 10.1.2 Editorial Changed language and formatting in the technical content.

9/25/2009 11.0 Major Updated and revised the technical content.

11/6/2009 12.0 Major Updated and revised the technical content.

12/18/2009 13.0 Major Updated and revised the technical content.

1/29/2010 13.1 Minor Clarified the meaning of the technical content.

3/12/2010 14.0 Major Updated and revised the technical content.

4/23/2010 14.0.1 Editorial Changed language and formatting in the technical content.

6/4/2010 15.0 Major Updated and revised the technical content.

7/16/2010 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 15.0 None No changes to the meaning, language, or formatting of the

3 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Date
Revision
History

Revision
Class Comments

technical content.

10/8/2010 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 16.0 Major Updated and revised the technical content.

2/11/2011 17.0 Major Updated and revised the technical content.

3/25/2011 18.0 Major Updated and revised the technical content.

5/6/2011 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 18.1 Minor Clarified the meaning of the technical content.

9/23/2011 18.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 19.0 Major Updated and revised the technical content.

3/30/2012 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 19.1 Minor Clarified the meaning of the technical content.

11/14/2013 19.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 19.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 19.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 20.0 Major Significantly changed the technical content.

10/16/2015 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 21.0 Major Significantly changed the technical content.

9/12/2018 22.0 Major Significantly changed the technical content.

4 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Date
Revision
History

Revision
Class Comments

4/7/2021 23.0 Major Significantly changed the technical content.

6/25/2021 24.0 Major Significantly changed the technical content.

5 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Other Protocols .. 10
1.5 Prerequisites/Preconditions ... 11
1.6 Applicability Statement ... 11
1.7 Versioning and Capability Negotiation ... 11
1.8 Vendor-Extensible Fields ... 11
1.9 Standards Assignments ... 11

2 Messages ... 12
2.1 Transport .. 12

2.1.1 Transmitting Messages and Boxcars .. 12
2.1.1.1 Boxcar Format .. 12
2.1.1.2 Boxcar Size Limitations .. 12
2.1.1.3 Transmitting Boxcars ... 12

2.1.2 Security... 13
2.2 Message Syntax ... 13

2.2.1 BOX_CAR_HEADER ... 13
2.2.2 MESSAGE_PACKET .. 13
2.2.3 MTAG_DISCONNECT ... 15
2.2.4 MTAG_DISCONNECTED ... 16
2.2.5 MTAG_CONNECTION_REQ_DENIED... 16
2.2.6 MTAG_PING ... 17
2.2.7 MTAG_CONNECTION_REQ ... 18
2.2.8 MTAG_USER_MESSAGE ... 18

3 Protocol Details ... 20
3.1 Common Details .. 20

3.1.1 Abstract Data Model .. 20
3.1.1.1 Connection Object ... 21
3.1.1.2 Boxcar Object ... 21

3.1.2 Timers .. 21
3.1.2.1 Idle Timer .. 21

3.1.3 Initialization ... 22
3.1.3.1 Initialization by a Higher-Layer Protocol ... 22
3.1.3.2 Initialization by the Protocol ... 22

3.1.4 Higher-Layer Triggered Events ... 22
3.1.4.1 Send Message .. 22
3.1.4.2 Create Connection ... 23
3.1.4.3 Disconnect Connection ... 24

3.1.5 Message Processing Events and Sequencing Rules .. 24
3.1.5.1 MTAG_DISCONNECT (MsgTag 0x00000001) ... 24
3.1.5.2 MTAG_DISCONNECTED (MsgTag 0x00000002) ... 25
3.1.5.3 MTAG_CONNECTION_REQ_DENIED (MsgTag 0x00000003) 25
3.1.5.4 MTAG_PING (MsgTag 0x00000004) ... 25
3.1.5.5 MTAG_CONNECTION_REQ (MsgTag 0x00000005) 25
3.1.5.6 MTAG_USER_MESSAGE (MsgTag 0x00000FFF) ... 26

3.1.6 Timer Events .. 26
3.1.6.1 Idle Timer .. 26

3.1.7 Other Local Events .. 27
3.1.7.1 Enqueuing a Message .. 27

6 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.1.7.2 Session Down ... 27
3.1.7.3 Allocate Incoming Connection Objects ... 27
3.1.7.4 Notify Higher-Layer of Incoming Message Events 27

3.1.7.4.1 Receiving a Message .. 27
3.1.7.4.2 Connection Disconnected .. 28
3.1.7.4.3 Connection Request Denied .. 28

4 Protocol Examples ... 29
4.1 Sending Messages .. 29

4.1.1 Creating the MESSAGE_PACKETs .. 29
4.1.2 Creating a Boxcar ... 30
4.1.3 Sending the Boxcar Using the Underlying MSDTC Connection Manager: OleTx

Transports Protocol Session ... 32
4.2 A Simple Connection Scenario ... 32

4.2.1 Initiating a Connection .. 32
4.2.1.1 Connection Denied .. 32
4.2.1.2 Connection Accepted ... 33

4.2.2 Disconnecting a Connection ... 34

5 Security ... 35
5.1 Security Considerations for Implementers ... 35
5.2 Index of Security Parameters .. 35

6 Appendix A: Product Behavior ... 36

7 Change Tracking .. 37

8 Index ... 38

7 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1 Introduction

This specification specifies MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP) that
multiplexes multiple shortlived connections over a long-lived full-duplex session. CMP provides
connection management, and message packaging into a box car mechanism for upper layer
transaction-based protocols. It uses MSDTC Connection Manager: OleTx Transports Protocol [MS-
CMPO] for the long-lived sessions that it uses for transport. CMP enables multiplexing multiple logical

protocol connections through a single CMPO connection, which reduces the number of messages that
are exchanged over the wire. CMP supports both multiplexing multiple logical sessions over a single
CMPO session and multiplexing multiple protocol messages into a single CMPO.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

acceptor: A participant that receives a session or connection request. This role is also known as
the "subordinate".

boxcar: A set of messages transmitted together by way of an underlying MSDTC Connection

Manager: OleTx Transports Protocol session.

connection: In OleTx, an ordered set of logically related messages. The relationship between the
messages is defined by the higher-layer protocol, but they are guaranteed to be delivered
exactly one time and in order relative to other messages in the connection.

connection type: A specific set of interactions between participants in an OleTx protocol that
accomplishes a specific set of state changes. A connection type consists of a bidirectional
sequence of messages that are conveyed by using the MSDTC Connection Manager: OleTx

Transports Protocol and the MSDTC Connection Manager: OleTx Multiplexing Protocol transport
protocol, as described in [MS-CMPO] and [MS-CMP]. A specified transaction typically involves

many different connection types during its lifetime.

initiator: A participant that originates a session or connection request.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

Name Object: An object that contains endpoint contact information (as specified in [MS-CMPO]
section 3.2.1.4).

participant: Any of the parties that are involved in an atomic transaction and that have a stake in
the operations that are performed under the transaction or in the outcome of the transaction
([WSAT10], [WSAT11]).

partner: A participant in the MSDTC Connection Manager: OleTx Transports Protocol. Each
partner has its own contact identifier (CID), and uses the IXnRemote interface to invoke and

receive remote procedure calls (RPCs). The IXnRemote interface is described within the full
Interface Definition Language (IDL) for [MS-CMPO] in section 6.

session: In OleTx, a transport-level connection between a Transaction Manager and another
Distributed Transaction participant over which multiplexed logical connections and messages
flow. A session remains active so long as there are logical connections using it.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
https://go.microsoft.com/fwlink/?LinkId=113066
https://go.microsoft.com/fwlink/?LinkId=113067
https://go.microsoft.com/fwlink/?LinkId=90317

8 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-CMPO] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transports Protocol".

[MS-CMP] Microsoft Corporation, "MSDTC Connection Manager: OleTx Multiplexing Protocol".

[MS-DTCM] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transaction Internet Protocol".

[MS-DTCO] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transaction Protocol".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-TPSOD] Microsoft Corporation, "Transaction Processing Services Protocols Overview".

1.3 Overview

The MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP) allows partners to multiplex any

number of two-way connections over the transport session between them, as specified in [MS-
CMPO]. To do this, this protocol defines a small number of messages to manage connections and uses
the transport protocol resource requests to allocate connection-related resources. To facilitate higher-

level protocols, this protocol defines a single user message and allows associating a connection type
with a connection.

To illustrate these concepts, the following figure depicts typical messages of this protocol to initiate,
use, and terminate two connections between partners labeled A and B.

https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-DTCM%5d.pdf#Section_7dbf234d2c1540b79a20812f5e3964ec
%5bMS-DTCO%5d.pdf#Section_c367c57133f344ac85cb4b9ebbb2779d
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-TPSOD%5d.pdf#Section_fbbf77aebfc846ff876bddaee16ece3a
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

9 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Figure 1: Messages used to manage two connections between partners

As the first message of the preceding figure depicts, to initiate a connection, either partner sends a

Connect message (MTAG_CONNECTION_REQ) to the other partner over their session.

A Connect message includes an identifier for the new connection (abbreviated ID in the figure). To
simplify connection management, connections are identified by two pieces of information: the partner
that initiated the connection and an identifier assigned by that partner. This scheme allows each

partner to assign identifiers without the risk of collision with the other partner. In effect, each partner
maintains two tables of connections: those initiated by itself (called "outgoing" connections) and those

initiated by the other partner (called "incoming" connections). Either partner has the option to send
messages to the other by using any open connection. To correlate a message with its connection, the
message includes a flag (fIsMaster) indicating which table the connection belongs to, in addition to
the initiator-assigned identifier (dwConnectionId) for the connection.

Though not depicted in the figure, a Connect message also includes a type to identify the higher-level
protocol for the connection's messages. Specifically, this connection type typically implies which types
of User messages are expected over the connection.

10 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

As depicted in the preceding figure, a Connect message is assumed to succeed. If the receiving
partner does not want to accept the connection, it sends a not-acknowledged message

(MTAG_CONNECTION_REQ_DENIED).

After a connection is open, either partner has the option to send any number of User messages

(MTAG_USER_MESSAGE) to the other partner by using that connection. User messages include
their connection, a message type handled by a higher-level protocol, and the message payload. As the
receiving partner never sends positive acknowledgment to a Connect message, the sending partner is
free to send User messages to the connection along with the Connect message. If the receiving
partner does not accept the connection, it will ignore these extraneous User messages.

A partner receives messages in the order in which they were sent over the connection.

To close a connection, the partner that initiated the connection sends a Disconnect message

(MTAG_DISCONNECT) to the other partner; either partner has the option to initiate a connection,
but only the partner that initiated a connection is allowed to close it. Unlike the Connect message, the
Disconnect message is assumed to fail. As the preceding figure depicts, if the receiving partner has
the option to close the connection, it does so and sends a Disconnect acknowledgment message

(MTAG_DISCONNECTED). Finally, on receipt of the Disconnected message, the initiating partner
closes the connection on its side. This asymmetric design allows the receiving partner to send any

outstanding messages to the initiating partner before acknowledging the Disconnect message.

For efficiency, the CMP batches messages by using Boxcar objects (section 3.1.1.2) that contain one
or more messages for one or more connections. A Boxcar includes the number of messages it
encloses, their total size, and the messages themselves. Typically, the fact that messages are
enclosed in a Boxcar is transparent to connection management and User messages in the CMP. One
exception occurs when a partner receives an unrecognized message type and discards the rest of the
messages in the Boxcar.

1.4 Relationship to Other Protocols

MSDTC Connection Manager: OleTx Multiplexing Protocol [MS-CMP] is explicitly layered upon the
transport protocol that is specified in MSDTC Connection Manager: OleTx Transports Protocol [MS-

CMPO], and its design is greatly influenced by that protocol. It relies on the transport protocol to
provide sessions and peer-to-peer message exchange. This protocol, in turn, provides message
batching and connection multiplexing services to MSDTC Connection Manager: OleTx Transaction
Protocol [MS-DTCO] layered on top of the multiplexing to provide application-specific functionality. For
example, the transaction protocol that is specified in [MS-DTCM] is a set of connections with different
connection types layered above this protocol, and it is used for coordinating distributed atomic
transactions, see [MS-TPSOD]. The following diagram illustrates the protocol layering.

Figure 2: Relationship of MS-CMP to other protocols

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-DTCO%5d.pdf#Section_c367c57133f344ac85cb4b9ebbb2779d
%5bMS-DTCM%5d.pdf#Section_7dbf234d2c1540b79a20812f5e3964ec
%5bMS-TPSOD%5d.pdf#Section_fbbf77aebfc846ff876bddaee16ece3a

11 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Ultimately, the MSDTC Connection Manager suite of protocols is used as the communication
mechanism for the Microsoft Distributed Transaction Coordinator, which is used to coordinate atomic

transactions.

1.5 Prerequisites/Preconditions

This protocol relies on the transports protocol specified in [MS-CMPO] for carrying communication;
there is no handshake between MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP)
instances. The initialization of the transports protocol instance occurs during the initialization of the

instance of this protocol and is as described in section 3.1.3.

1.6 Applicability Statement

This protocol is suitable for use as a connection multiplexing protocol over the transports protocol
specified in [MS-CMPO], and it is applicable in all of the same situations.

1.7 Versioning and Capability Negotiation

There are no optional capabilities exposed by the MSDTC Connection Manager: OleTx Multiplexing
Protocol (CMP), and there are no extensibility points within CMP. There are therefore no version
negotiation capabilities in this protocol.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

12 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2 Messages

This section specifies how the MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP)
messages are encapsulated on the wire and common data types.

2.1 Transport

Messages in this protocol MUST be transported over an instance of the transports protocol specified in
[MS-CMPO] session; therefore, each instance of this protocol MUST have an underlying transports
protocol instance. The initialization of the transports protocol instance occurs during the initialization
of the instance of this protocol and is specified in section 3.

2.1.1 Transmitting Messages and Boxcars

Every message in MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP) is an extension of
the MESSAGE_PACKET structure specified in section 2.2.2. When any event causes an

implementation of this protocol to send a message, an implementation of this protocol MUST place this
message in a boxcar. Boxcars are represented conceptually as Boxcar objects in the abstract data

model (section 3.1.1.2); adding a message to a boxcar is represented conceptually as adding a
message to the end of the Message List in a Boxcar object. For more information about Boxcar
objects in the abstract data model, see section 3.1.1.2. For more information about processing
boxcars, see section 3.1.5.

2.1.1.1 Boxcar Format

A Boxcar is formatted as an array of bytes that begins with a BOX_CAR_HEADER (section 2.2.1)
structure and continues with one or more MESSAGE_PACKET structures, each of which is appended
with its associated variable length data (if any). Each MESSAGE_PACKET structure in a Boxcar
MUST be aligned on an 8-byte boundary. Because the size of each MESSAGE_PACKET structure is a
multiple of 4 bytes (as defined in section 2.2.2), padding bytes MUST be added as necessary between

the structures in order to have each structure aligned on a 8-byte boundary. Any necessary padding

bytes can be set to any value, and MUST be ignored on receipt. The dwcMessages field of the
BOX_CAR_HEADER structure MUST be equal to the number of messages in the Boxcar, and the
dwcbTotal field of the BOX_CAR_HEADER structure MUST be equal to the total number of bytes in
the Boxcar.

2.1.1.2 Boxcar Size Limitations

A Boxcar MUST contain at least one message and MUST NOT contain more than 3,412 messages.
Furthermore, the total size of a Boxcar MUST be at least 40 bytes and MUST NOT exceed 81,920
bytes. Unless otherwise specified, an MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP)
implementation SHOULD add one or more messages to a Boxcar as long as doing so does not cause

the Boxcar to exceed any of these size restrictions.

2.1.1.3 Transmitting Boxcars

When an implementation of MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP) wants to
transmit a Boxcar over a session, it provides the underlying implementation of the transports

protocol (specified in [MS-CMPO]) with the session to transmit the Boxcar on, the count of messages
in the Boxcar, and the byte array that makes up the Boxcar itself, as specified in [MS-CMPO] section
3.4.6.5. Also, a CMP implementation MUST NOT transmit more than one Boxcar at a time.

For more information about transmitting messages in boxcars, see section 3.1.7.1. For more
information about interpreting boxcars after they have been received, see section 3.1.5.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

13 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.1.2 Security

This protocol does not introduce any additional security beyond what is provided by the transports
protocol specified in [MS-CMPO]. The security level value provided by the higher-layer protocol during

initialization, as specified in section 3.1.3, MUST be provided to the transports protocol as specified in
[MS-CMPO] section 2.1.3.

2.2 Message Syntax

All structures MUST be aligned with an 8-byte alignment. Any padding bytes that are required to align

the MESSAGE_PACKET structures (section 2.2.2) within the Boxcar can be set to any value, and
MUST be ignored on receipt. All integer fields in the following structures are in little-endian byte
order.

2.2.1 BOX_CAR_HEADER

The BOX_CAR_HEADER structure MUST be the first structure in each Boxcar transmitted via the

underlying protocol specified in [MS-CMPO] session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSeqNumThisCar

dwAckSeqNum

dwcbTotal

dwcMessages

dwSeqNumThisCar (4 bytes): This field is not used, it MUST be set to 0x00000000, and it MUST be

ignored on receipt.

dwAckSeqNum (4 bytes): This field is not used, it MUST be set to 0x00000000, and it MUST be

ignored on receipt.

dwcbTotal (4 bytes): An unsigned 4-byte integer value which MUST be the total number of bytes in
the Boxcar message, including its header and all Message Packets. It MUST be greater than or
equal to 40 bytes, and it MUST be less than or equal to 81,920 bytes.

dwcMessages (4 bytes): An unsigned 4-byte integer value which contains the number of
MESSAGE_PACKET structures (section 2.2.2) that follow the end of this structure in the Boxcar.

This number MUST be greater than or equal to 1, and MUST BE less than or equal to 3,412.

2.2.2 MESSAGE_PACKET

The MESSAGE_PACKET structure forms the basis for all messages. Each message sent using this
protocol MUST be an extension of the MESSAGE_PACKET structure. All integer fields of this structure

are in little-endian byte order.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgTag

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

14 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

fIsMaster

dwConnectionId

dwUserMsgType

dwcbVarLenData

dwReserved1

MsgTag (4 bytes): A 4-byte integer value that describes the message type and its interpretation.
This value MUST be one of the following values.

Value Meaning

MTAG_DISCONNECT

0x00000001

Indicates a request to disconnect the specified
connection.

MTAG_DISCONNECTED

0x00000002

Indicates that the specified connection has been
disconnected.

MTAG_CONNECTION_REQ_DENIED

0x00000003

Indicates that the connection request for the specified
connection has been denied.

MTAG_PING

0x00000004

A successful MTAG_PING indicates that the session is
active.

MTAG_CONNECTION_REQ

0x00000005

Indicates that a new connection is being requested.

MTAG_USER_MESSAGE

0x00000FFF

Indicates that a user (level-three protocol) message
will be delivered on the specified connection.

If the value is not one of the preceding values, then the remainder of the Boxcar MUST be
discarded. The details of each message type are given in the following sections.

fIsMaster (4 bytes): A 4-byte value indicating the direction of the message in the conversation.
This value MUST be one of the following values.

Value Meaning

0x00000000 Message is sent by the party that accepted the
connection.

0x00000001 Message is sent by the party that initiated the
connection, or message is not associated with a
connection because either the connection is down or
the connection request has been denied.

dwConnectionId (4 bytes): A 4-byte integer value that contains the unique identifier for the
associated connection. The value of the identifier depends on the value of the MsgTag field, as
follows.

MsgTag field value dwConnectionId field

MTAG_DISCONNECT MUST contain the ID of the connection being

15 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

MsgTag field value dwConnectionId field

0x00000001 disconnected.

MTAG_DISCONNECTED

0x00000002

MUST contain the ID of the connection that was just
disconnected.

MTAG_CONNECTION_REQ_DENIED

0x00000003

MUST contain the ID of the connection that was
rejected.

MTAG_PING

0x00000004

MUST be set to 0x00000000

MTAG_CONNECTION_REQ

0x00000005

MUST contain the ID of the connection being
requested.

MTAG_USER_MESSAGE

0x00000FFF

MUST contain the ID of the connection that the
message relates to.

dwUserMsgType (4 bytes): A 4-byte integer value that contains additional details about the
message, depending on the value of the MsgTag field, as follows.

MsgTag field value dwUserMsgType field

MTAG_DISCONNECT

0x00000001

MUST contain the connection type of the connection
being disconnected.

MTAG_DISCONNECTED

0x00000002

MUST be set to 0x00000000.

MTAG_CONNECTION_REQ_DENIED

0x00000003

MUST be set to 0x00000000.

MTAG_PING

0x00000004

MUST be set to 0x00000000.

MTAG_CONNECTION_REQ

0x00000005

MUST contain the connection type of the connection
being requested.

MTAG_USER_MESSAGE

0x00000FFF

MUST contain the type of user message to be
delivered.

dwcbVarLenData (4 bytes): Unsigned 4-byte integer value that contains the size, in bytes, of the
variable-length data buffer. This value MUST NOT be greater than 81880. This number is the
maximum size of a Boxcar, as specified in section 2.1.1.2, minus the size of a
BOX_CAR_HEADER (section 2.2.1) and the MESSAGE_PACKET (section 2.2.2) itself, which is

logically the largest single message that is possible to be transmitted in this protocol.

dwReserved1 (4 bytes): Reserved. This value can be set to any value, and MUST be ignored on
receipt.<1>

2.2.3 MTAG_DISCONNECT

The MTAG_DISCONNECT message indicates a request to disconnect the specified connection.

16 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

...

MsgHeader (24 bytes): This field contains a MESSAGE_PACKET (section 2.2.2) structure. The
fields MUST be set as specified in section 2.2.2. In particular:

 The MsgTag field MUST be set to 0x00000001 (MTAG_DISCONNECT).

 The fIsMaster field MUST be set to 0x00000001.

 The dwcbVarLenData field MUST be set to 0x00000000.

2.2.4 MTAG_DISCONNECTED

The MTAG_DISCONNECTED message indicates that the request to disconnect the specified
connection was successful.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

...

MsgHeader (24 bytes): This field contains a MESSAGE_PACKET (section 2.2.2) structure. The
fields MUST be set as specified in section 2.2.2. In particular:

 The MsgTag field MUST be set to 0x00000002 (MTAG_DISCONNECTED).

 The fIsMaster field MUST be set to 0x00000000.

 The dwcbVarLenData field MUST be set to 0x00000000.

2.2.5 MTAG_CONNECTION_REQ_DENIED

The MTAG_CONNECTION_REQ_DENIED message indicates that the connection request for the

specified connection has been denied. It represents a not-acknowledged response to an
MTAG_CONNECTION_REQ message (section 2.2.7). (There is no positive acknowledgment response
to an MTAG_CONNECTION_REQ message.)

17 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

...

Reason

MsgHeader (24 bytes): This field contains a MESSAGE_PACKET structure (section 2.2.2). The
fields MUST be set as specified in section 2.2.2. In particular:

 The MsgTag field MUST be set to 0x00000003 (MTAG_CONNECTION_REQ_DENIED).

 The fIsMaster field MUST be set to 0x00000000.

 The dwcbVarLenData field MUST be set to 4.

Reason (4 bytes): This field contains a 4-byte unsigned integer that indicates the reason that the
connection request was denied. The values for this field are defined by the higher-layer protocol.

2.2.6 MTAG_PING

The MTAG_PING message is used by a protocol participant to determine if it can still contact the
transports protocol session partner as specified in [MS-CMPO]. For more information about the
message processing event, see section 3.1.5.4.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

...

MsgHeader (24 bytes): This field contains a MESSAGE_PACKET structure (section 2.2.2). The

fields MUST be set as specified in section 2.2.2. In particular:

 The MsgTag field MUST be set to 0x00000004 (MTAG_PING).

 The fIsMaster field MUST be set to 0x00000001.

 The dwConnectionId field MUST be set to 0x00000000.

 The dwcbVarLenData field MUST be set to 0x00000000.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

18 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.7 MTAG_CONNECTION_REQ

The MTAG_CONNECTION_REQ message specifies a request to create the connection. A not-
acknowledged response to this message is communicated with an

MTAG_CONNECTION_REQ_DENIED message (section 2.2.5). (There is no positive
acknowledgment response to an MTAG_CONNECTION_REQ message.)

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

...

MsgHeader (24 bytes): This field contains a MESSAGE_PACKET structure (section 2.2.2). The
fields MUST be set as specified in section 2.2.2. In particular:

 The MsgTag field MUST be set to 0x00000005 (MTAG_CONNECTION_REQ).

 The fIsMaster field MUST be set to 0x00000001.

 The dwcbVarLenData field MUST be set to 0x00000000.

2.2.8 MTAG_USER_MESSAGE

The MTAG_USER_MESSAGE message indicates that a user (level-three protocol) message will be

delivered on the specified connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

...

MessageData (variable)

...

MsgHeader (24 bytes): This field contains a MESSAGE_PACKET structure (section 2.2.2). The
fields MUST be set as specified in section 2.2.2. In particular:

 The MsgTag field MUST be set to 0x00000FFF (MTAG_USER_MESSAGE).

 The dwcbVarLenData field MUST be set to the length in bytes of the MessageData field, if it
is present, otherwise it MUST be set to 0x00000000.

19 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

MessageData (variable): A byte array containing the body of the message. The format of this body
is defined by the higher-layer software operating over this protocol, and it is generally indicated by

the value of the dwUserMsgType field in the MsgHeader structure. The contents of this field
MUST be treated as opaque.

20 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

This section describes a conceptual model of a possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol performs. This document does not mandate that the implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

Note For the sake of clarity, the term "local partner" is used to indicate the role that is being
described, and the term "remote partner" is used to indicate the partner with which the local partner
is communicating.

An implementation of this protocol uses the following data elements, as specified in [MS-CMPO]
section 3.2.1.1:

 Local Name Object

 Minimum Level 2 Version Number

 Maximum Level 2 Version Number

 Minimum Level 3 Version Number

 Maximum Level 3 Version Number

 Security Level

An implementation of this protocol MUST maintain the following data elements:

 Session Table: A table of Session objects that is maintained by a transports protocol partner as
specified in [MS-CMPO] section 3.2.1.2. This protocol does not maintain a Session Table itself,
but the Session object MUST be extended to support the following additional data elements:

 Outgoing Connection Table: A table of Connection objects in use that are initiated by the
local partner and indexed by the Connection ID field of the Connection object.

 Count of Allocated Outgoing Connections: An unsigned 32-bit integer counting the

number of outgoing connections that have been allocated for the local partner in the session.
Partners in this protocol use their respective underlying transports protocol instances to
negotiate a number of pre-allocated Connection objects that each connection requires. More
connections are allocated by this instance when it is discovered that the number of entries in
the Outgoing Connection Table equals the current value of the Count of Allocated
Outgoing Connections. To create a new connection, there MUST be at least one allocated
outgoing connection available. Outgoing connections are allocated, and the corresponding

count increased, by requesting the local partner to allocate more connection resources through

the underlying transports protocol instance.

 Incoming Connection Table: A table of Connection objects in use that are initiated by the
remote partner and indexed by the Connection ID field of the Connection object.

 Count of Allocated Incoming Connections: An unsigned 32-bit integer counting the
number of incoming connections that have been allocated by the remote partner in the
session. Partners in this protocol use their respective underlying transports protocol instances

to negotiate a number of pre-allocated Connection objects that each connection requires. The

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

21 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

number of allocated incoming connections is the value requested by the remote partner. New
connections are allowed to be created until the number of entries in the Incoming

Connection Table equals the count requested by the remote partner. If the remote partner
requires more connections to be created, it MUST request that more be allocated, causing this

count to be increased.

 Boxcar Queue: An ordered queue of Boxcar objects to be transmitted on this session.

The management of these additional data elements is the responsibility of this protocol
implementation as outlined in sections 3.1.4.2, 3.1.5.1, 3.1.5.5, and 3.1.7.3.

Note It is possible to implement the conceptual data by using a variety of techniques. An
implementation is at liberty to implement such data in any way it pleases.

3.1.1.1 Connection Object

A Connection object MUST contain the following data elements:

 Connection ID: An unsigned 32-bit integer that identifies the connection. The Connection ID
MUST be unique within a table. Note that a given Connection object is allowed to have the same

Connection ID as another Connection object (related to the same Session object), so long as
the other Connection object is in the other connection table. For example, the first connection is
in the Incoming Connection Table and the second connection is in the Outgoing Connection
Table, or vice versa.

 Accepted: A Boolean value, indicating whether the connection was accepted or rejected by the
higher-layer protocol. This value is initially false.

 Connection Type: An unsigned 32-bit integer that identifies the set of messages defined by a

higher-level protocol sent over the connection. Higher-level messages are grouped based on the
specific set of state changes they produce, and that grouping is identified by connection type.

 Incoming Message Notification Interface: The local event of a higher-layer that is used by
this protocol to notify a higher-layer protocol of incoming message events, as specified in section

3.1.7.4.

Note It is possible to implement the conceptual data by using a variety of techniques. An

implementation is at liberty to implement such data in any way it pleases.

3.1.1.2 Boxcar Object

A Boxcar object MUST contain the following data elements:

 Message List: A list of MESSAGE_PACKET structures (section 2.2.2) in the Boxcar.

When called for, Boxcar objects MUST be formatted and transmitted as specified in section 2.1.1.1.

Note It is possible to implement the conceptual data by using a variety of techniques. An
implementation is at liberty to implement such data in any way it wants.

3.1.2 Timers

An implementation of this protocol MUST maintain the following timers.

3.1.2.1 Idle Timer

There is an instance of the Idle Timer corresponding to each Session object. This timer MUST be set

when both the Incoming Connection Table and the Outgoing Connection Table are empty, and it

22 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

MUST be canceled when a Connection object (section 3.1.1.1) is added to either the Incoming
Connection Table or the Outgoing Connection Table. The default value of the timer is specific to

the implementation.

3.1.3 Initialization

An instance of this protocol is explicitly initialized with the data elements specified in sections 3.1.3.1
and 3.1.3.2, as specified in [MS-CMPO] section 3.2.1.1. These elements are required for the
initialization of its underlying transports protocol instance, as specified in [MS-CMPO] section 3.2.3.1.

3.1.3.1 Initialization by a Higher-Layer Protocol

An instance of this protocol is explicitly initialized with the following data elements, as specified in
[MS-CMPO] section 3.2.3.1.

 A Local Name Object, as defined in [MS-CMPO] section 3.2.1.1. The higher-layer protocol that

initializes an MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP) instance MUST

initialize this public data element.

 The Minimum Level 3 Version Number and Maximum Level 3 Version Number, as defined
in [MS-CMPO] section 3.2.1.1. The higher-layer protocol that initializes an instance of this protocol
MUST initialize this public data element.

 A Security Level, as defined in [MS-CMPO] section 3.2.1.1. The higher-layer protocol that
initializes an instance of this protocol MUST initialize this public data element.

3.1.3.2 Initialization by the Protocol

The MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP) MUST perform the following
action:

 Initialize an underlying transports protocol instance, as specified in [MS-CMPO] sections 3.2.3.1
and 3.2.1.1, with the following data elements:

 A Minimum Level 2 Version Number of 1.

 A Maximum Level 2 Version Number of 1.

If the initialization of the previous data elements fails or the initialization of an underlying MSDTC
Connection Manager: OleTx Transports Protocol instance fails as specified in [MS-CMPO] section
3.2.3.2, then the initialization of CMP MUST also fail and the implementation-specific failure result

MUST be returned to the higher-layer protocol.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Send Message

When the higher-layer protocol requests to send a message, it MUST specify the Connection object

(section 3.1.1.1) on which to send the message (which implies the connection table containing it), an
unsigned 32-bit integer representing the type of message, and a byte array containing the body of the
message. The byte array MUST NOT be more than 81880 bytes long.

The MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP) instance MUST allocate an
MTAG_USER_MESSAGE message (section 3.1.5.6). It MUST set the dwUserMsgType field in the
MsgHeader field to the provided message type, it MUST set the dwConnectionId field in the
MsgHeader field to the Connection ID of the provided Connection object, it MUST set the
dwcbVarLenData field in the MsgHeader field to the length of the provided array, and it MUST set

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

23 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

the MessageData field to the provided byte array. Finally, if the provided Connection object is
contained in an Outgoing Connection Table, then the fIsMaster field of the MsgHeader field

MUST be set to 0x00000001; otherwise, it MUST be set to 0x00000000.

This message MUST be enqueued on the Session object associated with the provided Connection

object as described in section 3.1.7.1.

3.1.4.2 Create Connection

When the higher-layer protocol requests a new connection, it MUST specify the following arguments:

 The Name Object of the partner with which to create the connection.

 The Outgoing Connection Type of the connection to create.

 The Incoming Message Notification Interface.

First, the MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP) instance MUST look up the

Session object with the specified Name Object in the Session Table. If a matching session does not
exist, the CMP instance MUST request a new session with the partner from the underlying transports
instance as specified in [MS-CMPO]. If the request is unsuccessful, then the connection request MUST

fail. The CMP instance MUST initialize its extensions to the Session object as follows:

 The Incoming Connection Table MUST be empty.

 The Outgoing Connection Table MUST be empty.

 The Count of Allocated Outgoing Connections MUST be zero.

 The Count of Allocated Incoming Connections MUST be zero.

 The Boxcar Queue MUST be empty.

After a Session object has been found or created, the CMP instance MUST compare the number of

Connection objects in the Outgoing Connection Table in the Session object with the Count of

Allocated Outgoing Connections. If they are equal, then the CMP instance MUST request resource
allocation from the underlying transports protocol instance, as specified in [MS-CMPO] section 3.4.6.4.
The CMP instance MUST provide the Session object. In addition, it MUST specify the
RT_CONNECTIONS value for the RESOURCE_TYPE enumeration as specified in [MS-CMPO] section
2.2.7, and it MUST specify a number of resources equal to or greater than 1.

If the request is successful, then the number of resources that were actually allocated MUST be added
to the Count of Allocated Outgoing Connections. Otherwise, the connection request MUST fail and
the Session object MUST be left unmodified, with the exception that if both the Incoming and
Outgoing Connection Tables are empty, then the Idle Timer (section 3.1.6.1) associated with the
Session object MUST be started.

Note If this is a newly created Session object and the Idle Timer is already running (due to both
Incoming and Outgoing Connection Tables being initialized as empty) and the connection resource

allocation has failed, then the Idle Timer is restarted at this point.

Next, the CMP instance MUST allocate a new Connection object with the specified connection type
and with a connection identifier that is currently unused in the Outgoing Connection Table. The
Accepted field of the new Connection object MUST be set to true. This Connection object MUST be
added to the Outgoing Connection Table. If the Idle Timer is active, the timer MUST be canceled.
The Incoming Message Notification Interface that was provided by the higher-layer protocol
MUST be stored in the Incoming Message Notification ADM element.

Finally, the CMP instance MUST allocate an MTAG_CONNECTION_REQ message. It MUST set the
dwUserMsgType field in the MsgHeader field to the specified connection type, and it MUST set the

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

24 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwConnectionId field in the MsgHeader field to the connection identifier of the new Connection
object. It MUST enqueue the message on the Session object as described in section 3.1.7.1.

3.1.4.3 Disconnect Connection

When the higher-layer protocol requests to disconnect a connection, it MUST specify the following
argument.

 Connection object to disconnect.

This Connection object MUST be contained in an Outgoing Connection Table in a Session object

contained in the Session Table; otherwise, the request to disconnect the connection MUST fail.

The MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP) instance MUST allocate an
MTAG_DISCONNECT message and set the dwConnectionId field in the MsgHeader field of the
message to the connection identifier of that specified Connection object. It MUST enqueue this
message on the Session object of the specified Connection object as described in section 3.1.7.1.

3.1.5 Message Processing Events and Sequencing Rules

MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP) messages are received from the
underlying transports protocol as specified in [MS-CMPO] section 3.3.4.4. The buffers that are
provided by the transports protocol MUST be formatted Boxcars as specified in section 2.1.1.

The relative position of each message in the boxcar MUST be used to order the messages; messages
that occur at a smaller offset from the boxcar header in the Boxcar MUST be considered to come

before messages that occur later in the boxcar. Boxcars MUST be ordered by the time of their receipt
by a CMP implementation; all of the messages in a boxcar that is received earlier than another boxcar
are considered to come before all of the messages in the later boxcar. The dwConnectionId field of
the message MUST be used to logically group messages; messages MUST be in the same group if their
dwConnectionId fields are equal. (The messages MAY be physically ordered by their
dwConnectionId fields in the Boxcar.)

A CMP implementation MUST NOT process a message until it has processed all messages in the same
group that come before it. (Message order MUST be preserved within a CMP connection.) A CMP
implementation MAY process messages in any order that does not violate the preceding restriction.

All CMP messages are extensions of the MESSAGE_PACKET structure as specified in section 2.2.2. A
CMP message is identified by looking at the value of the MsgTag field; the interpretation of the
message depends on the value of that field. If the value of the MsgTag field is outside of the expected
range (as specified in section 2.2.2), then all remaining unprocessed messages in the Boxcar MUST

be ignored, regardless of which connection they are intended for.

3.1.5.1 MTAG_DISCONNECT (MsgTag 0x00000001)

When an MTAG_DISCONNECT message is received over a session, the MSDTC Connection Manager:
OleTx Multiplexing Protocol (CMP) implementation MUST look at the dwConnectionId field of the

MsgHeader field of the message, and retrieve the Connection object (section 3.1.7.1) with the

matching Connection ID from the Incoming Connection Table of the Session object. If no such
Connection object exists, the MTAG_DISCONNECT message MUST be silently ignored.

Otherwise, the higher-layer protocol MUST be notified of the Connection Disconnected (section
3.1.7.4.2) event by signaling this event using the Incoming Message Notification Interface as
described in section 3.1.1.1, and the CMP implementation MUST remove the Connection object from

the Incoming Connection Table of the Session object. If both the Incoming Connection Table
and the Outgoing Connection Table of the Session object are now empty, the Idle Timer MUST be
started.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

25 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The CMP implementation MUST then allocate a new MTAG_DISCONNECTED message, set the
dwUserMsgType field of the MsgHeader field to the connection type of the Connection object, and

set the dwConnectionId field of the MsgHeader to the Connection ID of the Connection object.
Finally, the message MUST be enqueued on the Session object as specified in section 3.1.7.1.

3.1.5.2 MTAG_DISCONNECTED (MsgTag 0x00000002)

When an MTAG_DISCONNECTED message (section 2.2.4) is received over a session, the MSDTC
Connection Manager: OleTx Multiplexing Protocol (CMP) implementation MUST look at the

dwConnectionId field of the MsgHeader field of the message and retrieve the Connection
object (section 3.1.1.1) with the matching Connection ID from the Outgoing Connection Table of
the Session object. If no such Connection object exists or no MTAG_DISCONNECT message
(section 2.2.3) has been sent for the Connection object, the MTAG_DISCONNECTED message
MUST be silently ignored.

Otherwise, the higher-layer protocol MUST be notified of the Connection Disconnected (section
3.1.7.4.2) event by signaling this event using the Incoming Message Notification Interface as

described in section 3.1.1.1, and the CMP implementation MUST remove the Connection object from

the Outgoing Connection Table of the Session object. If there are no more connections in the
Outgoing Connection Table of the Session object and there are no connections in the Incoming
Connection Table of the Session object, then the Idle Timer MUST be started as specified in
section 3.1.2.1.

3.1.5.3 MTAG_CONNECTION_REQ_DENIED (MsgTag 0x00000003)

When an MTAG_CONNECTION_REQ_DENIED message is received over a session, the MSDTC
Connection Manager: OleTx Multiplexing Protocol (CMP) implementation MUST look at the
dwConnectionId field of the MsgHeader field of the message, and retrieve the Connection object
with the matching Connection ID from the Outgoing Connection Table of the Session object. If

no such Connection object exists, the MTAG_CONNECTION_REQ_DENIED message MUST be
silently ignored.

Note The MTAG_CONNECTION_REQ_DENIED message does not remove Connection IDs from

the Outgoing Connection Table. A Connection ID value can only be reused in a subsequent
MTAG_CONNECTION_REQ message after an MTAG_DISCONNECT message has been sent.

Otherwise, the higher-layer protocol MUST be notified of the fact that the connection request was
denied for the particular Connection object, along with the value in the Reason field of the message

by signaling the Connection Request Denied (section 3.1.7.4.3) event using the Incoming
Message Notification Interface as described in section 3.1.1.1.

3.1.5.4 MTAG_PING (MsgTag 0x00000004)

A protocol implementation SHOULD send out MTAG_PING messages periodically to verify that its

session with a communication partner is active. (If the session is unavailable, sending the
MTAG_PING message will return an error [MS-ERREF].) A successful MTAG_PING indicates that the
RPC session with the communication partner is active. When an MTAG_PING message is received
over a session, the MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP) implementation

MUST ignore it.

3.1.5.5 MTAG_CONNECTION_REQ (MsgTag 0x00000005)

When this message is received over a Session object, the implementation of the multiplexing protocol
specified in [MS-CMP] MUST first compare the number of Connection objects in the Incoming
Connection Table on the Session object with the Count of Allocated Incoming Connections on
the Session object. If the Count of Allocated Incoming Connections is equal to the number of

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

26 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Connection objects in the table, then the implementation of the multiplexing protocol MUST ignore
this message.

Otherwise, the implementation of the multiplexing protocol MUST look at the dwConnectionId field
of the MsgHeader field of the message and attempt to retrieve the Connection object with the

matching Connection ID from the Incoming Connection Table of the Session object. If a
Connection object is found, then this message MUST be silently ignored.

Otherwise, the implementation of the multiplexing protocol MUST allocate a Connection object,
initializing the connection type field to the dwUserMsgType field of the MsgHeader field of the
message, the Accepted field to false, and the Connection ID field to the dwConnectionId field of
the MsgHeader field of the message. It MUST add the Connection object to the Incoming
Connection Table of the Session object. If the Idle Timer is active, then it MUST be canceled.

The implementation MUST then notify the higher-layer protocol of the incoming connection, providing
the Connection object and its connection type. The higher-layer protocol MUST either accept or reject
the connection.

If the higher-layer protocol rejects the connection, then it MUST provide a protocol-specific, 32-bit
unsigned integer that specifies the reason for the rejection. The implementation MUST then allocate a
new MTAG_CONNECTION_REQ_DENIED message (section 3.1.5.3), initializing the

dwConnectionId field of the MsgHeader field to the Connection ID of the Connection object and
the Reason field to the unsigned integer provided by the higher-layer protocol. It MUST then enqueue
this message on the Session object as specified in section 3.1.7.1.

If the higher-layer protocol accepts the connection, then the implementation of the multiplexing
protocol MUST set the Accepted field of the Connection object to true.

3.1.5.6 MTAG_USER_MESSAGE (MsgTag 0x00000FFF)

When an MTAG_USER_MESSAGE message is received over a Session object, the MSDTC
Connection Manager: OleTx Multiplexing Protocol (CMP) implementation MUST examine the fIsMaster
field of the MsgHeader field of the message to determine which table contains the destination
Connection object. If the fIsMaster field is 0x00000000, then the CMP implementation MUST

attempt to find a Connection object with a Connection ID that matches the dwConnectionId field
of the MsgHeader field of the message in the Incoming Connection Table of the Session object.
Otherwise, the CMP implementation MUST attempt to find a Connection object with a Connection
ID that matches the dwConnectionId field of the MsgHeader field of the message in the Outgoing
Connection Table of the Session object.

If no Connection object is found in the selected table, or the Accepted field of the Connection
object is false, then the CMP implementation MUST ignore the message. Otherwise, the higher-layer

protocol MUST be notified of the incoming message by signaling the Receiving a Message (section
3.1.7.4.1) event using the Incoming Message Notification Interface, as described in section
3.1.1.1. The CMP implementation MUST provide the higher-layer protocol with the Connection object,
the value of the dwUserMsgType field of the MsgHeader field of the message, and the
MessageData field of the MTAG_USER_MESSAGE field if it is present.

3.1.6 Timer Events

3.1.6.1 Idle Timer

This timer is active only when there are no Connection objects in both the Outgoing Connection
Table and the Incoming Connection Table. When this timer associated with a Session object
expires (the maximum number of MTAG_PING messages have been sent), an implementation of this
protocol MUST request a forced session teardown for the underlying transports protocol Session
object specified in [MS-CMPO]. As there are no Connection objects in both the Outgoing

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

27 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Connection Table and the Incoming Connection Table, it is not required to inform the higher-
layer protocol of the teardown.

3.1.7 Other Local Events

3.1.7.1 Enqueuing a Message

Various events in the protocol require that a message be queued on a particular Session object. This
section describes how this is done.

If it is possible to add the provided message to the end of the Message List of the last Boxcar
object, in the Boxcar Queue associated with the provided Session object, then it MUST be added to
that Boxcar object. (The constraints governing whether it is possible to add a message to the list are
provided in section 2.1.1.2.) Otherwise, a new Boxcar object MUST be allocated and added to the end
of the Boxcar Queue associated with the provided Session object; the message MUST then be added

to the end of the Message List in new Boxcar object instead.

An MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP) implementation can choose to
transmit the Boxcar object at the head of the Boxcar Queue at any time, as long as it contains at
least one message; however, an implementation SHOULD transmit this Boxcar object as soon as
possible when there is at least one other Boxcar object in the Boxcar Queue. Boxcars MUST be
formatted and transmitted as described in section 2.1.1.1.

3.1.7.2 Session Down

When the underlying transports protocol Session object specified in [MS-CMPO] is torn down or fails
for any reason other than the expiration of the Idle Timer, the higher-layer protocol MUST be notified
of the teardown using the Incoming Message Notification Interface as specified in section

3.1.1.1. The higher-layer protocol MUST be provided with the Connection Disconnected (section
3.1.7.4.2) event for every Connection object in both the Outgoing Connection Table and the
Incoming Connection Table of the Session object. The Connection objects MUST then be
removed from their containing tables. Any resources associated with the session SHOULD also be

reclaimed at this time.

3.1.7.3 Allocate Incoming Connection Objects

When the underlying transports protocol is requested to allocate more Connection object (section
3.1.1.1) resources from a partner as specified in [MS-CMPO], this protocol determines the number (if
any) of Connection object resources to be allocated and reports the number of allocated resources
back to the transports protocol. The manner in which Connection objects are allocated is
implementation-specific, as described in section 3.1.1.1, and the determination regarding how many

are allocated is also implementation-specific. For example, an implementation can decide to limit the
increase of allocated Connection objects to 10 at a time. As a result, if a partner requests the
allocation of 20 objects, only 10 will be allocated. This demonstrates how the number of allocated
objects returned by the transports protocol can differ from the number requested by a partner.<2>
The only limit that is imposed is the amount of available memory.

3.1.7.4 Notify Higher-Layer of Incoming Message Events

When the MSDTC Connection Manager: OleTx Multiplexing Protocol (CMP) receives incoming message
events as described in section 3.1.5, and the protocol expects a higher-layer protocol to be notified of
these incoming events, then the CMP MUST use the Incoming Message Notification Interface
provided by the higher-layer protocol.

3.1.7.4.1 Receiving a Message

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

28 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The Receiving a Message event MUST be signaled with the following arguments:

 A protocol message that extends the MESSAGE_PACKET structure (section 2.2.2), along with its

associated variable dwcbVarLenData field and the appropriate variable-length data buffer.

 A Connection object.

3.1.7.4.2 Connection Disconnected

The Connection Disconnected event MUST be signaled with the following argument:

 A Connection object.

3.1.7.4.3 Connection Request Denied

The Connection Request Denied event MUST be signaled with the following arguments:

 A Connection object.

 The Reason field of the message, as defined in section 2.2.5.

29 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

4 Protocol Examples

There are two instances of the transaction protocol specified in [MS-DTCO]: initiator and acceptor. It
is assumed that the two instances have established a session with each other, and that the initiator
has negotiated a sufficient number of resources with the acceptor. See the following examples:

 Sending Messages (section 4.1)

 A Simple Connection Scenario (section 4.2)

4.1 Sending Messages

The Sending Messages example shows how the initiator creates the appropriate structures to create a
connection and then sends a message on that connection In this case, the connection type of the

connection is 0x00000101, and the user message type of the first message is 0x00002001. (These
values are CONNTYPE_PARTNERTM_PROPAGATE and PARTNERTM_PROPAGATE_MTAG_PROPAGATE,
respectively, as specified in [MS-DTCO].)

The initiator is going to create two MESSAGE_PACKET structures (section 2.2.2), format them into a
boxcar, and then submit them to the underlying transports protocol session to be transmitted as
specified in [MS-CMPO]. (Because it is assumed that a connection request will succeed, both
MESSAGE_PACKET structures are put into the same boxcar.)

4.1.1 Creating the MESSAGE_PACKETs

To start the connection the initiator allocates the next free connection identifier; in this instance, it is
0x00000001. The initiator then creates a MESSAGE_PACKET, with the MsgTag field set to
MTAG_CONNECTION_REQ (0x00000005) (section 3.1.5.5) and with the dwUserMsgType field set

to 0x00000101 (which is CONNTYPE_PARTNERTM_PROPAGATE as specified in [MS-DTCO]. By
definition, the instance that creates the connection always sets the fIsMaster field to 0x00000001,
and as this MESSAGE_PACKET structure contains no extra data, the dwcbVarLenData is set to
0x00000000.

The following table displays the first MESSAGE_PACKET structure that the initiator creates (all values
are 32-bits wide).

Field Value Value description

MsgTag 0x00000005 MTAG_CONNECTION_REQ

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000101 CONNTYPE_PARTNERTM_PROPAGATE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The initiator then creates a second MESSAGE_PACKET to contain the user message. It sets the
MsgTag field to MTAG_USER_MESSAGE (0x00000FFF) (section 3.1.5.6) and the dwUserMsgType
field to 0x00002001 (which is PARTNERTM_PROPAGATE_MTAG_PROPAGATE as specified in [MS-

DTCO]).

The MESSAGE_PACKET also contains an extra 64 bytes of data for the message body, so it sets the
dwcbVarLenData field to 0x00000040. The message body that follows is specific to the message; in
this instance, it specifies a transaction ID (guidTx, set to 9fa8a337-eaf7-4230-9232-b57379d65077),

%5bMS-DTCO%5d.pdf#Section_c367c57133f344ac85cb4b9ebbb2779d
%5bMS-DTCO%5d.pdf#Section_c367c57133f344ac85cb4b9ebbb2779d
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-DTCO%5d.pdf#Section_c367c57133f344ac85cb4b9ebbb2779d

30 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

a transaction isolation level (isoLevel, set to 0x00100000, which is
ISOLATIONLEVEL_SERIALIZABLE), and a transaction description (szDesc, set to the string "Example

Transaction - 39 chars long...."). The following table is the second MESSAGE_PACKET structure that
the initiator creates.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002001 PARTNERTM_PROPAGATE_MTAG_PROPAGATE

dwcbVarLenData 0x00000040 64

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

 guidTx

 0x9fa8a337

 0x4230eaf7

 0x73b53292

 0x7750d679

 9fa8a337-eaf7-4230-9232-b57379d65077

isoLevel 0x00100000 ISOLATIONLEVEL_SERIALIZABLE

 szDesc

 0x6d617845

 0x20656c70

 0x6e617254

 0x74636173

 0x206e6f69

 0x3933202d

 0x61686320

 0x6c207372

 0x2e676e6f

 0x002e2e2e

 "Example Transaction - 39 chars long...."

To send these MESSAGE_PACKETs, the initiator wraps the two messages into a single boxcar, which
is in turn passed to the instance of the underlying transports protocol specified in [MS-CMPO], as
specified in sections 2.1.1.3 and 3.1.7.1.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

31 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

4.1.2 Creating a Boxcar

A Boxcar always begins with a BOX_CAR_HEADER structure (section 2.2.1). The first two fields
(dwSeqNumThisCar and dwAckSeqNum) are reserved and are always set to zero. The third field

(dwcbTotal) contains the total number of bytes in the Boxcar (in this case, 0x00000080; 128
bytes.) The fourth field (dwcMessages) contains the total number of MESSAGE_PACKETs in the
BOX_CAR_HEADER (in this case, 2).

The rest of the Boxcar contains an array of MESSAGE_PACKET structures. In this example, the two
MESSAGE_PACKET structures from section 4.1.1 are included in this Boxcar. Note that individual
MESSAGE_PACKET structures are aligned to 8-byte boundaries, and that they are present in the
order that they are intended to be processed. The following is the final Boxcar structure.

Field Value Value description

dwSeqNumThisCar 0x00000000 dwSeqNumThisCar: 0

dwAckSeqNum 0x00000000 dwAckSeqNum: 0

dwcbTotal 0x00000080 dwcbTotal: 128

dwcMessages 0x00000002 dwcMessages: 2

MsgTag 0x00000005 MTAG_CONNECTION_REQ

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000101 CONNTYPE_PARTNERTM_PROPAGATE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002001 PARTNERTM_PROPAGATE_MTAG_PROPAGATE

dwcbVarLenData 0x00000040 64

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

 guidTx

 0x9fa8a337

 0x4230eaf7

 0x73b53292

 0x7750d679

 9fa8a337-eaf7-4230-9232-b57379d65077

isoLevel 0x00100000 ISOLATIONLEVEL_SERIALIZABLE

 szDesc  0x6d617845  "Example Transaction - 39 chars long...."

32 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Field Value Value description

 0x20656c70

 0x6e617254

 0x74636173

 0x206e6f69

 0x3933202d

 0x61686320

 0x6c207372

 0x2e676e6f

 0x002e2e2e

 0x00000000

 Padding

4.1.3 Sending the Boxcar Using the Underlying MSDTC Connection Manager: OleTx

Transports Protocol Session

Now that the Boxcar has been constructed, this protocol provides the underlying transports protocol
implementation with the session on which to transmit the Boxcar, the count of messages in the
Boxcar, and the byte array that makes up the Boxcar itself, as specified in [MS-CMPO] section

3.4.6.5. The transports protocol session will ensure that the Boxcar is delivered to the acceptor,
which will parse it and process the messages it contains.

4.2 A Simple Connection Scenario

In this example, the initiator starts a connection and then, when all of the messages associated with
the connection are complete, the initiator disconnects the connection

4.2.1 Initiating a Connection

Sending Messages (section 4.1) shows how the initiator would create two MESSAGE_PACKET

structures to request a new connection with connection type 0x00000101
(CONNTYPE_PARTNERTM_PROPAGATE as specified in [MS-DTCO]) and send the first message. In this
scenario, after the first message is sent, the connection type that the initiator has requested indicates
that the initiator needs to wait for some sort of response message. Because this will be the first
message that the initiator receives on the connection the initiator will also be informed that the
connection request was denied.

4.2.1.1 Connection Denied

Assume for a moment that the acceptor denies the connection request, then the acceptor will create
a MESSAGE_PACKET with the MsgTag field set to MTAG_CONNECTION_REQ_DENIED
(0x00000003), and it will provide a reason for the rejection in the Reason field (for example,

E_ACCESSDENIED, or 0x80070005), which is appended to the end of the MESSAGE_PACKET. It will
set the dwConnectionId field to the connection identifier that the initiator requested (0x00000001),
and it will set the dwcbVarLenData field to four (the size of the Reason field that follows). The

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-DTCO%5d.pdf#Section_c367c57133f344ac85cb4b9ebbb2779d

33 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

dwUserMsgType field is set to zero, because this is a MTAG_CONNECTION_REQ_DENIED
message; likewise, the fIsMaster field is set to 0x00000000. The acceptor will then drop all incoming

messages with a dwConnectionId field set to 0x00000001 until it receives a disconnect request.

The MESSAGE_PACKET structure is as follows.

Field Value Description

MsgTag 0x00000003 MTAG_CONNECTION_REQ_DENIED

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000000 dwUserMsgType: 0

dwcbVarLenData 0x00000004 4

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

dwReason 0x80070005 E_ACCESSDENIED

4.2.1.2 Connection Accepted

If the acceptor accepts the connection request instead, then it does not send back a specific message

to that effect. Instead, the acceptor will move on to process the next message in the boxcar. In this
case, the next message is a user message and therefore, the higher-layer protocol (the transaction
protocol) is notified of the user message by signaling the message received event with the message
and the Connection object, as specified in [MS-DTCO] section 3.1.8.4.

In this example, the higher-layer protocol will respond with another user message. The acceptor will
create a MESSAGE_PACKET structure with the MsgTag field set to MTAG_USER_MESSAGE

(0x00000FFF), and the dwUserMsgType field set to 0x00002002, which is the value that the

transaction protocol described in [MS-DTCO] sends to indicate that the
PARTNERTM_PROPAGATE_MTAG_PROPAGATED message was processed successfully. The
message has no body, so the dwcbVarLenData field is set to 0x00000000, and the message is being
sent by the acceptor, so the fIsMaster field is set to 0x00000000. The message is being sent as a
response on the connection that the initiator started, so the dwConnectionId field is set to
0x00000001.

The response MESSAGE_PACKET ultimately looks like the following.

Field Value Description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002002 PARTNERTM_PROPAGATE_MTAG_PROPAGATED

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

%5bMS-DTCO%5d.pdf#Section_c367c57133f344ac85cb4b9ebbb2779d

34 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Regardless of whether the acceptor chooses to accept or reject the connection, the
MESSAGE_PACKET that the acceptor generates is packed into a boxcar (as described earlier) and it

is transmitted back to the initiator.

4.2.2 Disconnecting a Connection

The initiator is responsible for disconnecting the connection when the connection is complete, even if
the connection was denied by the acceptor.

The initiator begins the disconnect sequence for a connection by creating a MESSAGE_PACKET

structure with the MsgTag field set to MTAG_DISCONNECT (0x00000001), the dwConnectionId
field set to the identifier of the connection being disconnected (0x00000001), and the
dwUserMsgType field set to CONNTYPE_PARTNERTM_PROPAGATE (0x00000101).

The MESSAGE_PACKET structure is as follows.

Field Value Description

MsgTag 0x00000001 MTAG_DISCONNECT

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000101 CONNTYPE_PARTNERTM_PROPAGATE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The initiator packages this MESSAGE_PACKET into a boxcar and sends it to the acceptor over the
underlying transports protocol session as specified in [MS-CMPO].

When the acceptor receives the disconnect request, the acceptor begins the process of cleaning up

any connection-specific resources. After this process is complete, the acceptor creates a
MESSAGE_PACKET structure with the MsgTag field set to MTAG_DISCONNECTED (0x00000002),

the dwConnectionId field set to the identifier of the connection that was just disconnected
(0x00000001), and the dwUserMsgType field set to zero (0x00000000). The complete
MESSAGE_PACKET structure is as follows.

Field Value Description

MsgTag 0x00000002 MTAG_DISCONNECTED

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000000 dwUserMsgType: 0

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

When the initiator receives the disconnected message, the initiator then cleans up any connection-
specific resources and reclaims the connection identifier for future use.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

35 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

5 Security

5.1 Security Considerations for Implementers

This protocol has no additional security considerations beyond those in the transports protocol

described in [MS-CMPO] section 5.1.

5.2 Index of Security Parameters

None.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

36 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows NT 4.0 operating system Option Pack for Windows NT Server

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

 Windows Server operating system

 Windows Server 2019 operating system

 Windows Server 2022 operating system

 Windows 11 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.2.2: Applicable Windows releases set this field to a random 4-byte value.

<2> Section 3.1.7.3: In Windows, Connection objects are created by allocating new objects from the
memory heap and saving them on a list of "free" Connection objects.

37 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

6 Appendix A: Product Behavior Updated for this version of Windows Client. Major

mailto:dochelp@microsoft.com

38 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

8 Index

A

Abstract data model
 Boxcar Object 21
 Connection Object 21
 overview 20
Applicability 11

B

BOX_CAR_HEADER message 13
BOX_CAR_HEADER packet 13
Boxcar
 format 12
 size limit 12
 transmitting (section 2.1.1 12, section 2.1.1.3 12)
Boxcar Object - abstract data model 21

C

Capability negotiation 11
Change tracking 37
Connection
 creating 23
 disconnecting 24
Connection accepted example 33
Connection denied example 32
Connection Disconnected
 events 28
Connection Object - abstract data model 21
Connection Request Denied
 events 28
Connection scenario 32
Creating Boxcar example 30
Creating connections 23
Creating MESSAGE_PACKET example 29

D

Data model - abstract
 Boxcar Object 21
 Connection Object 21
 overview 20
Details 20
Disconnecting connection accepted example 34
Disconnecting connections 24

E

Enqueuing messages 27
Events
 Connection Disconnected 28
 Connection Request Denied 28
 Receiving a Message 27
Examples
 connection accepted example 33
 connection denied example 32
 connection scenario 32
 creating Boxcar example 30
 creating MESSAGE_PACKET example 29
 disconnecting connection example 34

 initiating connection example 32
 overview 29
 sending Boxcar example 32
 sending messages example 29

F

Fields - vendor-extensible 11

G

Glossary 7

H

Higher-layer triggered events 22

I

Idle Timer (section 3.1.2.1 21, section 3.1.6.1 26)
Implementer - security considerations 35
Index of security parameters 35
Informative references 8
Initialization 22
 Initialization by a Higher-Layer Protocol 22
 Initialization by the Protocol 22
Initialization by a Higher-Layer Protocol 22
Initialization by the Protocol 22
Initiating connection example 32
Introduction 7

L

Local events 27

M

Message processing 24
MESSAGE_PACKET message 13
MESSAGE_PACKET packet 13

Messages
 BOX_CAR_HEADER 13
 enqueuing 27
 MESSAGE_PACKET 13
 MTAG_CONNECTION_REQ 18
 MTAG_CONNECTION_REQ_DENIED 16
 MTAG_DISCONNECT 15
 MTAG_DISCONNECTED 16
 MTAG_PING 17
 MTAG_USER_MESSAGE 18
 overview 12
 sending 22
 syntax 13
 transmitting 12
 transport 12
MTAG_CONNECTION_REQ (MsgTag 0x00000005) 25
MTAG_CONNECTION_REQ message 18
MTAG_CONNECTION_REQ packet 18
MTAG_CONNECTION_REQ_DENIED (MsgTag

0x00000003) 25
MTAG_CONNECTION_REQ_DENIED message 16

39 / 39

[MS-CMP] - v20210625
MSDTC Connection Manager: OleTx Multiplexing Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

MTAG_CONNECTION_REQ_DENIED packet 16
MTAG_DISCONNECT (MsgTag 0x00000001) 24
MTAG_DISCONNECT message 15
MTAG_DISCONNECT packet 15
MTAG_DISCONNECTED (MsgTag 0x00000002) 25
MTAG_DISCONNECTED message 16
MTAG_DISCONNECTED packet 16
MTAG_PING (MsgTag 0x00000004) 25
MTAG_PING message 17
MTAG_PING packet 17
MTAG_USER_MESSAGE (MsgTag 0x00000FFF) 26
MTAG_USER_MESSAGE message 18
MTAG_USER_MESSAGE packet 18

N

Normative references 8

Notify Higher-Layer of Incoming Message Events 27

O

Overview (synopsis) 8

P

Parameters - security index 35
Preconditions 11
Prerequisites 11
Product behavior 36

R

Receiving a Message
 events 27
References 8
 informative 8
 normative 8
Relationship to other protocols 10

S

Security
 implementer considerations 35
 messages 13
 parameter index 35
Sending Boxcar example 32
Sending messages 22
Sending messages example 29
Sequencing rules 24
Session down 27
Standards assignments 11
Syntax 13

T

Timer events 26
Timers 21
Tracking changes 37
Transmitting Boxcars 12
Transmitting messages 12
Transport 12
Triggered events - higher-layer 22

V

Vendor-extensible fields 11
Versioning 11

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 Transmitting Messages and Boxcars
	2.1.1.1 Boxcar Format
	2.1.1.2 Boxcar Size Limitations
	2.1.1.3 Transmitting Boxcars

	2.1.2 Security

	2.2 Message Syntax
	2.2.1 BOX_CAR_HEADER
	2.2.2 MESSAGE_PACKET
	2.2.3 MTAG_DISCONNECT
	2.2.4 MTAG_DISCONNECTED
	2.2.5 MTAG_CONNECTION_REQ_DENIED
	2.2.6 MTAG_PING
	2.2.7 MTAG_CONNECTION_REQ
	2.2.8 MTAG_USER_MESSAGE

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Connection Object
	3.1.1.2 Boxcar Object

	3.1.2 Timers
	3.1.2.1 Idle Timer

	3.1.3 Initialization
	3.1.3.1 Initialization by a Higher-Layer Protocol
	3.1.3.2 Initialization by the Protocol

	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Send Message
	3.1.4.2 Create Connection
	3.1.4.3 Disconnect Connection

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 MTAG_DISCONNECT (MsgTag 0x00000001)
	3.1.5.2 MTAG_DISCONNECTED (MsgTag 0x00000002)
	3.1.5.3 MTAG_CONNECTION_REQ_DENIED (MsgTag 0x00000003)
	3.1.5.4 MTAG_PING (MsgTag 0x00000004)
	3.1.5.5 MTAG_CONNECTION_REQ (MsgTag 0x00000005)
	3.1.5.6 MTAG_USER_MESSAGE (MsgTag 0x00000FFF)

	3.1.6 Timer Events
	3.1.6.1 Idle Timer

	3.1.7 Other Local Events
	3.1.7.1 Enqueuing a Message
	3.1.7.2 Session Down
	3.1.7.3 Allocate Incoming Connection Objects
	3.1.7.4 Notify Higher-Layer of Incoming Message Events
	3.1.7.4.1 Receiving a Message
	3.1.7.4.2 Connection Disconnected
	3.1.7.4.3 Connection Request Denied

	4 Protocol Examples
	4.1 Sending Messages
	4.1.1 Creating the MESSAGE_PACKETs
	4.1.2 Creating a Boxcar
	4.1.3 Sending the Boxcar Using the Underlying MSDTC Connection Manager: OleTx Transports Protocol Session

	4.2 A Simple Connection Scenario
	4.2.1 Initiating a Connection
	4.2.1.1 Connection Denied
	4.2.1.2 Connection Accepted

	4.2.2 Disconnecting a Connection

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

