
 

1 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

[MS-ADTS-Diff]: 

Active Directory Technical Specification 

 

Intellectual Property Rights Notice for Open Specifications Documentation 

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this 
documentation”) for protocols, file formats, data portability, computer languages, and standards 
support. Additionally, overview documents cover inter-protocol relationships and interactions.  

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other 
terms that are contained in the terms of use for the Microsoft website that hosts this 
documentation, you can make copies of it in order to develop implementations of the technologies 
that are described in this documentation and can distribute portions of it in your implementations 

that use these technologies or in your documentation as necessary to properly document the 
implementation. You can also distribute in your implementation, with or without modification, any 
schemas, IDLs, or code samples that are included in the documentation. This permission also 

applies to any documents that are referenced in the Open Specifications documentation.  
▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.  
▪ Patents. Microsoft has patents that might cover your implementations of the technologies 

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of 
this documentation grants any licenses under those patents or any other Microsoft patents. 
However, a given Open Specifications document might be covered by the Microsoft Open 
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, 

or if the technologies described in this documentation are not covered by the Open Specifications 
Promise or Community Promise, as applicable, patent licenses are available by contacting 
iplg@microsoft.com.  

▪ License Programs. To see all of the protocols in scope under a specific license program and the 
associated patents, visit the Patent Map.  

▪ Trademarks. The names of companies and products contained in this documentation might be 

covered by trademarks or similar intellectual property rights. This notice does not grant any 
licenses under those rights. For a list of Microsoft trademarks, visit 
www.microsoft.com/trademarks.  

▪ Fictitious Names. The example companies, organizations, products, domain names, email 
addresses, logos, people, places, and events that are depicted in this documentation are fictitious. 
No association with any real company, organization, product, domain name, email address, logo, 
person, place, or event is intended or should be inferred. 

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other 
than as specifically described above, whether by implication, estoppel, or otherwise.  

Tools. The Open Specifications documentation does not require the use of Microsoft programming 
tools or programming environments in order for you to develop an implementation. If you have access 
to Microsoft programming tools and environments, you are free to take advantage of them. Certain 
Open Specifications documents are intended for use in conjunction with publicly available standards 
specifications and network programming art and, as such, assume that the reader either is familiar 

with the aforementioned material or has immediate access to it. 

Support. For questions and support, please contact dochelp@microsoft.com.  

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com


 

2 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Revision Summary 

Date 
Revision 
History 

Revision 
Class Comments 

2/22/2007 0.01 New Version 0.01 release 

6/1/2007 1.0 Major Included non-native content. 

7/3/2007 1.0.1 Editorial Changed language and formatting in the technical content. 

7/20/2007 1.0.2 Editorial Changed language and formatting in the technical content. 

8/10/2007 1.0.3 Editorial Changed language and formatting in the technical content. 

9/28/2007 2.0 Major Adjusted bitfield diagrams for byte ordering; added bitflags. 

10/23/2007 2.1 Minor Clarified the meaning of the technical content. 

11/30/2007 2.2 Minor Clarified the meaning of the technical content. 

1/25/2008 3.0 Major Updated and revised the technical content. 

3/14/2008 3.1 Minor 
Deleted hexadecimal representations of little-endian bit 
flags. 

5/16/2008 4.0 Major Updated and revised the technical content. 

6/20/2008 5.0 Major Updated and revised the technical content. 

7/25/2008 6.0 Major Updated and revised the technical content. 

8/29/2008 7.0 Major Updated and revised the technical content. 

10/24/2008 8.0 Major Updated and revised the technical content. 

12/5/2008 9.0 Major Updated and revised the technical content. 

1/16/2009 10.0 Major Updated and revised the technical content. 

2/27/2009 11.0 Major Updated and revised the technical content. 

4/10/2009 12.0 Major Updated and revised the technical content. 

5/22/2009 13.0 Major Updated and revised the technical content. 

7/2/2009 14.0 Major Updated and revised the technical content. 

8/14/2009 15.0 Major Updated and revised the technical content. 

9/25/2009 16.0 Major Updated and revised the technical content. 

11/6/2009 17.0 Major Updated and revised the technical content. 

12/18/2009 18.0 Major Updated and revised the technical content. 

1/29/2010 19.0 Major Updated and revised the technical content. 

3/12/2010 20.0 Major Updated and revised the technical content. 

4/23/2010 21.0 Major Updated and revised the technical content. 

6/4/2010 22.0 Major Updated and revised the technical content. 



 

3 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Date 
Revision 
History 

Revision 
Class Comments 

7/16/2010 23.0 Major Updated and revised the technical content. 

8/27/2010 24.0 Major Updated and revised the technical content. 

10/8/2010 25.0 Major Updated and revised the technical content. 

11/19/2010 26.0 Major Updated and revised the technical content. 

1/7/2011 27.0 Major Updated and revised the technical content. 

2/11/2011 28.0 Major Updated and revised the technical content. 

3/25/2011 29.0 Major Updated and revised the technical content. 

5/6/2011 30.0 Major Updated and revised the technical content. 

6/17/2011 30.1 Minor Clarified the meaning of the technical content. 

9/23/2011 31.0 Major Updated and revised the technical content. 

12/16/2011 32.0 Major Updated and revised the technical content. 

3/30/2012 33.0 Major Updated and revised the technical content. 

7/12/2012 34.0 Major Updated and revised the technical content. 

10/25/2012 35.0 Major Updated and revised the technical content. 

1/31/2013 36.0 Major Updated and revised the technical content. 

8/8/2013 37.0 Major Updated and revised the technical content. 

11/14/2013 38.0 Major Updated and revised the technical content. 

2/13/2014 39.0 Major Updated and revised the technical content. 

5/15/2014 40.0 Major Updated and revised the technical content. 

6/30/2015 41.0 Major Significantly changed the technical content. 

10/16/2015 42.0 Major Significantly changed the technical content. 

7/14/2016 43.0 Major Significantly changed the technical content. 

3/16/2017 44.0 Major Significantly changed the technical content. 

6/1/2017 45.0 Major Significantly changed the technical content. 

9/15/2017 46.0 Major Significantly changed the technical content. 

12/1/2017 47.0 Major Significantly changed the technical content. 

3/16/2018 48.0 Major Significantly changed the technical content. 

9/12/2018 49.0 Major Significantly changed the technical content. 

3/13/2019 50.0 Major Significantly changed the technical content. 

3/4/2020 51.0 Major Significantly changed the technical content. 

8/26/2020 52.0 Major Significantly changed the technical content. 



 

4 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Date 
Revision 
History 

Revision 
Class Comments 

4/7/2021 53.0 Major Significantly changed the technical content. 

6/25/2021 54.0 Major Significantly changed the technical content. 

4/29/2022 55.0 Major Significantly changed the technical content. 

1/20/2023 56.0 Major Significantly changed the technical content. 

9/20/2023 57.0 Major Significantly changed the technical content. 

1/29/2024 58.0 Major Significantly changed the technical content. 



 

5 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Table of Contents 

1 (Updated Section) Introduction............................................................................. 23 
1.1 Glossary ......................................................................................................... 25 
1.2 References ...................................................................................................... 44 

1.2.1 (Updated Section) Normative References ....................................................... 44 
1.2.2 (Updated Section) Informative References ..................................................... 49 

1.3 Overview ........................................................................................................ 51 
1.4 Relationship to Other Protocols .......................................................................... 52 
1.5 Prerequisites/Preconditions ............................................................................... 53 
1.6 Applicability Statement ..................................................................................... 53 
1.7 Versioning and Capability Negotiation ................................................................. 53 
1.8 Vendor-Extensible Fields ................................................................................... 53 
1.9 Standards Assignments ..................................................................................... 53 

2 Messages ............................................................................................................... 54 
2.1 Transport ........................................................................................................ 54 
2.2 Message Syntax ............................................................................................... 54 

2.2.1 LCID-Locale Mapping Table .......................................................................... 54 
2.2.2 DS_REPL_NEIGHBORW_BLOB ...................................................................... 60 
2.2.3 DS_REPL_KCC_DSA_FAILUREW_BLOB .......................................................... 63 
2.2.4 DS_REPL_OPW_BLOB .................................................................................. 64 
2.2.5 DS_REPL_QUEUE_STATISTICSW_BLOB ......................................................... 66 
2.2.6 DS_REPL_CURSOR_BLOB ............................................................................ 67 
2.2.7 DS_REPL_ATTR_META_DATA_BLOB .............................................................. 68 
2.2.8 DS_REPL_VALUE_META_DATA_BLOB ............................................................ 69 
2.2.9 Search Flags .............................................................................................. 71 
2.2.10 System Flags ............................................................................................. 72 
2.2.11 schemaFlagsEx Flags .................................................................................. 73 
2.2.12 (Updated Section) Group Type Flags ............................................................. 73 
2.2.13 Group Security Flags ................................................................................... 74 
2.2.14 Security Privilege Flags................................................................................ 75 
2.2.15 Domain RID Values ..................................................................................... 75 
2.2.16 (Updated Section) userAccountControl Bits .................................................... 76 
2.2.17 Optional Feature Values ............................................................................... 78 
2.2.18 Claims Wire Structures ................................................................................ 78 

2.2.18.1 CLAIM_ID ............................................................................................ 79 
2.2.18.2 CLAIM_TYPE ......................................................................................... 79 
2.2.18.3 CLAIMS_SOURCE_TYPE ......................................................................... 80 
2.2.18.4 CLAIMS_COMPRESSION_FORMAT ........................................................... 80 
2.2.18.5 CLAIM_ENTRY ...................................................................................... 80 
2.2.18.6 CLAIMS_ARRAY .................................................................................... 81 
2.2.18.7 CLAIMS_SET ........................................................................................ 82 
2.2.18.8 CLAIMS_SET_METADATA ....................................................................... 82 
2.2.18.9 CLAIMS_BLOB ...................................................................................... 83 

2.2.19 (Updated Section) MSDS-MANAGEDPASSWORD_BLOB .................................... 83 
2.2.20 Key Credential Link Structures ..................................................................... 84 

2.2.20.1 Key Credential Link Constants ................................................................ 84 
2.2.20.2 (Updated Section) KEYCREDENTIALLINK_BLOB......................................... 85 
2.2.20.3 KEYCREDENTIALLINK_ENTRY ................................................................. 85 
2.2.20.4 (Updated Section) CUSTOM_KEY_INFORMATION ...................................... 86 

2.2.20.4.1 (Updated Section) EncodedExtendedCKI............................................. 87 
2.2.20.5 KeyMaterial .......................................................................................... 88 

2.2.20.5.1 KEY_USAGE_NGC ............................................................................ 88 
2.2.20.5.2 KEY_USAGE_FIDO ........................................................................... 88 
2.2.20.5.3 KEY_USAGE_FEK ............................................................................. 88 

2.2.20.6 KEYCREDENTIALLINK_ENTRY Identifiers .................................................. 89 



 

6 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

2.2.21 Service Principal Name ................................................................................ 89 

3 Details ................................................................................................................... 90 
3.1 Common Details .............................................................................................. 91 

3.1.1 Abstract Data Model .................................................................................... 91 
3.1.1.1 State Model .......................................................................................... 92 

3.1.1.1.1 (Updated Section) Scope .................................................................. 92 
3.1.1.1.2 State Modeling Primitives and Notational Conventions .......................... 93 
3.1.1.1.3 Basics, objectGUID, and Special Attribute Behavior ............................. 93 
3.1.1.1.4 objectClass, RDN, DN, Constructed Attributes, Secret Attributes ........... 95 
3.1.1.1.5 (Updated Section) NC, NC Replica ..................................................... 98 

3.1.1.1.5.1 Tombstone Lifetime and Deleted-Object Lifetime .......................... 100 
3.1.1.1.6 Attribute Syntaxes, Object References, Referential Integrity, and Well-

Known Objects ............................................................................... 100 
3.1.1.1.7 (Updated Section) Forest, Canonical Name ........................................ 104 
3.1.1.1.8 GC ................................................................................................ 106 
3.1.1.1.9 DCs, USN Counters, and the Originating Update Stamp ....................... 106 
3.1.1.1.10 GC Server ..................................................................................... 112 
3.1.1.1.11 FSMO Roles ................................................................................... 112 
3.1.1.1.12 Cross-NC Object References ............................................................ 113 
3.1.1.1.13 NC Replica Graph ........................................................................... 114 
3.1.1.1.14 Scheduled and Event-Driven Replication ............................................ 115 
3.1.1.1.15 Replication Latency and Tombstone Lifetime ...................................... 116 
3.1.1.1.16 (Updated Section) Delayed Link Processing ........................................ 116 

3.1.1.2 (Updated Section) Active Directory Schema............................................. 117 
3.1.1.2.1 (Updated Section) Schema NC ......................................................... 117 
3.1.1.2.2 Syntaxes ....................................................................................... 119 

3.1.1.2.2.1 Introduction ............................................................................. 119 
3.1.1.2.2.2 LDAP Representations ............................................................... 119 

3.1.1.2.2.2.1 Object(DN-String) ............................................................... 121 
3.1.1.2.2.2.2 Object(Access-Point) ............................................................ 122 
3.1.1.2.2.2.3 Object(DN-Binary) ............................................................... 122 
3.1.1.2.2.2.4 Object(OR-Name) ................................................................ 122 
3.1.1.2.2.2.5 (Updated Section) String(Case) ............................................. 122 
3.1.1.2.2.2.6 String(NT-Sec-Desc) ............................................................ 122 
3.1.1.2.2.2.7 String(Sid) ......................................................................... 122 
3.1.1.2.2.2.8 String(Teletex) .................................................................... 122 

3.1.1.2.2.3 Referential Integrity .................................................................. 123 
3.1.1.2.2.4 Supported Comparison Operations .............................................. 123 

3.1.1.2.2.4.1 (Updated Section) Bool Comparison Rule ................................ 126 
3.1.1.2.2.4.2 Integer Comparison Rule ...................................................... 126 
3.1.1.2.2.4.3 DN-String Comparison Rule .................................................. 126 
3.1.1.2.2.4.4 DN-Binary Comparison Rule .................................................. 126 
3.1.1.2.2.4.5 DN Comparison Rule ............................................................ 126 
3.1.1.2.2.4.6 PresentationAddress Comparison Rule .................................... 126 
3.1.1.2.2.4.7 Octet Comparison Rule ......................................................... 126 
3.1.1.2.2.4.8 CaseString Comparison Rule ................................................. 127 
3.1.1.2.2.4.9 SecDesc Comparison Rule .................................................... 127 
3.1.1.2.2.4.10 OID Comparison Rule ........................................................... 127 
3.1.1.2.2.4.11 Sid Comparison Rule ............................................................ 127 
3.1.1.2.2.4.12 NoCaseString Comparison Rule ............................................. 127 
3.1.1.2.2.4.13 UnicodeString Comparison Rule ............................................. 127 
3.1.1.2.2.4.14 Time Comparison Rule ......................................................... 128 

3.1.1.2.3 (Updated Section) Attributes ............................................................ 128 
3.1.1.2.3.1 Auto-Generated linkID ............................................................... 131 
3.1.1.2.3.2 Auto-Generated mAPIID ............................................................ 131 
3.1.1.2.3.3 Property Set ............................................................................. 131 
3.1.1.2.3.4 lDAPDisplayName Generation ..................................................... 133 



 

7 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.2.3.5 (Updated Section) Flag fRODCFilteredAttribute in Attribute searchFlags
 .............................................................................................. 133 

3.1.1.2.4 Classes ......................................................................................... 134 
3.1.1.2.4.1 Class Categories ....................................................................... 134 
3.1.1.2.4.2 Inheritance .............................................................................. 134 
3.1.1.2.4.3 objectClass .............................................................................. 134 
3.1.1.2.4.4 Structure Rules ......................................................................... 134 
3.1.1.2.4.5 Content Rules ........................................................................... 135 
3.1.1.2.4.6 (Updated Section) Auxiliary Class ............................................... 135 
3.1.1.2.4.7 RDN Attribute of a Class ............................................................ 136 
3.1.1.2.4.8 (Updated Section) Class classSchema .......................................... 136 

3.1.1.2.5 Schema Modifications...................................................................... 137 
3.1.1.2.5.1 Consistency and Safety Checks ................................................... 138 

3.1.1.2.5.1.1 Consistency Checks ............................................................. 138 
3.1.1.2.5.1.2 Safety Checks ..................................................................... 139 

3.1.1.2.5.2 (Updated Section) Auto-Generated Attributes ............................... 140 
3.1.1.2.5.3 (Updated Section) Defunct ......................................................... 140 

3.1.1.2.5.3.1 (Updated Section) Forest Functional Level Less Than WIN2003 . 141 
3.1.1.2.5.3.2 (Updated Section) Forest Functional Level WIN2003 or Greater . 141 

3.1.1.2.6 ATTRTYP ....................................................................................... 142 
3.1.1.3 LDAP .................................................................................................. 142 

3.1.1.3.1 LDAP Conformance ......................................................................... 143 
3.1.1.3.1.1 Schema ................................................................................... 143 

3.1.1.3.1.1.1 (Updated Section) subSchema .............................................. 143 
3.1.1.3.1.1.2 Syntaxes ............................................................................ 146 
3.1.1.3.1.1.3 Attributes ........................................................................... 146 
3.1.1.3.1.1.4 Classes .............................................................................. 153 
3.1.1.3.1.1.5 Auxiliary Classes ................................................................. 156 

3.1.1.3.1.2 Object Naming ......................................................................... 157 
3.1.1.3.1.2.1 (Updated Section) Naming Attributes ..................................... 157 
3.1.1.3.1.2.2 NC Naming ......................................................................... 157 
3.1.1.3.1.2.3 Multivalued and Multiple-Attribute RDNs ................................. 158 
3.1.1.3.1.2.4 Alternative Forms of DNs ...................................................... 158 
3.1.1.3.1.2.5 Alternative Form of SIDs ...................................................... 160 

3.1.1.3.1.3 Search Operations .................................................................... 160 
3.1.1.3.1.3.1 (Updated Section) Search Filters ........................................... 160 
3.1.1.3.1.3.2 Selection Filters ................................................................... 161 
3.1.1.3.1.3.3 Range Retrieval of Attribute Values ........................................ 161 
3.1.1.3.1.3.4 (Updated Section) Ambiguous Name Resolution ...................... 162 
3.1.1.3.1.3.5 Searches Using the objectCategory Attribute .......................... 164 
3.1.1.3.1.3.6 (Updated Section) Restrictions on rootDSE Searches ............... 164 

3.1.1.3.1.4 Referrals in LDAPv2 and LDAPv3 ................................................. 164 
3.1.1.3.1.5 Password Modify Operations ....................................................... 164 

3.1.1.3.1.5.1 (Updated Section) unicodePwd .............................................. 165 
3.1.1.3.1.5.2 (Updated Section) userPassword ........................................... 166 

3.1.1.3.1.6 Dynamic Objects ....................................................................... 167 
3.1.1.3.1.7 (Updated Section) Modify DN Operations ..................................... 167 
3.1.1.3.1.8 Aliases ..................................................................................... 167 
3.1.1.3.1.9 Error Message Strings ............................................................... 167 
3.1.1.3.1.10 Ports ....................................................................................... 167 
3.1.1.3.1.11 LDAP Search Over UDP .............................................................. 167 
3.1.1.3.1.12 Unbind Operation ...................................................................... 168 

3.1.1.3.2 rootDSE Attributes .......................................................................... 168 
3.1.1.3.2.1 configurationNamingContext ...................................................... 178 
3.1.1.3.2.2 currentTime ............................................................................. 178 
3.1.1.3.2.3 defaultNamingContext ............................................................... 178 
3.1.1.3.2.4 dNSHostName .......................................................................... 178 
3.1.1.3.2.5 dsSchemaAttrCount .................................................................. 178 



 

8 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.3.2.6 dsSchemaClassCount ................................................................ 178 
3.1.1.3.2.7 dsSchemaPrefixCount ................................................................ 178 
3.1.1.3.2.8 dsServiceName ......................................................................... 178 
3.1.1.3.2.9 highestCommittedUSN ............................................................... 178 
3.1.1.3.2.10 (Updated Section) isGlobalCatalogReady ...................................... 178 
3.1.1.3.2.11 (Updated Section) isSynchronized ............................................... 178 
3.1.1.3.2.12 ldapServiceName ...................................................................... 178 
3.1.1.3.2.13 namingContexts ....................................................................... 179 
3.1.1.3.2.14 netlogon .................................................................................. 179 
3.1.1.3.2.15 pendingPropagations ................................................................. 179 
3.1.1.3.2.16 rootDomainNamingContext ........................................................ 179 
3.1.1.3.2.17 schemaNamingContext .............................................................. 179 
3.1.1.3.2.18 serverName ............................................................................. 179 
3.1.1.3.2.19 subschemaSubentry .................................................................. 179 
3.1.1.3.2.20 supportedCapabilities ................................................................ 179 
3.1.1.3.2.21 supportedControl ...................................................................... 179 
3.1.1.3.2.22 supportedLDAPPolicies ............................................................... 179 
3.1.1.3.2.23 supportedLDAPVersion............................................................... 180 
3.1.1.3.2.24 supportedSASLMechanisms ........................................................ 180 
3.1.1.3.2.25 domainControllerFunctionality .................................................... 180 
3.1.1.3.2.26 domainFunctionality .................................................................. 180 
3.1.1.3.2.27 forestFunctionality .................................................................... 181 
3.1.1.3.2.28 msDS-ReplAllInboundNeighbors, msDS-ReplConnectionFailures, msDS-

ReplLinkFailures, and msDS-ReplPendingOps ............................... 181 
3.1.1.3.2.29 msDS-ReplAllOutboundNeighbors ............................................... 182 
3.1.1.3.2.30 msDS-ReplQueueStatistics ......................................................... 182 
3.1.1.3.2.31 (Updated Section) msDS-TopQuotaUsage .................................... 183 
3.1.1.3.2.32 supportedConfigurableSettings ................................................... 184 
3.1.1.3.2.33 supportedExtension ................................................................... 184 
3.1.1.3.2.34 (Updated Section) validFSMOs .................................................... 184 
3.1.1.3.2.35 dsaVersionString....................................................................... 185 
3.1.1.3.2.36 msDS-PortLDAP ........................................................................ 185 
3.1.1.3.2.37 msDS-PortSSL .......................................................................... 185 
3.1.1.3.2.38 (Updated Section) msDS-PrincipalName ...................................... 185 
3.1.1.3.2.39 (Updated Section) serviceAccountInfo ......................................... 186 
3.1.1.3.2.40 spnRegistrationResult ................................................................ 186 
3.1.1.3.2.41 tokenGroups ............................................................................ 186 
3.1.1.3.2.42 usnAtRifm ................................................................................ 186 
3.1.1.3.2.43 approximateHighestInternalObjectID ........................................... 186 
3.1.1.3.2.44 databaseGuid ........................................................................... 186 
3.1.1.3.2.45 schemaIndexUpdateState .......................................................... 187 
3.1.1.3.2.46 dumpLdapNotifications .............................................................. 187 
3.1.1.3.2.47 msDS-ProcessLinksOperations .................................................... 187 
3.1.1.3.2.48 msDS-SegmentCacheInfo .......................................................... 187 
3.1.1.3.2.49 msDS-ThreadStates .................................................................. 187 
3.1.1.3.2.50 ConfigurableSettingsEffective ..................................................... 187 
3.1.1.3.2.51 LDAPPoliciesEffective ................................................................. 187 
3.1.1.3.2.52 msDS-ArenaInfo ....................................................................... 187 
3.1.1.3.2.53 msDS-Anchor ........................................................................... 187 
3.1.1.3.2.54 msDS-PrefixTable ..................................................................... 188 
3.1.1.3.2.55 msDS-SupportedRootDSEAttributes ............................................ 188 
3.1.1.3.2.56 msDS-SupportedRootDSEModifications ........................................ 188 
3.1.1.3.2.57 msDS-DiskUsage ...................................................................... 188 
3.1.1.3.2.58 msDS-DatabaseIndices .............................................................. 188 
3.1.1.3.2.59 msDS-DatabaseIndicesWithSize .................................................. 188 
3.1.1.3.2.60 msDS-PriorityBoost ................................................................... 188 

3.1.1.3.3 (Updated Section) rootDSE Modify Operations .................................... 188 
3.1.1.3.3.1 (Updated Section) becomeDomainMaster ..................................... 192 



 

9 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.3.3.2 (Updated Section) becomeInfrastructureMaster ............................ 192 
3.1.1.3.3.3 (Updated Section) becomePdc .................................................... 192 
3.1.1.3.3.4 becomePdcWithCheckPoint ......................................................... 193 
3.1.1.3.3.5 (Updated Section) becomeRidMaster ........................................... 193 
3.1.1.3.3.6 (Updated Section) becomeSchemaMaster .................................... 193 
3.1.1.3.3.7 (Updated Section) checkPhantoms .............................................. 194 
3.1.1.3.3.8 (Updated Section) doGarbageCollection ....................................... 194 
3.1.1.3.3.9 (Updated Section) dumpDatabase ............................................... 194 
3.1.1.3.3.10 (Updated Section) fixupInheritance ............................................. 195 
3.1.1.3.3.11 (Updated Section) invalidateRidPool ............................................ 195 
3.1.1.3.3.12 (Updated Section) recalcHierarchy .............................................. 196 
3.1.1.3.3.13 (Updated Section) schemaUpdateNow ......................................... 196 
3.1.1.3.3.14 (Updated Section) schemaUpgradeInProgress .............................. 197 
3.1.1.3.3.15 (Updated Section) removeLingeringObject ................................... 197 
3.1.1.3.3.16 (Updated Section) doLinkCleanup ............................................... 198 
3.1.1.3.3.17 (Updated Section) doOnlineDefrag .............................................. 198 
3.1.1.3.3.18 (Updated Section) replicateSingleObject ...................................... 198 
3.1.1.3.3.19 (Updated Section) updateCachedMemberships ............................. 199 
3.1.1.3.3.20 (Updated Section) doGarbageCollectionPhantomsNow ................... 200 
3.1.1.3.3.21 (Updated Section) invalidateGCConnection ................................... 200 
3.1.1.3.3.22 (Updated Section) renewServerCertificate .................................... 200 
3.1.1.3.3.23 (Updated Section) rODCPurgeAccount ......................................... 201 
3.1.1.3.3.24 runSamUpgradeTasks ................................................................ 201 
3.1.1.3.3.25 (Updated Section) sqmRunOnce ................................................. 202 
3.1.1.3.3.26 (Updated Section) runProtectAdminGroupsTask ............................ 202 
3.1.1.3.3.27 (Updated Section) disableOptionalFeature .................................... 202 
3.1.1.3.3.28 (Updated Section) enableOptionalFeature .................................... 203 
3.1.1.3.3.29 (Updated Section) dumpReferences ............................................ 204 
3.1.1.3.3.30 (Updated Section) sidCompatibilityVersion ................................... 204 
3.1.1.3.3.31 (Updated Section) dumpLinks ..................................................... 204 
3.1.1.3.3.32 (Updated Section) schemaUpdateIndicesNow ............................... 205 
3.1.1.3.3.33 null ......................................................................................... 205 
3.1.1.3.3.34 (Updated Section) dumpQuota ................................................... 205 
3.1.1.3.3.35 (Updated Section) dumpLinksExtended ........................................ 205 
3.1.1.3.3.36 (Updated Section) dumpLDAPState ............................................. 206 
3.1.1.3.3.37 (Updated Section) msDS-ProcessLinksAbandonOperation ............... 206 
3.1.1.3.3.38 (Updated Section) msDS-ProcessLinksScheduleOperation .............. 206 
3.1.1.3.3.39 stopService .............................................................................. 207 
3.1.1.3.3.40 (Updated Section) msDS-RunDeletedPhantomsWithLinksTask ........ 207 
3.1.1.3.3.41 (Updated Section) dumpDatabaseExtended .................................. 207 
3.1.1.3.3.42 (Updated Section) setPriorityBoost .............................................. 208 

3.1.1.3.4 LDAP Extensions ............................................................................ 208 
3.1.1.3.4.1 (Updated Section) LDAP Extended Controls .................................. 208 

3.1.1.3.4.1.1 LDAP_PAGED_RESULT_OID_STRING ..................................... 215 
3.1.1.3.4.1.2 LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID .................... 216 
3.1.1.3.4.1.3 LDAP_SERVER_DIRSYNC_OID ............................................... 216 
3.1.1.3.4.1.4 LDAP_SERVER_DOMAIN_SCOPE_OID .................................... 218 
3.1.1.3.4.1.5 LDAP_SERVER_EXTENDED_DN_OID ...................................... 218 
3.1.1.3.4.1.6 LDAP_SERVER_GET_STATS_OID ........................................... 219 
3.1.1.3.4.1.7 LDAP_SERVER_LAZY_COMMIT_OID ....................................... 223 
3.1.1.3.4.1.8 LDAP_SERVER_PERMISSIVE_MODIFY_OID ............................. 224 
3.1.1.3.4.1.9 LDAP_SERVER_NOTIFICATION_OID ....................................... 224 
3.1.1.3.4.1.10 LDAP_SERVER_RANGE_OPTION_OID ..................................... 224 
3.1.1.3.4.1.11 LDAP_SERVER_SD_FLAGS_OID ............................................. 225 
3.1.1.3.4.1.12 LDAP_SERVER_SEARCH_OPTIONS_OID ................................. 225 
3.1.1.3.4.1.13 LDAP_SERVER_SORT_OID and LDAP_SERVER_RESP_SORT_OID226 
3.1.1.3.4.1.14 (Updated Section) LDAP_SERVER_SHOW_DELETED_OID .......... 232 
3.1.1.3.4.1.15 LDAP_SERVER_TREE_DELETE_OID ........................................ 233 



 

10 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.3.4.1.16 LDAP_SERVER_VERIFY_NAME_OID ........................................ 233 
3.1.1.3.4.1.17 (Updated Section) LDAP_CONTROL_VLVREQUEST and 

LDAP_CONTROL_VLVRESPONSE ............................................ 233 
3.1.1.3.4.1.18 LDAP_SERVER_ASQ_OID...................................................... 236 
3.1.1.3.4.1.19 LDAP_SERVER_QUOTA_CONTROL_OID .................................. 237 
3.1.1.3.4.1.20 LDAP_SERVER_SHUTDOWN_NOTIFY_OID .............................. 237 
3.1.1.3.4.1.21 LDAP_SERVER_FORCE_UPDATE_OID ..................................... 237 
3.1.1.3.4.1.22 LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID ..................... 238 
3.1.1.3.4.1.23 LDAP_SERVER_RODC_DCPROMO_OID ................................... 238 
3.1.1.3.4.1.24 LDAP_SERVER_DN_INPUT_OID ............................................. 239 
3.1.1.3.4.1.25 LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID .................... 239 
3.1.1.3.4.1.26 (Updated Section) LDAP_SERVER_SHOW_RECYCLED_OID ........ 239 
3.1.1.3.4.1.27 LDAP_SERVER_POLICY_HINTS_OID ....................................... 240 
3.1.1.3.4.1.28 LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID .................. 240 
3.1.1.3.4.1.29 LDAP_SERVER_DIRSYNC_EX_OID ......................................... 240 
3.1.1.3.4.1.30 LDAP_SERVER_UPDATE_STATS_OID ..................................... 240 

3.1.1.3.4.1.30.1 Highest USN Allocated .................................................... 241 
3.1.1.3.4.1.30.2 Invocation ID Of Server .................................................. 241 

3.1.1.3.4.1.31 LDAP_SERVER_TREE_DELETE_EX_OID .................................. 241 
3.1.1.3.4.1.32 LDAP_SERVER_SEARCH_HINTS_OID ..................................... 242 

3.1.1.3.4.1.32.1 (Updated Section) Require Sort Index .............................. 242 
3.1.1.3.4.1.32.2 Soft Size Limit ............................................................... 243 

3.1.1.3.4.1.33 LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID ...................... 243 
3.1.1.3.4.1.34 LDAP_SERVER_SET_OWNER_OID .......................................... 244 
3.1.1.3.4.1.35 LDAP_SERVER_BYPASS_QUOTA_OID ..................................... 244 
3.1.1.3.4.1.36 LDAP_SERVER_LINK_TTL_OID .............................................. 244 
3.1.1.3.4.1.37 LDAP_SERVER_SET_CORRELATION_ID_OID ........................... 244 
3.1.1.3.4.1.38 LDAP_SERVER_THREAD_TRACE_OVERRIDE_OID .................... 244 

3.1.1.3.4.2 LDAP Extended Operations ......................................................... 244 
3.1.1.3.4.2.1 LDAP_SERVER_FAST_BIND_OID ........................................... 246 
3.1.1.3.4.2.2 LDAP_SERVER_START_TLS_OID ........................................... 246 
3.1.1.3.4.2.3 LDAP_TTL_REFRESH_OID ..................................................... 247 
3.1.1.3.4.2.4 LDAP_SERVER_WHO_AM_I_OID............................................ 247 
3.1.1.3.4.2.5 (Updated Section) LDAP_SERVER_BATCH_REQUEST_OID......... 247 

3.1.1.3.4.3 LDAP Capabilities ...................................................................... 249 
3.1.1.3.4.3.1 LDAP_CAP_ACTIVE_DIRECTORY_OID ..................................... 251 
3.1.1.3.4.3.2 LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID ................. 251 
3.1.1.3.4.3.3 LDAP_CAP_ACTIVE_DIRECTORY_V51_OID ............................. 251 
3.1.1.3.4.3.4 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_DIGEST_OID .............. 251 
3.1.1.3.4.3.5 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_OID........................... 251 
3.1.1.3.4.3.6 LDAP_CAP_ACTIVE_DIRECTORY_PARTIAL_SECRETS_OID ........ 251 
3.1.1.3.4.3.7 LDAP_CAP_ACTIVE_DIRECTORY_V60_OID ............................. 251 
3.1.1.3.4.3.8 LDAP_CAP_ACTIVE_DIRECTORY_V61_R2_OID ........................ 251 
3.1.1.3.4.3.9 LDAP_CAP_ACTIVE_DIRECTORY_W8_OID .............................. 251 

3.1.1.3.4.4 LDAP Matching Rules (extensibleMatch) ....................................... 251 
3.1.1.3.4.4.1 LDAP_MATCHING_RULE_BIT_AND ......................................... 252 
3.1.1.3.4.4.2 LDAP_MATCHING_RULE_BIT_OR ........................................... 252 
3.1.1.3.4.4.3 (Updated Section) LDAP_MATCHING_RULE_TRANSITIVE_EVAL . 252 
3.1.1.3.4.4.4 (Updated Section) LDAP_MATCHING_RULE_DN_WITH_DATA .... 253 

3.1.1.3.4.5 LDAP SASL Mechanisms ............................................................. 253 
3.1.1.3.4.5.1 GSSAPI .............................................................................. 254 
3.1.1.3.4.5.2 GSS-SPNEGO ...................................................................... 254 
3.1.1.3.4.5.3 EXTERNAL .......................................................................... 254 
3.1.1.3.4.5.4 DIGEST-MD5 ...................................................................... 254 

3.1.1.3.4.6 (Updated Section) LDAP Policies ................................................. 254 
3.1.1.3.4.7 LDAP Configurable Settings ........................................................ 258 
3.1.1.3.4.8 LDAP IP-Deny List ..................................................................... 261 

3.1.1.4 Reads ................................................................................................. 262 



 

11 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.4.1 Introduction ................................................................................... 262 
3.1.1.4.2 (Updated Section) Definitions........................................................... 262 
3.1.1.4.3 (Updated Section) Access Checks ..................................................... 263 
3.1.1.4.4 (Updated Section) Extended Access Checks ....................................... 264 
3.1.1.4.5 Constructed Attributes .................................................................... 266 

3.1.1.4.5.1 subSchemaSubEntry ................................................................. 266 
3.1.1.4.5.2 canonicalName ......................................................................... 266 
3.1.1.4.5.3 allowedChildClasses .................................................................. 266 
3.1.1.4.5.4 sDRightsEffective ...................................................................... 266 
3.1.1.4.5.5 (Updated Section) allowedChildClassesEffective ............................ 267 
3.1.1.4.5.6 allowedAttributes ...................................................................... 267 
3.1.1.4.5.7 allowedAttributesEffective .......................................................... 268 
3.1.1.4.5.8 (Updated Section) fromEntry ...................................................... 268 
3.1.1.4.5.9 createTimeStamp ...................................................................... 268 
3.1.1.4.5.10 modifyTimeStamp ..................................................................... 268 
3.1.1.4.5.11 primaryGroupToken .................................................................. 268 
3.1.1.4.5.12 entryTTL .................................................................................. 268 
3.1.1.4.5.13 msDS-NCReplInboundNeighbors, msDS-NCReplCursors, msDS-

ReplAttributeMetaData, msDS-ReplValueMetaData ........................ 268 
3.1.1.4.5.14 msDS-NCReplOutboundNeighbors ............................................... 269 
3.1.1.4.5.15 msDS-Approx-Immed-Subordinates ............................................ 269 
3.1.1.4.5.16 (Updated Section) msDS-KeyVersionNumber ................................ 270 
3.1.1.4.5.17 (Updated Section) msDS-User-Account-Control-Computed ............. 270 
3.1.1.4.5.18 msDS-Auxiliary-Classes ............................................................. 271 
3.1.1.4.5.19 tokenGroups, tokenGroupsNoGCAcceptable .................................. 271 
3.1.1.4.5.20 tokenGroupsGlobalAndUniversal ................................................. 272 
3.1.1.4.5.21 possibleInferiors ....................................................................... 272 
3.1.1.4.5.22 msDS-QuotaEffective ................................................................ 273 
3.1.1.4.5.23 msDS-QuotaUsed ..................................................................... 273 
3.1.1.4.5.24 msDS-TopQuotaUsage ............................................................... 273 
3.1.1.4.5.25 (Updated Section) ms-DS-UserAccountAutoLocked ....................... 274 
3.1.1.4.5.26 (Updated Section) msDS-UserPasswordExpired ............................ 274 
3.1.1.4.5.27 msDS-PrincipalName ................................................................. 275 
3.1.1.4.5.28 parentGUID .............................................................................. 275 
3.1.1.4.5.29 msDS-SiteName ....................................................................... 275 
3.1.1.4.5.30 (Updated Section) msDS-isRODC ................................................ 276 
3.1.1.4.5.31 msDS-isGC .............................................................................. 276 
3.1.1.4.5.32 msDS-isUserCachableAtRodc ...................................................... 276 
3.1.1.4.5.33 msDS-UserPasswordExpiryTimeComputed ................................... 277 
3.1.1.4.5.34 msDS-RevealedList ................................................................... 277 
3.1.1.4.5.35 msDS-RevealedListBL ................................................................ 278 
3.1.1.4.5.36 msDS-ResultantPSO .................................................................. 278 
3.1.1.4.5.37 msDS-LocalEffectiveDeletionTime ............................................... 279 
3.1.1.4.5.38 msDS-LocalEffectiveRecycleTime ................................................ 279 
3.1.1.4.5.39 (Updated Section) msDS-ManagedPassword ................................. 280 
3.1.1.4.5.40 (Updated Section) msds-memberOfTransitive ............................... 286 
3.1.1.4.5.41 (Updated Section) msds-memberTransitive .................................. 286 
3.1.1.4.5.42 msds-tokenGroupNames, msds-tokenGroupNamesNoGCAcceptable 287 
3.1.1.4.5.43 msds-tokenGroupNamesGlobalAndUniversal ................................. 287 
3.1.1.4.5.44 (Updated Section) structuralObjectClass ...................................... 287 

3.1.1.4.6 (Updated Section) Referrals ............................................................. 287 
3.1.1.4.7 (Updated Section) Continuations ...................................................... 289 
3.1.1.4.8 Effects of Defunct Attributes and Classes ........................................... 289 

3.1.1.5 Updates .............................................................................................. 290 
3.1.1.5.1 General ......................................................................................... 290 

3.1.1.5.1.1 (Updated Section) Enforce Schema Constraints ............................ 290 
3.1.1.5.1.2 (Updated Section) Naming Constraints ........................................ 291 
3.1.1.5.1.3 (Updated Section) Uniqueness Constraints ................................... 291 



 

12 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.5.1.4 Transactional Semantics ............................................................ 292 
3.1.1.5.1.5 Stamp Construction .................................................................. 292 
3.1.1.5.1.6 Replication Notification .............................................................. 292 
3.1.1.5.1.7 Urgent Replication .................................................................... 293 
3.1.1.5.1.8 (Updated Section) Updates Performed Only on FSMOs ................... 294 
3.1.1.5.1.9 Allow Updates Only When They Are Enabled ................................. 296 
3.1.1.5.1.10 Originating Updates Attempted on an RODC ................................. 296 
3.1.1.5.1.11 Constraints and Processing Specifics Defined Elsewhere ................. 296 

3.1.1.5.2 Add Operation ................................................................................ 296 
3.1.1.5.2.1 (Updated Section) Security Considerations ................................... 297 

3.1.1.5.2.1.1 (Updated Section) Per Attribute Authorization for Add Operation298 
3.1.1.5.2.2 (Updated Section) Constraints .................................................... 298 
3.1.1.5.2.3 Special Classes and Attributes .................................................... 304 
3.1.1.5.2.4 (Updated Section) Processing Specifics ........................................ 304 
3.1.1.5.2.5 Quota Calculation...................................................................... 307 
3.1.1.5.2.6 (Updated Section) NC Requirements ........................................... 308 
3.1.1.5.2.7 (Updated Section) crossRef Requirements .................................... 308 
3.1.1.5.2.8 NC-Add Operation ..................................................................... 309 

3.1.1.5.2.8.1 (Updated Section) Constraints .............................................. 309 
3.1.1.5.2.8.2 (Updated Section) Security Considerations ............................. 309 
3.1.1.5.2.8.3 (Updated Section) Processing Specifics .................................. 309 

3.1.1.5.3 Modify Operation ............................................................................ 310 
3.1.1.5.3.1 (Updated Section) Security Considerations ................................... 310 

3.1.1.5.3.1.1 Validated Writes .................................................................. 311 
3.1.1.5.3.1.1.1 (Updated Section) Member ............................................. 311 
3.1.1.5.3.1.1.2 (Updated Section) dNSHostName ..................................... 311 
3.1.1.5.3.1.1.3 (Updated Section) msDS-AdditionalDnsHostName .............. 312 
3.1.1.5.3.1.1.4 (Updated Section) servicePrincipalName ........................... 312 
3.1.1.5.3.1.1.5 (Updated Section) msDS-Behavior-Version ....................... 312 
3.1.1.5.3.1.1.6 (Updated Section) msDS-KeyCredentialLink ...................... 313 

3.1.1.5.3.1.2 FSMO Changes .................................................................... 313 
3.1.1.5.3.2 (Updated Section) Constraints .................................................... 314 
3.1.1.5.3.3 Processing Specifics .................................................................. 318 
3.1.1.5.3.4 BehaviorVersion Updates ........................................................... 320 
3.1.1.5.3.5 ObjectClass Updates.................................................................. 321 
3.1.1.5.3.6 (Updated Section) wellKnownObjects Updates .............................. 322 
3.1.1.5.3.7 Undelete Operation ................................................................... 323 

3.1.1.5.3.7.1 (Updated Section) Undelete Security Considerations ................ 323 
3.1.1.5.3.7.2 (Updated Section) Undelete Constraints ................................. 324 
3.1.1.5.3.7.3 Undelete Processing Specifics................................................ 324 

3.1.1.5.4 (Updated Section) Modify DN ........................................................... 325 
3.1.1.5.4.1 (Updated Section) Intra Domain Modify DN .................................. 326 

3.1.1.5.4.1.1 (Updated Section) Security Considerations ............................. 326 
3.1.1.5.4.1.2 (Updated Section) Constraints .............................................. 326 
3.1.1.5.4.1.3 Processing Specifics ............................................................. 328 

3.1.1.5.4.2 (Updated Section) Cross Domain Move ........................................ 328 
3.1.1.5.4.2.1 (Updated Section) Security Considerations ............................. 328 
3.1.1.5.4.2.2 (Updated Section) Constraints .............................................. 328 
3.1.1.5.4.2.3 Processing Specifics ............................................................. 331 

3.1.1.5.5 (Updated Section) Delete Operation .................................................. 333 
3.1.1.5.5.1 Resultant Object Requirements ................................................... 335 

3.1.1.5.5.1.1 (Updated Section) Tombstone Requirements ........................... 335 
3.1.1.5.5.1.2 (Updated Section) Deleted-Object Requirements ..................... 336 
3.1.1.5.5.1.3 (Updated Section) Recycled-Object Requirements ................... 337 

3.1.1.5.5.2 dynamicObject Requirements ..................................................... 338 
3.1.1.5.5.3 Protected Objects ..................................................................... 338 
3.1.1.5.5.4 (Updated Section) Security Considerations ................................... 338 
3.1.1.5.5.5 (Updated Section) Constraints .................................................... 338 



 

13 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.5.5.6 Processing Specifics .................................................................. 339 
3.1.1.5.5.6.1 (Updated Section) Transformation into a Tombstone ................ 339 
3.1.1.5.5.6.2 (Updated Section) Transformation into a Deleted-Object .......... 340 
3.1.1.5.5.6.3 (Updated Section) Transformation into a Recycled-Object......... 341 

3.1.1.5.5.7 Tree-delete Operation ............................................................... 341 
3.1.1.5.5.7.1 (Updated Section) Tree-delete Security Considerations ............ 342 
3.1.1.5.5.7.2 (Updated Section) Tree-delete Constraints ............................. 342 
3.1.1.5.5.7.3 Tree-delete Processing Specifics ............................................ 342 

3.1.1.6 Background Tasks ................................................................................ 342 
3.1.1.6.1 AdminSDHolder .............................................................................. 343 

3.1.1.6.1.1 Authoritative Security Descriptor ................................................ 343 
3.1.1.6.1.2 Protected Objects ..................................................................... 343 
3.1.1.6.1.3 Protection Operation ................................................................. 344 
3.1.1.6.1.4 Configurable State .................................................................... 344 

3.1.1.6.2 (Updated Section) Reference Update................................................. 345 
3.1.1.6.3 (Updated Section) Security Descriptor Propagator Update ................... 346 
3.1.1.6.4 PDC Forest Trust Update ................................................................. 347 

3.1.1.6.4.1 (Updated Section) Informative Overview ..................................... 347 
3.1.1.6.4.2 (Updated Section) Logical Processing .......................................... 347 

3.1.1.7 NT4 Replication Support ....................................................................... 348 
3.1.1.7.1 Format of nt4ReplicationState and pdcChangeLog .............................. 348 

3.1.1.7.1.1 nt4ReplicationState ................................................................... 348 
3.1.1.7.1.2 pdcChangeLog .......................................................................... 348 

3.1.1.7.2 State Changes ............................................................................... 348 
3.1.1.7.2.1 Initialization ............................................................................. 348 
3.1.1.7.2.2 (Updated Section) Directory Updates ........................................... 349 
3.1.1.7.2.3 (Updated Section) Acquiring the PDC Role ................................... 352 
3.1.1.7.2.4 Resetting the pdcChangeLog ...................................................... 353 

3.1.1.7.3 Format of the Referent of pmsgOut.V1.pLog ...................................... 353 
3.1.1.8 AD LDS Special Objects ........................................................................ 354 

3.1.1.8.1 AD LDS Users ................................................................................ 354 
3.1.1.8.2 Bind Proxies ................................................................................... 355 

3.1.1.9 Optional Features ................................................................................. 355 
3.1.1.9.1 Recycle Bin Optional Feature ............................................................ 357 
3.1.1.9.2 Privileged Access Management Optional Feature ................................. 358 

3.1.1.10 Revisions ............................................................................................ 358 
3.1.1.10.1 (Updated Section) Forest Revision .................................................... 358 
3.1.1.10.2 (Updated Section) RODC Revision..................................................... 359 
3.1.1.10.3 (Updated Section) Domain Revision .................................................. 360 

3.1.1.11 Claims ................................................................................................ 361 
3.1.1.11.1 Informative Overview ..................................................................... 361 

3.1.1.11.1.1 Claim ...................................................................................... 361 
3.1.1.11.1.2 Claims Dictionary ...................................................................... 361 
3.1.1.11.1.3 Claim Source ............................................................................ 361 
3.1.1.11.1.4 (Updated Section) Claims Issuance ............................................. 361 
3.1.1.11.1.5 Claims Transformation Rules ...................................................... 362 
3.1.1.11.1.6 Claims Transformation ............................................................... 362 

3.1.1.11.2 Claims Procedures .......................................................................... 362 
3.1.1.11.2.1 GetClaimsForPrincipal ................................................................ 362 
3.1.1.11.2.2 GetADSourcedClaims ................................................................. 363 
3.1.1.11.2.3 GetCertificateSourcedClaims ...................................................... 364 
3.1.1.11.2.4 GetConstructedClaims ............................................................... 365 
3.1.1.11.2.5 EncodeClaimsSet ...................................................................... 366 
3.1.1.11.2.6 FillClaimsSetMetadata ............................................................... 367 
3.1.1.11.2.7 RunCompressionAlgorithm ......................................................... 368 
3.1.1.11.2.8 NdrEncode ............................................................................... 369 
3.1.1.11.2.9 NdrDecode ............................................................................... 369 
3.1.1.11.2.10 DecodeClaimsSet ...................................................................... 369 



 

14 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.11.2.11 TransformClaimsOnTrustTraversal............................................... 370 
3.1.1.11.2.12 GetClaimsTransformationRulesXml .............................................. 372 
3.1.1.11.2.13 GetTransformationRulesText ...................................................... 373 
3.1.1.11.2.14 GetCTAClaims .......................................................................... 373 
3.1.1.11.2.15 CollapseMultiValuedClaims ......................................................... 374 
3.1.1.11.2.16 FilterAndPackOutputClaims ........................................................ 375 
3.1.1.11.2.17 ValidateClaimDefinition .............................................................. 376 
3.1.1.11.2.18 GetAuthSiloClaim ...................................................................... 377 

3.1.1.12 NC Rename ......................................................................................... 378 
3.1.1.12.1 Abstract Data Types ....................................................................... 379 

3.1.1.12.1.1 FlatName ................................................................................. 379 
3.1.1.12.1.2 SPNValue ................................................................................. 379 
3.1.1.12.1.3 ServerDescription ..................................................................... 379 
3.1.1.12.1.4 InterdomainTrustAccountDescription ........................................... 379 
3.1.1.12.1.5 TrustedDomainObjectDescription ................................................ 380 
3.1.1.12.1.6 NCDescription .......................................................................... 381 
3.1.1.12.1.7 DomainDescriptionElements ....................................................... 381 
3.1.1.12.1.8 DomainDescription .................................................................... 382 
3.1.1.12.1.9 NewTrustParentElements ........................................................... 382 
3.1.1.12.1.10 DomainWithNewTrustParentDescription ....................................... 383 
3.1.1.12.1.11 NCRenameDescription ............................................................... 383 

3.1.1.12.2 Encoding/Decoding Rules ................................................................ 384 
3.1.1.12.2.1 EBNF-M ................................................................................... 384 

3.1.1.12.2.1.1 Tuples as Parameters to Production Rules ............................... 384 
3.1.1.12.2.1.2 Parameter Fields as Terminal Values ...................................... 384 
3.1.1.12.2.1.3 Formatting of Non-String Parameter Fields as Terminal Values .. 385 
3.1.1.12.2.1.4 (Updated Section) Parameter Fields as Iterators ...................... 385 
3.1.1.12.2.1.5 Reversed Production Rules .................................................... 386 

3.1.1.12.2.2 CodedNCRenameDescription ...................................................... 387 
3.1.1.12.2.2.1 Expression .......................................................................... 388 
3.1.1.12.2.2.2 Common ............................................................................ 388 
3.1.1.12.2.2.3 Tests ................................................................................. 389 

3.1.1.12.2.2.3.1 TestConfigurationNC ...................................................... 390 
3.1.1.12.2.2.3.2 TestReplicationEpoch...................................................... 390 
3.1.1.12.2.2.3.3 TestAppNCs .................................................................. 390 
3.1.1.12.2.2.3.4 TestDomains ................................................................. 391 

3.1.1.12.2.2.3.4.1 TestCrossRef ........................................................... 391 
3.1.1.12.2.2.3.4.2 TestServersInstantiated ............................................ 392 
3.1.1.12.2.2.3.4.3 TestTrustCount ........................................................ 393 
3.1.1.12.2.2.3.4.4 TestTrustedDomainObjectDescriptions ........................ 393 
3.1.1.12.2.2.3.4.5 TestInterdomainTrustAccountDescriptions ................... 394 
3.1.1.12.2.2.3.4.6 TestServerDescriptions ............................................. 395 

3.1.1.12.2.2.3.5 TestPartitionCounts ........................................................ 396 
3.1.1.12.2.2.4 Flatten ............................................................................... 396 
3.1.1.12.2.2.5 Rebuild .............................................................................. 397 
3.1.1.12.2.2.6 Trusts ................................................................................ 398 

3.1.1.12.2.2.6.1 DomainTrustSpecifications .............................................. 399 
3.1.1.12.2.2.6.2 DomainTrustAccounts ..................................................... 400 

3.1.1.12.2.2.7 CrossRefs ........................................................................... 401 
3.1.1.12.2.2.7.1 ConfigurationCrossRef .................................................... 402 
3.1.1.12.2.2.7.2 SchemaCrossRef ............................................................ 402 
3.1.1.12.2.2.7.3 AppNCsCrossRefs........................................................... 402 
3.1.1.12.2.2.7.4 NCRenameDescriptionRootCrossRef ................................. 403 
3.1.1.12.2.2.7.5 TrustTreeNonRootDomainCrossRefs ................................. 404 
3.1.1.12.2.2.7.6 TrustTreeRootDomainCrossRefs ....................................... 406 

3.1.1.12.2.2.8 ReplicationEpoch ................................................................. 408 
3.1.1.12.3 Decode Operation ........................................................................... 408 
3.1.1.12.4 (Updated Section) Verify Conditions .................................................. 408 



 

15 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.12.5 Process Changes ............................................................................ 410 
3.1.1.13 Authentication Information Retrieval ...................................................... 412 

3.1.1.13.1 Informative Overview ..................................................................... 412 
3.1.1.13.2 ExpandMemberships ....................................................................... 412 
3.1.1.13.3 GetUserLogonInfo........................................................................... 413 
3.1.1.13.4 GetResourceDomainInfo .................................................................. 413 
3.1.1.13.5 ExpandShadowPrincipal ................................................................... 414 
3.1.1.13.6 GetUserLogonInfoByAttribute ........................................................... 415 
3.1.1.13.7 GetUserLogonInfoByUPNOrAccountName ........................................... 416 

4 (Updated Section) Protocol Examples ................................................................. 417 

5 Security ............................................................................................................... 418 
5.1 LDAP Security ................................................................................................. 418 

5.1.1 Authentication ........................................................................................... 418 
5.1.1.1 Supported Authentication Methods ......................................................... 418 

5.1.1.1.1 Simple Authentication ..................................................................... 419 
5.1.1.1.2 SASL Authentication ....................................................................... 420 
5.1.1.1.3 Sicily Authentication ....................................................................... 421 

5.1.1.2 Using SSL/TLS ..................................................................................... 422 
5.1.1.3 Using Fast Bind .................................................................................... 423 
5.1.1.4 Mutual Authentication ........................................................................... 424 
5.1.1.5 (Updated Section) Supported Types of Security Principals ......................... 424 
5.1.1.6 Authentication Expiration ...................................................................... 425 

5.1.2 Message Security ....................................................................................... 426 
5.1.2.1 Using SASL ......................................................................................... 426 
5.1.2.2 Using SSL/TLS ..................................................................................... 426 

5.1.3 (Updated Section) Authorization .................................................................. 427 
5.1.3.1 Background ......................................................................................... 427 
5.1.3.2 (Updated Section) Access Rights ............................................................ 428 

5.1.3.2.1 Control Access Rights ...................................................................... 429 
5.1.3.2.2 Validated Writes ............................................................................. 435 

5.1.3.3 Checking Access .................................................................................. 437 
5.1.3.3.1 Null vs. Empty DACLs ..................................................................... 437 
5.1.3.3.2 Checking Simple Access .................................................................. 438 
5.1.3.3.3 Checking Object-Specific Access ....................................................... 438 
5.1.3.3.4 Checking Control Access Right-Based Access ..................................... 440 
5.1.3.3.5 Checking Validated Write-Based Access ............................................. 441 
5.1.3.3.6 Checking Object Visibility ................................................................ 442 

5.1.3.4 AD LDS Security Context Construction .................................................... 442 

6 Additional Information ........................................................................................ 444 
6.1 Special Objects and Forest Requirements ........................................................... 444 

6.1.1 Special Objects .......................................................................................... 444 
6.1.1.1 Naming Contexts ................................................................................. 444 

6.1.1.1.1 Any NC Root .................................................................................. 444 
6.1.1.1.2 Config NC Root............................................................................... 445 
6.1.1.1.3 (Updated Section) Schema NC Root .................................................. 446 
6.1.1.1.4 (Updated Section) Domain NC Root .................................................. 446 
6.1.1.1.5 (Updated Section) Application NC Root .............................................. 447 

6.1.1.2 Configuration Objects ........................................................................... 448 
6.1.1.2.1 Cross-Ref-Container Container ......................................................... 449 

6.1.1.2.1.1 (Updated Section) Cross-Ref Objects ........................................... 449 
6.1.1.2.1.1.1 Foreign crossRef Objects ...................................................... 450 
6.1.1.2.1.1.2 (Updated Section) Configuration crossRef Object ..................... 450 
6.1.1.2.1.1.3 (Updated Section) Schema crossRef Object ............................ 450 
6.1.1.2.1.1.4 (Updated Section) Domain crossRef Object ............................. 450 
6.1.1.2.1.1.5 (Updated Section) Application NC crossRef Object ................... 451 

6.1.1.2.2 Sites Container .............................................................................. 451 



 

16 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.1.2.2.1 Site Object ............................................................................... 451 
6.1.1.2.2.1.1 (Updated Section) NTDS Site Settings Object .......................... 452 
6.1.1.2.2.1.2 Servers Container ................................................................ 453 

6.1.1.2.2.1.2.1 (Updated Section) Server Object ..................................... 453 
6.1.1.2.2.1.2.1.1 (Updated Section) nTDSDSA Object ............................ 453 
6.1.1.2.2.1.2.1.2 (Updated Section) Connection Object ......................... 455 
6.1.1.2.2.1.2.1.3 (Updated Section) RODC NTFRS Connection Object ...... 457 

6.1.1.2.2.2 Subnets Container .................................................................... 458 
6.1.1.2.2.2.1 (Updated Section) Subnet Object .......................................... 458 

6.1.1.2.2.3 Inter-Site Transports Container .................................................. 460 
6.1.1.2.2.3.1 IP Transport Container ......................................................... 460 
6.1.1.2.2.3.2 SMTP Transport Container .................................................... 460 
6.1.1.2.2.3.3 (Updated Section) Site Link Object ........................................ 461 
6.1.1.2.2.3.4 Site Link Bridge Object ......................................................... 462 

6.1.1.2.3 Display Specifiers Container ............................................................. 462 
6.1.1.2.3.1 (Updated Section) Display Specifier Object................................... 462 

6.1.1.2.4 Services ........................................................................................ 464 
6.1.1.2.4.1 Windows NT ............................................................................. 464 

6.1.1.2.4.1.1 Directory Service ................................................................. 464 
6.1.1.2.4.1.2 (Updated Section) dSHeuristics ............................................. 464 
6.1.1.2.4.1.3 Optional Features Container .................................................. 471 

6.1.1.2.4.1.3.1 Recycle Bin Feature Object ............................................. 471 
6.1.1.2.4.1.3.2 Privileged Access Management Feature Object ................... 472 

6.1.1.2.4.1.4 Query-Policies ..................................................................... 472 
6.1.1.2.4.1.4.1 Default Query Policy ....................................................... 472 

6.1.1.2.4.1.5 (Updated Section) SCP Publication Service Object ................... 472 
6.1.1.2.4.2 Claims Configuration ................................................................. 473 

6.1.1.2.5 Physical Locations........................................................................... 473 
6.1.1.2.6 WellKnown Security Principals .......................................................... 473 

6.1.1.2.6.1 Anonymous Logon .................................................................... 473 
6.1.1.2.6.2 Authenticated Users .................................................................. 473 
6.1.1.2.6.3 Batch ...................................................................................... 474 
6.1.1.2.6.4 Console Logon .......................................................................... 474 
6.1.1.2.6.5 Creator Group .......................................................................... 474 
6.1.1.2.6.6 Creator Owner .......................................................................... 474 
6.1.1.2.6.7 Dialup ..................................................................................... 474 
6.1.1.2.6.8 Digest Authentication ................................................................ 474 
6.1.1.2.6.9 Enterprise Domain Controllers .................................................... 474 
6.1.1.2.6.10 Everyone ................................................................................. 475 
6.1.1.2.6.11 Interactive ............................................................................... 475 
6.1.1.2.6.12 IUSR ....................................................................................... 475 
6.1.1.2.6.13 Local Service ............................................................................ 475 
6.1.1.2.6.14 Network ................................................................................... 475 
6.1.1.2.6.15 Network Service ....................................................................... 475 
6.1.1.2.6.16 NTLM Authentication ................................................................. 475 
6.1.1.2.6.17 Other Organization .................................................................... 475 
6.1.1.2.6.18 Owner Rights ........................................................................... 476 
6.1.1.2.6.19 Proxy ...................................................................................... 476 
6.1.1.2.6.20 Remote Interactive Logon .......................................................... 476 
6.1.1.2.6.21 Restricted ................................................................................ 476 
6.1.1.2.6.22 SChannel Authentication ............................................................ 476 
6.1.1.2.6.23 Self ......................................................................................... 476 
6.1.1.2.6.24 Service .................................................................................... 476 
6.1.1.2.6.25 System .................................................................................... 477 
6.1.1.2.6.26 Terminal Server User ................................................................ 477 
6.1.1.2.6.27 This Organization ...................................................................... 477 

6.1.1.2.7 Extended Rights ............................................................................. 477 
6.1.1.2.7.1 controlAccessRight objects ......................................................... 477 



 

17 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.1.2.7.2 Change-Rid-Master ................................................................... 477 
6.1.1.2.7.3 Do-Garbage-Collection .............................................................. 478 
6.1.1.2.7.4 Recalculate-Hierarchy ................................................................ 478 
6.1.1.2.7.5 Allocate-Rids ............................................................................ 478 
6.1.1.2.7.6 Change-PDC ............................................................................. 478 
6.1.1.2.7.7 Add-GUID ................................................................................ 478 
6.1.1.2.7.8 Change-Domain-Master ............................................................. 478 
6.1.1.2.7.9 Public-Information .................................................................... 479 
6.1.1.2.7.10 msmq-Receive-Dead-Letter ........................................................ 479 
6.1.1.2.7.11 msmq-Peek-Dead-Letter ............................................................ 479 
6.1.1.2.7.12 msmq-Receive-computer-Journal ................................................ 479 
6.1.1.2.7.13 msmq-Peek-computer-Journal .................................................... 479 
6.1.1.2.7.14 msmq-Receive .......................................................................... 480 
6.1.1.2.7.15 msmq-Peek .............................................................................. 480 
6.1.1.2.7.16 msmq-Send ............................................................................. 480 
6.1.1.2.7.17 msmq-Receive-journal ............................................................... 480 
6.1.1.2.7.18 msmq-Open-Connector .............................................................. 480 
6.1.1.2.7.19 Apply-Group-Policy ................................................................... 480 
6.1.1.2.7.20 RAS-Information ....................................................................... 481 
6.1.1.2.7.21 DS-Install-Replica ..................................................................... 481 
6.1.1.2.7.22 Change-Infrastructure-Master .................................................... 481 
6.1.1.2.7.23 Update-Schema-Cache .............................................................. 481 
6.1.1.2.7.24 Recalculate-Security-Inheritance ................................................ 481 
6.1.1.2.7.25 DS-Check-Stale-Phantoms ......................................................... 481 
6.1.1.2.7.26 Certificate-Enrollment ................................................................ 482 
6.1.1.2.7.27 Self-Membership ....................................................................... 482 
6.1.1.2.7.28 Validated-DNS-Host-Name ......................................................... 482 
6.1.1.2.7.29 Validated-SPN .......................................................................... 482 
6.1.1.2.7.30 Generate-RSoP-Planning ............................................................ 482 
6.1.1.2.7.31 Refresh-Group-Cache ................................................................ 483 
6.1.1.2.7.32 Reload-SSL-Certificate ............................................................... 483 
6.1.1.2.7.33 SAM-Enumerate-Entire-Domain .................................................. 483 
6.1.1.2.7.34 Generate-RSoP-Logging ............................................................. 483 
6.1.1.2.7.35 Domain-Other-Parameters ......................................................... 483 
6.1.1.2.7.36 DNS-Host-Name-Attributes ........................................................ 484 
6.1.1.2.7.37 Create-Inbound-Forest-Trust ...................................................... 484 
6.1.1.2.7.38 DS-Replication-Get-Changes-All .................................................. 484 
6.1.1.2.7.39 Migrate-SID-History .................................................................. 484 
6.1.1.2.7.40 Reanimate-Tombstones ............................................................. 484 
6.1.1.2.7.41 Allowed-To-Authenticate ............................................................ 485 
6.1.1.2.7.42 DS-Execute-Intentions-Script ..................................................... 485 
6.1.1.2.7.43 DS-Replication-Monitor-Topology ................................................ 485 
6.1.1.2.7.44 Update-Password-Not-Required-Bit ............................................. 485 
6.1.1.2.7.45 Unexpire-Password ................................................................... 486 
6.1.1.2.7.46 Enable-Per-User-Reversibly-Encrypted-Password .......................... 486 
6.1.1.2.7.47 DS-Query-Self-Quota ................................................................ 486 
6.1.1.2.7.48 Private-Information ................................................................... 486 
6.1.1.2.7.49 MS-TS-GatewayAccess .............................................................. 486 
6.1.1.2.7.50 Terminal-Server-License-Server ................................................. 487 
6.1.1.2.7.51 Domain-Administer-Server ......................................................... 487 
6.1.1.2.7.52 User-Change-Password .............................................................. 487 
6.1.1.2.7.53 User-Force-Change-Password ..................................................... 487 
6.1.1.2.7.54 Send-As................................................................................... 488 
6.1.1.2.7.55 Receive-As ............................................................................... 488 
6.1.1.2.7.56 Send-To .................................................................................. 488 
6.1.1.2.7.57 Domain-Password ..................................................................... 488 
6.1.1.2.7.58 General-Information .................................................................. 489 
6.1.1.2.7.59 User-Account-Restrictions .......................................................... 489 



 

18 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.1.2.7.60 User-Logon .............................................................................. 489 
6.1.1.2.7.61 Membership ............................................................................. 489 
6.1.1.2.7.62 Open-Address-Book .................................................................. 490 
6.1.1.2.7.63 Personal-Information ................................................................. 490 
6.1.1.2.7.64 Email-Information ..................................................................... 490 
6.1.1.2.7.65 Web-Information ...................................................................... 490 
6.1.1.2.7.66 DS-Replication-Get-Changes ...................................................... 491 
6.1.1.2.7.67 DS-Replication-Synchronize ....................................................... 491 
6.1.1.2.7.68 DS-Replication-Manage-Topology ................................................ 491 
6.1.1.2.7.69 Change-Schema-Master ............................................................. 491 
6.1.1.2.7.70 DS-Replication-Get-Changes-In-Filtered-Set ................................ 492 
6.1.1.2.7.71 Run-Protect-Admin-Groups-Task ................................................. 492 
6.1.1.2.7.72 Manage-Optional-Features ......................................................... 492 
6.1.1.2.7.73 Read-Only-Replication-Secret-Synchronization ............................. 492 
6.1.1.2.7.74 Validated-MS-DS-Additional-DNS-Host-Name ............................... 492 
6.1.1.2.7.75 Validated-MS-DS-Behavior-Version ............................................. 493 
6.1.1.2.7.76 DS-Clone-Domain-Controller ...................................................... 493 
6.1.1.2.7.77 Certificate-AutoEnrollment ......................................................... 493 
6.1.1.2.7.78 DS-Read-Partition-Secrets ......................................................... 493 
6.1.1.2.7.79 DS-Write-Partition-Secrets ......................................................... 493 
6.1.1.2.7.80 DS-Set-Owner .......................................................................... 493 
6.1.1.2.7.81 DS-Bypass-Quota ..................................................................... 493 
6.1.1.2.7.82 DS-Validated-Write-Computer .................................................... 494 

6.1.1.2.8 (Updated Section) Forest Updates Container ...................................... 494 
6.1.1.2.8.1 Operations Container................................................................. 494 
6.1.1.2.8.2 Windows2003Update Container .................................................. 495 
6.1.1.2.8.3 ActiveDirectoryUpdate Container ................................................ 495 
6.1.1.2.8.4 ActiveDirectoryRodcUpdate Container .......................................... 495 

6.1.1.3 Critical Domain Objects ........................................................................ 495 
6.1.1.3.1 Domain Controller Object ................................................................ 496 
6.1.1.3.2 Read-Only Domain Controller Object ................................................. 496 

6.1.1.4 Well-Known Objects ............................................................................. 497 
6.1.1.4.1 Lost and Found Container ................................................................ 500 
6.1.1.4.2 (Updated Section) Deleted Objects Container ..................................... 500 
6.1.1.4.3 NTDS Quotas Container ................................................................... 501 
6.1.1.4.4 Infrastructure Object ...................................................................... 501 
6.1.1.4.5 Domain Controllers OU .................................................................... 501 
6.1.1.4.6 Users Container ............................................................................. 501 
6.1.1.4.7 Computers Container ...................................................................... 501 
6.1.1.4.8 Program Data Container .................................................................. 502 
6.1.1.4.9 Managed Service Accounts Container ................................................ 502 
6.1.1.4.10 Foreign Security Principals Container ................................................ 502 
6.1.1.4.11 System Container ........................................................................... 503 

6.1.1.4.11.1 Password Settings Container ...................................................... 503 
6.1.1.4.12 Builtin Container ............................................................................ 503 

6.1.1.4.12.1 Account Operators Group Object ................................................. 504 
6.1.1.4.12.2 Administrators Group Object ...................................................... 504 
6.1.1.4.12.3 Backup Operators Group Object .................................................. 504 
6.1.1.4.12.4 Certificate Service DCOM Access Group Object ............................. 504 
6.1.1.4.12.5 Cryptographic Operators Group Object ........................................ 504 
6.1.1.4.12.6 Distributed COM Users Group Object ........................................... 504 
6.1.1.4.12.7 Event Log Readers Group Object ................................................. 504 
6.1.1.4.12.8 Guests Group Object ................................................................. 504 
6.1.1.4.12.9 IIS_IUSRS Group Object ............................................................ 505 
6.1.1.4.12.10 Incoming Forest Trust Builders Group Object ................................ 505 
6.1.1.4.12.11 Network Configuration Operators Group Object ............................ 505 
6.1.1.4.12.12 Performance Log Users Group Object .......................................... 505 
6.1.1.4.12.13 Performance Monitor Users Group Object ..................................... 505 



 

19 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.1.4.12.14 Pre-Windows 2000 Compatible Access Group Object ..................... 505 
6.1.1.4.12.15 Print Operators Group Object ..................................................... 505 
6.1.1.4.12.16 Remote Desktop Users Group Object ........................................... 505 
6.1.1.4.12.17 Replicator Group Object ............................................................. 505 
6.1.1.4.12.18 Server Operators Group Object ................................................... 506 
6.1.1.4.12.19 Terminal Server License Servers Group Object ............................. 506 
6.1.1.4.12.20 Users Group Object ................................................................... 506 
6.1.1.4.12.21 Windows Authorization Access Group Group Object ....................... 506 

6.1.1.4.13 Roles Container .............................................................................. 506 
6.1.1.4.13.1 Administrators Group Object ...................................................... 507 
6.1.1.4.13.2 Readers Group Object ............................................................... 507 
6.1.1.4.13.3 Users Group Object ................................................................... 507 
6.1.1.4.13.4 Instances Group Object ............................................................. 507 

6.1.1.5 Other System Objects........................................................................... 507 
6.1.1.5.1 AdminSDHolder Object .................................................................... 507 
6.1.1.5.2 Default Domain Policy Container ....................................................... 508 
6.1.1.5.3 Sam Server Object ......................................................................... 509 
6.1.1.5.4 (Updated Section) Domain Updates Container .................................... 509 

6.1.1.5.4.1 Operations Container................................................................. 509 
6.1.1.5.4.2 Windows2003Update Container .................................................. 510 
6.1.1.5.4.3 ActiveDirectoryUpdate Container ................................................ 510 

6.1.1.6 Well-Known Domain-Relative Security Principals ...................................... 510 
6.1.1.6.1 Administrator ................................................................................. 510 
6.1.1.6.2 Guest ............................................................................................ 510 
6.1.1.6.3 Key Distribution Center Service Account ............................................ 511 
6.1.1.6.4 Cert Publishers ............................................................................... 511 
6.1.1.6.5 Domain Administrators .................................................................... 511 
6.1.1.6.6 Domain Computers ......................................................................... 511 
6.1.1.6.7 Domain Controllers ......................................................................... 511 
6.1.1.6.8 Domain Guests .............................................................................. 511 
6.1.1.6.9 Domain Users ................................................................................ 512 
6.1.1.6.10 Enterprise Administrators ................................................................ 512 
6.1.1.6.11 Group Policy Creator Owners ........................................................... 512 
6.1.1.6.12 RAS and IAS Servers ...................................................................... 512 
6.1.1.6.13 Read-Only Domain Controllers ......................................................... 512 
6.1.1.6.14 Enterprise Read-Only Domain Controllers .......................................... 513 
6.1.1.6.15 Schema Admins ............................................................................. 513 
6.1.1.6.16 Allowed RODC Password Replication Group ........................................ 513 
6.1.1.6.17 Denied RODC Password Replication Group ......................................... 513 

6.1.2 Forest Requirements .................................................................................. 513 
6.1.2.1 (Updated Section) DC Existence ............................................................. 514 
6.1.2.2 (Updated Section) NC Existence ............................................................. 514 
6.1.2.3 Hosting Requirements .......................................................................... 514 

6.1.2.3.1 (Updated Section) DC and Application NC Replica ............................... 514 
6.1.2.3.2 (Updated Section) DC and Regular Domain NC Replica ........................ 515 
6.1.2.3.3 (Updated Section) DC and Schema/Config NC Replicas ....................... 515 
6.1.2.3.4 (Updated Section) DC and Partial Replica NCs Replicas ........................ 515 

6.1.3 (Updated Section) Security Descriptor Requirements ..................................... 516 
6.1.3.1 ACE Ordering Rules .............................................................................. 517 
6.1.3.2 SD Flags Control .................................................................................. 518 
6.1.3.3 Processing Specifics ............................................................................. 518 
6.1.3.4 (Updated Section) Blocking Implicit Owner Rights .................................... 519 
6.1.3.5 (Updated Section) Security Considerations .............................................. 519 
6.1.3.6 SD Defaulting Rules ............................................................................. 521 
6.1.3.7 Owner and Group Defaulting Rules ......................................................... 521 
6.1.3.8 Default Administrators Group ................................................................ 521 

6.1.4 Special Attributes ...................................................................................... 522 
6.1.4.1 (Updated Section) ntMixedDomain ......................................................... 522 



 

20 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.4.2 msDS-Behavior-Version: DC Functional Level .......................................... 522 
6.1.4.3 msDS-Behavior-Version: Domain NC Functional Level .............................. 523 
6.1.4.4 msDS-Behavior-Version: Forest Functional Level...................................... 524 
6.1.4.5 Replication Schedule Structures ............................................................. 525 

6.1.4.5.1 (Updated Section) SCHEDULE_HEADER Structure ............................... 525 
6.1.4.5.2 SCHEDULE Structure....................................................................... 525 
6.1.4.5.3 REPS_FROM ................................................................................... 526 
6.1.4.5.4 REPS_TO ....................................................................................... 526 
6.1.4.5.5 MTX_ADDR Structure ...................................................................... 526 
6.1.4.5.6 REPLTIMES Structure ...................................................................... 526 
6.1.4.5.7 PAS_DATA Structure ....................................................................... 526 

6.1.4.6 msDS-AuthenticatedAtDC ..................................................................... 526 
6.1.5 (Updated Section) FSMO Roles .................................................................... 526 

6.1.5.1 Schema Master FSMO Role .................................................................... 526 
6.1.5.2 Domain Naming Master FSMO Role......................................................... 527 
6.1.5.3 RID Master FSMO Role .......................................................................... 527 
6.1.5.4 PDC Emulator FSMO Role ...................................................................... 527 
6.1.5.5 (Updated Section) Infrastructure FSMO Role ........................................... 528 

6.1.6 Trust Objects ............................................................................................ 528 
6.1.6.1 Overview (Synopsis) ............................................................................ 528 
6.1.6.2 Relationship to Other Protocols .............................................................. 529 

6.1.6.2.1 TDO Replication over DRS ............................................................... 529 
6.1.6.2.2 TDO Roles in Authentication Protocols over Domain Boundaries ............ 529 
6.1.6.2.3 (Updated Section) TDO Roles in Authorization over Domain Boundaries 529 

6.1.6.3 Prerequisites/Preconditions ................................................................... 529 
6.1.6.4 Versioning and Capability Negotiation ..................................................... 529 
6.1.6.5 Vendor-Extensible Fields ....................................................................... 530 
6.1.6.6 Transport ............................................................................................ 530 
6.1.6.7 Essential Attributes of a Trusted Domain Object ....................................... 530 

6.1.6.7.1 flatName ....................................................................................... 531 
6.1.6.7.2 (Updated Section) isCriticalSystemObject .......................................... 531 
6.1.6.7.3 msDs-supportedEncryptionTypes ...................................................... 531 
6.1.6.7.4 msDS-TrustForestTrustInfo .............................................................. 531 
6.1.6.7.5 nTSecurityDescriptor ...................................................................... 531 
6.1.6.7.6 objectCategory ............................................................................... 531 
6.1.6.7.7 objectClass .................................................................................... 531 
6.1.6.7.8 securityIdentifier ............................................................................ 531 
6.1.6.7.9 trustAttributes ............................................................................... 532 
6.1.6.7.10 trustAuthIncoming .......................................................................... 534 
6.1.6.7.11 trustAuthOutgoing .......................................................................... 534 
6.1.6.7.12 trustDirection ................................................................................. 534 
6.1.6.7.13 trustPartner ................................................................................... 534 
6.1.6.7.14 trustPosixOffset .............................................................................. 535 
6.1.6.7.15 trustType ...................................................................................... 535 

6.1.6.8 Essential Attributes of Interdomain Trust Accounts ................................... 535 
6.1.6.8.1 cn (RDN) ....................................................................................... 536 
6.1.6.8.2 objectClass .................................................................................... 536 
6.1.6.8.3 sAMAccountName ........................................................................... 536 
6.1.6.8.4 sAMAccountType ............................................................................ 536 
6.1.6.8.5 userAccountControl ........................................................................ 536 

6.1.6.9 Details ................................................................................................ 536 
6.1.6.9.1 trustAuthInfo Attributes .................................................................. 536 

6.1.6.9.1.1 LSAPR_AUTH_INFORMATION ...................................................... 537 
6.1.6.9.1.2 Kerberos Usages of trustAuthInfo Attributes ................................. 538 

6.1.6.9.2 Netlogon Usages of Trust Objects ..................................................... 539 
6.1.6.9.3 msDS-TrustForestTrustInfo Attribute ................................................ 539 

6.1.6.9.3.1 Record ..................................................................................... 540 



 

21 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.6.9.3.2 (Updated Section) Building Well-Formed msDS-TrustForestTrustInfo 
Messages ................................................................................. 544 

6.1.6.9.4 Computation of trustPosixOffset ....................................................... 546 
6.1.6.9.5 Mapping Logon SIDs to POSIX Identifiers .......................................... 546 
6.1.6.9.6 Timers .......................................................................................... 547 

6.1.6.9.6.1 Trust Secret Cycling .................................................................. 547 
6.1.6.9.6.2 PDC Forest Trust Scanning ......................................................... 547 

6.1.6.9.7 Initialization ................................................................................... 547 
6.1.6.10 Security Considerations for Implementers ............................................... 548 

6.1.7 (Updated Section) DynamicObject Requirements ........................................... 548 
6.2 Knowledge Consistency Checker ....................................................................... 549 

6.2.1 References ................................................................................................ 549 
6.2.2 (Updated Section) Overview ........................................................................ 549 

6.2.2.1 Refresh kCCFailedLinks and kCCFailedConnections ................................... 551 
6.2.2.2 (Updated Section) Intrasite Connection Creation ...................................... 552 
6.2.2.3 (Updated Section) Intersite Connection Creation ...................................... 554 

6.2.2.3.1 ISTG Selection ............................................................................... 554 
6.2.2.3.2 Merge of kCCFailedLinks and kCCFailedLinks from Bridgeheads ............ 555 
6.2.2.3.3 (Updated Section) Site Graph Concepts ............................................. 556 
6.2.2.3.4 Connection Creation ....................................................................... 557 

6.2.2.3.4.1 Types ...................................................................................... 557 
6.2.2.3.4.2 Main Entry Point ....................................................................... 559 
6.2.2.3.4.3 Site Graph Construction ............................................................. 559 
6.2.2.3.4.4 Spanning Tree Computation ....................................................... 562 
6.2.2.3.4.5 nTDSConnection Creation .......................................................... 573 

6.2.2.4 (Updated Section) Removing Unnecessary Connections ............................ 576 
6.2.2.5 (Updated Section) Connection Translation ............................................... 577 
6.2.2.6 Remove Unneeded kCCFailedLinks and kCCFailedConnections Tuples ......... 579 
6.2.2.7 (Updated Section) Updating the RODC NTFRS Connection Object ............... 579 

6.3 (Updated Section) Publishing and Locating a Domain Controller ............................ 579 
6.3.1 Structures and Constants ........................................................................... 580 

6.3.1.1 NETLOGON_NT_VERSION Options Bits.................................................... 580 
6.3.1.2 DS_FLAG Options Bits .......................................................................... 581 
6.3.1.3 Operation Code .................................................................................... 582 
6.3.1.4 NETLOGON_LOGON_QUERY .................................................................. 582 
6.3.1.5 NETLOGON_PRIMARY_RESPONSE .......................................................... 583 
6.3.1.6 NETLOGON_SAM_LOGON_REQUEST ....................................................... 584 
6.3.1.7 NETLOGON_SAM_LOGON_RESPONSE_NT40 ............................................ 585 
6.3.1.8 NETLOGON_SAM_LOGON_RESPONSE ..................................................... 586 
6.3.1.9 NETLOGON_SAM_LOGON_RESPONSE_EX ............................................... 588 
6.3.1.10 (Updated Section) DNSRegistrationSettings ............................................. 591 

6.3.2 (Updated Section) DNS Record Registrations ................................................. 593 
6.3.2.1 Timers ................................................................................................ 593 

6.3.2.1.1 (Updated Section) Register DNS Records Timer .................................. 593 
6.3.2.2 Non-Timer Events ................................................................................ 593 

6.3.2.2.1 Force Register DNS Records Non-Timer Event .................................... 593 
6.3.2.3 (Updated Section) SRV Records ............................................................. 594 
6.3.2.4 Non-SRV Records ................................................................................. 597 

6.3.3 LDAP Ping ................................................................................................. 598 
6.3.3.1 Syntactic Validation of the Filter ............................................................. 599 
6.3.3.2 (Updated Section) Domain Controller Response to an LDAP Ping ................ 599 
6.3.3.3 Response to Invalid Filter ...................................................................... 604 

6.3.4 NetBIOS Broadcast and NBNS Background .................................................... 604 
6.3.5 (Updated Section) Mailslot Ping ................................................................... 604 
6.3.6 Locating a Domain Controller ...................................................................... 607 

6.3.6.1 DNS-Based Discovery ........................................................................... 607 
6.3.6.2 NetBIOS-Based Discovery ..................................................................... 609 

6.3.7 Name Compression and Decompression ....................................................... 609 



 

22 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.3.8 (Updated Section) AD LDS DC Publication ..................................................... 610 
6.4 Domain Join ................................................................................................... 612 

6.4.1 State of a Machine Joined to a Domain ......................................................... 612 
6.4.2 State in an Active Directory Domain ............................................................. 612 
6.4.3 Relationship to Protocols ............................................................................. 613 

6.5 Unicode String Comparison .............................................................................. 613 
6.5.1 (Updated Section) String Comparison by Using Sort Keys ............................... 613 

6.6 Claims.idl ....................................................................................................... 614 

7 Communication Details for Active Directory Connections .................................... 616 
7.1 (Updated Section) Connection Resolution of LDAP Clients ..................................... 616 
7.2 ADConnection Overview ................................................................................... 616 
7.3 (Updated Section) ADConnection Abstract Data Model ......................................... 619 
7.4 Handling Network Errors .................................................................................. 621 
7.5 ICMP Pings ..................................................................................................... 622 
7.6 Tasks and Events ............................................................................................ 622 

7.6.1 Tasks ....................................................................................................... 623 
7.6.1.1 (Updated Section) Initializing an ADConnection ....................................... 623 
7.6.1.2 Setting an LDAP Option on an ADConnection ........................................... 624 
7.6.1.3 Establishing an ADConnection ................................................................ 625 
7.6.1.4 Performing an LDAP Bind on an ADConnection ......................................... 625 
7.6.1.5 Performing an LDAP Unbind on an ADConnection ..................................... 626 
7.6.1.6 Performing an LDAP Operation on an ADConnection ................................. 626 

7.6.2 Internal Tasks ........................................................................................... 627 
7.6.2.1 (Updated Section) Initializing a Connection to a Directory Server ............... 627 
7.6.2.2 Connecting to a Directory Server ........................................................... 628 
7.6.2.3 Performing an LDAP Bind Against a Directory Server ................................ 630 
7.6.2.4 Performing an LDAP Unbind Against a Directory Server ............................. 631 
7.6.2.5 Performing an LDAP Operation Against a Directory Server ......................... 631 
7.6.2.6 Following an LDAP Referral or Continuation Reference .............................. 632 
7.6.2.7 Autoreconnecting to a Directory Server ................................................... 634 

7.6.3 External Triggered Events ........................................................................... 635 
7.6.3.1 Processing Network Errors .................................................................... 635 
7.6.3.2 Getting an LDAP Response from a Directory Server .................................. 636 

7.6.4 Timer Triggered Events .............................................................................. 637 
7.6.4.1 Timer Expiry on RequestTimer ............................................................... 637 

7.7 LDAP Over UDP ............................................................................................... 638 
7.7.1 ADUDPHandle Overview ............................................................................. 638 
7.7.2 (Updated Section) ADUDPHandle Abstract Data Model .................................... 638 
7.7.3 Tasks ....................................................................................................... 639 

7.7.3.1 (Updated Section) Initializing an ADUDPHandle........................................ 639 
7.7.3.2 Performing an LDAP Operation on an ADUDPHandle ................................. 639 

7.8 Transport Requirements ................................................................................... 642 
7.9 Security Elements ........................................................................................... 642 
7.10 Communications Security ................................................................................. 642 

8 Change Tracking .................................................................................................. 644 

9 Index ................................................................................................................... 645 

 



 

23 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

1 (Updated Section) Introduction 

This is the primary specification for Active Directory, both Active Directory Domain Services (AD DS) 
and Active Directory Lightweight Directory Services (AD LDS). When the specification does not refer 
specifically to AD DS or AD LDS, it applies to both. The state model for this specification is prerequisite 
to the other specifications for Active Directory: [MS-DRSR] and [MS-SRPL]. 

When no operating system version information is specified, information in this document applies to all 

relevant versions of Windows. Similarly, when no DC functional level is specified, information in this 
document applies to all DC functional levels. 

The information in this specification is applicable to the following Microsoft products or supplemental 
software. References to product versions include released service packs. 

Note: The terms "earlier" and "later", when used with a product version, refer to either all preceding 
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of 

versions. Applicable Microsoft products are listed chronologically in this section. 

▪ Windows 2000 Server operating system 

▪ Windows Server 2003 operating system 

▪ Windows Server 2003 R2 operating system 

▪ Windows Server 2008 operating system 

▪ Windows Server 2008 R2 operating system 

▪ Windows Server 2012 operating system 

▪ Windows Server 2012 R2 operating system 

▪ Windows Server 2016 operating system 

▪ Windows Server v1709 operating system 

▪ Windows Server v1803 operating system 

▪ Windows Server v1809 operating system 

▪ Windows Server 2019 operating system 

▪ Windows Server v1903 operating system  

▪ Windows Server 2022 operating system 

AD DS first became available as part of Microsoft Windows 2000 operating system and is available as 
part of Windows 2000 Server, Windows Server 2003, and Windows Server 2003 R2 products; in these 
products it is called "Active Directory". It is also available as part of Windows Server 2008 and later. 
AD DS is not present in Windows NT 3.1 operating system, Windows NT 3.51 operating system, 

Windows NT 4.0 operating system, or Windows XP operating system. 

AD LDS first became available during the release of Windows Server 2003. In Windows XP, Windows 
Server 2003, and Windows Server 2003 R2, it is a standalone application called "Active Directory 
Application Mode (ADAM)". AD LDS is also available as part of Windows Server 2008 and later. Unless 
otherwise specified, information in this specification is also applicable to AD LDS. There are two 
versions of ADAM, ADAM RTW (introduced in the same timeframe as Windows Server 2003 operating 
system with Service Pack 1 (SP1)) and ADAM SP1 (introduced in the same timeframe as Windows 
Server 2003 operating system with Service Pack 2 (SP2)); unless otherwise specified, where ADAM is 

discussed in this document it refers to both versions of ADAM. 



 

24 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

AD LDS for a particular Windows client is a standalone application that provides AD LDS capabilities 
for that Windows client. Information that is applicable to AD LDS on applicable Windows Server 

releases is generally also applicable to AD LDS on Windows clients, including Windows 11 operating 
system and later, except where it is explicitly specified that such information is not applicable to that 

product. The following list provides a mapping of this applicability: 

▪ Information that is applicable to AD LDS on Windows Server 2008 is also applicable to Active 
Directory Lightweight Directory Services (AD LDS) for Windows Vista. 

▪ Information that is applicable to AD LDS on Windows Server 2008 R2 is also applicable to Active 
Directory Lightweight Directory Services (AD LDS) for Windows 7. 

▪ Information that is applicable to AD LDS on Windows Server 2012 is also applicable to Active 
Directory Lightweight Directory Services (AD LDS) for Windows 8 operating system. 

▪ Information that is applicable to AD LDS on Windows Server 2012 R2 is also applicable to Active 
Directory Lightweight Directory Services (AD LDS) for Windows 8.1 operating system. 

▪ Information that is applicable to AD LDS on Windows Server 2016 is also applicable to Active 
Directory Lightweight Directory Services (AD LDS) for Windows 10 operating system. 

▪ Information that is applicable to AD LDS on Windows Server v1709 is also applicable to AD LDS 
for Windows 10 v1703 operating system and Windows 10 v1709 operating system. 

▪ Information that is applicable to AD LDS on Windows Server v1803 is also applicable to AD LDS 
for Windows 10 v1803 operating system. 

▪ Information that is applicable to AD LDS on Windows Server v1809 and Windows Server 2019 is 
also applicable to AD LDS for Windows 10 v1809 operating system. 

▪ Information that is applicable to AD LDS on Windows Server v1903 is also applicable to AD LDS 
for Windows 10 v1903 operating system. 

▪ Information that is applicable to AD LDS on Windows Server 2022 is also applicable to AD LDS for 

Windows 10 v21H1 operating system and Windows 10 v21H2 operating system. 

State is included in the state model for this specification only as necessitated by the requirement that 
a licensee implementation of the protocols of applicable Windows Server releases has to be capable of 
receiving messages and responding in the same manner as applicable Windows Server releases. 
Behavior is specified in terms of request message received, processing based on current state, 
resulting state transformation, and response message sent. Unless otherwise specified in the sections 
that follow, all of the behaviors are required for interoperability. 

The following typographical convention is used to indicate the special meaning of certain names: 

▪ Underline, as in instanceType: the name of an attribute or object class whose interpretation is 
specified in the following documents: 

▪ [MS-ADA1] Attribute names for AD DS whose initial letter is A through L. 

▪ [MS-ADA2] Attribute names for AD DS whose initial letter is M. 

▪ [MS-ADA3] Attribute names for AD DS whose initial letter is N through Z. 

▪ [MS-ADSC] Object class names for AD DS. 

▪ [MS-ADLS] Object class names and attribute names for AD LDS. 

For clarity, bit flags are sometimes shown as bit field diagrams. In the case of bit flags for Lightweight 
Directory Access Protocol (LDAP) attributes, these diagrams take on big-endian characteristics but do 



 

25 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

not reflect the actual byte ordering of integers over the wire, because LDAP transfers an integer as the 
UTF-8 string of the decimal representation of that integer, as specified in [RFC2252]. 

Pervasive Concepts 

The following concepts are pervasive throughout this specification. 

This specification uses [KNUTH1] section 2.3.4.2 as a reference for the graph-related terms oriented 
tree, root, vertex, arc, initial vertex, and final vertex. 

Authentication concepts for domains, account domains, domain controllers, security principals, and 
user objects can be found in [MS-AUTHSOD] section 1.1.1 and subsections. 

replica: A variable containing a set of objects. 

attribute: An identifier for a value or set of values. See also attribute in the Glossary (section 1.1). 

object: A set of attributes, each with its associated values. Two attributes of an object have special 

significance: 

▪ Identifying attribute: A designated single-valued attribute appears on every object. The value 
of this attribute identifies the object. For the set of objects in a replica, the values of the 
identifying attribute are distinct. 

▪ Parent-identifying attribute: A designated single-valued attribute appears on every object. The 
value of this attribute identifies the object's parent. That is, this attribute contains the value of 

the parent's identifying attribute or a reserved value identifying no object (for more 
information, see section 3.1.1.1.3). For the set of objects in a replica, the values of this 
parent-identifying attribute define an oriented tree with objects as vertices and child-parent 
references as directed arcs, with the child as an arc's initial vertex and the parent as an arc's 
final vertex. 

Note that an object is a value, not a variable; a replica is a variable. The process of adding, 
modifying, or deleting an object in a replica replaces the entire value of the replica with a new 

value. 

As the term "replica" suggests, it is often the case that two replicas contain "the same objects". In 
this usage, objects in two replicas are considered "the same" if they have the same value of the 
identifying attribute and if there is a process in place (that is, replication) to converge the values 
of the remaining attributes. When the members of a set of replicas are considered to be the same, 
it is common to say "an object" as a shorthand way of referring to the set of corresponding objects 
in the replicas. 

object class: A set of restrictions on the construction and update of objects. An object class 
mustMUST be specified when an object is created. An object class specifies a set of must-
haverequired attributes (every object of the class mustMUST have at least one value of each) and 
may-have attributes (every object of the class may have a value of each). An object class also 
specifies a set of possible superiors (the parent object of an object of the class mustMUST have 
one of these classes). An object class is defined by a classSchema object. 

parent object: See "object", above. 

child object, children: An object that is not the root of its oriented tree. The children of an object O 
is the set of all objects whose parent object is O. 

See section 3.1.1.1.3 for the particular use made of these definitions in this specification. 

1.1 Glossary 

This document uses the following terms: 



 

26 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

88 object class: An object class as specified in the X.500 directory specification ([X501] section 
8.4.3). An 88 object class can be instantiated as a new object, like a structural object class, and 

on an existing object, like an auxiliary object class. 

abstract object class: An object class whose only function is to be the basis of inheritance by 

other object classes, thereby simplifying their definition. 

access check: A verification to determine whether a specific access type is allowed by checking a 
security context against a security descriptor. 

access control entry (ACE): An entry in an access control list (ACL) that contains a set of user 
rights and a security identifier (SID) that identifies a principal for whom the rights are allowed, 
denied, or audited. 

access control list (ACL): A list of access control entries (ACEs) that collectively describe the 

security rules for authorizing access to some resource; for example, an object or set of objects. 

access mask: A 32-bit value present in an access control entry (ACE) that specifies the allowed or 

denied rights to manipulate an object. 

account domain: A domain, identified by a security identifier (SID), that is the SID namespace for 
which a given machine is authoritative. The account domain is the same as the primary domain 
for a domain controller (DC) and is its default domain. For a machine that is joined to a domain, 

the account domain is the SID namespace defined by the local Security Accounts Manager [MS-
SAMR]. 

ACID: A term that refers to the four properties that any database system must achieve in order to 
be considered transactional: Atomicity, Consistency, Isolation, and Durability [GRAY]. 

active: A state of an attributeSchema or classSchema object that represents part of the schema. It 
is possible to instantiate an active attribute or an active class. The opposite term is defunct. 

Active Directory: The Windows implementation of a general-purpose directory service, which uses 

LDAP as its primary access protocol. Active Directory stores information about a variety of 

objects in the network such as user accounts, computer accounts, groups, and all related 
credential information used by Kerberos [MS-KILE]. Active Directory is either deployed as Active 
Directory Domain Services (AD DS) or Active Directory Lightweight Directory Services (AD LDS), 
which are both described in [MS-ADOD]: Active Directory Protocols Overview. 

Active Directory Domain Services (AD DS): A directory service (DS) implemented by a domain 
controller (DC). The DS provides a data store for objects that is distributed across multiple DCs. 

The DCs interoperate as peers to ensure that a local change to an object replicates correctly 
across DCs.  AD DS is a deployment of Active Directory [MS-ADTS]. 

Active Directory Lightweight Directory Services (AD LDS): A directory service (DS) 
implemented by a domain controller (DC). AD LDS is a deployment of Active Directory [MS-
ADTS]. The most significant difference between AD LDS and Active Directory Domain Services 
(AD DS) is that AD LDS does not host domain naming contexts (domain NCs). A server can host 

multiple AD LDS DCs. Each DC is an independent AD LDS instance, with its own independent 
state. AD LDS can be run as an operating system DS or as a directory service provided by a 

standalone application (ADAM). 

Advanced Encryption Standard (AES): A block cipher that supersedes the Data Encryption 
Standard (DES). AES can be used to protect electronic data. The AES algorithm can be used to 
encrypt (encipher) and decrypt (decipher) information. Encryption converts data to an 
unintelligible form called ciphertext; decrypting the ciphertext converts the data back into its 

original form, called plaintext. AES is used in symmetric-key cryptography, meaning that the 
same key is used for the encryption and decryption operations. It is also a block cipher, 
meaning that it operates on fixed-size blocks of plaintext and ciphertext, and requires the size of 



 

27 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

the plaintext as well as the ciphertext to be an exact multiple of this block size. AES is also 
known as the Rijndael symmetric encryption algorithm [FIPS197]. 

ambiguous name resolution (ANR): A search algorithm that permits a client to search multiple 
naming-related attributes on objects by way of a single clause of the form "(anr=value)" in a 

Lightweight Directory Access Protocol (LDAP) search filter. This permits a client to query for an 
object when the client possesses some identifying material related to the object but does not 
know which attribute of the object contains that identifying material. 

application naming context (application NC): A specific type of naming context (NC), or an 
instance of that type, that supports only full replicas (no partial replicas). An application NC 
cannot contain security principal objects in Active Directory Domain Services (AD DS), but can 
contain security principal objects in Active Lightweight Directory Services (AD LDS). A forest can 

have zero or more application NCs in either AD DS or AD LDS. An application NC can contain 
dynamic objects. Application NCs do not appear in the global catalog (GC). The root of an 
application NC is an object of class domainDNS. 

ASN.1: Abstract Syntax Notation One. ASN.1 is used to describe Kerberos datagrams as a 

sequence of components, sent in messages. ASN.1 is described in the following specifications: 
[ITUX660] for general procedures; [ITUX680] for syntax specification, and [ITUX690] for the 

Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules 
(DER) encoding rules. 

attribute: An identifier for a single or multivalued data element that is associated with a directory 
object. An object consists of its attributes and their values. For example, cn (common name), 
street (street address), and mail (email addresses) can all be attributes of a user object. An 
attribute's schema, including the syntax of its values, is defined in an attributeSchema object. 

attribute syntax: Specifies the format and range of permissible values of an attribute. The syntax 

of an attribute is defined by several attributes on the attributeSchema object, as specified in 
[MS-ADTS] section 3.1.1.2. Attribute syntaxes supported by Active Directory include Boolean, 
Enumeration, Integer, LargeInteger, String(UTC-Time), Object(DS-DN), and String(Unicode). 

AttributeStamp: The type of a stamp attached to an attribute. 

authentication: The act of proving an identity to a server while providing key material that binds 
the identity to subsequent communications. 

authorization: The secure computation of roles and accesses granted to an identity. 

auxiliary object class: An object class that cannot be instantiated in the directory but can be 
either added to, or removed from, an existing object to make its attributes available for use on 
that object; or associated with an abstract or structural object class to add its attributes to that 
abstract or structural object class. 

back link attribute: A constructed attribute whose values include object references (for example, 
an attribute of syntax Object(DS-DN)). The back link values are derived from the values of a 

related attribute, a forward link attribute, on other objects. If f is the forward link attribute, one 
back link value exists on object o for each object r that contains a value of o for attribute f. The 
relationship between the forward link attributes and back link attributes is expressed using the 

linkId attribute on the attributeSchema objects representing the two attributes. The forward 
link's linkId is an even number, and the back link's linkId is the forward link's linkId plus one. 
For more information, see [MS-ADTS] section 3.1.1.1.6. 

back link value: The value of a back link attribute. 

backup domain controller (BDC): A domain controller (DC) that receives a copy of the domain 
directory database from the primary domain controller (PDC). This copy is synchronized 
periodically and automatically with the primary domain controller (PDC). BDCs also authenticate 



 

28 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

user logons and can be promoted to function as the PDC. There is only one PDC or PDC 
emulator in a domain, and the rest are backup domain controllers. 

base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is 
converted to a sequence of printable ASCII characters, as described in [RFC4648]. 

Basic Encoding Rules (BER): A set of encoding rules for ASN.1 notation. These encoding 
schemes allow the identification, extraction, and decoding of data structures. These encoding 
rules are defined in [ITUX690]. 

big-endian: Multiple-byte values that are byte-ordered with the most significant byte stored in the 
memory location with the lowest address. 

binary large object (BLOB): A collection of binary data stored as a single entity in a database. 

bridgehead domain controller (bridgehead DC): A domain controller (DC) that may replicate 

updates to or from DCs in sites other than its own. 

broadcast: A style of resource location or data transmission in which a client makes a request to 
all parties on a network simultaneously (a one-to-many communication). Also, a mode of 
resource location that does not use a name service. 

built-in domain: The security identifier (SID) namespace defined by the fixed SID S-1-5-32. 
Contains groups that define roles on a local machine such as Backup Operators. 

built-in domain SID: The fixed SID S-1-5-32. 

canonical name: A syntactic transformation of an Active Directory distinguished name (DN) into 
something resembling a path that still identifies an object within a forest. DN "cn=Peter 
Houston, ou=NTDEV, dc=microsoft, dc=com" translates to the canonical name 
"microsoft.com/NTDEV/Peter Houston", while the DN "dc=microsoft, dc=com" translates to the 
canonical name "microsoft.com/". 

child naming context (child NC): Given naming contexts (NCs) with their corresponding 

distinguished names (DNs) forming a child and parent relationship, the NC in the child 
relationship is referred as the child NC. The parent of a child NC must be an NC and is referred 
to as the parent naming context (parent NC). 

child object, children: An object that is not the root of its tree. The children of an object o are 
the set of all objects whose parent is o. See section 1 of [MS-ADTS] and section 1 of [MS-
DRSR]. 

claim: An assertion about a security principal expressed as the n-tuple {Identifier, ValueType, m 

Value(s) of type ValueType} where m is greater than or equal to 1. A claim with only one Value 
in the n-tuple is called a single-valued claim; a claim with more than one Value is called a multi-
valued claim. 

code page: An ordered set of characters of a specific script in which a numerical index (code-point 
value) is associated with each character. Code pages are a means of providing support for 
character sets and keyboard layouts used in different countries. Devices such as the display and 

keyboard can be configured to use a specific code page and to switch from one code page (such 
as the United States) to another (such as Portugal) at the user's request. 

Component Object Model (COM): An object-oriented programming model that defines how 
objects interact within a single process or between processes. In COM, clients have access to an 
object through interfaces implemented on the object. For more information, see [MS-DCOM]. 

computer object: An object of class computer. A computer object is a security principal object; 
the principal is the operating system running on the computer. The shared secret allows the 



 

29 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

operating system running on the computer to authenticate itself independently of any user 
running on the system. See security principal. 

configuration naming context (config NC): A specific type of naming context (NC), or an 
instance of that type, that contains configuration information. In Active Directory, a single config 

NC is shared among all domain controllers (DCs) in the forest. A config NC cannot contain 
security principal objects. 

connection: A link between two devices that uses the Simple Symmetric Transport Protocol 
(SSTP). Each connection can support one or more SSTP sessions. 

constructed attribute: An attribute whose values are computed from normal attributes (for read) 
and/or have effects on the values of normal attributes (for write). 

container: An object in the directory that can serve as the parent for other objects. In the absence 

of schema constraints, all objects would be containers. The schema allows only objects of 
specific classes to be containers. 

control access right: An extended access right that can be granted or denied on an access 
control list (ACL). 

Coordinated Universal Time (UTC): A high-precision atomic time standard that approximately 
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones 

around the world are expressed as positive and negative offsets from UTC. In this role, it is also 
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all 
references to UTC refer to the time at UTC-0 (or GMT). 

cross-forest trust: A relationship between two forests that enables security principals from any 
domain in one forest to authenticate to computers joined to any domain in the other forest. 

crossRef object: An object residing in the partitions container of the config NC that describes the 
properties of a naming context (NC), such as its domain naming service name, operational 

settings, and so on. 

DC functional level: A specification of functionality available in a domain controller (DC). See 
[MS-ADTS] section 6.1.4.2 for possible values and a mapping between the possible values and 
product versions. 

default domain naming context (default domain NC): When Active Directory is operating as 
Active Directory Domain Services (AD DS), this is the default naming context (default NC) of the 
domain controller (DC). When operating as Active Directory Lightweight Directory Services (AD 

LDS), this NC is not defined. 

default naming context (default NC): When Active Directory is operating as Active Directory 
Domain Services (AD DS), the default naming context (default NC) is the domain naming 
context (domain NC) whose full replica is hosted by a domain controller (DC), except when the 
DC is a read-only domain controller (RODC), in which case the default NC is a filtered partial NC 
replica. When operating as AD DS, a DC's default NC is the NC of its default NC replica, and the 

default NC contains the DC's computer object. When Active Directory is operating as AD LDS, 
the default NC is the naming context (NC) specified by the msDS-DefaultNamingContext 

attribute on the nTDSDSA object for the DC. See nTDSDSA object. 

default schema: The schema of a given version of Active Directory, as defined by [MS-ADSC], 
[MS-ADA1], [MS-ADA2], and [MS-ADA3] for AD DS, and as defined by [MS-ADLS] for Active 
Directory Lightweight Directory Services (AD LDS). 

defunct: A state of an attributeSchema or classSchema object that represents part of the schema. 

It is not possible to instantiate a defunct attribute or a defunct class. The opposite term is 
active. 



 

30 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

deleted-object: An object that has been deleted, but remains in storage until a configured 
amount of time (the deleted-object lifetime) has passed, after which the object is transformed 

to a recycled-object. Unlike a recycled-object or a tombstone, a deleted-object maintains 
virtually all the state of the object before deletion, and can be undeleted without loss of 

information. Deleted-objects exist only when the Recycle Bin optional feature is enabled. 

deleted-object lifetime: The time period that a deleted-object is kept in storage before it is 
transformed into a recycled-object. 

digest: The fixed-length output string from a one-way hash function that takes a variable-length 
input string and is probabilistically unique for every different input string. Also, a cryptographic 
checksum of a data (octet) stream. 

directory: A forest. 

directory object: An Active Directory object, which is a specialization of the "object" concept that 
is described in [MS-ADTS] section 1 or [MS-DRSR] section 1, Introduction, under Pervasive 
Concepts. An Active Directory object can be identified by the objectGUID attribute of a dsname 

according to the matching rules defined in [MS-DRSR] section 5.50, DSNAME. The parent-
identifying attribute (not exposed as an LDAP attribute) is parent. Active Directory objects are 
similar to LDAP entries, as defined in [RFC2251]; the differences are specified in [MS-ADTS] 

section 3.1.1.3.1. 

directory service (DS): A service that stores and organizes information about a computer 
network's users and network shares, and that allows network administrators to manage users' 
access to the shares. See also Active Directory. 

directory service agent (DSA): A term from the X.500 directory specification [X501] that 
represents a component that maintains and communicates directory information. 

discretionary access control list (DACL): An access control list (ACL) that is controlled by the 

owner of an object and that specifies the access particular users or groups can have to the 
object. 

distinguished name (DN): In Lightweight Directory Access Protocol (LDAP), an LDAP 
Distinguished Name, as described in [RFC2251] section 4.1.3. The DN of an object is the DN of 
its parent, preceded by the RDN of the object. For example: CN=David Thompson, OU=Users, 
DC=Microsoft, DC=COM. For definitions of CN and OU, see [RFC2256] sections 5.4 and 5.12, 
respectively. 

DNS name: A fully qualified domain name (FQDN). 

domain: A set of users and computers sharing a common namespace and management 
infrastructure. At least one computer member of the set must act as a domain controller (DC) 
and host a member list that identifies all members of the domain, as well as optionally hosting 
the Active Directory service. The domain controller provides authentication of members, creating 
a unit of trust for its members. Each domain has an identifier that is shared among its members. 

For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS]. 

domain controller (DC): The service, running on a server, that implements Active Directory, or 

the server hosting this service. The service hosts the data store for objects and interoperates 
with other DCs to ensure that a local change to an object replicates correctly across all DCs. 
When Active Directory is operating as Active Directory Domain Services (AD DS), the DC 
contains full NC replicas of the configuration naming context (config NC), schema naming 
context (schema NC), and one of the domain NCs in its forest. If the AD DS DC is a global 

catalog server (GC server), it contains partial NC replicas of the remaining domain NCs in its 
forest. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. When 
Active Directory is operating as Active Directory Lightweight Directory Services (AD LDS), 
several AD LDS DCs can run on one server. When Active Directory is operating as AD DS, only 
one AD DS DC can run on one server. However, several AD LDS DCs can coexist with one AD DS 



 

31 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

DC on one server. The AD LDS DC contains full NC replicas of the config NC and the schema NC 
in its forest. The domain controller is the server side of Authentication Protocol Domain Support 

[MS-APDS]. 

domain functional level: A specification of functionality available in a domain. Must be less than 

or equal to the DC functional level of every domain controller (DC) that hosts a replica of the 
domain's naming context (NC). For information on defined levels, corresponding features, 
information on how the domain functional level is determined, and supported domain 
controllers, see [MS-ADTS] sections 6.1.4.2 and 6.1.4.3. When Active Directory is operating as 
Active Directory Lightweight Directory Services (AD LDS), domain functional level does not exist. 

domain joined: A relationship between a machine and some domain naming context (domain NC) 
in which they share a secret. The shared secret allows the machine to authenticate to a domain 

controller (DC) for the domain. 

domain local group: An Active Directory group that allows user objects, global groups, and 
universal groups from any domain as members. It can additionally include, and be a member of, 
other domain local groups from within its domain. A group object g is a domain local group if 

and only if GROUP_TYPE_RESOURCE_GROUP is present in g!groupType; see [MS-ADTS] section 
2.2.12, "Group Type Flags". A security-enabled domain local group is valid for inclusion within 

access control lists (ACLs) from its own domain. If a domain is in mixed mode, then a security-
enabled domain local group in that domain allows only user objects as members. 

domain name: A domain name or a NetBIOS name that identifies a domain. 

Domain Name System (DNS): A hierarchical, distributed database that contains mappings of 
domain names to various types of data, such as IP addresses. DNS enables the location of 
computers and services by user-friendly names, and it also enables the discovery of other 
information stored in the database. 

domain naming context (domain NC): A specific type of naming context (NC), or an instance of 
that type, that represents a domain. A domain NC can contain security principal objects; no 
other type of NC can contain security principal objects. Domain NCs appear in the global catalog 
(GC). A domain NC is hosted by one or more domain controllers (DCs) operating as AD DS. In 

AD DS, a forest has one or more domain NCs. A domain NC cannot exist in AD LDS. The root of 
a domain NC is an object of class domainDNS; for directory replication [MS-DRSR], see 
domainDNS. 

domain prefix: A security identifier (SID) of a domain without the relative identifier (RID) portion. 
The domain prefix refers to the issuing authority SID. For example, the domain prefix of S-1-5-
21-397955417-626881126-188441444-1010 is S-1-5-21-397955417-626881126-188441444. 

downlevel trust: A trust in which one of the peers is running Windows NT 4.0. 

DSA GUID: The objectGUID of a DSA object. 

dsname: A tuple that contains between one and three identifiers for an object. The term dsname 

does not stand for anything. The possible identifiers are the object's GUID (attribute 
objectGuid), security identifier (SID) (attribute objectSid), and distinguished name (DN) 
(attribute distinguishedName). A dsname can appear in a protocol message and as an attribute 

value (for example, a value of an attribute with syntax Object(DS-DN)). Given a DSName, an 
object can be identified within a set of NC replicas according to the matching rules defined in 
[MS-DRSR] section 5.49. 

dynamic object: An object with a time-to-die (attribute msDS-Entry-Time-To-Die). The directory 

service garbage-collects a dynamic object immediately after its time-to-die has passed. The 
constructed attribute entryTTL gives a dynamic object's current time-to-live, that is, the 
difference between the current time and msDS-Entry-Time-To-Die. For more information, see 
[RFC2589]. 



 

32 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

entry: In Active Directory, a synonym for object. 

existing-object: An object that is not a tombstone, deleted-object, or recycled-object. 

expunge: To permanently remove an object from a naming context (NC) replica, without 
converting it to a tombstone. 

Extended-Rights container: A container holding objects that correspond to control access rights. 
The container is a child of configuration naming context (config NC) and has relative 
distinguished name (RDN) CN=Extended-Rights. 

File Replication Service (FRS): One of the services offered by a domain controller (DC), which is 
advertised through the Domain Controller Location protocol. The service being offered to clients 
is a replicated data storage volume that is associated with the default naming context (NC). The 
running or paused state of the FRS on a DC is available through protocols documented in [MS-

ADTS] section 6.3. 

filter: In the context of the Lightweight Directory Access Protocol (LDAP), the filter is one of the 

parameters in a search request. The filter specifies matching constraints for the candidate 
objects. 

filtered attribute set: The subset of attributes that are not replicated to the filtered partial NC 
replica and the filtered GC partial NC replica. The filtered attribute set is part of the state of the 

forest and is used to control the attributes that replicate to a read-only domain controller 
(RODC). The searchFlags schema attribute is used to define this set. 

filtered GC partial NC replica: An NC replica that contains a schema-specified subset of 
attributes for the objects. The attributes consist of the attributes in the GC partial attribute set 
(PAS), excluding those present in the filtered attribute set. A filtered GC partial NC replica is not 
writable; that is, it does not accept originating updates. 

filtered partial NC replica: An NC replica that contains a schema-specified subset of attributes 

for the objects it contains. The subset of attributes consists of all the attributes of the objects, 
excluding those attributes in the filtered attribute set. A filtered partial NC replica is not 

writable; that is, it does not accept originating updates. 

flexible single master operation (FSMO): A read or update operation on a naming context 
(NC), such that the operation must be performed on the single designated master replica of that 
NC. The master replica designation is "flexible" because it can be changed without losing the 
consistency gained from having a single master. This term, pronounced "fizmo", is never used 

alone; see also FSMO role, FSMO role owner, and FSMO object. 

foreign principal object (FPO): A foreignSecurityPrincipal object. 

forest: For Active Directory Domain Services (AD DS), a set of naming contexts (NCs) consisting of 
one schema naming context (schema NC), one configuration naming context (config NC), one or 
more domain naming contexts (domain NCs), and zero or more application naming contexts 
(application NCs). Because a set of NCs can be arranged into a tree structure, a forest is also a 

set containing one or several trees of NCs. For AD LDS, a set of NCs consisting of one schema 
NC, one config NC, and zero or more application NCs. (In Microsoft documentation, an AD LDS 

forest is called a "configuration set".) 

forest functional level: A specification of functionality available in a forest. It must be less than 
or equal to the domain controller (DC) functional level of every DC in the forest. See [MS-ADTS] 
section 6.1.4.4 for information on how the forest functional level is determined. 

forest root domain NC: For Active Directory Domain Services (AD DS), the domain naming 

context (domain NC) within a forest whose child is the forest's configuration naming context 
(config NC). The fully qualified domain name (FQDN) of the forest root domain NC serves as the 
forest's name. 



 

33 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

forward link attribute: An attribute whose values include object references (for example, an 
attribute of syntax Object(DS-DN)). The forward link values can be used to compute the values 

of a related attribute, a back link attribute, on other objects. If an object o refers to object r in 
forward link attribute f, and there exists a back link attribute b corresponding to f, then a back 

link value referring to o exists in attribute b on object r. The relationship between the forward 
and back link attributes is expressed using the linkId attribute on the attributeSchema objects 
representing the two attributes. The forward link's linkId is an even number, and the back link's 
linkId is the forward link's linkId plus one. A forward link attribute can exist with no 
corresponding back link attribute, but not vice-versa. For more information, see [MS-ADTS]. 

forward link value: The value of a forward link attribute. 

FSMO role: A set of objects that can be updated in only one naming context (NC) replica (the 

FSMO role owner's replica) at any given time. For more information, see [MS-ADTS] section 
3.1.1.1.11. See also FSMO role owner. 

FSMO role object: An object in a directory that represents a specific FSMO role. This object is an 
element of the FSMO role and contains the fSMORoleOwner attribute. 

FSMO role owner: The domain controller (DC) holding the naming context (NC) replica in which 
the objects of a FSMO role can be updated. 

full NC replica: A naming context (NC) replica that contains all the attributes of the objects it 
contains. A full replica accepts originating updates. 

fully qualified domain name (FQDN): (1) An unambiguous domain name that gives an absolute 
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section 
3.1 and [RFC2181] section 11. 

(2) In Active Directory, a fully qualified domain name (FQDN) (1) that identifies a domain. 

garbage collection: The process of identifying logically deleted objects (also known as 

tombstones) and link values that have passed their tombstone lifetime, and then permanently 
removing these objects from a naming context (NC) replica. Garbage collection does not 

generate replication traffic. 

GC partial attribute set (PAS): The subset of attributes that replicate to a GC partial NC replica. 
A particular GC partial attribute set (PAS) is part of the state of the forest and is used to control 
the attributes that replicate to global catalog servers (GC servers). The 
isMemberOfPartialAttributeSet schema attribute is used to define this set. 

GC partial NC replica: An NC replica that contains a schema-specified subset of attributes for the 
objects it contains. The subset of attributes consists of the attributes in the GC partial attribute 
set (PAS). A GC partial NC replica is not writable; for example, it does not accept originating 
updates. 

global catalog (GC): A unified partial view of multiple naming contexts (NCs) in a distributed 
partitioned directory. The Active Directory directory service GC is implemented by GC servers. 

The definition of global catalog is specified in [MS-ADTS] section 3.1.1.1.8. 

global catalog server (GC server): A domain controller (DC) that contains a naming context 
(NC) replica (one full, the rest partial) for each domain naming context in the forest. 

global group: An Active Directory group that allows user objects from its own domain and global 
groups from its own domain as members. Also called domain global group. Universal groups can 
contain global groups. A group object g is a global group if and only if 
GROUP_TYPE_ACCOUNT_GROUP is present in g! groupType; see [MS-ADTS] section 2.2.12, 

"Group Type Flags". A global group that is also a security-enabled group is valid for inclusion 
within ACLs anywhere in the forest. If a domain is in mixed mode, then a global group in that 



 

34 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

domain that is also a security-enabled group allows only user object as members. See also 
domain local group, security-enabled group. 

globally unique identifier (GUID): A term used interchangeably with universally unique 
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of 

these terms does not imply or require a specific algorithm or mechanism to generate the value. 
Specifically, the use of this term does not imply or require that the algorithms described in 
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique 
identifier (UUID). 

group: A collection of objects that can be treated as a whole. 

group object: In Active Directory, a group object has an object class group. A group has a 
forward link attribute member; the values of this attribute either represent elements of the 

group (for example, objects of class user or computer) or subsets of the group (objects of class 
group). The representation of group subsets is called "nested group membership". The back link 
attribute memberOf enables navigation from group members to the groups containing them. 
Some groups represent groups of security principals and some do not and are, for instance, 

used to represent email distribution lists. 

Group Policy: A mechanism that allows the implementer to specify managed configurations for 

users and computers in an Active Directory service environment. 

GUID-based DNS name: The domain naming service name of a domain controller (DC), 
constructed by concatenating the dashed string representation of the objectGuid of the DC's 
nTDSDSA object, the string "._msdcs.", and the syntactic transformation of the root domain's 
distinguished name (DN) to a domain naming service name. If a DC's DSA GUID is "52f6c43b-
99ec-4040-a2b0-e9ebf2ec02b8", and the forest root domain NC's DNS name is "fabrikam.com", 
then the GUID-based DNS name of the DC is "52f6c43b-99ec-4040-a2b0-

e9ebf2ec02b8._msdcs.fabrikam.com". 

GUIDString: A GUID in the form of an ASCII or Unicode string, consisting of one group of 8 
hexadecimal digits, followed by three groups of 4 hexadecimal digits each, followed by one 
group of 12 hexadecimal digits. It is the standard representation of a GUID, as described in 

[RFC4122] section 3. For example, "6B29FC40-CA47-1067-B31D-00DD010662DA". Unlike a 
curly braced GUID string, a GUIDString is not enclosed in braces. 

inbound trust: A trust relationship between two domains, from the perspective of the domain that 

is trusted to perform authentication. 

inheritance: See object class inheritance. 

interdomain trust account: An account that stores information associated with a domain trust in 
the domain controllers (DCs) of the domain that is trusted to perform authentication. 

Interface Definition Language (IDL): The International Standards Organization (ISO) standard 
language for specifying the interface for remote procedure calls. For more information, see 

[C706] section 4. 

intersite topology generator (ISTG): A domain controller (DC) within a given site that 

computes an NC replica graph for each NC replica on any DC in its site. This DC creates, 
updates, and deletes corresponding nTDSConnection objects for edges directed from NC replicas 
in other sites to NC replicas in its site. 

invocation ID: The invocationId attribute. An attribute of an nTDSDSA object. Its value is a 
unique identifier for a function that maps from update sequence numbers (USNs) to updates to 

the  NC replicas of a domain controller (DC). See also nTDSDSA object. 

JavaScript Object Notation (JSON): A text-based, data interchange format that is used to 
transmit structured data, typically in Asynchronous JavaScript + XML (AJAX) web applications, 



 

35 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

as described in [RFC7159]. The JSON format is based on the structure of ECMAScript (Jscript, 
JavaScript) objects. 

Kerberos: An authentication system that enables two parties to exchange private information 
across an otherwise open network by assigning a unique key (called a ticket) to each user that 

logs on to the network and then embedding these tickets into messages sent by the users. For 
more information, see [MS-KILE]. 

Knowledge Consistency Checker (KCC): A component of the Active Directory replication that is 
used to create spanning trees for domain controller to domain controller replication and to 
translate those trees into settings of variables that implement the replication topology. 

LDAP connection: A TCP connection from a client to a server over which the client sends 
Lightweight Directory Access Protocol (LDAP) requests and the server sends responses to the 

client's requests. 

LDAP Data Interchange Format (LDIF): A standard that defines how to import and export 
directory data between directory servers that use the Lightweight Directory Access Protocol 

(LDAP), as described in [RFC2849]. 

LDAP ping: A specific Lightweight Directory Access Protocol (LDAP) search that returns 
information about whether services are live on a domain controller (DC). 

Lightweight Directory Access Protocol (LDAP): The primary access protocol for Active 
Directory. Lightweight Directory Access Protocol (LDAP) is an industry-standard protocol, 
established by the Internet Engineering Task Force (IETF), which allows users to query and 
update information in a directory service (DS), as described in [MS-ADTS]. The Lightweight 
Directory Access Protocol can be either version 2 [RFC1777] or version 3 [RFC3377]. 

lingering object: An object that still exists in an NC replica even though it has been deleted and 
garbage-collected from other replicas. This occurs, for instance, when a domain controller (DC) 

goes offline for longer than the tombstone lifetime. 

link attribute: A forward link attribute or a back link attribute. 

link value: The value of a link attribute. 

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in 
the memory location with the lowest address. 

local domain controller (local DC): A domain controller (DC) on which the current method is 
executing. 

Lost and Found container: A container holding objects in a given naming context (NC) that do 
not have parent objects due to add and remove operations that originated on different domain 
controllers (DCs). The container is a child of the NC root and has RDN CN=LostAndFound in 
domain NCs and CN=LostAndFoundConfig in config NCs. 

mailslot: A form of datagram communication using the Server Message Block (SMB) protocol, as 
specified in [MS-MAIL]. 

mailslot ping: A specific mailslot request that returns information about whether services are live 
on a domain controller (DC). 

marshal: To encode one or more data structures into an octet stream using a specific remote 
procedure call (RPC) transfer syntax (for example, marshaling a 32-bit integer). 

Messaging Application Programming Interface (MAPI): A Windows programming interface 
that enables email to be sent from within a Windows application. 



 

36 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

mixed mode: A state of an Active Directory domain that supports domain controllers (DCs) 
running Windows NT Server 4.0 operating system. Mixed mode does not allow organizations to 

take advantage of new Active Directory features such as universal groups, nested group 
membership, and interdomain group membership. See also native mode. 

most specific object class: In a sequence of object classes related by inheritance, the class that 
none of the other classes inherits from. The special object class top is less specific than any 
other class. 

multi-valued claim: A claim with more than one Value in the n-tuple {Identifier, ValueType, m 
Value(s) of type ValueType}. 

name service provider interface (NSPI): A method of performing address-book-related 
operations on Active Directory. 

naming context (NC): An NC is a set of objects organized as a tree. It is referenced by a 
DSName. The DN of the DSName is the distinguishedName attribute of the tree root. The GUID 
of the DSName is the objectGUID attribute of the tree root. The security identifier (SID) of the 

DSName, if present, is the objectSid attribute of the tree root; for Active Directory Domain 
Services (AD DS), the SID is present if and only if the NC is a domain naming context (domain 
NC). Active Directory supports organizing several NCs into a tree structure. 

NC replica: A variable containing a tree of objects whose root object is identified by some naming 
context (NC). 

NC replica graph: A directed graph containing NC replicas as nodes and repsFrom tuples as 
inbound edges by which originating updates replicate from each full replica of a given naming 
context (NC) to all other NC replicas of the NC, directly or transitively. 

NetBIOS: A particular network transport that is part of the LAN Manager protocol suite. NetBIOS 
uses a broadcast communication style that was applicable to early segmented local area 

networks. A protocol family including name resolution, datagram, and connection services. For 
more information, see [RFC1001] and [RFC1002]. 

NetBIOS domain name: The name registered by domain controllers (DCs) on [1C] records of the 
NBNS (WINS) server (see section 6.3.4). For details of NetBIOS name registration, see [MS-
WPO] sections 7.1.4 and 10.4. 

NetBIOS Name Service (NBNS): The name service for NetBIOS. For more information, see 
[RFC1001] and [RFC1002]. 

Netlogon: A component that authenticates a computer and provides other services. The 
running/paused state of Netlogon on a domain controller (DC) is available through protocols 
documented in [MS-ADTS] section 6.3. 

nonreplicated attribute: An attribute whose values are not replicated between naming context 
(NC) replicas. The nonreplicated attributes of an object are, in effect, local variables of the 
domain controller (DC) hosting the NC replica containing that object, since changes to these 

attributes have no effect outside that DC. 

nTDSDSA object: An object of class nTDSDSA that is always located in the configuration naming 
context (config NC). This object represents a domain controller (DC) in the forest. See [MS-
ADTS] section 6.1.1.2.2.1.2.1.1. 

NULL GUID: A GUID of all zeros. 

object: A set of attributes, each with its associated values. For more information on objects, see 
[MS-ADTS] section 1 or [MS-DRSR] section 1. 



 

37 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

object class: A set of restrictions on the construction and update of objects. An object class can 
specify a set of must-have attributes (every object of the class must have at least one value of 

each) and may-have attributes (every object of the class may have a value of each). An object 
class can also specify the allowable classes for the parent object of an object in the class. An 

object class can be defined by single inheritance; an object whose class is defined in this way is 
a member of all object classes used to derive its most specific class. An object class is defined in 
a classSchema object. See section 1 of [MS-ADTS] and section 1 of [MS-DRSR]. 

object class name: The lDAPDisplayName of the classSchema object of an object class. This 
document consistently uses object class names to denote object classes; for example,  user and 
group are both object classes. The correspondence between Lightweight Directory Access 
Protocol (LDAP) display names and numeric object identifiers (OIDs) in the Active Directory 

schema is defined in the appendices of these documents: [MS-ADSC], [MS-ADA1], [MS-ADA2], 
and [MS-ADA3]. 

object identifier (OID): In the Lightweight Directory Access Protocol (LDAP), a sequence of 
numbers in a format described by [RFC1778]. In many LDAP directory implementations, an OID 
is the standard internal representation of an attribute. In the directory model used in this 

specification, the more familiar ldapDisplayName represents an attribute. 

object of class x (or x object): An object o such that one of the values of its objectClass 
attributes is x. For instance, if objectClass contains the value user,  o is an object of class user. 
This is often contracted to "user object". 

object reference: An attribute value that references an object. Reading a reference gives the 
distinguished name (DN) of the object. 

operational attribute: An attribute that is returned only when requested by name in a 
Lightweight Directory Access Protocol (LDAP) search request. An LDAP search request 

requesting "all attributes" does not return operational attributes and their values. 

optional feature: A non-default behavior that modifies the Active Directory state model. An 
optional feature is enabled or disabled in a specific scope, such as a forest or a domain. For 
more information, refer to [MS-ADTS] section 3.1.1.9. 

organization: A collection of forests, including the current forest, whose 
TRUST_ATTRIBUTE_CROSS_ORGANIZATION bit of the Trust attribute ([MS-ADTS] section 
6.1.6.7.9) of the trusted domain object (TDO) is not set. 

oriented tree: A directed acyclic graph such that for every vertex v, except one (the root), there 
is a unique edge whose tail is v. There is no edge whose tail is the root. For more information, 
see [KNUTH1] section 2.3.4.2. 

originating update: An update that is performed to an NC replica via any protocol except 
replication. An originating update to an attribute or link value generates a new stamp for the 
attribute or link value. 

outbound trust: A trust relationship between two domains, from the perspective of the domain 
that trusts another domain to perform authentication. 

parent naming context (parent NC): Given naming contexts (NCs) with their corresponding 
distinguished names (DNs) forming a child and parent relationship, the NC in the parent 
relationship is referred as the parent NC. 

parent object: An object is either the root of a tree of objects or has a parent. If two objects have 
the same parent, they must have different values in their relative distinguished names (RDNs). 

See also, object in section 1 of [MS-ADTS] and section 1 of [MS-DRSR]. 



 

38 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

partial attribute set (PAS): The subset of attributes that replicate to partial naming context (NC) 
replicas. Also, the particular partial attribute set that is part of the state of a forest and that is 

used to control the attributes that replicate to global catalog (GC) servers. 

partial NC replica: An NC replica that contains a schema-specified subset of attributes for the 

objects it contains. A partial NC replica is not writable—it does not accept originating updates. 
See also writable NC replica. 

Partitions container: A child object of the configuration naming context (config NC) root. The 
relative distinguished name (RDN) of the Partitions container is "cn=Partitions" and its class is 
crossRefContainer ([MS-ADTS] section 2.30). See also crossRef object. 

prefix table: A data structure that is used to translate between an object identifier (OID) and a 
compressed representation for OIDs. See [MS-DRSR] section 5.14. 

primary domain controller (PDC): A domain controller (DC) designated to track changes made 
to the accounts of all computers on a domain. It is the only computer to receive these changes 
directly, and is specialized so as to ensure consistency and to eliminate the potential for 

conflicting entries in the Active Directory database. A domain has only one PDC. 

primary group: The group object ([MS-ADSC] section 2.53) identified by the primaryGroupID 
attribute ([MS-ADA3] section 2.120) of a user object ([MS-ADSC] section 2.263). The primary 

group's objectSid attribute ([MS-ADA3] section 2.45) equals the user's objectSid, with its 
relative identifier (RID) portion replaced by the primaryGroupID value. The user is considered a 
member of its primary group. 

principal: A unique entity identifiable by a security identifier (SID) that is typically the requester of 
access to securable objects or resources. It often corresponds to a human user but can also be a 
computer or service. It is sometimes referred to as a security principal. 

privilege: The right of a user to perform system-related operations, such as debugging the 

system. A user's authorization context specifies what privileges are held by that user. 

property set: A set of attributes, identified by a GUID. Granting access to a property set grants 

access to all the attributes in the set. 

RDN attribute: The attribute used in a relative distinguished name (RDN). In the RDN "cn=Peter 
Houston" the RDN attribute is cn. In the Active Directory directory service, the RDN attribute of 
an object is determined by the 88 object class or the most specific structural object class of the 
object. 

read permission: The authorization to read an attribute of an object. For more information, see 
[MS-ADTS] section 5.1.3. 

read-only domain controller (RODC): A domain controller (DC) that does not accept originating 
updates. Additionally, an RODC does not perform outbound replication. An RODC cannot be the 
primary domain controller (PDC) for its domain. 

read-only full NC replica: An NC replica that contains all attributes of the objects it contains, and 

does not accept originating updates. 

Recycle Bin: An optional feature that modifies the state model of object deletions and undeletions, 
making undeletion of deleted-objects possible without loss of the object's attribute values. For 
more information, see [MS-ADTS] section 3.1.1.9.1. 

recycled-object: An object that has been deleted, but remains in storage until a configured 
amount of time (the tombstone lifetime) has passed, after which the object is permanently 
removed from storage. Unlike a deleted-object, most of the state of the object has been 

removed, and the object can no longer be undeleted without loss of information. By keeping the 



 

39 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

recycled-object in existence for the tombstone lifetime, the deleted state of the object is able to 
replicate. Recycled-objects exist only when the Recycle Bin optional feature is enabled. 

relative distinguished name (RDN): The name of an object relative to its parent. This is the 
leftmost attribute-value pair in the distinguished name (DN) of an object. For example, in the 

DN "cn=Peter Houston, ou=NTDEV, dc=microsoft, dc=com", the RDN is "cn=Peter Houston". 
For more information, see [RFC2251]. 

relative identifier (RID): The last item in the series of SubAuthority values in a security identifier 
(SID) [SIDD]. It distinguishes one account or group from all other accounts and groups in the 
domain. No two accounts or groups in any domain share the same RID. 

remote procedure call (RPC): A communication protocol used primarily between client and 
server. The term has three definitions that are often used interchangeably: a runtime 

environment providing for communication facilities between computers (the RPC runtime); a set 
of request-and-response message exchanges between computers (the RPC exchange); and the 
single message from an RPC exchange (the RPC message).  For more information, see [C706]. 

replica: A variable containing a set of objects. 

replicated attribute: An attribute whose values are replicated to other NC replicas. An attribute is 
replicated if its attributeSchema object o does not have a value for the systemFlags attribute, or 

if the FLAG_ATTR_NOT_REPLICATED bit (bit 0) of o! systemFlags is zero. 

replicated update: An update performed to a naming context (NC) replica by the replication 
system, to propagate the effect of an originating update at another NC replica. The stamp 
assigned during the originating update to attribute values or a link value is preserved by 
replication. 

replication: The process of propagating the effects of all originating writes to any replica of a 
naming context (NC), to all replicas of the NC. If originating writes cease and replication 

continues, all replicas converge to a common application-visible state. 

replication cycle: Sometimes referred to simply as "cycle". A series of one or more replication 

responses associated with the same invocationId, concluding with the return of a new up-to-
date vector. 

replication latency: The time lag between a final originating update to a naming context (NC) 
replica and all NC replicas reaching a common application-visible state. 

Rivest-Shamir-Adleman (RSA): A system for public key cryptography. RSA is specified in 

[RFC8017]. 

root directory system agent-specific entry (rootDSE): The logical root of a directory server, 
whose distinguished name (DN) is the empty string. In the Lightweight Directory Access Protocol 
(LDAP), the rootDSE is a nameless entry (a DN with an empty string) containing the 
configuration status of the server. Access to this entry is typically available to unauthenticated 
clients. The rootDSE contains attributes that represent the features, capabilities, and extensions 

provided by the particular server. 

root domain: The unique domain naming contexts (domain NCs) of an Active Directory forest that 
is the parent of the forest's config NC. The config NC's relative distinguished name (RDN) is 
"cn=Configuration" relative to the root object of the root domain. The root domain is the domain 
that is created first in a forest. 

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime 
for communications between network nodes. For more information, see [C706] section 2. 

SASL: The Simple Authentication and Security Layer, as described in [RFC2222]. This is an 
authentication mechanism used by the Lightweight Directory Access Protocol (LDAP). 



 

40 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

schema: The set of attributes and object classes that govern the creation and update of objects. 

schema container: The root object of the schema naming context (schema NC). 

schema naming context (schema NC): A specific type of naming context (NC) or an instance of 
that type. A forest has a single schema NC, which is replicated to each domain controller (DC) in 

the forest. No other NC replicas can contain these objects. Each attribute and class in the 
forest's schema is represented as a corresponding object in the forest's schema NC. A schema 
NC cannot contain security principal objects. 

schema object: An object that defines an attribute or an object class. Schema objects are 
contained in the schema naming context (schema NC). 

secret attribute: Any of the following attributes: currentValue, dBCSPwd, initialAuthIncoming, 
initialAuthOutgoing, lmPwdHistory, ntPwdHistory, priorValue, supplementalCredentials, 

trustAuthIncoming, trustAuthOutgoing, and unicodePwd. 

Secure Sockets Layer (SSL): A security protocol that supports confidentiality and integrity of 

messages in client and server applications that communicate over open networks. SSL supports 
server and, optionally, client authentication using X.509 certificates [X509] and [RFC5280]. SSL 
is superseded by Transport Layer Security (TLS). TLS version 1.0 is based on SSL version 3.0 
[SSL3]. 

security context: A data structure containing authorization information for a particular security 
principal in the form of a collection of security identifiers (SIDs). One SID identifies the principal 
specifically, whereas others represent other capabilities. A server uses the authorization 
information in a security context to check access to requested resources. 

security descriptor: A data structure containing the security information associated with a 
securable object. A security descriptor identifies an object's owner by its security identifier 
(SID). If access control is configured for the object, its security descriptor contains a 

discretionary access control list (DACL) with SIDs for the security principals who are allowed or 
denied access. Applications use this structure to set and query an object's security status. The 
security descriptor is used to guard access to an object as well as to control which type of 

auditing takes place when the object is accessed. The security descriptor format is specified in 
[MS-DTYP] section 2.4.6; a string representation of security descriptors, called SDDL, is 
specified in [MS-DTYP] section 2.5.1. 

security identifier (SID): An identifier for security principals that is used to identify an account 

or a group. Conceptually, the SID is composed of an account authority portion (typically a 
domain) and a smaller integer representing an identity relative to the account authority, termed 
the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string 
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2. 

security principal: A unique entity, also referred to as a principal, that can be authenticated by 
Active Directory. It frequently corresponds to a human user, but also can be a service that offers 

a resource to other security principals. Other security principals might be a group, which is a set 
of principals. Groups are supported by Active Directory. 

security principal object: An object that corresponds to a security principal. A security principal 

object contains an identifier, used by the system and applications to name the principal, and a 
secret that is shared only by the principal. In Active Directory, a security principal object has the 
objectSid attribute. In Active Directory, the user, computer, and group object classes are 
examples of security principal object classes (though not every group object is a security 

principal object). In AD LDS, any object containing the msDS-BindableObject auxiliary class is a 
security principal. See also computer object, group object, and user object. 

security-enabled group: A group object with GROUP_TYPE_SECURITY_ENABLED present in its 
groupType attribute. Only security-enabled groups are added to a security context. See also 
group object. 



 

41 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

server object: A class of object in the configuration naming context (config NC). A server object 
can have an nTDSDSA object as a child. 

service principal name (SPN): (1) The name a client uses to identify a service for mutual 
authentication. (For more information, see [RFC1964] section 2.1.1.) An SPN consists of either 

two parts or three parts, each separated by a forward slash ('/'). The first part is the service 
class, the second part is the host name, and the third part (if present) is the service name. For 
example, "ldap/dc-01.fabrikam.com/fabrikam.com" is a three-part SPN where "ldap" is the 
service class name, "dc-01.fabrikam.com" is the host name, and "fabrikam.com" is the service 
name. See [SPNNAMES] for more information about SPN format and composing a unique SPN. 

(2) The name a client uses to identify a service for mutual authentication. For more information, 
see [MS-ADTS] section 2.2.21 (Service Principal Name) and [RFC1964] section 2.1.1. 

simple bind: A bind with the simple authentication option enabled according to [RFC2251]. 

Simple Mail Transfer Protocol (SMTP): A member of the TCP/IP suite of protocols that is used 
to transport Internet messages, as described in [RFC5321]. 

single-valued claim: A claim with only one Value in the n-tuple {Identifier, ValueType, m 
Value(s) of type ValueType}. 

site: A collection of one or more well-connected (reliable and fast) TCP/IP subnets. By defining 

sites (represented by site objects) an administrator can optimize both Active Directory access 
and Active Directory replication with respect to the physical network. When users log in, Active 
Directory clients find domain controllers (DCs) that are in the same site as the user, or near the 
same site if there is no DC in the site. See also Knowledge Consistency Checker (KCC). For more 
information, see [MS-ADTS]. 

site object: An object of class site, representing a site. 

site settings object: For a given site with site object s, its site settings object o is the child of s 

such that o is of class nTDSSiteSettings and the relative distinguished name (RDN) of o is 
CN=NTDS Site Settings. See also site object. 

SRV record: A type of information record in DNS that maps the name of a service to the DNS 
name of a server that offers that service. domain controllers (DCs) advertise their capabilities by 
publishing SRV records in DNS. 

SSL/TLS handshake: The process of negotiating and establishing a connection protected by 
Secure Sockets Layer (SSL) or Transport Layer Security (TLS). For more information, see 

[SSL3] and [RFC2246]. 

stamp: Information that describes an originating update by a domain controller (DC). The stamp is 
not the new data value; the stamp is information about the update that created the new data 
value. A stamp is often called metadata, because it is additional information that "talks about" 
the conventional data values. A stamp contains the following pieces of information: the unique 
identifier of the DC that made the originating update; a sequence number characterizing the 

order of this change relative to other changes made at the originating DC; a version number 
identifying the number of times the data value has been modified; and the time when the 

change occurred. 

structural object class: An object class that is not an 88 object class and can be instantiated to 
create a new object. 

SubAuthority: A variable-length array of unsigned, 32-bit integer values that is part of a security 
identifier (SID). Each of these values is called a SubAuthority. All SubAuthority values excluding 

the last one collectively identify a domain. The last value, termed as the relative identifier (RID), 
identifies a particular group or account relative to the domain. For more information, see 
[SIDD]. 



 

42 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

subordinate reference object (sub-ref object): The naming context (NC) root of a parent NC 
has a list of all the NC roots of its child NCs in the subRefs attribute ([MS-ADA3] section 2.282). 

Each entry in this list is a subordinate reference and the object named by the entry is 
denominated a subordinate reference object. An object is a subordinate reference object if and 

only if it is in such a list. If a server has replicas of both an NC and its child NC, then the child 
NC root is the subordinate reference object, in the context of the parent NC. If the server does 
not have a replica of the child NC, then another object, with distinguishedName ([MS-ADA1] 
section 2.177) and objectGUID ([MS-ADA3] section 2.44) attributes equal to the child NC root, 
is present in the server and is the subordinate reference object. 

system access control list (SACL): An access control list (ACL) that controls the generation of 
audit messages for attempts to access a securable object. The ability to get or set an object's 

SACL is controlled by a privilege typically held only by system administrators. 

ticket-granting ticket (TGT): A special type of ticket that can be used to obtain other tickets. 
The TGT is obtained after the initial authentication in the Authentication Service (AS) exchange; 
thereafter, users do not need to present their credentials, but can use the TGT to obtain 
subsequent tickets. 

tombstone: An object that has been deleted, but remains in storage until a configured amount of 

time (the tombstone lifetime) has passed, after which the object is permanently removed from 
storage. By keeping the tombstone in existence for the tombstone lifetime, the deleted state of 
the object is able to replicate. Tombstones exist only when the Recycle Bin optional feature is 
not enabled. 

tombstone lifetime: The amount of time a deleted directory object remains in storage before it is 
permanently deleted. To avoid inconsistencies in object deletion, the tombstone lifetime is 
configured to be many times longer than the worst-case replication latency. 

top level name (TLN): The DNS name of the forest root domain NC. 

transitive membership: An indirect group membership that occurs when an object is a member 
of a group that is a member of a second group. The object is a member of the second group 
through a transitive membership. 

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send 
data in the form of message units between computers over the Internet. TCP handles keeping 
track of the individual units of data (called packets) that a message is divided into for efficient 

routing through the Internet. 

Transport Layer Security (TLS): A security protocol that supports confidentiality and integrity of 
messages in client and server applications communicating over open networks. TLS supports 
server and, optionally, client authentication by using X.509 certificates (as specified in [X509]). 
TLS is standardized in the IETF TLS working group. 

trust: To accept another authority's statements for the purposes of authentication and 

authorization, especially in the case of a relationship between two domains. If domain A trusts 
domain B, domain A accepts domain B's authentication and authorization statements for 
principals represented by security principal objects in domain B; for example, the list of groups 

to which a particular user belongs. As a noun, a trust is the relationship between two domains 
described in the previous sentence. 

trust object: An object representing a trust. 

trust secret: A pair of keys used to encrypt or sign sensitive protocol data between two trust 

authorities, such as domain controllers. 

trusted domain object (TDO): A collection of properties that define a trust relationship with 
another domain, such as direction (outbound, inbound, or both), trust attributes, name, and 
security identifier of the other domain. For more information, see [MS-ADTS]. 



 

43 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

TTL-DN: An alternative form of distinguished name (DN), applicable only to values of link valued 
attributes, that includes the time until the link is no longer returned to LDAP clients. 

Unicode: A character encoding standard developed by the Unicode Consortium that represents 
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007] 

provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16 
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE). 

universal group: An Active Directory group that allows user objects, global groups, and universal 
groups from anywhere in the forest as members. A group object g is a universal group if and 
only if GROUP_TYPE_UNIVERSAL_GROUP is present in g! groupType. A security-enabled 
universal group is valid for inclusion within ACLs anywhere in the forest. If a domain is in mixed 
mode, then a universal group cannot be created in that domain. See also domain local group, 

security-enabled group. 

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple 
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very 
persistent objects in cross-process communication such as client and server interfaces, manager 

entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also 
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the 

Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not 
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of 
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must 
be used for generating the UUID. 

update: An add, modify, or delete of one or more objects or attribute values.  See originating 
update, replicated update. 

update sequence number (USN): A monotonically increasing sequence number used in 

assigning a stamp to an originating update. For more information, see [MS-ADTS]. 

uplevel trust: A trust in which both peers are running Windows 2000 or later domain controllers. 

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to 

the transport layer in the ISO/OSI reference model. 

user object: An object of class user. A user object is a security principal object; the principal is a 
person or service entity running on the computer. The shared secret allows the person or 
service entity to authenticate itself, as described in ([MS-AUTHSOD] section 1.1.1.1). 

user principal name (UPN): A user account name (sometimes referred to as the user logon 
name) and a domain name that identifies the domain in which the user account is located. This 
is the standard usage for logging on to a Windows domain. The format is: 
someone@example.com (in the form of an email address). In Active Directory, the 
userPrincipalName attribute of the account object, as described in [MS-ADTS]. 

UTF-16: A standard for encoding Unicode characters, defined in the Unicode standard, in which the 

most commonly used characters are defined as double-byte characters. Unless specified 
otherwise, this term refers to the UTF-16 encoding form specified in [UNICODE5.0.0/2007] 
section 3.9. 

UTF-8: A byte-oriented standard for encoding Unicode characters, defined in the Unicode standard. 
Unless specified otherwise, this term refers to the UTF-8 encoding form specified in 
[UNICODE5.0.0/2007] section 3.9. 

Virtual List View (VLV) search: Refers to a Lightweight Directory Access Protocol (LDAP) search 

operation that enables the server to return a contiguous subset of a large search result set. 
LDAP controls LDAP_CONTROL_VLVREQUEST and LDAP_CONTROL_VLVRESPONSE (section 
3.1.1.3.4.1.17) that are used to perform a VLV search. 



 

44 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

well-known object (WKO): An object within an naming context (NC) that can be located using a 
fixed globally unique identifier (GUID). 

Windows error code: A 32-bit quantity where zero represents success and nonzero represents 
failure. The specific failure codes are specified in [MS-ERREF]. 

Windows security descriptor: See security descriptor. 

writable naming context (NC) replica: A naming context (NC) replica that accepts originating 
updates. A writable NC replica is always full, but a full NC replica is not always writable. Partial 
replicas are not writable. See also read-only full NC replica. 

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined 
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT. 

1.2 References 

Links to a document in the Microsoft Open Specifications library point to the correct section in the 

most recently published version of the referenced document. However, because individual documents 
in the library are not updated at the same time, the section numbers in the documents may not 

match. You can confirm the correct section numbering by checking the Errata.   

1.2.1 (Updated Section) Normative References 

We conduct frequent surveys of the normative references to assure their continued availability. If you 
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will 

assist you in finding the relevant information.  

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997, 
https://publications.opengroup.org/c706 

Note Registration is required to download the document. 

[GRAY] Gray, J., and Reuter, A., "Transaction Processing: Concepts and Techniques", The Morgan 
Kaufmann Series in Data Management Systems, San Francisco: Morgan Kaufmann Publishers, 1992, 
Hardcover ISBN: 9781558601901. 

[IEEE1003.1] The Open Group, "IEEE Std 1003.1, 2004 Edition", 2004, 
http://www.unix.org/version3/ieee_std.html 

[ISO-8601] International Organization for Standardization, "Data Elements and Interchange Formats - 
Information Interchange - Representation of Dates and Times", ISO/IEC 8601:2004, December 2004, 
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874&ICS1=1&ICS2=1
40&ICS3=30 

Note There is a charge to download the specification. 

[ISO/IEC-14977] International Organization for Standardization, "Information technology -- Syntactic 
metalanguage -- Extended BNF", ISO/IEC 14977:1996, 

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26153 

[ISO/IEC-9899] International Organization for Standardization, "Programming Languages - C", 
ISO/IEC 9899:TC2, May 2005, http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf 

[ITUX680] ITU-T, "Abstract Syntax Notation One (ASN.1): Specification of Basic Notation", 

Recommendation X.680, July 2002, http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-
0207.pdf 



 

45 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

[ITUX690] ITU-T, "ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical 
Encoding Rules (CER) and Distinguished Encoding Rules (DER)", Recommendation X.690, July 2002, 

http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf 

[KNUTH1] Knuth, D., "The Art of Computer Programming: Volume 1/Fundamental Algorithms (Second 
Edition)", Reading, MA: Addison-Wesley, 1973, ASIN: B000NV8YOA. 

[MS-ADA1] Microsoft Corporation, "Active Directory Schema Attributes A-L". 

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M". 

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z". 

[MS-ADLS] Microsoft Corporation, "Active Directory Lightweight Directory Services Schema". 

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes". 

[MS-APDS] Microsoft Corporation, "Authentication Protocol Domain Support". 

[MS-CTA] Microsoft Corporation, "Claims Transformation Algorithm". 

[MS-DRSR] Microsoft Corporation, "Directory Replication Service (DRS) Remote Protocol". 

[MS-DTYP] Microsoft Corporation, "Windows Data Types". 

[MS-ERREF] Microsoft Corporation, "Windows Error Codes". 

[MS-FRS1] Microsoft Corporation, "File Replication Service Protocol". 

[MS-GKDI] Microsoft Corporation, "Group Key Distribution Protocol". 

[MS-GPSB] Microsoft Corporation, "Group Policy: Security Protocol Extension". 

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions". 

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol". 

[MS-MAIL] Microsoft Corporation, "Remote Mailslot Protocol". 

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol". 

[MS-NRPC] Microsoft Corporation, "Netlogon Remote Protocol". 

[MS-PAC] Microsoft Corporation, "Privilege Attribute Certificate Data Structure". 

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions". 

[MS-SAMR] Microsoft Corporation, "Security Account Manager (SAM) Remote Protocol (Client-to-
Server)". 

[MS-SFU] Microsoft Corporation, "Kerberos Protocol Extensions: Service for User and Constrained 
Delegation Protocol". 

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) 
Extension". 

[MS-SRPL] Microsoft Corporation, "Directory Replication Service (DRS) Protocol Extensions for SMTP". 

[MS-UCODEREF] Microsoft Corporation, "Windows Protocols Unicode Reference". 



 

46 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

[MS-W32T] Microsoft Corporation, "W32Time Remote Protocol". 

[MSKB-3106637] Microsoft Corporation, "Incorrect results in LDAP query, domain controller restarts, 

or user logons are denied in Windows Server 2012 R2", https://support.microsoft.com/en-
us/kb/3106637 

[MSKB-3155495] Microsoft Corporation, "You can't use the Active Directory shadow principal groups 
feature for groups that are always filtered out in Windows", revision 2.0, May 2016, 

https://support.microsoft.com/en-us/kb/3155495 

[MSKB-3192404] Microsoft Corporation, "October 2016 Preview of Monthly Quality Rollup for Windows 
8.1 and Windows Server 2012 R2", https://support.microsoft.com/en-us/kb/3192404 

[MSKB-4019217] Microsoft Corporation, "May 16, 2017 - KB4019217 (Preview of Monthly Rollup)", 
https://support.microsoft.com/en-us/kb/4019217 

[MSKB-4025334] Microsoft Corporation, "July 18, 2017—KB4025334 (OS Build 14393.1532)", 
https://support.microsoft.com/en-us/kb/4025334 

[MSKB-4038801] Microsoft Corporation, "September 28, 2017—KB4038801 (OS Build 14393.1737)", 
https://support.microsoft.com/help/4038801 

[MSKB-4490425] Microsoft Corporation, "Updates to TGT delegation across incoming trusts in 
Windows Server", https://support.microsoft.com/en-us/help/4490425/updates-to-tgt-delegation-
across-incoming-trusts-in-windows-server 

[MSKB-4505903] Microsoft Corporation, "July 26, 2019--KB4505903 (OS Build 18362.267)", July 

2019, https://support.microsoft.com/en-us/help/4505903/windows-10-update-kb4505903 

[RFC1001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP 
Transport: Concepts and Methods", RFC 1001, March 1987, httphttps://www.rfc-
editeditor.org/info/rfc1001 

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP 
Transport: Detailed Specifications", STD 19, RFC 1002, March 1987, httphttps://www.rfc-
editor.org/info/rfc1002 

[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities", STD 13, RFC 1034, November 
1987, httphttps://www.ietfrfc-edit.org/rfcinfo/rfc1034.txt 

[RFC1035] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 1035, 
November 1987, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc1035.txt 

[RFC1088] McLaughlin III, L., "A Standard for the Transmission of IP Datagrams over NetBIOS 
Networks", RFC 1088, February 1989, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc1088.txt 

[RFC1166] Kirkpatrick, S., Stahl, M., Recker, M., "Internet Numbers", RFC 1166, July 1990, 

httphttps://www.ietfrfc-editor.org/rfcinfo/rfc1166.txt 

[RFC1274] Barker, P. and Kille, S., "The COSINE and Internet X.500 Schema", RFC 1274, November 
1991, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc1274.txt 

[RFC1278] Hardcastle-Kille, S. E., "A string encoding of Presentation Address", RFC 1278, November 
1991, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc1278.txt 

[RFC1777] Yeong, W., Howes, T., and Kille, S., "Lightweight Directory Access Protocol", RFC 1777, 

March 1995, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc1777.txt 



 

47 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

[RFC1798] Young, A., "Connection-less Lightweight X.500 Directory Access Protocol", RFC 1798, June 
1995, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc1798.txt 

[RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC 1964, June 1996, 
httphttps://www.rfc-editor.org/rfcinfo/rfc1964.txt 

[RFC2078] Linn, J., "Generic Security Service Application Program Interface, Version 2", RFC 2078, 
January 1997, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2078.txt 

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 
2119, March 1997, https://www.rfc-editor.org/info/rfc2119 

[RFC2136] Thomson, S., Rekhter Y. and Bound, J., "Dynamic Updates in the Domain Name System 
(DNS UPDATE)", RFC 2136, April 1997, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2136.txt 

[RFC2222] Myers, J., "Simple Authentication and Security Layer (SASL)", RFC 2222, October 1997, 
httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2222.txt 

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999, 
https://www.rfc-editor.org/info/rfc2246 

[RFC2247] Kille, S., Wahl, M., Grimstad, A., et al., "Using Domains in LDAP/X.500 Distinguished 

Names", RFC 2247, January 1998, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2247.txt 

[RFC2251] Wahl, M., Howes, T., and Kille, S., "Lightweight Directory Access Protocol (v3)", RFC 2251, 
December 1997, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2251.txt 

[RFC2252] Wahl, M., Coulbeck, A., Howes, T., and Kille, S., "Lightweight Directory Access Protocol 
(v3): Attribute Syntax Definitions", RFC 2252, December 1997, httphttps://www.ietfrfc-
editor.org/rfcinfo/rfc2252.txt 

[RFC2253] Wahl, M., Kille, S., and Howe, T., "Lightweight Directory Access Protocol (v3): UTF-8 String 

Representation of Distinguished Names", RFC 2253, December 1997, httphttps://www.ietfrfc-

editor.org/rfcinfo/rfc2253.txt 

[RFC2255] Howes, T. and Smith, M., "The LDAP URL Format", RFC 2255, December 1997, 
httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2255.txt 

[RFC2256] Wahl, M., "A Summary of the X.500(96) User Schema for use with LDAPv3", RFC 2256, 
December 1997, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2256.txt 

[RFC2307] Howard, L., "An Approach for Using LDAP as a Network Information Service", RFC 2307, 
March 1998, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2307.txt 

[RFC2589] Yaacovi, Y., Wahl, M., and Genovese, T., "Lightweight Directory Access Protocol (v3): 
Extensions for Dynamic Directory Services", RFC 2589, May 1999, httphttps://www.ietfrfc-
editor.org/rfcinfo/rfc2589.txt 

[RFC2696] Weider, C., Herron, A., Anantha, A., and Howes, T., "LDAP Control Extension for Simple 

Paged Results Manipulation", RFC 2696, September 1999, httphttps://www.ietfrfc-
editor.org/rfcinfo/rfc2696.txt 

[RFC2782] Gulbrandsen, A., Vixie, P., and Esibov, L., "A DNS RR for specifying the location of services 
(DNS SRV)", RFC 2782, February 2000, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2782.txt 

[RFC2798] Smith, M., "Definition of the inetOrgPerson LDAP Object Class", RFC 2798, April 2000, 

httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2798.txt 



 

48 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

[RFC2829] Wahl, M., Alvestrand, H., Hodges, J., and Morgan, R., "Authentication Methods for LDAP", 
RFC 2829, May 2000, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2829.txt 

[RFC2830] Hodges, J., Morgan, R., and Wahl, M., "Lightweight Directory Access Protocol (v3): 
Extension for Transport Layer Security", RFC 2830, May 2000, httphttps://www.ietfrfc-
editor.org/rfcinfo/rfc2830.txt 

[RFC2831] Leach, P. and Newman, C., "Using Digest Authentication as a SASL Mechanism", RFC 2831, 

May 2000, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2831.txt 

[RFC2849] Good, G., "The LDAP Data Interchange Format (LDIF) - Technical Specification", RFC 2849, 
June 2000, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2849.txt 

[RFC2891] Howes, T., Wahl, M., and Anantha, A., "LDAP Control Extension for Server Side Sorting of 
Search Results", RFC 2891, August 2000, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc2891.txt 

[RFC3377] Hodges, J. and Morgan, R., "Lightweight Directory Access Protocol (v3): Technical 
Specification", RFC 3377, September 2002, http://www.ietf.org/rfc/rfc3377.txt 

[RFC3961] Raeburn, K., "Encryption and Checksum Specifications for Kerberos 5", RFC 3961, 
February 2005, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc3961.txt 

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network Authentication 
Service (V5)", RFC 4120, July 2005, https://www.rfc-editor.org/rfc/rfc4120 

[RFC4121] Zhu, L., Jaganathan, K., and Hartman, S., "The Kerberos Version 5 Generic Security 
Service Application Program Interface (GSS-API) Mechanism: Version 2", RFC 4121, July 2005, 

httphttps://www.ietfrfc-editor.org/rfcinfo/rfc4121.txt 

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN 
Namespace", RFC 4122, July 2005, https://www.rfc-editor.org/info/rfc4122 

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic 

Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178, October 
2005, https://www.rfc-editor.org/rfcinfo/rfc4178.txt 

[RFC4291] Hinden, R. and Deering, S., "IP Version 6 Addressing Architecture", RFC 4291, February 

2006, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc4291.txt 

[RFC4370] Weltman, R., "Lightweight Directory Access Protocol (LDAP) Proxied Authorization Control", 
RFC 4370, February 2006, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc4370.txt 

[RFC4532] Zeilenga, K., "Lightweight Directory Access Protocol (LDAP)", Who Am I?" Operation", RFC 
4532, June 2006, httphttps://www.ietfrfc-editor.org/rfcinfo/rfc4532.txt 

[RFC4757] Jaganathan, K., Zhu, L., and Brezak, J., "The RC4-HMAC Kerberos Encryption Types Used 
by Microsoft Windows", RFC 4757, December 2006, https://www.rfc-editor.org/rfcinfo/rfc4757 

[RFC5056] Williams, N., "On the Use of Channel Bindings to Secure Channels", RFC 5056, November 

2007, https://www.rfc-editor.org/rfcinfo/rfc5056.txt 

[RFC5929] Altman, J., Williams, N., and Zhu, L., "Channel Bindings for TLS", RFC 5929, July 2010, 
https://www.rfc-editor.org/rfcinfo/rfc5929.txt 

[RFC5952] Kawamura, S., Kawashima, M., "A Recommendation for IPv6 Address Text 
Representation", RFC 5952, August 2010, https://tools.ietfwww.rfc-editor.org/htmlinfo/rfc5952 

[RFC7049] Bormann, C., and Hoffman, P., "Concise Binary Object Representation (CBOR)", RFC 7049, 
October 2013, https://www.rfc-editor.org/info/rfc7049 



 

49 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

[RFC791] Postel, J., Ed., "Internet Protocol: DARPA Internet Program Protocol Specification", RFC 791, 
September 1981, https://www.rfc-editor.org/info/rfc791 

[RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and Rusch, A., "PKCS #1: RSA Cryptography 
Specifications Version 2.2", November 2016, https://www.rfc-editor.org/rfcinfo/rfc8017.txt 

[RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", RFC 
8259, December 2017, https://www.rfc-editor.org/rfcinfo/rfc8259.txt 

[W3C-WebAuthPKC1] Balfanz, D., Czeskis, A., Hodges, J., et al., Eds., "Web Authentication: An API for 
accessing Public Key Credentials Level 1", W3C Recommendation, March 2019, 
https://www.w3.org/TR/webauthn-1/ 

[X501] ITU-T, "Information Technology - Open Systems Interconnection - The Directory: The Models", 
Recommendation X.501, August 2005, http://www.itu.int/rec/T-REC-X.501-200508-S/en 

[XMLSCHEMA1] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML Schema Part 
1: Structures", W3C Recommendation, May 2001, https://www.w3.org/TR/2001/REC-xmlschema-1-

20010502/ 

[XMLSCHEMA2/2] Biron, P., and Malhotra, A., Eds., "XML Schema Part 2: Datatypes Second Edition", 
W3C Recommendation, October 2004, https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ 

[XPATH] Clark, J. and DeRose, S., "XML Path Language (XPath), Version 1.0", W3C Recommendation, 
November 1999, http://www.w3.org/TR/1999/REC-xpath-19991116/ 

1.2.2 (Updated Section) Informative References 

[ADDLG] Microsoft Corporation, "Security Briefs: Credentials and Delegation", September 2005, 
http://msdn.microsoft.com/en-us/magazine/cc163740.aspx 

[LISP15] McCarthy, J., Abrahams, P., Edwards, D., Hart, T., and Levin, M., "LISP 1.5 Programmers 
Manual", Cambridge, MA: The M.I.T. Press, 1965, ISBN-10: 0262130114. 

[MS-ADDM] Microsoft Corporation, "Active Directory Web Services: Data Model and Common 
Elements". 

[MS-AUTHSOD] Microsoft Corporation, "Authentication Services Protocols Overview". 

[MS-DSSP] Microsoft Corporation, "Directory Services Setup Remote Protocol". 

[MS-GPOD] Microsoft Corporation, "Group Policy Protocols Overview". 

[MS-SYS-ARCHIVE] Microsoft Corporation, "Windows System Overview", 
https://learn.microsoft.com/en-us/openspecs/windows_protocols/MS-WINPROTLP/df36f95e-6a6b-
48d6-a3ae-35a17674f546 

[MS-XCA] Microsoft Corporation, "Xpress Compression Algorithm". 

[MSDN-CAR] Microsoft Corporation, "Control Access Rights", https://msdn.microsoft.com/en-
us/library/ms680945(v=vs.85).aspx 

[MSDN-gethostbyname] Microsoft Corporation, "gethostbyname function", 
http://msdn.microsoft.com/en-us/library/windows/desktop/ms738524(v=vs.85).aspx 

[MSDOCS-SchUpd] Microsoft Corporation, "Schema Updates", https://learn.microsoft.com/en-
us/windows-server/identity/ad-ds/deploy/schema-updates 



 

50 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

[MSFT-CVE-2021-42278] Microsoft Corporation, "Active Directory Domain Services Elevation of 
Privilege Vulnerability", CVE-2021-42278, November 9, 2021, https://msrc.microsoft.com/update-

guide/vulnerability/CVE-2021-42278 

[MSFT-CVE-2021-42282] Microsoft Corporation, "Active Directory Domain Services Elevation of 
Privilege Vulnerability", CVE-2021-42282, November 9, 2021, https://msrc.microsoft.com/update-
guide/vulnerability/CVE-2021-42282 

[MSFT-CVE-2021-42291] Microsoft Corporation, "Active Directory Domain Services Elevation of 
Privilege Vulnerability", CVE-2021-42291, November 9, 2021, https://msrc.microsoft.com/update-
guide/vulnerability/CVE-2021-42291 

[MSFT-CVE-2022-21857] Microsoft Corporation, "Active Directory Domain Services Elevation of 
Privilege Vulnerability", CVE-2022-21857, January 11, 2022, https://msrc.microsoft.com/update-

guide/vulnerability/CVE-2022-21857 

[MSKB-3070083] Microsoft Corporation, "Domain join against a Windows Server 2012 R2-based 
domain controller fails if SPN is not unique in the forest", https://support.microsoft.com/en-

us/kb/3070083 

[MSKB-5011543] Microsoft Corporation, "March 22, 2022—KB5011543 (OS Builds 19042.1620, 
19043.1620, and 19044.1620) Preview", March 2022, https://support.microsoft.com/en-
us/topic/march-22-2022-kb5011543-os-builds-19042-1620-19043-1620-and-19044-1620-preview-
4fe2d1c0-720f-47fe-9523-75339bc107a1 

[MSKB-5011551] Microsoft Corporation, "March 22, 2022—KB5011551 (OS Build 17763.2746) 
Preview", March 2022, https://support.microsoft.com/en-us/topic/march-22-2022-kb5011551-os-
build-17763-2746-preview-690a59cd-059e-40f4-87e8-e9139cc65de4 

[MSKB-5011558] Microsoft Corporation, "March 22, 2022—KB5011558 (OS Build 20348.617) 
Preview", March 2022, https://support.microsoft.com/en-us/topic/march-22-2022-kb5011558-os-
build-20348-617-preview-8bb6ded6-7515-44eb-9fa0-e214eb6d7a75 

[MSKB-5011563] Microsoft Corporation, "March 28, 2022—KB5011563 (OS Build 22000.593) 

Preview", March 2022, https://support.microsoft.com/en-us/topic/march-28-2022-kb5011563-os-
build-22000-593-preview-40df54c9-b5a9-42e5-ae1c-9a33ff91ca91 

[MSKB-5023696] Microsoft Corporation, "March 14, 2023—KB5023696 (OS Builds 19042.2728, 
19044.2728, and 19045.2728)", March 2023, https://support.microsoft.com/en-us/topic/march-14-
2023-kb5023696-os-builds-19042-2728-19044-2728-and-19045-2728-9a6dafce-d387-410d-a1bc-

9ff5a9cafdc1 

[MSKB-5023698] Microsoft Corporation, "March 14, 2023—KB5023698 (OS Build 22000.1696)", March 
2023, https://support.microsoft.com/en-us/topic/march-14-2023-kb5023698-os-build-22000-1696-
3e54e715-3d5a-493b-bfad-4bb989516a7b 

[MSKB-5023702] Microsoft Corporation, "March 14, 2023—KB5023702 (OS Build 17763.4131)", March 
2023, https://support.microsoft.com/en-us/topic/march-14-2023-kb5023702-os-build-17763-4131-
f3e27d13-7dcc-4d32-826b-8d57e1600ccf 

[MSKB-5023705] Microsoft Corporation, "March 14, 2023—KB5023705 (OS Build 20348.1607)", March 
2023, https://support.microsoft.com/en-us/topic/march-14-2023-kb5023705-os-build-20348-1607-
31770c64-430e-4b0e-8eb4-175980e29f3b 

[MSKB-5023706] Microsoft Corporation, "March 14, 2023—KB5023706 (OS Build 22621.1413)", March 

2023, https://support.microsoft.com/en-us/topic/march-14-2023-kb5023706-os-build-22621-1413-
9d3f2de5-08e7-4462-8fba-d944201f4ae1 



 

51 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

[MSKB-5025297] Microsoft Corporation, "April 2023 KB5025297", April 2023, 
https://www.catalog.update.microsoft.com/Search.aspx?q=KB5025297 

[MSKB-5025298] Microsoft Corporation, "April 2023 KB5025298", April 2023, 
https://www.catalog.update.microsoft.com/Search.aspx?q=KB5025298 

[MSKB-5025305] Microsoft Corporation, "April 2023 - KB5025305", April 2023, 
https://www.catalog.update.microsoft.com/Search.aspx?q=KB5025305 

[MSKB-5026362] Microsoft Corporation, "May 2023 - KB5026362", May 2023, 
https://www.catalog.update.microsoft.com/Search.aspx?q=KB5026362 

[MSKB-5026370] Microsoft Corporation, "May 2023 - KB5026370", May 2023, 
https://www.catalog.update.microsoft.com/Search.aspx?q=KB5026370 

[RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -- Communication Layers", STD 3, RFC 
1122, October 1989, httphttps://www.rfc-editor.org/rfc/rfc1122.txt 

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980, https://www.rfc-
editor.org/info/rfc768 

[RFC792] Postel, J., "Internet Control Message Protocol", RFC 792, September 1981, 

httphttps://www.ietfrfc-editor.org/rfcinfo/rfc792.txt 

[RFC793] Postel, J., Ed., "Transmission Control Protocol: DARPA Internet Program Protocol 
Specification", RFC 793, September 1981, https://www.rfc-editor.org/info/rfc793 

[SPNNAMES] Microsoft Corporation, "Name Formats for Unique SPNs", http://msdn.microsoft.com/en-
us/library/ms677601.aspx 

[VLVDRAFT] Boreham, D., Sermersheim, J., and Kashi, A., "LDAP Extensions for Scrolling View 
Browsing of Search Results", draft-ietf-ldapext-ldapv3-vlv-09, November 2002, 

http://tools.ietf.org/html/draft-ietf-ldapext-ldapv3-vlv-09 

1.3 Overview 

This is the primary specification for Active Directory. The state model for this specification is 

prerequisite to the other specifications for Active Directory: [MS-DRSR] and [MS-SRPL]. 

Active Directory is either deployed as AD DS or as AD LDS. This document describes both forms. When 
the specification does not refer specifically to AD DS or AD LDS, it applies to both. 

The remainder of this section describes the structure of this document. 

The basic state model is specified in section 3.1.1.1. The basic state model is prerequisite to the 
remainder of the document. Section 3.1.1.1 also includes descriptive content to introduce key 
concepts and refer to places in the document where the full specification is given. 

The schema completes the state model and is specified in section 3.1.1.2. The schema is prerequisite 

to the remainder of the document. 

Active Directory is a server for LDAP. Section 3.1.1.3 specifies the extensions and variations of LDAP 
that are supported by Active Directory. 

LDAP is an access protocol that determines very little about the behavior of the data being accessed. 
Section 3.1.1.4 specifies read (LDAP Search) behaviors, and section 3.1.1.5 specifies update (LDAP 
Add, Modify, Modify DN, Delete) behaviors. Section 3.1.1.6 specifies background tasks required due to 

write operations, to the extent that those tasks are exposed by protocols. 



 

52 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

One of the update behaviors is the maintenance of the change log for use by Windows NT 4.0 backup 
domain controller (BDC) replication [MS-NRPC] section 3.6. The maintenance of this change log is 

specified in section 3.1.1.7. 

The security services that Active Directory offers clients of LDAP are specified in section 5.1. 

Active Directory contains a number of objects, visible through LDAP, that have special significance to 
the system. Section 6.1 specifies these objects. 

A server running Active Directory is part of a distributed system that performs replication. The 
Knowledge Consistency Checker (KCC) is a component that is used to create spanning trees for DC-to-
DC replication and is specified in section 6.2. 

A server running Active Directory is responsible for publishing the services that it offers, in order to 
eliminate the administrative burden of configuring clients to use particular servers running Active 

Directory. A server running Active Directory also implements the server side of the LDAP ping and 
mailslot ping protocols to aid clients in selecting among all the servers offering the same service. 
Section 6.3 specifies how a server running Active Directory publishes its services, and how a client 

needing some service can use this publication plus the LDAP ping or mailslot ping to locate a suitable 
server. 

Computers in a network with Active Directory can be put into a state called "domain joined"; when in 

this state, the computer can authenticate itself. Section 6.4 specifies both the state in Active Directory 
and the state on a computer required for the domain joined state. 

Each type of data stored in Active Directory has an associated function that compares two values to 
determine if they are equal and, if not, which is greater. Section 3.1.1.2 specifies all but one of these 
functions; the methodology for comparing two Unicode strings is specified in section 6.5. 

1.4 Relationship to Other Protocols 

This is the primary specification for Active Directory. The state model for this specification is 
prerequisite to the specification for Active Directory described in [MS-DRSR]. This Active Directory 

Technical Specification depends on the following protocols: 

▪ Lightweight Directory Access Protocol (LDAP) 

▪ Remote Procedure Call (RPC) 

▪ Domain Name System (DNS) 

 

Figure 1: Protocol and technical specification relationships 



 

53 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Other protocols make use of implementations of the Active Directory Technical Specification as a data 
store. 

1.5 Prerequisites/Preconditions 

Active Directory requires an IP network and a DNS infrastructure.  

1.6 Applicability Statement 

Active Directory is not suitable for storing very large attribute values because, for instance, there is no 
provision for check-pointing a large data transfer to allow restart after a failure. The bandwidth and 
latency of typical networks makes Active Directory unsuitable for storing volatile data in replicated 
attributes. Active Directory is especially suitable for storing security account data, including 
passwords, and email address book data.  

1.7 Versioning and Capability Negotiation 

Capability negotiation is performed using the root DSE as described in section 3.1.1.3.2. 

1.8 Vendor-Extensible Fields 

LDAP is not extensible by Active Directory applications. Applications extend the directory by adding 
objects, including schema objects to control the application objects. 

1.9 Standards Assignments 

Active Directory's extensions and variations of LDAP have no standards assignments. AD DS uses 
private allocations for its LDAP global catalog (GC) port (3268) and LDAP GC port with Secure Sockets 
Layer (SSL)/Transport Layer Security (TLS) (3269). 



 

54 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

2 Messages 

The following sections specify how LDAP is transported and denote common information such as bit 
flag values. 

2.1 Transport 

LDAP transport is specified in section 3.1.1.3, and in [RFC2251] section 5 (for LDAPv3), in [RFC1777] 
section 3 (for LDAPv2), and in [RFC1798] section 3.1 (for both LDAPv2 and LDAPv3).  

When sending any control to the DC which does not require a controlValue field, the client sets the 
controlValue field of the Control structure to an OctetString of length zero and explicitly encodes this 
rather than omitting the controlValue field as indicated in [RFC2251] section 4.12.1. The server 

MUST ignore any controlValue provided in such requests. 

2.2 Message Syntax 

This section specifies types and data structures used in the remainder of this document. These type 
specifications reference the following: 

▪ DWORD and FILETIME types: [MS-DTYP] sections 2.2.9 and 2.3.3. 

▪ repsFrom, repsTo, replUpToDateVector abstract attributes of an NC replica: [MS-DRSR] sections 
5.172, 5.173, and 5.166. 

▪ ReplUpToDateVector abstract type of a NC replica: [MS-DRSR] section 5.166.  

▪ kCCFailedConnections, kCCFailedLinks, RPCClientContexts, RPCOutgoingContexts, 
ldapConnections, and replicationQueue variables of a DC: [MS-DRSR] sections 5.111, 5.112, 
5.177, 5.178, 5.116, and 5.164. 

▪ Stamp variable of an attribute: [MS-DRSR] section 5.11. 

▪ Stamp variable of a link value: [MS-DRSR] section 5.118. 

▪ DS_REPL_ATTR_META_DATA_2, DS_REPL_CURSOR_3W, DS_REPL_KCC_DSA_FAILUREW, 
DS_REPL_NEIGHBORW, DS_REPL_OPW, DS_REPL_VALUE_META_DATA_2 types: [MS-DRSR] 
section 4.1.13.1. 

▪ IDL_DRSGetReplInfo method: [MS-DRSR] section 4.1.13. 

2.2.1 LCID-Locale Mapping Table 

The following table maps Windows locales (for example, French - France, Irish - Ireland) to numeric 
identifiers called locale identifiers (LCIDs). These numeric identifiers are used as input to the Unicode 
string comparison function specified in section 6.5. They are also used to name Display Specifier 

containers, specified in section 6.1.1.2.3, "Display Specifiers Container". 

LCID Language Location 

0436 Afrikaans South Africa 

041c Albanian Albania 

0401 Arabic Saudi Arabia 

0801 Arabic Iraq 



 

55 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LCID Language Location 

0c01 Arabic Egypt 

1001 Arabic Libya 

1401 Arabic Algeria 

1801 Arabic Morocco 

1c01 Arabic Tunisia 

2001 Arabic Oman 

2401 Arabic Yemen 

2801 Arabic Syria 

2c01 Arabic Jordan 

3001 Arabic Lebanon 

3401 Arabic Kuwait 

3801 Arabic U.A.E. 

3c01 Arabic Bahrain 

4001 Arabic Qatar 

042b Armenian Armenia 

082c Azeri (Cyrillic) Azerbaijan 

042c Azeri (Latin) Azerbaijan 

042d Basque Basque 

0423 Belarusian Belarus 

201a Bosnian (Cyrillic) Bosnia and Herzegovina 

141a Bosnian (Latin) Bosnia and Herzegovina 

0402 Bulgarian Bulgaria 

0403 Catalan Catalan 

0004 Chinese Simplified 

0404 Chinese Taiwan 

0804 Chinese PRC 

0c04 Chinese Hong Kong SAR 

1004 Chinese Singapore 

1404 Chinese Macao SAR 

7c04 Chinese Traditional 

041a Croatian Croatia 

101a Croatian (Latin) Bosnia and Herzegovina 



 

56 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LCID Language Location 

0405 Czech Czech Republic 

0406 Danish Denmark 

0465 Divehi Maldives 

0813 Dutch Belgium 

0413 Dutch Netherlands 

1009 English Canada 

2009 English Jamaica 

2409 English Caribbean 

2809 English Belize 

2c09 English Trinidad 

0809 English United Kingdom 

1809 English Ireland 

1c09 English South Africa 

3009 English Zimbabwe 

0c09 English Australia 

1409 English New Zealand 

3409 English Philippines 

0409 English United States 

0425 Estonian Estonia 

0438 Faroese Faroe Islands 

0464 Filipino Philippines 

040b Finnish Finland 

0c0c French Canada 

040c French France 

180c French Monaco 

100c French Switzerland 

080c French Belgium 

140c French Luxembourg 

0462 Frisian Netherlands 

0456 Galician Galician 

0437 Georgian Georgia 

0407 German Germany 



 

57 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LCID Language Location 

0807 German Switzerland 

0c07 German Austria 

1407 German Liechtenstein 

1007 German Luxembourg 

0408 Greek Greece 

0447 Gujarati India 

040d Hebrew Israel 

0439 Hindi India 

040e Hungarian Hungary 

040f Icelandic Iceland 

0421 Indonesian Indonesia 

085d Inuktitut (Latin) Canada 

083c Irish Ireland 

0434 isiXhosa South Africa 

0435 isiZulu South Africa 

0410 Italian Italy 

0810 Italian Switzerland 

0411 Japanese Japan 

044b Kannada India 

043f Kazakh Kazakhstan 

0441 Kiswahili Kenya 

0457 Konkani India 

0412 Korean Korea 

0440 Kyrgyz Kirghizstan 

0426 Latvian Latvia 

0427 Lithuanian Lithuania 

046e Luxembourgish Luxembourg 

042f North Macedonian North Macedonia, Republic of 

043e Malay Malaysia 

083e Malay Brunei Darussalam 

043a Maltese Malta 

0481 Maori New Zealand 



 

58 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LCID Language Location 

047a Mapudungun Chile 

044e Marathi India 

047c Mohawk Mohawk 

0450 Mongolian (Cyrillic) Mongolia 

0461 Nepali Nepal 

0414 Norwegian (Bokmål) Norway 

0814 Norwegian (Nynorsk) Norway 

0463 Pashto Afghanistan 

0429 Persian Iran 

0415 Polish Poland 

0416 Portuguese Brazil 

0816 Portuguese Portugal 

0446 Punjabi (Gurmukhi) India 

046b Quechua Bolivia 

086b Quechua Ecuador 

0c6b Quechua Peru 

0418 Romanian Romania 

0417 Romansh Switzerland 

0419 Russian Russia 

243b Sami, Inari Finland 

143b Sami, Lule Sweden 

103b Sami, Lule Norway 

043b Sami, Northern Norway 

083b Sami, Northern Sweden 

0c3b Sami, Northern Finland 

203b Sami, Skolt Finland 

183b Sami, Southern Norway 

1c3b Sami, Southern Sweden 

044f Sanskrit India 

0c1a Serbian (Cyrillic) Serbia 

0c1a Serbian (Cyrillic) Montenegro 

1c1a Serbian (Cyrillic) Bosnia and Herzegovina 



 

59 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LCID Language Location 

081a Serbian (Latin) Serbia 

081a Serbian (Latin) Montenegro 

181a Serbian (Latin) Bosnia and Herzegovina 

046c Sesotho sa Leboa South Africa 

0432 Setswana South Africa 

041b Slovak Slovakia 

0424 Slovenian Slovenia 

080a Spanish Mexico 

100a Spanish Guatemala 

140a Spanish Costa Rica 

180a Spanish Panama 

1c0a Spanish Dominican Republic 

200a Spanish Venezuela 

240a Spanish Colombia 

280a Spanish Peru 

2c0a Spanish Argentina 

300a Spanish Ecuador 

340a Spanish Chile 

3c0a Spanish Paraguay 

400a Spanish Bolivia 

440a Spanish El Salvador 

480a Spanish Honduras 

4c0a Spanish Nicaragua 

500a Spanish Commonwealth of Puerto Rico 

380a Spanish Uruguay 

0c0a Spanish (International Sort) Spain 

040a Spanish (Traditional Sort) Spain 

041d Swedish Sweden 

081d Swedish Finland 

045a Syriac Syria 

0449 Tamil India 

0444 Tatar Russia 



 

60 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LCID Language Location 

044a Telugu India 

041e Thai Thailand 

041f Turkish Turkey 

0422 Ukrainian Ukraine 

0420 Urdu Pakistan 

0843 Uzbek (Cyrillic) Uzbekistan 

0443 Uzbek (Latin) Uzbekistan 

042a Vietnamese Vietnam 

0452 Welsh United Kingdom 

 

2.2.2 DS_REPL_NEIGHBORW_BLOB 

The DS_REPL_NEIGHBORW_BLOB structure is a representation of a tuple from the repsFrom or 

repsTo abstract attribute of an NC replica. This structure, retrieved using an LDAP search method, is 
an alternative representation of DS_REPL_NEIGHBORW, retrieved using the IDL_DRSGetReplInfo RPC 
method. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

oszNamingContext 

oszSourceDsaDN 

oszSourceDsaAddress 

oszAsyncIntersiteTransportDN 

dwReplicaFlags 

dwReserved 

uuidNamingContextObjGuid (16 bytes) 

... 

... 

uuidSourceDsaObjGuid (16 bytes) 

... 

... 



 

61 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

uuidSourceDsaInvocationID (16 bytes) 

... 

... 

uuidAsyncIntersiteTransportObjGuid (16 bytes) 

... 

... 

usnLastObjChangeSynced 

... 

usnAttributeFilter 

... 

ftimeLastSyncSuccess 

... 

ftimeLastSyncAttempt 

... 

dwLastSyncResult 

cNumConsecutiveSyncFailures 

data (variable) 

... 

oszNamingContext (4 bytes): A 32-bit offset, in bytes, from the address of this structure to a null-
terminated Unicode string that contains the naming context (NC) to which this replication state 
data pertains. 

oszSourceDsaDN (4 bytes): A 32-bit offset, in bytes, from the address of this structure to a null-
terminated Unicode string that contains the distinguished name (DN) of the nTDSDSA object of 

the source server to which this replication state data pertains. Each source server has different 
associated neighbor data. 

oszSourceDsaAddress (4 bytes): A 32-bit offset, in bytes, from the address of this structure to a 
null-terminated Unicode string that contains the transport-specific network address of the source 

server—that is, a directory name service name for RPC/IP replication, or a Simple Mail Transfer 
Protocol (SMTP) address for an SMTP replication. 

oszAsyncIntersiteTransportDN (4 bytes): A 32-bit offset, in bytes, from the address of this 
structure to a null-terminated Unicode string that contains the DN of the interSiteTransport object 



 

62 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

(as specified in [MS-ADSC] section 2.65) that corresponds to the transport over which replication 
is performed. This member contains NULL for RPC/IP replication. 

dwReplicaFlags (4 bytes): A 32-bit bit field containing a set of flags that specify attributes and 
options for the replication data. This can be zero or a combination of one or more of the following 

flags presented in big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X N 
C 
N 

C 
C 

X X X X X X N 
S 

X X X F 
S 
N 

F 
S 
P 

X X X X X X T 
W 
S 

X A I 
T 

D 
S 
S 

S 
O 
S 

W X X X X 

X: Unused. Must be zero and ignored. 

W (DS_REPL_NBR_WRITEABLE, 0x00000010): The NC replica is writable. 

SOS (DS_REPL_NBR_SYNC_ON_STARTUP, 0x00000020): Replication of this NC from this 
source is attempted when the destination server is booted. 

DSS (DS_REPL_NBR_DO_SCHEDULED_SYNCS, 0x00000040): Perform replication on a 
schedule. 

AIT (DS_REPL_NBR_USE_ASYNC_INTERSITE_TRANSPORT, 0x00000080): Perform 
replication indirectly through the Inter-Site Messaging Service. This flag is set only when 
replicating over SMTP. This flag is not set when replicating over inter-site RPC/IP. 

TWS (DS_REPL_NBR_TWO_WAY_SYNC, 0x00000200): When inbound replication is 
complete, the destination server requests the source server to synchronize in the reverse 
direction. 

FSP (DS_REPL_NBR_FULL_SYNC_IN_PROGRESS, 0x00010000): The destination server is 

performing a full synchronization from the source server. 

FSN (DS_REPL_NBR_FULL_SYNC_NEXT_PACKET, 0x00020000): The last packet from the 
source indicated a modification of an object that the destination server has not yet created. The 
next packet to be requested instructs the source server to put all attributes of the modified 
object into the packet. 

NS (DS_REPL_NBR_NEVER_SYNCED, 0x00200000): A synchronization has never been 
successfully completed from this source. 

CC (DS_REPL_NBR_COMPRESS_CHANGES, 0x10000000): Changes received from this source 
are to be compressed. 

NCN (DS_REPL_NBR_NO_CHANGE_NOTIFICATIONS, 0x20000000): Applies to repsFrom 
only. The domain controller (DC) storing this repsFrom is not configured to receive change 
notifications from this source. 

dwReserved (4 bytes): Reserved for future use. 

uuidNamingContextObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP] section 2.3.4, 
specifying the objectGUID of the NC that corresponds to oszNamingContext. 

uuidSourceDsaObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP] section 2.3.4, 
specifying the objectGUID of the nTDSDSA object that corresponds to oszSourceDsaDN. 



 

63 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

uuidSourceDsaInvocationID (16 bytes): A GUID structure, as defined in [MS-DTYP] section 2.3.4, 
specifying the invocationId used by the source server as of the last replication attempt. 

uuidAsyncIntersiteTransportObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP] 
section 2.3.4, specifying the objectGUID of the intersite transport object that corresponds to 

oszAsyncIntersiteTransportDN. 

usnLastObjChangeSynced (8 bytes): An update sequence number (USN) value, as defined in 
section 3.1.1.1.9, containing the USN of the last object update received. 

usnAttributeFilter (8 bytes): A USN value, as defined in section 3.1.1.1.9, containing the 
usnLastObjChangeSynced value at the end of the last complete, successful replication cycle, or 0 if 
none. 

ftimeLastSyncSuccess (8 bytes): A FILETIME structure that contains the date and time that the 

last successful replication cycle was completed from this source. All members of this structure are 
zero if the replication cycle has never been completed. 

ftimeLastSyncAttempt (8 bytes): A FILETIME structure that contains the date and time of the last 
replication attempt from this source. All members of this structure are zero if the replication has 
never been attempted. 

dwLastSyncResult (4 bytes): A 32-bit unsigned integer specifying a Windows error code associated 

with the last replication attempt from this source. Contains ERROR_SUCCESS if the last attempt 
was successful or replication was not attempted. 

cNumConsecutiveSyncFailures (4 bytes): A 32-bit integer specifying the number of failed 
replication attempts that have been made from this source since the last successful replication 
attempt or since the source was added as a neighbor, if no previous attempt succeeded. 

data (variable): This field contains all the null-terminated strings that are pointed to by the offset 
fields in the structure (oszNamingContext, oszSourceDsaDN, oszSourceDsaAddress, 

oszAsyncIntersiteTransportDN). The strings are packed into this field, and the offsets can be used 
to determine the start of each string. 

All multibyte fields have little-endian byte ordering. 

2.2.3 DS_REPL_KCC_DSA_FAILUREW_BLOB 

The DS_REPL_KCC_DSA_FAILUREW_BLOB structure is a representation of a tuple from the 
kCCFailedConnections or kCCFailedLinks variables of a DC. This structure, retrieved using an LDAP 
search method, is an alternative representation of DS_REPL_KCC_DSA_FAILUREW, retrieved using the 
IDL_DRSGetReplInfo RPC method. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

oszDsaDN 

uuidDsaObjGuid (16 bytes) 

... 

... 

ftimeFirstFailure 



 

64 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

... 

cNumFailures 

dwLastResult 

data (variable) 

... 

oszDsaDN (4 bytes): A 32-bit offset, in bytes, from the address of this structure to a null-terminated 
string that contains the DN of the nTDSDSA object of the source server. 

uuidDsaObjGuid (16 bytes): A GUID structure, defined in [MS-DTYP] section 2.3.4, specifying the 

objectGUID of the object represented by the oszDsaDN member. 

ftimeFirstFailure (8 bytes): A FILETIME structure, the content of which depends on the requested 
binary replication data. 

Attribute requested Meaning  

msDS-
ReplConnectionFailures 

Contains the date and time that the first failure occurred when attempting to 
establish a replica link to the source server. 

msDS-ReplLinkFailures Contains the date and time that the first failure occurred when replicating 
from the source server. 

cNumFailures (4 bytes): A 32-bit unsigned integer specifying the number of consecutive failures 
since the last successful replication. 

dwLastResult (4 bytes): A 32-bit unsigned integer specifying the error code associated with the 

most recent failure, or ERROR_SUCCESS if no failures occurred. 

data (variable): The data field contains the null-terminated string that contains the DN of the 
nTDSDSA object of the source server. 

All multibyte fields have little-endian byte ordering. 

2.2.4 DS_REPL_OPW_BLOB 

The DS_REPL_OPW_BLOB structure is a representation of a tuple from the replicationQueue 
variable of a DC. This structure, retrieved using an LDAP search method, is an alternative 
representation of DS_REPL_OPW, retrieved using the IDL_DRSGetReplInfo RPC method. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

ftimeEnqueued 

... 

ulSerialNumber 

ulPriority 



 

65 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

opType 

ulOptions 

oszNamingContext 

oszDsaDN 

oszDsaAddress 

uuidNamingContextObjGuid (16 bytes) 

... 

... 

uuidDsaObjGuid (16 bytes) 

... 

... 

data (variable) 

... 

ftimeEnqueued (8 bytes): A FILETIME structure that contains the date and time that this operation 
was added to the queue. 

ulSerialNumber (4 bytes): An unsigned integer specifying the identifier of the operation. The 

counter used to assign this identifier is volatile; it is reset during startup of a DC. Therefore, these 
identifiers are only unique between restarts of a DC. 

ulPriority (4 bytes):  An unsigned integer specifying the priority value of this operation. Tasks with a 
higher priority value are executed first. The priority is calculated by the server based on the type 
of operation and its parameters. 

opType (4 bytes): Contains one of the following values that indicate the type of operation that this 

structure represents. 

Operation Value 

DS_REPL_OP_TYPE_SYNC 0 

DS_REPL_OP_TYPE_ADD 1 

DS_REPL_OP_TYPE_DELETE 2 

DS_REPL_OP_TYPE_MODIFY 3 

DS_REPL_OP_TYPE_UPDATE_REFS 4 

ulOptions (4 bytes): Zero or more bits from the Directory Replication Service (DRS) options defined 
in [MS-DRSR] section 5.41, the interpretation of which depends on the opType. 



 

66 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

oszNamingContext (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure 
to a null-terminated string that contains the DN of the NC associated with this operation (for 

example, the NC to be synchronized for DS_REPL_OP_TYPE_SYNC). 

oszDsaDN (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure to a null-

terminated string that contains the DN of the nTDSDSA object of the remote server corresponding 
to this operation. For example, the server from which to ask for changes for 
DS_REPL_OP_TYPE_SYNC. This can be NULL. 

oszDsaAddress (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure to a 
null-terminated string that contains the transport-specific network address of the remote server 
associated with this operation. For example, the DNS or SMTP address of the server from which to 
ask for changes for DS_REPL_OP_TYPE_SYNC. This can be NULL. 

uuidNamingContextObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP] section 2.3.4, 
specifying the objectGUID of the NC identified by oszNamingContext. 

uuidDsaObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP] section 2.3.4, specifying 

the objectGUID of the directory system agent object identified by oszDsaDN. 

data (variable): This field contains all the null-terminated strings that are pointed to by the offset 
fields in the structure (oszNamingContext, oszDsaDN, oszDsaAddress). The strings are 

packed into this field and the offsets can be used to determine the start of each string. 

All multibyte fields have little-endian byte ordering. 

2.2.5 DS_REPL_QUEUE_STATISTICSW_BLOB 

The DS_REPL_QUEUE_STATISTICSW_BLOB structure contains the statistics related to the 

replicationQueue variable of a DC, returned by reading the msDS-
ReplQueueStatistics (section 3.1.1.3.2.30) rootDSE attribute. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

ftimeCurrentOpStarted 

... 

cNumPendingOps 

ftimeOldestSync 

... 

ftimeOldestAdd 

... 

ftimeOldestMod 

... 

ftimeOldestDel 



 

67 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

... 

ftimeOldestUpdRefs 

... 

ftimeCurrentOpStarted (8 bytes): A FILETIME structure that contains the date and time that the 
currently running operation started. 

cNumPendingOps (4 bytes): An unsigned integer specifying the number of currently pending 

operations. 

ftimeOldestSync (8 bytes): A FILETIME structure that contains the date and time of the oldest 
synchronization operation. 

ftimeOldestAdd (8 bytes): A FILETIME structure that contains the date and time of the oldest add 

operation. 

ftimeOldestMod (8 bytes): A FILETIME structure that contains the date and time of the oldest 

modification operation.  

ftimeOldestDel (8 bytes): A FILETIME structure that contains the date and time of the oldest delete 
operation. 

ftimeOldestUpdRefs (8 bytes): A FILETIME structure that contains the date and time of the oldest 
reference update operation. 

All multibyte fields have little-endian byte ordering. 

2.2.6 DS_REPL_CURSOR_BLOB 

The DS_REPL_CURSOR_BLOB is the packet representation of the ReplUpToDateVector type ([MS-

DRSR] section 5.166) of an NC replica. This structure, retrieved using an LDAP search method, is an 
alternative representation of DS_REPL_CURSOR_3W, retrieved using the IDL_DRSGetReplInfo RPC 
method. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

uuidSourceDsaInvocationID (16 bytes) 

... 

... 

usnAttributeFilter 

... 

fTimeLastSyncSuccess 

... 

oszSourceDsaDN 



 

68 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

data (variable) 

... 

uuidSourceDsaInvocationID (16 bytes): A GUID structure, defined in [MS-DTYP] section 2.3.4, 
specifying the invocationId of the originating server to which the usnAttributeFilter corresponds. 

usnAttributeFilter (8 bytes): A USN value, as defined in section 3.1.1.1.9, containing the maximum 

USN to which the destination server can indicate that it has recorded all changes originated by the 
given server at USNs less than or equal to this USN. This is used to filter changes at replication 
source servers that the destination server has already applied.  

fTimeLastSyncSuccess (8 bytes): A FILETIME structure that contains the date and time of the last 
successful synchronization operation. 

oszSourceDsaDN (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure to 

a null-terminated Unicode string. The string contains the distinguished name of the directory 
service agent (DSA) that corresponds to the source server to which this replication state data 
applies. 

data (variable): This field contains the null-terminated string pointed to by the offset field in the 
structure (oszSourceDsaDN). The offset can be used to determine the start of the string. 

All multibyte fields have little-endian byte ordering. 

2.2.7 DS_REPL_ATTR_META_DATA_BLOB 

The DS_REPL_ATTR_META_DATA_BLOB packet is a representation of a stamp variable (of type 
AttributeStamp) of an attribute. This structure, retrieved using an LDAP search method, is an 
alternative representation of DS_REPL_ATTR_META_DATA_2, retrieved using the IDL_DRSGetReplInfo 
RPC method. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

oszAttributeName 

dwVersion 

ftimeLastOriginatingChange 

... 

uuidLastOriginatingDsaInvocationID (16 bytes) 

... 

... 

usnOriginatingChange 

... 



 

69 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

usnLocalChange 

... 

oszLastOriginatingDsaDN 

data (variable) 

... 

oszAttributeName (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure 
to a null-terminated Unicode string that contains the LDAP display name of the attribute 
corresponding to this metadata. 

dwVersion (4 bytes): Contains the dwVersion of this attribute's AttributeStamp, as specified in 

section 3.1.1.1.9.  

ftimeLastOriginatingChange (8 bytes): Contains the timeChanged of this attribute's 
AttributeStamp, as specified in section 3.1.1.1.9.  

uuidLastOriginatingDsaInvocationID (16 bytes): Contains the uuidOriginating of this attribute's 
AttributeStamp, as specified in section 3.1.1.1.9. 

usnOriginatingChange (8 bytes): Contains the usnOriginating of this attribute's AttributeStamp, as 
specified in section 3.1.1.1.9. 

usnLocalChange (8 bytes): A USN value, defined in section 3.1.1.1.9, specifying the USN on the 
destination server (the server from which the metadata information is retrieved) at which the last 
change to this attribute was applied. This value typically is different on all servers.  

oszLastOriginatingDsaDN (4 bytes): Contains a 32-bit offset, in bytes, from the address of this 

structure to a null-terminated Unicode string that contains the DN of the nTDSDSA object of the 

server that originated the last replication. 

data (variable): This field contains all the null-terminated strings that are pointed to by the offset 
fields in the structure (oszAttributeName, oszLastOriginatingDsaDN). The strings are packed into 
this field, and the offsets can be used to determine the start of each string. 

All multibyte fields have little-endian byte ordering. 

2.2.8 DS_REPL_VALUE_META_DATA_BLOB 

The DS_REPL_VALUE_META_DATA_BLOB packet is a representation of a stamp variable (of type 
LinkValueStamp) of a link value. This structure, retrieved using an LDAP search method, is an 
alternative representation of DS_REPL_VALUE_META_DATA_2, retrieved using the 
IDL_DRSGetReplInfo RPC method. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

oszAttributeName 

oszObjectDn 

cbData 



 

70 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

pbData 

ftimeDeleted 

... 

ftimeCreated 

... 

dwVersion 

ftimeLastOriginatingChange 

... 

uuidLastOriginatingDsaInvocationID (16 bytes) 

... 

... 

usnOriginatingChange 

... 

usnLocalChange 

... 

oszLastOriginatingDsaDN 

data (variable) 

... 

oszAttributeName (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure 
to a null-terminated Unicode string that contains the LDAP display name of the attribute 
corresponding to this metadata. 

oszObjectDn (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure to a 
null-terminated Unicode string that contains the DN of the object that this attribute belongs to. 

cbData (4 bytes): Contains the number of bytes in the pbData array. 

pbData (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure to a buffer 
that contains the attribute replication metadata. The cbData member contains the length, in 
bytes, of this buffer. 

ftimeDeleted (8 bytes): Contains the timeDeleted of this link value's LinkValueStamp, as specified 
in section 3.1.1.1.9. 



 

71 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

ftimeCreated (8 bytes): Contains the timeCreated of this link value's LinkValueStamp, as specified 
in section 3.1.1.1.9. 

dwVersion (4 bytes): Contains the dwVersion of this link value's LinkValueStamp, as specified in 
section 3.1.1.1.9. 

ftimeLastOriginatingChange (8 bytes): Contains the timeChanged of this link value's 
LinkValueStamp, as specified in section 3.1.1.1.9. 

uuidLastOriginatingDsaInvocationID (16 bytes): Contains the uuidOriginating of this link value's 
LinkValueStamp, as specified in section 3.1.1.1.9. 

usnOriginatingChange (8 bytes): Contains the usnOriginating of this link value's LinkValueStamp, 
as specified in section 3.1.1.1.9. 

usnLocalChange (8 bytes): Specifies the USN, as found on the server from which the metadata 

information is being retrieved, at which the last change to this attribute was applied. This value is 
typically different on all servers. 

oszLastOriginatingDsaDN (4 bytes): Contains a 32-bit offset, in bytes, from the address of this 
structure to a null-terminated Unicode string that contains the DN of the nTDSDSA object of the 
server that originated the last replication. 

data (variable): This field contains all the null-terminated strings that are pointed to by the offset 

fields in the structure (oszAttributeName, oszObjectDn, oszLastOriginatingDsaDN) and the buffer 
pointed to by pbData. The strings and buffers are packed into this field (aligned at 32-bit 
boundaries), and the offsets can be used to determine the start of each string. 

All multibyte fields have little-endian byte ordering. 

2.2.9 Search Flags 

The following table defines the valid search flags used on attributes, as specified in section 3.1.1.2.3. 
The flags are presented in big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X S 
E 

B 
O 

X 
L 

R 
O 

N 
V 

C 
F 

S 
T 

T 
P 

C 
P 

P 
R 

A 
R 

P 
I 

I 
X 

X: Unused. Must be zero and ignored. 

IX (fATTINDEX, 0x00000001): Specifies a hint to the DC to create an index for the attribute. 

PI (fPDNTATTINDEX, 0x00000002): Specifies a hint to the DC to create an index for the container 
and the attribute. 

AR(fANR, 0x00000004): Specifies that the attribute is a member of the ambiguous name resolution 
(ANR) set. 

PR (fPRESERVEONDELETE, 0x00000008): Specifies that the attribute MUST be preserved on 
objects after deletion of the object (that is, when the object is transformed to a tombstone, 
deleted-object, or recycled-object). This flag is ignored on link attributes, objectCategory, and 
sAMAccountType. 

CP (fCOPY, 0x00000010): Specifies a hint to LDAP clients that the attribute is intended to be copied 

when copying the object. This flag is not interpreted by the server. 



 

72 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

TP (fTUPLEINDEX, 0x00000020): Specifies a hint for the DC to create a tuple index for the 
attribute. This will affect the performance of searches where the wildcard appears at the front of 

the search string. 

ST (fSUBTREEATTINDEX, 0x00000040): Specifies a hint for the DC to create subtree index for a 

Virtual List View (VLV) search. 

CF (fCONFIDENTIAL, 0x00000080): Specifies that the attribute is confidential. An extended access 
check (section 3.1.1.4.4) is required. 

Note: The effect of this flag can vary depending on whether the LDAP_SERVER_DIRSYNC_OID 
control (section 3.1.1.3.4.1.3) or the LDAP_SERVER_DIRSYNC_EX_OID control (section 
3.1.1.3.4.1.29) is present in an LDAP search request. If neither of these controls is present, a 
confidential attribute will not be included in the LDAP search response. If one of these controls is 

present and the LDAP_DIRSYNC_OBJECT_SECURITY flag is set (section 3.1.1.3.4.1.3), a 
confidential attribute might be included in the response, but its value will be empty. 

NV (fNEVERVALUEAUDIT, 0x00000100): Specifies that auditing of changes to individual values 

contained in this attribute MUST NOT be performed. Auditing is outside of the state model. 

RO (fRODCFilteredAttribute, 0x00000200): Specifies that the attribute is a member of the filtered 
attribute set. 

XL (fEXTENDEDLINKTRACKING, 0x00000400): Specifies a hint to the DC to perform additional 
implementation-specific, nonvisible tracking of link values. The behavior of this hint is outside the 
state model. 

BO (fBASEONLY, 0x00000800): Specifies that the attribute is not to be returned by search 
operations that are not scoped to a single object. Read operations that would otherwise return an 
attribute that has this search flag set instead fail with operationsError / 
ERROR_DS_NON_BASE_SEARCH. 

SE (fPARTITIONSECRET, 0x00001000): Specifies that the attribute is a partition secret. An 
extended access check is required. 

Flags that specify "hints" only direct the server to create certain indices that affect the system 
performance. The effects of these flags are outside the state model. Implementations are permitted to 
ignore these flags. 

2.2.10 System Flags 

The following table defines the valid system flags used on directory objects. The flags are presented in 
big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

D 
D 

A 
R 

A 
M 

A 
L 

D 
R 

D 
M 

D 
E 

X X X X X X X X X X X X X X X X X X X R 
D 

B 
S 

O 
P 

C 
S 

P 
S 

N 
R 

X: Unused. Must be zero and ignored. 

NR (FLAG_ATTR_NOT_REPLICATED or FLAG_CR_NTDS_NC, 0x00000001): When used on an 

attributeSchema object, it specifies that this attribute is not replicated. If it is used on a crossRef 
object, it specifies that the NC that the crossRef is for is an Active Directory NC. 

PS (FLAG_ATTR_REQ_PARTIAL_SET_MEMBER or FLAG_CR_NTDS_DOMAIN, 0x00000002): 
When used on an attributeSchema object, it specifies that the attribute is a member of a partial 
attribute set (PAS). If used on a crossRef object, it specifies that the NC is a domain NC. 



 

73 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

CS (FLAG_ATTR_IS_CONSTRUCTED or FLAG_CR_NTDS_NOT_GC_REPLICATED, 
0x00000004): When used on an attributeSchema object, this flag specifies that the attribute is a 

constructed attribute. If used on a crossRef object, it specifies that the NC is not to be replicated to 
GCs. 

OP (FLAG_ATTR_IS_OPERATIONAL, 0x00000008): Only used on an attributeSchema object. It 
specifies that the attribute (2) is an operational attribute. 

BS (FLAG_SCHEMA_BASE_OBJECT, 0x00000010): Only used on attributeSchema and 
classSchema object. It specifies that this attribute or class is part of the base schema. Modifications 
to base schema objects are specially restricted. 

RD (FLAG_ATTR_IS_RDN, 0x00000020): Only used on an attributeSchema object. It specifies 
that this attribute can be used as an RDN attribute. 

DE (FLAG_DISALLOW_MOVE_ON_DELETE, 0x02000000): Specifies that the object does not 
move to the Deleted Objects container when the object is deleted. 

DM (FLAG_DOMAIN_DISALLOW_MOVE, 0x04000000): Specifies that if the object is in a domain 
NC, the object cannot be moved. 

DR (FLAG_DOMAIN_DISALLOW_RENAME, 0x08000000): Specifies that if the object is in a 
domain NC, the object cannot be renamed. 

AL (FLAG_CONFIG_ALLOW_LIMITED_MOVE, 0x10000000): Specifies that if the object is in the 
config NC, the object can be moved, with restrictions. 

AM (FLAG_CONFIG_ALLOW_MOVE, 0x20000000): Specifies that if the object is in the config NC, 
the object can be moved. 

AR (FLAG_CONFIG_ALLOW_RENAME, 0x40000000): Specifies that if the object is in the config 
NC, the object can be renamed. 

DD (FLAG_DISALLOW_DELETE, 0x80000000): Specifies that the object cannot be deleted. 

2.2.11 schemaFlagsEx Flags 

The following table defines the valid schemaFlagsEx flags that are used on attributes, as specified in 
section 3.1.1.2.3. The flags are presented in big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X C 
R 

X: Unused. MUST be zero and ignored. 

CR (FLAG_ATTR_IS_CRITICAL, 0x00000001): Specifies that the attribute is not a member of the 

filtered attribute set even if the fRODCFilteredAttribute flag is set. For more details, see sections 
3.1.1.2.3 and 3.1.1.2.3.5. 

2.2.12 (Updated Section) Group Type Flags 

Constants for defining group type. These constants define the values that are used in the groupType 
attribute. 



 

74 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Symbolic name  Value  

GROUP_TYPE_BUILTIN_LOCAL_GROUP 0x00000001 

GROUP_TYPE_ACCOUNT_GROUP 0x00000002 

GROUP_TYPE_RESOURCE_GROUP 0x00000004 

GROUP_TYPE_UNIVERSAL_GROUP 0x00000008 

GROUP_TYPE_APP_BASIC_GROUP 0x00000010 

GROUP_TYPE_APP_QUERY_GROUP 0x00000020 

GROUP_TYPE_SECURITY_ENABLED 0x80000000 

GROUP_TYPE_BUILTIN_LOCAL_GROUP: Specifies a group that is created by the system. 

GROUP_TYPE_ACCOUNT_GROUP: Specifies a global group. 

GROUP_TYPE_RESOURCE_GROUP: Specifies a domain local group. 

GROUP_TYPE_UNIVERSAL_GROUP: Specifies a universal group. 

GROUP_TYPE_APP_BASIC_GROUP: Groups of this type are not used by Active Directory. This 
constant is included in this document because the value of this constant is used by Active 
Directory in processing the groupType attribute (see section 3.1.1.5.4.2.2). 

GROUP_TYPE_APP_QUERY_GROUP: Groups of this type are not used by Active Directory. This 
constant is included in this document because the value of this constant is used by Active 
Directory in processing the groupType attribute. 

GROUP_TYPE_SECURITY_ENABLED: Specifies a security-enabled group. 

The flag GROUP_TYPE_BUILTIN_LOCAL_GROUP is reserved for use by the system, and can be set in 

combination with other flags on system-created Builtin objects (see section 6.1.1.4.12). The flag 
GROUP_TYPE_BUILTIN_LOCAL_GROUP cannot be set by clients. 

Otherwise, the flags GROUP_TYPE_ACCOUNT_GROUP, GROUP_TYPE_RESOURCE_GROUP, 
GROUP_TYPE_UNIVERSAL_GROUP, GROUP_TYPE_APP_BASIC_GROUP, and 
GROUP_TYPE_APP_QUERY_GROUP are mutually exclusive, and only one value mustMUST be set. The 

flag GROUP_TYPE_SECURITY_ENABLED can be combined using a bitwise OR with flags 
GROUP_TYPE_BUILTIN_LOCAL_GROUP, GROUP_TYPE_ACCOUNT_GROUP, 
GROUP_TYPE_RESOURCE_GROUP, and GROUP_TYPE_UNIVERSAL_GROUP. 

2.2.13 Group Security Flags 

Constants for defining group security attributes. 

Symbolic name Value 

SE_GROUP_OWNER 0x00000008 

SE_GROUP_USE_FOR_DENY_ONLY 0x00000010 

SE_GROUP_OWNER: Specifies that a particular user is the owner of the group. 

SE_GROUP_USE_FOR_DENY_ONLY: Specifies that the group is used only for denial of access. 



 

75 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

2.2.14 Security Privilege Flags 

Constants for defining security privilege. 

Symbolic name  Value  

SE_SECURITY_PRIVILEGE 0x00000008 

SE_TAKE_OWNERSHIP_PRIVILEGE 0x00000009 

SE_RESTORE_PRIVILEGE 0x00000012 

SE_DEBUG_PRIVILEGE 0x00000014 

SE_ENABLE_DELEGATION_PRIVILEGE 0x0000001B 

SE_SECURITY_PRIVILEGE: Specifies the privilege to manage auditing and the security log. 

SE_TAKE_OWNERSHIP_PRIVILEGE: Specifies the privilege to take ownership of objects. 
Possession of this privilege overrides the DACL on an object and gives the possessor implicit 
RIGHT_WRITE_OWNER access. 

SE_RESTORE_PRIVILEGE: Specifies the privilege to restore objects. 

SE_DEBUG_PRIVILEGE: Specifies the privilege to debug the system. 

SE_ENABLE_DELEGATION_PRIVILEGE: Specifies the privilege to enable accounts to be trusted for 
delegation. 

2.2.15 Domain RID Values 

Constants for defining domain relative identifiers (RIDs). 

Symbolic name  Value  

DOMAIN_USER_RID_ADMIN 0x000001F4 

DOMAIN_USER_RID_KRBTGT 0x000001F6 

DOMAIN_GROUP_RID_ADMINS 0x00000200 

DOMAIN_GROUP_RID_CONTROLLERS 0x00000204 

DOMAIN_GROUP_RID_SCHEMA_ADMINS 0x00000206 

DOMAIN_GROUP_RID_ENTERPRISE_ADMINS 0x00000207 

DOMAIN_GROUP_RID_READONLY_CONTROLLERS 0x00000209 

DOMAIN_ALIAS_RID_ADMINS 0x00000220 

DOMAIN_ALIAS_RID_ACCOUNT_OPS 0x00000224 

DOMAIN_ALIAS_RID_SYSTEM_OPS 0x00000225 

DOMAIN_ALIAS_RID_PRINT_OPS 0x00000226 

DOMAIN_ALIAS_RID_BACKUP_OPS 0x00000227 

DOMAIN_ALIAS_RID_REPLICATOR 0x00000228 

DOMAIN_USER_RID_ADMIN: The administrative user account in a domain. 



 

76 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

DOMAIN_USER_RID_KRBTGT: The Kerberos ticket-granting ticket (TGT) account in a domain. 

DOMAIN_GROUP_RID_ADMINS: The domain administrators' group. 

DOMAIN_GROUP_RID_CONTROLLERS: The DCs' group. All DCs in the domain are members of the 
group. 

DOMAIN_GROUP_RID_SCHEMA_ADMINS: The schema administrators' group. Members of this 
group can modify the Active Directory schema. 

DOMAIN_GROUP_RID_ENTERPRISE_ADMINS: The enterprise administrators' group. Members of 
this group have full access to all domains in the Active Directory forest. Enterprise administrators 
are responsible for forest-level operations, such as adding or removing new domains. 

DOMAIN_GROUP_RID_READONLY_CONTROLLERS: The read-only domain controllers' group. All 
read-only DCs in the domain are members of this group. 

DOMAIN_ALIAS_RID_ADMINS: The administrators' group in the built-in domain. 

DOMAIN_ALIAS_RID_ACCOUNT_OPS: A group that permits control over nonadministrator 
accounts. 

DOMAIN_ALIAS_RID_SYSTEM_OPS: A group that performs system administrative functions, not 
including security functions. It establishes network shares, controls printers, unlocks workstations, 
and performs other operations. 

DOMAIN_ALIAS_RID_PRINT_OPS: A group that controls printers and print queues. 

DOMAIN_ALIAS_RID_BACKUP_OPS: A group that is used for controlling assignment of file backup 
and restoring user rights. 

DOMAIN_ALIAS_RID_REPLICATOR: A group responsible for copying security databases to the 
Windows NT operating system backup controllers. 

2.2.16 (Updated Section) userAccountControl Bits 

The userAccountControl bits are bit flags that describe various qualities of a security account. The 
flags are presented in big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X P 
S 

N 
A 

T 
A 

P 
E 

D 
R 

D 
K 

N 
D 

T 
D 

S 
R 

X D 
P 

X X S 
T 

W 
T 

I 
D 

X N X E 
T 

C 
C 

N 
R 

L H 
R 

X D X 

X: Unused. Must be zero and ignored. 

D (ADS_UF_ACCOUNT_DISABLE, 0x00000002): Specifies that the account is not enabled for 

authentication. 

HR (ADS_UF_HOMEDIR_REQUIRED, 0x00000008): Specifies that the homeDirectory attribute is 
required. 

L (ADS_UF_LOCKOUT, 0x00000010): Specifies that the account is temporarily locked out. 

NR (ADS_UF_PASSWD_NOTREQD, 0x00000020): Specifies that the password-length policy, as 
specified in [MS-SAMR] section 3.1.1.8.1, does not apply to this user. 



 

77 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

CC (ADS_UF_PASSWD_CANT_CHANGE, 0x00000040): Specifies that the user cannot change his 
or her password. 

ET (ADS_UF_ENCRYPTED_TEXT_PASSWORD_ALLOWED, 0x00000080): Specifies that the 
cleartext password is to be persisted. 

N (ADS_UF_NORMAL_ACCOUNT, 0x00000200): Specifies that the account is the default account 
type that represents a typical user. 

ID (ADS_UF_INTERDOMAIN_TRUST_ACCOUNT, 0x00000800): Specifies that the account is for 
a domain-to-domain trust. 

WT (ADS_UF_WORKSTATION_TRUST_ACCOUNT, 0x00001000): Specifies that the account is a 
computer account for a computer that is a member of this domain. 

ST (ADS_UF_SERVER_TRUST_ACCOUNT, 0x00002000): Specifies that the account is a computer 

account for a DC. 

DP (ADS_UF_DONT_EXPIRE_PASSWD, 0x00010000): Specifies that the password does not 
expire for the account. 

SR (ADS_UF_SMARTCARD_REQUIRED, 0x00040000): Specifies that a smart card is required to 
log in to the account. 

TD (ADS_UF_TRUSTED_FOR_DELEGATION, 0x00080000): Used by the Kerberos protocol. This 

bit indicates that the "OK as Delegate" ticket flag, as specified in [RFC4120] section 2.8, MUST be 
set. 

ND (ADS_UF_NOT_DELEGATED, 0x00100000): Used by the Kerberos protocol. This bit indicates 
that the ticket-granting tickets (TGTs) of this account and the service tickets obtained by this 
account are not marked as forwardable or proxiable when the forwardable or proxiable ticket flags 
are requested. For more details, see [RFC4120]. 

DK (ADS_UF_USE_DES_KEY_ONLY, 0x00200000): Used by the Kerberos protocol. This bit 

indicates that only des-cbc-md5 or des-cbc-crc keys, as specified in [RFC3961], are used in the 
Kerberos protocols for this account. 

DR (ADS_UF_DONT_REQUIRE_PREAUTH, 0x00400000): Used by the Kerberos protocol. This bit 
indicates that the account is not required to present valid preauthentication data, as described in 
[RFC4120] section 7.5.2. 

PE (ADS_UF_PASSWORD_EXPIRED, 0x00800000): Specifies that the password age on the user 
has exceeded the maximum password age policy. 

TA (ADS_UF_TRUSTED_TO_AUTHENTICATE_FOR_DELEGATION, 0x01000000): Used by the 
Kerberos protocol. When set, this bit indicates that the account (when running as a service) obtains 
an S4U2self service ticket (as specified in [MS-SFU]) with the forwardable flag set. If this bit is 
cleared, the forwardable flag is not set in the S4U2self service ticket. 

NA (ADS_UF_NO_AUTH_DATA_REQUIRED, 0x02000000): Used by the Kerberos protocol. This 

bit indicates that when the Key Distribution Center (KDC) is issuing a service ticket for this account, 

the Privilege Attribute Certificate (PAC) MUST NOT be included. For more details, see [RFC4120]. 

PS (ADS_UF_PARTIAL_SECRETS_ACCOUNT, 0x04000000): Specifies that the account is a 
computer account for a read-only domain controller (RODC). If this bit is set, the 
ADS_UF_WORKSTATION_TRUST_ACCOUNT mustMUST also be set. This flag is only interpreted by 
a DC whose DC functional level is DS_BEHAVIOR_WIN2008 or greater. 



 

78 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

2.2.17 Optional Feature Values 

The optional feature values are constants for defining behaviors of optional features. 

Symbolic name Value 

FOREST_OPTIONAL_FEATURE 0x00000001 

DOMAIN_OPTIONAL_FEATURE 0x00000002 

DISABLABLE_OPTIONAL_FEATURE 0x00000004 

SERVER_OPTIONAL_FEATURE 0x00000008 

FOREST_OPTIONAL_FEATURE: Specifies that the scope of the optional feature is forest-wide. 

DOMAIN_OPTIONAL_FEATURE: Specifies that the scope of the optional feature is domain-wide. 

DISABLABLE_OPTIONAL_FEATURE: Specifies that the optional feature can be disabled. 

SERVER_OPTIONAL_FEATURE: Specifies that the scope of the optional feature is server-wide. 

For more details, see section 3.1.1.9. 

2.2.18 Claims Wire Structures 

The claims wire structures are structures related to claims using interface definition language (IDL) 
format. This section defines those structures. The term marshal refers to converting these structures 
into the appropriate wire format. 

The following figure illustrates the nesting of various larger claims structures for descriptive reference 
purposes.  



 

79 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 

Figure 2: Nesting of claims structures 

2.2.18.1 CLAIM_ID 

The CLAIM_ID type is a null-terminated UTF-16 string used for typing claim IDs. 

 typedef [string] wchar_t* CLAIM_ID; 
 typedef [string] wchar_t** PCLAIM_ID; 

2.2.18.2 CLAIM_TYPE 

The CLAIM_TYPE enumeration enumerates various value types of a claim. 

 typedef  enum _CLAIM_TYPE 
 { 
   CLAIM_TYPE_INT64 = 1, 
   CLAIM_TYPE_UINT64 = 2, 
   CLAIM_TYPE_STRING = 3, 
   CLAIM_TYPE_BOOLEAN = 6 
 } CLAIM_TYPE, 
  *PCLAIM_TYPE; 



 

80 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

CLAIM_TYPE_INT64:  The value type of the claim is LONG64. 

CLAIM_TYPE_UINT64:  The value type of the claim is ULONG64. 

CLAIM_TYPE_STRING:  The value type of the claim is a null-terminated string of Unicode 
characters. 

CLAIM_TYPE_BOOLEAN:  The value type of the claim is ULONG64; a value is set to 1 to specify 
TRUE, or 0 to specify FALSE. 

2.2.18.3 CLAIMS_SOURCE_TYPE 

The CLAIMS_SOURCE_TYPE enumeration specifies the source of the claims. 

 typedef  enum _CLAIMS_SOURCE_TYPE 
 { 
   CLAIMS_SOURCE_TYPE_AD = 1, 
   CLAIMS_SOURCE_TYPE_CERTIFICATE 
 } CLAIMS_SOURCE_TYPE; 

Note  No semantics are to be attached to these values other than those specified in section 3. 

2.2.18.4 CLAIMS_COMPRESSION_FORMAT 

The CLAIMS_COMPRESSION_FORMAT enumeration specifies the source of the compression 
algorithm that is used for encoding claims in a CLAIMS_SET_METADATA structure. 

 typedef  enum _CLAIMS_COMPRESSION_FORMAT 
 { 
   COMPRESSION_FORMAT_NONE = 0, 
   COMPRESSION_FORMAT_LZNT1 = 2, 
   COMPRESSION_FORMAT_XPRESS = 3, 
   COMPRESSION_FORMAT_XPRESS_HUFF = 4 
 } CLAIMS_COMPRESSION_FORMAT; 

COMPRESSION_FORMAT_NONE:  No compression. 

COMPRESSION_FORMAT_LZNT1:  The LZNT1 compression algorithm is used. For more 
information, see [MS-XCA] section 2.5. 

COMPRESSION_FORMAT_XPRESS:  The Xpress LZ77 compression algorithm is used. For more 

information, see [MS-XCA] sections 2.3 and 2.4. 

COMPRESSION_FORMAT_XPRESS_HUFF:  The Xpress LZ77+Huffman compression algorithm is 
used. For more details, see [MS-XCA] sections 2.1 and 2.2. 

2.2.18.5 CLAIM_ENTRY 

The CLAIM_ENTRY structure specifies a single claim. 

 typedef struct _CLAIM_ENTRY { 
   CLAIM_ID Id; 
   CLAIM_TYPE Type; 
   [switch_is(Type), switch_type(CLAIM_TYPE)]  
     union { 
     [case(CLAIM_TYPE_INT64)]  
       struct { 
       [range(1, 10*1024*1024)] ULONG ValueCount; 



 

81 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

       [size_is(ValueCount)] LONG64* Int64Values; 
     }; 
     [case(CLAIM_TYPE_UINT64)]  
       struct { 
       [range(1, 10*1024*1024)] ULONG ValueCount; 
       [size_is(ValueCount)] ULONG64* Uint64Values; 
     }; 
     [case(CLAIM_TYPE_STRING)]  
       struct { 
       [range(1, 10*1024*1024)] ULONG ValueCount; 
       [size_is(ValueCount), string] LPWSTR* StringValues; 
     }; 
     [case(CLAIM_TYPE_BOOLEAN)]  
       struct { 
       [range(1, 10*1024*1024)] ULONG ValueCount; 
       [size_is(ValueCount)] ULONG64* BooleanValues; 
     }; 
     [default]       ; 
   } Values; 
 } CLAIM_ENTRY, 
  *PCLAIM_ENTRY; 

Id:  Specifies the claim identifier. 

Type:  Specifies the type of the data in the Values union. Refer to section 2.2.18.2 for allowed values 
and their interpretation. 

Values:  A union of arrays of the various types of claim values that a CLAIM_ENTRY can contain. The 
actual type of the elements is specified by the Type member. 

ValueCount:  Specifies the number of array elements in the Int64Values member. 

Int64Values:  An array of LONG64 values of the claim. The array has ValueCount elements. 

ValueCount:  Specifies the number of array elements in the Uint64Values member. 

Uint64Values:  An array of ULONG64 values of the claim. The array has ValueCount elements. 

ValueCount:  Specifies the number of array elements in the StringValues member. 

StringValues:  An array of null-terminated, Unicode string values of the claim. The array has 
ValueCount elements. 

ValueCount:  Specifies the number of array elements in the BooleanValues member. 

BooleanValues:  An array of ULONG64 values of the claim. The array has ValueCount elements. 

2.2.18.6 CLAIMS_ARRAY 

The CLAIMS_ARRAY structure specifies an array of CLAIM_ENTRY structures and the associated 
claims source type. 

 typedef struct _CLAIMS_ARRAY { 
   CLAIMS_SOURCE_TYPE usClaimsSourceType; 
   ULONG ulClaimsCount; 
   [size_is(ulClaimsCount)] PCLAIM_ENTRY ClaimEntries; 
 } CLAIMS_ARRAY, 
  *PCLAIMS_ARRAY; 

usClaimsSourceType:  Specifies the source of the claims. 



 

82 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

ulClaimsCount:  Specifies the number of CLAIM_ENTRY elements in the ClaimEntries member of 
this structure. 

ClaimEntries:  An array that contains ulClaimsCount number of CLAIM_ENTRY elements. 

2.2.18.7 CLAIMS_SET 

The CLAIMS_SET structure specifies CLAIMS_ARRAY structures, each from a different claims source. 

 typedef struct _CLAIMS_SET { 
   ULONG ulClaimsArrayCount; 
   [size_is(ulClaimsArrayCount)] PCLAIMS_ARRAY ClaimsArrays; 
   USHORT usReservedType; 
   ULONG ulReservedFieldSize; 
   [size_is(ulReservedFieldSize)] BYTE* ReservedField; 
 } CLAIMS_SET, 
  *PCLAIMS_SET; 

ulClaimsArrayCount:  Specifies the number of CLAIMS_ARRAY elements that are in the 

ClaimsArrays member. This field MUST be greater than or equal to 1. 

ClaimsArrays:  An array containing ulClaimsArrayCount number of CLAIMS_ARRAY structures. 

usReservedType:  This field is not used. 

ulReservedFieldSize:  Specifies the length, in bytes, of the ReservedField member. 

ReservedField:  A byte array containing ulReservedFieldSize bytes. 

2.2.18.8 CLAIMS_SET_METADATA 

The CLAIMS_SET_METADATA structure specifies an encoded CLAIMS_SET structure with 
information about the encoding. 

 typedef struct _CLAIMS_SET_METADATA { 
   ULONG ulClaimsSetSize; 
   [size_is(ulClaimsSetSize)] BYTE* ClaimsSet; 
   CLAIMS_COMPRESSION_FORMAT usCompressionFormat; 
   ULONG ulUncompressedClaimsSetSize; 
   USHORT usReservedType; 
   ULONG ulReservedFieldSize; 
   [size_is(ulReservedFieldSize)] BYTE* ReservedField; 
 } CLAIMS_SET_METADATA, 
  *PCLAIMS_SET_METADATA; 

ulClaimsSetSize:  Contains the size, in bytes, of the ClaimsSet member. 

ClaimsSet:  A byte array of length ulClaimsSetSize bytes. This field contains a CLAIMS_SET 
structure that is encoded as described in section 3.1.1.11.2.5. 

usCompressionFormat:  Specifies the compression algorithm used for encoding a CLAIMS_SET 
structure, as specified in section 3.1.1.11.2.5. 

ulUncompressedClaimsSetSize:  Specifies the size of the partially encoded CLAIMS_SET structure 
before compression, the fully encoded version of which is stored in the ClaimsSet member. 

usReservedType:  The server MUST set this member to 0. The client MUST ignore this member. 

ulReservedFieldSize:  Specifies the size, in bytes, of the ReservedField member. 



 

83 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

ReservedField:  A byte array containing ulReservedFieldSize elements. 

2.2.18.9 CLAIMS_BLOB 

The CLAIMS_BLOB structure is generated from a CLAIMS_SET structure, as specified in section 
3.1.1.11.2.5. 

 typedef struct CLAIMS_BLOB { 
   ULONG ulBlobSizeinBytes; 
   [size_is(ulBlobSizeinBytes)] BYTE* EncodedBlob; 
 } CLAIMS_BLOB, 
  *PCLAIMS_BLOB; 

ulBlobSizeinBytes:  The size of the EncodedBlob member, in bytes. 

EncodedBlob:  A byte array of length ulBlobSizeinBytes bytes that contains an encoded 
CLAIMS_SET_METADATA structure. 

2.2.19 (Updated Section) MSDS-MANAGEDPASSWORD_BLOB 

The MSDS-MANAGEDPASSWORD_BLOB structure is a representation of a group-managed service 
account's password information. This structure is returned as the msDS-
ManagedPassword (section 3.1.1.4.5.39) constructed attribute. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Version Reserved 

Length 

CurrentPasswordOffset PreviousPasswordOffset 

QueryPasswordIntervalOffset UnchangedPasswordIntervalOffset 

CurrentPassword (variable) 

... 

PreviousPassword (optional) (variable) 

... 

AlignmentPadding (variable) 

... 

QueryPasswordInterval 

... 

UnchangedPasswordInterval 



 

84 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

... 

Version (2 bytes): A 16-bit unsigned integer that defines the version of the msDS-ManagedPassword 
binary large object (BLOB). The Version field MUST be set to 0x0001. 

Reserved (2 bytes): A 16-bit unsigned integer that MUST be set to 0x0000. 

Length (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the msDS-
ManagedPassword BLOB. 

CurrentPasswordOffset (2 bytes): A 16-bit offset, in bytes, from the beginning of this structure to 
the CurrentPassword field. The CurrentPasswordOffset field MUST NOT be set to 0x0000. 

PreviousPasswordOffset (2 bytes): A 16-bit offset, in bytes, from the beginning of this structure to 
the PreviousPassword field. If this field is set to 0x0000, then the account has no previous 

password. 

QueryPasswordIntervalOffset (2 bytes): A 16-bit offset, in bytes, from the beginning of this 
structure to the QueryPasswordInterval field. 

UnchangedPasswordIntervalOffset (2 bytes): A 16-bit offset, in bytes, from the beginning of this 
structure to the UnchangedPasswordInterval field. 

CurrentPassword (variable): A null-terminated WCHAR string containing the cleartext current 
password for the account. 

PreviousPassword (optional) (variable): A null-terminated WCHAR string containing the cleartext 
previous password for the account. If PreviousPasswordOffset is 0x0000, then this field MUST 
be absent. 

AlignmentPadding (variable): A padding field used to align the QueryPasswordInterval field to a 
64-bit boundary. This field is ignored by the receiver. This field SHOULD set to zero and MUST be 
ignored on receipt. 

QueryPasswordInterval (8 bytes): A 64-bit unsigned integer containing the length of time, in units 

of 10^(-7) seconds, after which the receiver mustMUST re-query the password. The 
QueryPasswordInterval field MUST be placed on a 64-bit boundary. 

UnchangedPasswordInterval (8 bytes): A 64-bit unsigned integer containing the length of time, in 
units of 10^(-7) seconds, before which password queries will always return this password value. 
The UnchangedPasswordInterval field MUST be placed on a 64-bit boundary. 

2.2.20 Key Credential Link Structures 

2.2.20.1 Key Credential Link Constants 

The KEYCREDENTIALLINK_BLOB structure (section 2.2.20.2) contains a Version field that can be 
set to one of the following values. 

Symbolic name  Value  

KEY_CREDENTIAL_LINK_VERSION_2 0x00000200 

The KEYCREDENTIALLINK_ENTRY of type KeyUsage (section 2.2.20.6) can have one of the 
following values. 



 

85 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Symbolic name  Value  

KEY_USAGE_NGC 0x01 

KEY_USAGE_FIDO 0x07 

KEY_USAGE_FEK 0x08 

The KEYCREDENTIALLINK_ENTRY of type KeySource can have one of the following values. 

Symbolic name  Value  

KEY_SOURCE_AD 0x00 

 

2.2.20.2 (Updated Section) KEYCREDENTIALLINK_BLOB 

The KEYCREDENTIALLINK_BLOB structure is a representation of a single credential stored as a 

series of values. This structure is stored as the binary portion of the msDS-KeyCredentialLink DN-
Binary attribute (section 3.1.1.5.3.1.1.6). The structure contains a Version field followed by an array 
of KEYCREDENTIALLINK_ENTRY structures (section 2.2.20.3). The 
KEYCREDENTIALLINK_ENTRY structure mustMUST be sorted by their Identifier fields in increasing 
order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Version 

First KEYCREDENTIALLINK_ENTRY (variable) 

... 

Second KEYCREDENTIALLINK_ENTRY (variable) 

... 

Nth KEYCREDENTIALLINK_ENTRY (variable) 

... 

Version (4 bytes): A 32-bit unsigned integer that defines the version of the 

KEYCREDENTIALLINK_BLOB.  The Version field MUST be set to 

KEY_CREDENTIAL_LINK_VERSION_2. 

KEYCREDENTIALLINK_ENTRY (variable): A sequence of KEYCREDENTIALLINK_ENTRY 
structures (section 2.2.20.3) that describe various aspects of a single credential. 

2.2.20.3 KEYCREDENTIALLINK_ENTRY 

The KEYCREDENTIALLINK_ENTRY structure describes various aspects of a single credential. 



 

86 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Length Identifier Value (variable) 

... 

Length (2 bytes): A 16-bit unsigned integer that specifies the length of the Value field. 

Identifier (1 byte): An 8-bit unsigned integer that specifies the type of data that is stored in the 
Value field. 

Value (variable): A series of bytes whose size and meaning are defined by the Identifier field. 

The available identifiers and the semantics of the related data are defined in section 2.2.20.6. 

2.2.20.4 (Updated Section) CUSTOM_KEY_INFORMATION 

The CUSTOM_KEY_INFORMATION structure is a  structure that contains key information. 

Note: This structure has two possible representations. In the first representation, only the Version 

and Flags fields are present; in this case the structure has a total size of two bytes. In the second 
representation, all additional fields shown below are also present; in this case, the structure's total 
size is variable. Differentiating between the two representations mustMUST be inferred using only the 
total size. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Version Flags VolType SupportsNotification 

FekKeyVersion KeyStrength Reserved 

... 

... 

EncodedExtendedCKI (variable) 

... 

... 

... 

Version (1 byte): An 8-bit unsigned integer that mustMUST be set to 1. 

Flags (1 byte): An 8-bit unsigned integer that specifies zero or more of the following bit-flag values: 

Name and Value Description 

CUSTOMKEYINFO_FLAGS_ATTESTATION 

0x01 

Reserved for future use.  



 

87 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Name and Value Description 

CUSTOMKEYINFO_FLAGS_MFA_NOT_USED 

0x02 

During creation of this key, the requesting client 
authenticated using only a single credential. 

VolType (1 byte): An 8-bit unsigned integer that specifies one of the following volume types: 

Name and Value Description 

None 

0x00 

Volume not specified. 

OSV 

0x01 

Operating system volume. 

FDV 

0x02 

Fixed data volume. 

RDV 

0x03 

Removable data volume. 

SupportsNotification (1 byte): An 8-bit unsigned integer that specifies whether the device 
associated with this credential supports notification. 

Name and Value Description 

None 

0x00 

Notification is not supported. 

Supported 

0x01 

Notification is supported. 

FekKeyVersion (1 byte): An 8-bit unsigned integer that specifies the version of the buffer stored in 
KEY_USAGE_FEK (section 2.2.20.5.3). This field mustMUST be set to 1. 

KeyStrength (1 byte): An 8-bit unsigned integer that specifies the strength of the NGC key. 

Name and Value Description 

Unknown 

0x00 

Key strength is unknown. 

Weak 

0x01 

Key strength is weak. 

Normal 

0x02 

Key strength is normal. 

Reserved (10 bytes): Reserved for future use. 

EncodedExtendedCKI (variable): Extended custom key information. The contents of this field are 
defined in section 2.2.20.4.1. 

2.2.20.4.1 (Updated Section) EncodedExtendedCKI 

The EncodedExtendedCKI structure contains extended custom key information. 



 

88 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Version Size Data (variable) 

... 

... 

... 

Version (1 byte): An 8-bit unsigned integer that mustMUST be 0. 

Size (1 byte): An 8-bit unsigned integer that specifies the size of the Data field. 

Data (variable): A Concise Binary Object Representation (CBOR)-encoded blob whose length is 

specified by the Size field. CBOR is a binary data serialization format defined in [RFC7049]. The 
contents of this field are opaque and result in no behavioral impact on the protocol. 

2.2.20.5 KeyMaterial 

The content of the KeyMaterial entry (see section 2.2.20.6) is dependent upon the content of the 
KeyUsage entry, as shown in the following sections. 

2.2.20.5.1 KEY_USAGE_NGC 

The key material is a 2048-bit RSA [RFC8017] public key. 

2.2.20.5.2 KEY_USAGE_FIDO 

The key material is a UTF-8 encoding of a JSON serialized object [RFC8259] of the following structure: 

 { 
     "version": {"type": "integer"}, 
     "authData": {"type": "string"}, 
     "x5c": 
     { 
         "type": "array", 
         "items": {"type": "string"} 
     }, 
     "displayName": {"type": "string"} 
 } 

version: An integer that specifies the version of the structure. 

authData: A base64-encoded Authenticator Data structure, as specified in section 6.1 of [W3C-
WebAuthPKC1]. 

x5c: An array of base64-encoded certificates. 

displayName: A string representing the display name that is associated with the credential. 

2.2.20.5.3 KEY_USAGE_FEK 

The key material is a combination of RSA 2048 [RFC8017] and AES-256 KDF keys. 



 

89 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

2.2.20.6 KEYCREDENTIALLINK_ENTRY Identifiers 

The KEYCREDENTIALLINK_ENTRY structure, Identifier and Value fields are defined in section 
2.2.20.3 where the Value is a series of bytes whose size and meaning are defined by the Identifier. 

The following table lists the available identifiers, data length, and the semantics of the related data. 

Identifier value 
Length in bytes of the 
data in the Value field  

Description of the data stored in the 
Value field 

KeyID (0x01) 32 A SHA256 hash of the Value field of the 
KeyMaterial entry. 

KeyHash (0x02) 32 A SHA256 hash of all entries following this 
entry. 

KeyMaterial (0x03) Variable Key material of the credential. 

KeyUsage (0x04) 1 Must be set to one of KEY_USAGE_NGC, 
KEY_USAGE_FIDO, or KEY_USAGE_FEK. 

KeySource (0x05) 1 Must be set to KEY_SOURCE_AD. 

DeviceId (0x06) 16 Contains a device object identifier, or all 
zeros. 

CustomKeyInformation (0x07) 2 Must contain a 
CUSTOM_KEY_INFORMATION structure. 

KeyApproximateLastLogonTimeStamp 
(0x08) 

8 The approximate time this key was last 
used, in FILETIME format. 

KeyCreationTime (0x09) 8 The approximate time this key was created, 
in FILETIME format. 

All keys MUST contain KeyID, KeyMaterial, and KeyUsage entries. Keys SHOULD contain KeyHash, 

KeyApproximateLastLogonTimeStamp, and KeyCreationTime entries. 

2.2.21 Service Principal Name 

The service principal name is the name that a client uses to identify a service for mutual 
authentication. For more details, see [RFC1964] section 2.1.1. 

A service principal name (SPN) (2) is a string with the following format: 

 serviceclass "/" hostname [":"port | ":"instancename] ["/" servicename] 

An SPN (2) consists of either two parts or three parts, each separated by a forward slash ("/"). The 

first part is the service class, the second part is the host name, and the third part (if present) is the 
service name. The host name part can optionally be suffixed with either a ":port" component or an 

":instancename" component. A port component is distinguished from an instancename component by 
being entirely composed of numeric digits. 

For example, "ldap/dc-01.fabrikam.com/fabrikam.com" is a three-part SPN where "ldap" is the service 
class name, "dc-01.fabrikam.com" is the host name, and "fabrikam.com" is the service name. 

See Mutual Authentication (section 5.1.1.4) for an example of how three-part SPNs (2) are used. See 
[SPNNAMES] for more information about SPN format and composing a unique SPN. 



 

90 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3 Details 

The following sections specify details of the abstract data model and directory operations for Active 
Directory. 

When an LDAP operation results in an error, the error is expressed in this document in the form: 

▪ LDAP error / Extended error code 

Where the Extended error code is either a Windows error code or the literal string "<unrestricted>". 

The LDAP error is specified in the resultCode field of an LDAP response.  See [RFC2251] section 
4.1.10 for the specification of resultCode in an LDAP response.  See section 3.1.1.3.1.9 for the 
specification of Extended error codes in an LDAP response. 

Note: This document contains tables that specify the capabilities of applicable Windows Server 
releases or ADAM versions. The table columns are indexed, as appropriate, using the following key. 

The order of products in this key does not necessarily imply chronology. 

Column index Product version 

A Windows 2000 operating system 

B Windows 2000 operating system Service Pack 1 (SP1) 

C Windows 2000 Server operating system Service Pack 3 (SP3) 

D Windows Server 2003 operating system 

E Windows Server 2003 operating system with Service Pack 1 
(SP1) 

DR2 Windows Server 2003 R2 operating system 

F Windows Server 2003 operating system with Service Pack 2 
(SP2) 

G Active Directory Application Mode (ADAM) 

H ADAM RTW 

I ADAM SP1 

J Windows Server 2008 operating system 

K Windows Server 2008 AD DS 

L Windows Server 2008 AD LDS 

M Windows Server 2008 R2 operating system 

N Windows Server 2008 R2 AD DS 

P Windows Server 2008 R2 AD LDS 

R Windows Server 2012 operating system 

S Windows Server 2012 AD DS 

T Windows Server 2012 AD LDS 

U Windows Server 2012 R2 operating system 



 

91 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Column index Product version 

V Windows Server 2012 R2 AD DS 

W Windows Server 2012 R2 AD LDS 

X Windows Server 2016 operating system 

Y Windows Server 2016 AD DS 

Z Windows Server 2016 AD LDS 

A2 Windows Server v1709 operating system 

B2 Windows Server v1709 AD DS 

C2 Windows Server v1709 AD LDS 

D2 Windows Server v1803 operating system 

E2 Windows Server v1803 AD DS 

F2 Windows Server v1803 AD LDS 

G2 Windows Server v1809 operating system 

H2 Windows Server v1809 AD DS 

I2 Windows Server v1809 AD LDS 

J2 Windows Server 2019 operating system 

K2 Windows Server 2019 AD DS 

L2 Windows Server 2019 AD LDS 

M2  Windows Server v1903 operating system AD DS 

N2  Windows Server v1903 AD LDS 

P2  Windows Server 2022 operating system AD DS 

Q2  Windows Server 2022 AD LDS 

R2  Windows Server 2022, 23H2 operating system AD DS 

S2  Windows Server 2022, 23H2 AD LDS 

 

3.1 Common Details 

3.1.1 Abstract Data Model 

Sections 3.1.1.1 and 3.1.1.2 describe a conceptual model of possible data organization that an 
implementation maintains to participate in this protocol. The described organization is provided to 
facilitate the explanation of how the protocol behaves. This document does not mandate that 

implementations adhere to this model as long as their external behavior is consistent with that 
described in this document. 



 

92 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.1 State Model 

3.1.1.1.1 (Updated Section) Scope 

The specification of all Active Directory protocols is based on a definition, shared by all Active 
Directory protocols, of the state of a server running Active Directory that is implied by the protocols. 
Call this the "state model" of Active Directory. 

The Active Directory state model is divided into two categories: 

1. Certain state that is represented as objects and attributes within Active Directory is promoted 
directly into the state model. State within Active Directory becomes part of the state model if it 
satisfies one of the following conditions: 

1. It is replicated. 

2. It is nonreplicated, but a protocol exists in the protocol documentation set of applicable 
Windows Server releases whose behavior is dependent upon the state. 

The representation of nonreplicated state that is only accessed by a process running on the same 
server, that is itself implementing Active Directory, is private to the implementation. Therefore, 
such attributes are not promoted directly into the state model. It might still be required for this 

state to be modeled as described in category 2 later in this section. 

Excluded from the second condition above is all generic access by browsing tools such as ldp.exe 
that can access any attribute of any object in the directory. If ldp.exe or a similar tool covered by 
a Windows license can display or even modify a nonreplicated attribute of an object using only the 
attribute's syntax as defined by the schema, that does not make the attribute part of the state 
model. If ldp.exe or a similar tool covered by a Windows license accesses a nonreplicated attribute 
and decodes or encodes its value using information outside the attribute's syntax as defined by 

the schema, that nonreplicated attribute is included in the state model under condition 1 (2) 
above. For example, by using LDP, it is possible to look at a nonreplicated attribute using an 
attribute's syntax of type String(Unicode). However, if the string stored in that attribute would be 

an XML content defined by an external XSD, then if LDP had special knowledge of how to interpret 
that XML, that nonreplicated attribute would be included in the state model under condition 1 (2) 
above. 

2. Other state, however represented within Active Directory, is "abstracted" in the state model. Such 

state is included only as necessitated by the requirement that a licensee implementation of the 
protocols of applicable Windows Server releases has to be capable of receiving messages and 
responding in the same manner as applicable Windows Server releases. 

For example, certain values sent by the Active Directory replication protocol [MS-DRSR] are 
accompanied by metadata. If the replicated values are stored by the receiving system, it 
mustMUST also store the metadata associated with the values. Otherwise, the receiving system 

will make incorrect responses to subsequent replication requests. These incorrect responses will, 
in general, prevent replication from converging. So this metadata mustMUST be included within 
the state model. The specific way that this metadata is stored by Active Directory, and the 
algorithms that optimize access to this metadata, are excluded from the state model. 

The various indexes used by the Active Directory implementation to improve the performance of 
directory search are another example of state within Active Directory. These indexes have no 
effect, other than performance, on the protocol responses that Active Directory makes. Therefore, 

these indexes are not included in the state model. 

In this specification, the first category of state is modeled in a variant of LDAP information structures: 
naming contexts, objects, attributes, and values. These structures are defined precisely in the 
following sections. The set of replicated attributes is defined in [MS-ADA1], [MS-ADA2], and [MS-
ADA3]. The set of nonreplicated attributes covered under condition 1 (2) (described earlier in this 



 

93 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

section) consists of the repsFrom and repsTo attributes documented in [MS-DRSR] sections 5.172 and 
5.173. 

Note  Only the schema elements and instances of objects that are fundamental to Active Directory are 
described in this specification. If a protocol defines its own schema objects or otherwise creates its 

own objects in the directory, those objects are described in that protocol's specification. A summary of 
schema elements defined by such other protocols is included in [MS-ADA1], [MS-ADA2], [MS-ADA3], 
[MS-ADSC], and [MS-ADLS] as a convenience for the reader, but the documentation for the protocols 
using those schema elements shouldSHOULD be consulted for a complete description. 

In this specification, the second category of state is modeled using standard mathematical concepts. 
The concepts used and their associated notational conventions are described in the next section. 

LDAP mandates very little about the behavior of a directory. Active Directory has many specific 

behaviors that are observable through LDAP. The remainder of this section describes the most 
pervasive of these behaviors. The remainder of the specification completes the discussion. 

3.1.1.1.2 State Modeling Primitives and Notational Conventions 

Attribute names are underlined in this document, as specified in section 1. If a variable o refers to an 
object, and a is an attribute name, then o!a denotes the value or values of attribute a on object o. If 

attribute a is not present on o, the value of o!a is null. 

The specification uses the LDAP display names of attributes and object classes when referring to 
specific attributes and object classes. So if o refers to an object, 

o!name 

denotes the name attribute of object o. 

Some attributes in this specification are abstract in the sense of [MS-DRSR] section 3.3.3. Abstract 
attribute names are also underlined, for example, repsFrom. rootDSE attribute names are also 

underlined, for example, dumpDatabase, even though rootDSE attributes are not declared as 
attributes in the schema. 

This specification models state in category 2 from the previous section using the standard 
mathematical concepts of set, sequence, directed graph, and tuple. 

The notation [first .. last] stands for the subrange first, first+1, ... , last. The type byte is the 
subrange [0.. 255]. 

A sequence is an indexed collection of variables, which are called the elements of the sequence. The 

elements all have the same type. The index type of a sequence is a zero-based subrange. S[i] denotes 
the element of the sequence S corresponding to the value i of the index type. The number of elements 
in a sequence S is denoted S.length. Therefore the index type of a sequence S is [0 .. S.length-1]. 

A fixed-length sequence can be constructed using the notation: 

[first element, second element, ... , last element] 

A tuple is a set of name-value pairs: [name1: value1, name2: value2, ... , namen: valuen] where namek 

is an identifier and valuek is the value bound to that identifier. Tuple types are defined as in this 
example: 

▪ type DSName = [dn: DN, guid: GUID, sid: SID] 

This defines DSName as a type of tuple with a DN–valued field dn, a GUID–valued field guid, and a 
SID–valued field sid. 

3.1.1.1.3 Basics, objectGUID, and Special Attribute Behavior 



 

94 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The LDAP data model is defined by [RFC3377]. Because the LDAP RFCs and their underlying ITU 
specifications have been interpreted in a variety of ways, this section defines a more specific model 

that correctly represents the behavior of Active Directory objects and attributes and describes the 
correspondence between this model and the LDAP model. 

The model is based on the general definitions of Replica, Object, and Attribute given in section 1, and 
repeated here for convenience: 

A replica is a variable containing a set of objects. 

An attribute is an identifier for a set of values. 

An object is set of attributes, each with its associated values. Two attributes of an object have special 
significance: 

▪ Identifying attribute. A designated single-valued attribute appears on every object; the value of 

this attribute identifies the object. For the set of objects in a replica, the values of the identifying 
attribute are distinct.  

▪ Parent-identifying attribute. A designated single-valued attribute appears on every object; the 
value of this attribute identifies the object's parent. That is, this attribute either contains the value 
of the parent's identifying attribute, or contains a reserved value (NULL GUID, as described later 
in this section) identifying no object. For the set of objects in a replica, the values of this parent-

identifying attribute define an oriented tree with objects as vertices and child-parent references as 
directed edges, with the child as an edge's tail and the parent as an edge's head. 

Note that an object is a value, not a variable; a replica is a variable. The process of adding, modifying, 
or deleting an object in a replica replaces the entire value of the replica with a new value. 

As the word replica suggests, it is often the case that two replicas contain "the same objects". In this 
usage, objects in two replicas are considered "the same" if they have the same value of the identifying 
attribute and if there is a process in place (replication) to converge both the set of objects in existence 

and the values of the non-identifying attributes as originating updates take place in replicas. When the 
members of a set of replicas are considered to be the same, it is common to say "an object" as a 

shorthand referring to the set of corresponding objects in the replicas. 

A child object is an object that is not the root of its oriented tree. The children of an object o is the set 
of all objects whose parent is o. 

The directory model used in this specification instantiates the preceding definitions as follows. The 
identifying attribute is objectGUID and the parent-identifying attribute is parent, an abstract attribute. 

Both attributes have GUID values. No actual object has objectGUID equal to the NULL GUID. The root 
object has parent equal to the NULL GUID. 

This specification uses the following s-expression representation ([LISP15]) of directory values, 
attributes, objects, and replicas to provide a notation for examples: 

▪ Represent an attribute and its values as a list (Attr Val1 Val2 ... Valn) where Attr is an atom whose 
name is the attribute's name (its lDAPDisplayName, defined in section 3.1.1.2) and each Valk is a 

value. The attribute comes first, but the ordering of values in the list is not significant, with the 

exception of the values of the objectClass attribute explained later in this section. If a value is a 
GUID, represent it as a 128-bit unsigned integer instead of using a representation that reflects the 
internal structure of a GUID. To aid the readability of examples, the GUIDs used in examples are 
unrealistically small integers. 

▪ Represent an object as a list (Attrval1 Attrval2 ...Attrvaln) where each Attrvalk is the representation 
of an attribute and its values; the ordering of this list is not significant. 

▪ Represent a replica as a list (Obj1 Obj2 ... Objn) where each Objk is the representation of an 
object; the ordering of this list is not significant. 



 

95 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The following list 

 ( 
   ( (objectGUID 5) (parent 0) (dc "microsoft") ) 
   ( (objectGUID 2) (parent 5) (ou "NTDEV") ) 
   ( (objectGUID 9) (parent 2) (cn "Peter Houston") ) 
 ) 

is one representation of the value of some replica containing three objects. The object with 
objectGUID = 5 is the root, the object with objectGUID = 2 is the only child of the root, and the object 
with objectGUID = 9 is the only grandchild of the root. Each object in this example has one additional 
attribute whose meaning has not yet been described. 

Representing an attribute as its lDAPDisplayName makes examples readable. In the actual state 

model, an attribute is identified by an ATTRTYP. An ATTRTYP is a 32-bit unsigned integer that can be 
mapped to and from an object representing an attribute. This mapping is specified in section 
3.1.1.2.6. 

Active Directory's objectGUID attribute has special behavior. A GUID that is generated by the DC is 
assigned to the objectGUID attribute of an object during its creation (LDAP Add), and this attribute is 
read-only thereafter. This is the first of many examples of an attribute with special behavior. Section 
3.1.1.5 specifies the behavior of every attribute that has special behavior. 

Active Directory includes the objectSid attribute on certain objects, called security principal objects. 
The objectSid attribute has special behavior. A fresh SID is assigned to the objectSid attribute of an 
object during its creation (LDAP Add), and this attribute is read-only thereafter, unless the object 
moves to another NC (LDAP Modify DN; see section 3.1.1.5 for the specification of such moves). More 
on objectSid generation can be found in section 3.1.1.1.5. 

3.1.1.1.4 objectClass, RDN, DN, Constructed Attributes, Secret Attributes 

A directory object is constrained by the directory's schema, which is a set of predicates. A few schema 
concepts are mentioned here. A full understanding of these concepts is not required to understand this 

section; additional information is available in the Glossary or in section 3.1.1.2. 

When an object is created, it is assigned a most specific structural object class or an 88 object class, 
plus the sequence of object classes that this class inherits from. The set of inherited classes always 
includes the class top. The value of an object's objectClass attribute is the full set of object classes 
(each identified by lDAPDisplayName) assigned to the object. The example in the previous section is 

elaborated in the following list. 

 ( 
   ( (objectGUID 5) (parent 0) (dc "microsoft") 
     (objectClass top ... domainDNS) ) 
   ( (objectGUID 2) (parent 5) (ou "NTDEV") 
     (objectClass top ... organizationalUnit) ) 
   ( (objectGUID 9) (parent 2) (cn "Peter Houston") 
     (objectClass top ... user) ) 
 ) 

This list represents three objects, including their first and last objectClass values. The intermediate 
objectClass values are elided. Unlike all other multivalued attributes, the ordering of objectClass 
values is significant—top is always listed first; the most specific structural object class (or the 88 
object class used in place of the structural class) is always listed last. So, for instance, the most 

specific structural object class of the root is domainDNS. 



 

96 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Representing a class as its lDAPDisplayName makes examples readable. In the actual state model, a 
class is identified by an ATTRTYP. An ATTRTYP is a 32-bit unsigned integer that can be mapped to and 

from the schema object representing a class. This mapping is specified in section 3.1.1.2.6. 

In Active Directory, each object has an RDN attribute, which is determined by the most specific 

structural object class of the object when the object is created. The RDN attribute is the attribute that 
defines an object's name relative to its parent. In Active Directory, the RDN attribute of an object 
class has String(Unicode) syntax; that is, its value is a Unicode string, and the RDN attribute of an 
object always has exactly one value. (See section 3.1.1.2 for more on the topic of attribute syntax.) 

Confusingly, the Active Directory schema includes an attribute whose attributeSchema object's cn is 
"RDN"; this is the name attribute, described later in this section. The term "RDN attribute" never 
refers to the name attribute in this document. 

The relative distinguished name (RDN) of an object is a string of the form "att=val" where att is the 
lDAPDisplayName of the RDN attribute of the object and val is the value of the RDN attribute on this 
object. In the preceding example, the object class user has RDN attribute cn, as can be confirmed by 
consulting [MS-ADSC]. Therefore the RDN of the object with objectGUID = 9 is "cn=Peter Houston". 

An RDN can also be written using the attributeID of the RDN attribute in place of its 
lDAPDisplayName; the example just given becomes "2.5.4.3=Peter Houston". The RDN form based on 

lDAPDisplayName is used throughout this document. 

Active Directory requires that the value parts of the RDNs of all children of an object be distinct. This 
guarantees that the RDNs of all children of an object are distinct. 

The DN of an object is defined recursively as follows. The DN of the root has an assigned value; the 
way Active Directory assigns this value is described later in section 3.1.1.1.5. The DN of a child object 
is the RDN of the child, followed by "," and the DN of the parent. In the preceding example, suppose 
the assigned DN of the root object is "dc=microsoft,dc=com". Then the DN of the object with 

objectGUID = 9 is "cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com". 

The correspondence between this model and the LDAP data model is as follows. An object with its 
attributes and values corresponds to an LDAP entry with its attributes and values. This model and 
LDAP agree on the definition of the objectClass attribute. The definition of RDN in this model is a 

subset of LDAP's definition; all RDNs in this model are valid LDAP RDNs, but not vice versa. For 
example, the following multivalued RDN is a valid LDAP RDN, but it is not valid in this model: 
"cn=Peter Houston+employeeID=ABC123". Given the RDN definition, the definition of DN in this 

model is the same as LDAP's definition. In the LDAP data model, the child-parent relationship is 
represented in the DNs of the child and parent, whereas in the Active Directory data model, the child-
parent relationship is represented in the parent attribute and the DN is derived. Active Directory does 
not expose the model's parent attribute through LDAP. 

Active Directory includes the distinguishedName attribute on every object; the value is the object's 
DN. The following example elaborates the previous example to include a value of distinguishedName 

on each object. 

 ( 
   ( (objectGUID 5) (parent 0) (dc "microsoft") 
     (objectClass top ... domainDNS) 
     (distinguishedName "dc=microsoft,dc=com") ) 
   ( (objectGUID 2) (parent 5) (ou "NTDEV") 
     (objectClass top ... organizationalUnit)  
     (distinguishedName "ou=NTDEV,dc=microsoft,dc=com" ) ) 
   ( (objectGUID 9) (parent 2) (cn "Peter Houston") 
     (objectClass top ... user) 
     (distinguishedName 
       "cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com") ) 
 ) 



 

97 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

But including distinguishedName on each object this way is misleading, because the 
distinguishedName attribute is not stored as a string on each object. If it were stored as a string on 

each object, renaming an object would require updating every object in the subtree rooted at the 
renamed object. For a large subtree, this would take a long time and would either interfere with other 

directory activity (if performed as a single transaction) or would expose observable inconsistency to 
clients (if performed as multiple transactions). Active Directory does neither of these, so its state 
model can't imply that it does. 

The distinguishedName attribute is not declared in the schema as a constructed attribute, but it 
behaves like one. Normal attributes, including attributes with special behavior such as objectGUID, 
have their values stored as part of an object's representation. Constructed attributes have the 
property that they have values computed from normal attributes (for read) and/or have effects on the 

values of normal attributes (for write). Constructed attributes are not included in the state model. 
Because the distinguishedName attribute behaves like a constructed attribute in that it also 
contributes no state to an instance of an object, it is not considered to be part of the state model. 

Active Directory includes the name attribute on every object. An object's value of name equals the 
value of the object's RDN attribute. The following example removes the incorrect modeling of 

distinguishedName from the previous example, then elaborates that example to include name. 

 ( 
   ( (objectGUID 5) (parent 0) (dc "microsoft") 
     (objectClass top ... domainDNS) 
     (name "microsoft") ) 
   ( (objectGUID 2) (parent 5) (ou "NTDEV") 
     (objectClass top ... organizationalUnit) 
     (name "NTDEV") ) 
   ( (objectGUID 9) (parent 2) (cn "Peter Houston") 
     (objectClass top ... user)  
     (name "Peter Houston") ) 
 ) 

The name attribute has special behavior. Even if an object is renamed (LDAP Modify DN), the object's 

name attribute remains equal to the object's RDN attribute. As with the distinguishedName attribute, 

the name attribute is not declared in the schema as a constructed attribute, but it behaves like one. 

Because Active Directory requires that the value parts of the RDNs of all children of an object be 
distinct, it follows that the name attribute of all children of an object are distinct. 

Active Directory includes the rdnType attribute on every object. An object's value of rdnType is the 
object's RDN attribute at object creation time—the identifier, not its associated value. The following 
example elaborates the previous example to include rdnType. 

 ( 
   ( (objectGUID 5) (parent 0) (dc "microsoft") 
     (objectClass top ... domainDNS) 
     (name "microsoft") (rdnType dc)) 
   ( (objectGUID 2) (parent 5) (ou "NTDEV") 
     (objectClass top ... organizationalUnit) 
     (name "NTDEV") (rdnType ou)) 
   ( (objectGUID 9) (parent 2) (cn "Peter Houston") 
     (objectClass top ... user)  
     (name "Peter Houston") (rdnType cn)) 
 ) 

The rdnType attribute, like the parent attribute, is not declared in the Active Directory schema. [MS-
DRSR] section 5.159 specifies the special behavior of the rdnType attribute. 



 

98 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

A secret attribute is any attribute from the following set: currentValue, dBCSPwd, initialAuthIncoming, 
initialAuthOutgoing, lmPwdHistory, ntPwdHistory, priorValue, supplementalCredentials, 

trustAuthIncoming, trustAuthOutgoing, and unicodePwd. 

3.1.1.1.5 (Updated Section) NC, NC Replica 

The type DSNAME is defined as a C structure in [MS-DRSR] section 5.50; this state model uses the 
simpler DSName, which contains the same information in a tuple of the form: 

DSName: [dn: DN; guid: GUID; sid: SID] 

An NC is a set of objects organized as a tree. It is referenced by a DSName containing a non-NULL dn 
and a non-NULL GUID. This DSName also references the NC root, which is the root object of the tree 
of objects in the NC. The NC root has the IT_NC_HEAD bit set in the instanceType attribute. Any 

instance of the NC on any DC is called an NC replica. It is convenient to say "the NC x" where x is the 
DSName referencing the NC.  

A replica of NC x is a replica as already defined, with its root object r constrained as follows: 

▪ r!objectGUID = x.guid 

▪ r!distinguishedName = x.dn 

▪ If x.sid ≠ NULL then r!objectSid = x.sid, otherwise r!objectSid = NULL 

Mutation of a replica in the general sense is unconstrained. In the case of a replica of a specific NC, 
the root object cannot be replaced, because doing so would change the objectGUID (and objectSid if 
any), and this mustMUST equal the NC's guid. In a replica of a given NC the root object's DN cannot 
be changed, because the root object's DN mustMUST equal the NC's dn. 

All replicas in Active Directory are NC replicas. 

NC replicas are mutable. The term originating update means any mutation to an NC replica performed 
via any protocol except replication. 

Active Directory performs replication between replicas of the same NC to converge their states, so an 
update originated on one replica is reflected in all the others. The replication algorithm has the 
property that if originating updates to all replicas ceases and communication between replicas is 
maintained, the application-visible states of the replicas will eventually converge to a common value. 
Applications of Active Directory can read from several replicas of a given NC and observe the 
differences, but applications typically bind to a single replica. 

Active Directory supports four NC types: 

Domain NC: A domain naming context (domain NC). The sid field of a domain NC is not NULL.  

Config NC: An NC that stores Active Directory configuration information. The sid field of a config 
NC is NULL. 

Schema NC: An NC that stores Active Directory schema information. The sid field of a schema NC 

is NULL. 

Application NC: An application NC. The sid field of an application NC is NULL. 

The dn of a domain NC or an AD DS application NC takes the form: 

dc=n1,dc=n2, ... dc=nk 

where each ni satisfies the syntactic requirements of a DNS name component [RFC1034]. Such a DN 
corresponds to the DNS name: 



 

99 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

n1.n2. ... .nk 

This is the DNS name of the NC. The mapping just specified follows [RFC2247]. 

In AD LDS, an application NC can have any valid DN; therefore an AD LDS application NC does not 
necessarily have a DNS name. 

Replicas of a domain NC have one of these two subtypes: 

▪ Full. A replica whose objects contain their full state as defined by all originating updates. 

▪ Partial. A replica whose objects contain a filtered view of the full state as defined by all originating 
updates. There are three types of the partial replica: 

▪ GC partial NC replica: The filter removes all attributes (and their values) that are not in the 
partial replica's GC partial attribute set. 

▪ Filtered partial NC replica: The filter removes all the attributes (and their values) that are in 

the filtered attribute set. The default naming context (default NC), config NC, and application 
NC on a RODC are filtered partial NC replicas. 

▪ Filtered GC partial NC replica: The filter removes all the attributes (and their values) that are 
not in the partial replica's GC partial attribute set, as well as all the attributes (and their 
values) in the filtered attribute set. Domain NCs, excluding the default domain NC, that are 
hosted on an RODC are filtered GC partial NC replicas. Such domain NCs will exist on the 

RODC when the RODC is a GC. 

Replicas of other NC types are always full. A full replica is either writable, that is, it accepts originating 
updates, or is read-only. A partial replica is read-only. 

This section has introduced many concepts without describing how they are reflected in the state 
model. To a great extent this obligation will be discharged in other sections of this document. The 
schema NC is described in section 3.1.1.2, while the other NC types are described in section 6.1. Here 
are three elaborations of the state model that can be explained without making a forward reference: 

1. NC replicas are modeled by making a DSName, converted into a string formatted as specified in 
[MS-DRSR] section 5.16.2.1, the first element of a replica. 

2. The root object of a domain NC or an AD DS application NC has class domainDNS. The RDN 
attribute of domainDNS is dc. Therefore both the dc and name attributes of the root object of a 
domain NC or an AD DS application NC equal the first component (for example, n1 for DNS name 
n1.n2. ... .nk) of the NC's DNS name. The root object of an AD LDS application NC can have any 
object class except dMD or configuration. 

3. In AD DS, the generation of objectSid values is constrained by the sid of a domain NC as follows. 
The sid of a domain NC, the domain SID, is a SID with four SubAuthority values. The root object 
of a domain NC has objectSid equal to the domain SID, as required by the definition of NC replica. 
Every security principal object o in a domain NC has o!objectSid equal to the domain SID plus the 
RID portion (that is, it has five SubAuthority values). The RID portion of o!objectSid is a number 
not assigned as the RID portion of the objectSid to any other object of the domain, including 

objects that existed earlier but have been deleted. 

Section 3.1.1.5.2.4 specifies how AD DS assigns RIDs. The same section specifies how AD LDS 
generates objectSid values for new AD LDS security principals. 

Continuing the example, let the example NC be a domain NC, and let the object with name "Peter 
Houston" be assigned the RID value 2055 (decimal). Then the state of the example NC is as follows. 

 ( 
   "<GUID=5>;<SID=0x0105...94E1F2E6>; 



 

100 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

    dc=microsoft,dc=com" 
   ( (objectGUID 5) (parent 0) (dc "microsoft") 
     (objectClass top ... domainDNS) 
     (name "microsoft") (rdnType dc) 
     (objectSid 0x0105...94E1F2E6) ) 
   ( (objectGUID 2) (parent 5) (ou "NTDEV") 
     (objectClass top ... organizationalUnit) 
     (name "NTDEV") (rdnType ou) ) 
   ( (objectGUID 9) (parent 2) (cn "Peter Houston") 
     (objectClass top ... user)  
     (name "Peter Houston") (rdnType cn) 
     (objectSid 0x0105...94E1F2E607080000) ) 
 ) 

The DNS name of this domain NC is microsoft.com. Note that the domain SID is a prefix of the "Peter 

Houston" object's objectSid. Portions of the (long) SID values have been elided for clarity; consider 
the elided portions to be the following hex digits 

 0000000000051500000089598D33D3C56B68 

and the example SID will be a valid SID. 

3.1.1.1.5.1 Tombstone Lifetime and Deleted-Object Lifetime 

The tombstone lifetime is controlled by the tombstoneLifetime attribute of the Directory Services 
object specified in section 6.1.1.2.4.1.1, interpreted as a number of days. If no value is specified for 
the tombstoneLifetime attribute of the Directory Services object, the tombstone lifetime defaults to 60 
days. The minimum value that can be specified is 2 days. If a value of less than 2 days is specified, 
tombstone lifetime defaults to either 60 days (Windows 2000 Server operating system through 

Windows Server 2008), or 2 days (Windows Server 2008 R2 and later). 

The deleted-object lifetime is controlled by the msDS-DeletedObjectLifetime attribute of the Directory 
Services object specified in section 6.1.1.2.4.1.1, interpreted as a number of days. If no value is 

specified for the msDS-DeletedObjectLifetime attribute of the Directory Services object, deleted-object 
lifetime defaults to the tombstone lifetime as calculated above. The minimum value that can be 
specified is 2 days. If a value less than 2 days is specified, deleted-object lifetime defaults to 2 days. 

3.1.1.1.6 Attribute Syntaxes, Object References, Referential Integrity, and Well-

Known Objects 

The complete set of attribute syntaxes supported by Active Directory are specified in section 3.1.1.2. 
The representation used by the abstract data model for values of each attribute syntax is specified in 
[MS-DRSR] section 5.16.2. These representations of each syntax can be returned in an LDAP response 
without conversion, that is, the values are represented in the abstract data model in the same format 

as used by the LDAP protocol. 

The following five attribute syntaxes are called object reference syntaxes: 

▪ Object(DS-DN) 

▪ Object(DN-String) 

▪ Object(DN-Binary) 

▪ Object(Access-Point) 

▪ Object(OR-Name) 



 

101 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The values of an attribute with Object(DS-DN) syntax are DNs, which represent references to objects. 
The values of attributes with the other object reference syntaxes have two portions; one portion is a 

DN, which represents a reference to an object, and the other has information specific to each syntax. 
The five object reference syntaxes have a special behavior called "referential integrity"; no other 

attribute syntax have special behavior intrinsic to the syntax. The referential integrity behavior applies 
only to the DN portion of the syntax (the portion that represents a reference to an object), leaving the 
remaining portion unchanged. For this reason, and because the referential integrity is the same for the 
DN portion of all five object reference syntaxes, it suffices to specify the referential integrity behavior 
of syntax (the portion that represents a reference to an object), leaving the remaining portion 
unchanged. For this reason, and because the referential integrity is the same for the DN portion of all 
five object reference syntaxes, it suffices to specify the referential integrity behavior only for the 

Object(DS-DN) syntax (the simplest of the object reference syntaxes). 

To specify referential integrity, some background on object deletion is required; object deletion is 
specified fully in section 3.1.1.5. 

When the Recycle Bin optional feature is not enabled, object deletion is performed in two stages. 

1. In the first stage, the object to be deleted is transformed into a tombstone. A tombstone is a 
special object, part of a replica's state. The state of a deleted object's tombstone resembles the 

state of the object before deletion; it has the same objectGUID but a different DN. Specifically, its 
RDN is changed to a "delete-mangled RDN" and, in most cases, it is moved into the Deleted 
Objects container of its NC, as described in section 3.1.1.5.5. A tombstone is generally not an 
object from the LDAP perspective: a tombstone is not returned by a normal LDAP Search request, 
only by a Search request with extended control LDAP_SERVER_SHOW_DELETED_OID or 
LDAP_SERVER_SHOW_RECYCLED_OID, as described in section 3.1.1.3. 

2. In the second stage, after a significant delay (the tombstone lifetime), a tombstone is garbage 

collected, which removes it from the replica's state. 

When the Recycle Bin optional feature is enabled, object deletion is performed in three stages. 

1. In the first stage, the object being deleted is transformed into a deleted-object. A deleted-object is 
a special object, part of a replica's state. The deleted-object also resembles the state of the object 

before deletion; it has the same objectGUID but a different DN. Specifically, its RDN is changed to 
a "delete-mangled RDN" and, in most cases, it is moved into the Deleted Objects container of its 
NC, as described in section 3.1.1.5.5. A deleted-object is generally not an object from the LDAP 

perspective: a deleted-object is not returned by a normal LDAP Search request, only by a Search 
request with extended control LDAP_SERVER_SHOW_DELETED_OID OID or 
LDAP_SERVER_SHOW_RECYCLED_OID, as described in section 3.1.1.3. 

2. In the second stage, after a significant delay (the deleted-object lifetime), a deleted-object is 
transformed into a recycled-object. A recycled-object is a special object, part of a replica's state. 
The recycled-object also resembles the state of the object before deletion; it has the same 

objectGUID but a different DN. Specifically, its RDN has been changed and, in most cases, the 
object moved, as described in the first stage. A recycled-object is also generally not an object 
from the LDAP perspective: a recycled-object is not returned by a normal LDAP Search request, 
only by a Search request with extended control LDAP_SERVER_SHOW_RECYCLED_OID, as 
described in section 3.1.1.3. 

Note that this transformation from deleted-object to recycled-object is only initiated on DCs where 
the deleted-object is in a writable naming context (NC) replica. On DCs where the deleted-object 

is not in a writable NC replica, the transformation from deleted-object to recycled-object occurs as 
the result of replication in this state change from a DC that holds a writable copy of the object. 

3. In the third and final stage, after a significant delay (the tombstone lifetime), a recycled-object is 
garbage collected, which removes it from the replica's state. 

In situations where a deletion does not need to be replicated, an object is expunged (that is, removed 
in a single step from the replica's state) instead. A deletion does not need to be replicated in the 



 

102 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

following cases: removal of a lingering object (section 3.1.1.3.3.15), removal of an object being 
moved during a cross-domain move (section 3.1.1.5.4.2), and removal of a dynamic object (section 

6.1.7). 

An application is not limited to specifying a DN when creating an object reference; using the syntax 

specified in section 3.1.1.2, it can specify any combination of DN, SID, or GUID as the reference as 
long as it specifies at least one. A DSName is created using the specified references and is resolved to 
an object using DSName equality as defined in [MS-DRSR] section 5.50, DSNAME. 

The state kept with an attribute to represent an object reference is a DSName. 

When reading an object reference, an application can request the full DSName in the representation 
specified in [MS-DRSR] section 5.16.2.1 instead of a DN by passing the 
LDAP_SERVER_EXTENDED_DN_OID extended control as described in section 3.1.1.3. 

A single-valued Object(DS-DN) attribute a on object src behaves as follows: 

▪ When an LDAP Add or Modify creates an object reference within attribute src.a, the server uses 

the DN (or SID or GUID) specified in the Add or Modify to locate an existing object dst. If no such 
object exists, including the case where the object has been deleted and exists as a tombstone, 
deleted-object, or recycled-object, the request fails with error noSuchObject / 
ERROR_DS_OBJ_NOT_FOUND. The values dst!distinguishedName, dst!objectGUID and 

dst!objectSid are used to populate the DSName representing the object reference within attribute 
src.a. If the object dst has no objectSid attribute, the "SID=" portion of the DSName 
representation is omitted. 

▪ If object dst has not been deleted, reading attribute a gives the DN (or extended format as 
described in section 3.1.1.3) of object dst, even if dst has been renamed since a was written. 

▪ If the object dst has been deleted or expunged, reading src.a gives a DN field that corresponds to 
no object. Either this DN is impossible to create via LDAP Add and LDAP Modify DN, or this DN 

changes (that is, the value of src.a changes) when an LDAP Add or Modify DN would give some 
other object this DN. 

The multivalued case is similar; a multivalued attribute is capable of containing multiple object 
references that behave as described. 

Each object reference syntax exists in two versions. The description just given is for the "nonlink" 
version. The other version is the "forward link". The Object(DS-DN) syntax also exists in a "back link" 
version. 

A forward link Object(DS-DN) attribute supports the definition of a corresponding back link Object(DS-
DN) attribute. The back link attribute is a read-only constructed attribute; clients MUST NOT write to 
the back link attribute, and servers MUST reject any such writes. If an object o contains a reference to 
object r in forward link attribute f, and there exists a back link attribute b corresponding to f, then a 
back link value referencing o exists in attribute b on object r. The correspondence between the 
forward and back link attributes is expressed in the schema; see section 3.1.1.2 for details. A forward 

link attribute can exist with no corresponding back link attribute, but not vice versa. 

If the syntax of a forward link attribute is not Object(DS-DN), a corresponding back link attribute has 

syntax Object(DS-DN), not the syntax of the forward link. The non-reference portion of the forward 
link, if any, is ignored in computing the back link. If ignoring the non-reference portion of the forward 
link results in duplicate back references, the duplicates are present in the values of the back link 
attribute. 

The referential integrity behavior of a forward link attribute differs from that of a nonlink attribute as 

follows: 

▪ When an object o is expunged or transformed into a tombstone or recycled-object, any forward 
link reference to o is removed from the attribute that contains it. 



 

103 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ When an object o is transformed into a deleted-object, any forward link reference to o is 
maintained, but is made invisible to LDAP operations that do not specify the 

LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID control. 

▪ When a deleted-object o is transformed into an object that is not a deleted-object, a tombstone, 

or a recycled-object, any forward link reference to o from object p where p is not a deleted-object 
is made visible to LDAP operations. Similarly, any forward link reference from o to p is made 
visible to LDAP operations. 

Since a back link attribute is constructed, its referential integrity behavior follows from that of the 
corresponding forward link attribute. 

The distinction between nonlink and forward link references is not visible in the part of the state model 
described in this section; it is a schema difference only. There is no difference in the state kept with 

an attribute to represent the object reference. There is a difference in the replication metadata 
accompanying the object reference, as will be described in section 3.1.1.1.9. 

The behavior described in this section is for object references within a single NC replica. Additional 

behaviors, specified in section 3.1.1.1.12, are possible when an object reference crosses an NC replica 
boundary. 

Extend the running example by adding a group object named "DSYS" as a child of 

"ou=NTDEV,dc=microsoft,dc=com". The object class group includes the attribute member with 
Object(DS-DN) syntax. In this example, the "DSYS" group has the user object "Peter Houston" as its 
only member. 

 ( 
   "<GUID=5>;<SID=0x0105...00000000>;dc=microsoft,dc=com" 
   ( (objectGUID 5) (parent 0) (dc "microsoft") 
     (objectClass top ... domainDNS) 
     (name "microsoft") (rdnType dc) 
     (objectSid 0x0105...94E1F2E6) ) 
   ( (objectGUID 2) (parent 5) (ou "NTDEV") 
     (objectClass top ... organizationalUnit) 
     (name "NTDEV") (rdnType ou) ) 
   ( (objectGUID 9) (parent 2) (cn "Peter Houston") 
     (objectClass top ... user)  
     (name "Peter Houston") (rdnType cn) 
     (objectSid 0x0105...94E1F2E607080000) ) 
   ( (objectGUID 6) (parent 2) (cn "DSYS") 
     (objectClass top ... group)  
     (name "DSYS") (rdnType cn) 
     (objectSid 0x0105...94E1F2E60B080000) 
     (member 
       "<GUID=9>;<SID=0x0105...07080000>; 
       cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com" ) ) 
 ) 

Note that the group "DSYS" is a security principal object within the domain NC, with the distinct RID 
value 2059 (decimal). 

The root object of each NC contains the attribute wellKnownObjects. The purpose of this attribute is to 
provide a location-independent way to access certain objects within the NC. For instance, the Deleted 

Objects container where most tombstones live can be found using wellKnownObjects. 

The wellKnownObjects attribute has syntax Object(DN-Binary). Each value consists of an object 
reference ref and a byte string binary that is 16 bytes long. The byte string binary contains a GUID 
identifying a well-known object (WKO) within an NC; the object reference ref is a reference to the 
corresponding object. A table of the GUIDs that identify well-known objects is given in section 6.1.1.4. 



 

104 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The following procedure implements well-known object location using the wellKnownObjects attribute. 
This procedure will be used throughout the rest of this specification: 

▪ procedure GetWellknownObject(nc: NC, guid: GUID): DSName 

▪ If there is no replica of NC nc on the server executing this procedure, return null. 

▪ Let v be the value of nc!wellKnownObjects on the server's replica satisfying v.binary = guid; if 
no such v exists, return null. 

▪ Return v.ref. 

Assignments to the wellKnownObjects attribute are specially checked as described in section 3.1.1.5. 

LDAP supports access to well-known objects using an extended DSName syntax as described in 
section 3.1.1.3. 

3.1.1.1.7 (Updated Section) Forest, Canonical Name 

An Active Directory forest is a set of NCs. Every forest contains one schema NC and one config NC. 
The other types of NCs present in a forest depends on whether it is an AD DS forest or an AD LDS 
forest: 

▪ AD DS: Every forest also contains one or more domain NCs, and zero or more application NCs. 

▪ AD LDS: Every forest also contains zero or more application NCs. 

The NCs within a forest are related by their assigned DNs as follows: 

▪ In AD DS there mustMUST exist a domain NC root such that the config NC's dn equals 
Cat("cn=Configuration", root.dn) (where Cat is the string concatenation function). This unique 
domain NC is called the root domain NC of the forest. 

Describe this DN relationship as "The config NC is a child of the root domain NC". Technically these 

NCs are not related in the same way that a child object and its parent object are related within an 
NC; the parent relationship stops at the root of an NC. But their DNs are related in the same way 

as the DNs of a child object and its parent object within an NC. Given NCs with their corresponding 
DNs forming a child and parent relationship, it is convenient to refer to the NCs as the child NC 
and the parent NC. 

In AD LDS, the config NC does not have a parent NC. An AD LDS forest contains no domain NCs, 
so there is no forest root domain NC, either. The DN of an AD LDS config NC takes the form 
"CN=Configuration, CN={G}" where G is a GUID in dashed-string form ([RFC4122] section 3). For 
example, 

CN=Configuration, CN={FD783EE9-0216-4B83-8A2A-60E45AECCB81} 

is a possible DN of the config NC in an AD LDS forest. 

▪ The schema NC is a child of the config NC, with RDN "cn=Schema". 

▪ If short and long are NCs with DNS names (domain NCs or application NCs), and short is a suffix 
of long, then each DNS name obtained by removing DNS name components successively from the 
front of long until the result is short mustMUST also name NCs with DNS names. For instance, if a 

forest contains both NCs microsoft.com and nttest.ntdev.microsoft.com, it mustMUST also contain 
NC ntdev.microsoft.com. 

▪ If app is an application NC and dom is a domain NC, then dom mustMUST not be a child of app. 

▪ If root is the root domain NC and dom is another domain NC in the forest, then root mustMUST 
not be a child of dom. 



 

105 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Extend the running example by adding the config NC and schema NC as follows. 

 ( 
   "<GUID=4>;cn=Configuration,dc=microsoft,dc=com" 
   ( (objectGUID 4) (parent 0) (cn "Configuration") 
     (objectClass top ... configuration) 
     (name "Configuration") (rdnType cn) ) 
 ) 
 ( 
   "<GUID=8>;cn=Schema,cn=Configuration,dc=microsoft,dc=com" 
   ( (objectGUID 8) (parent 0) (cn "Schema") 
     (objectClass top ... dMD) 
     (name "Schema") (rdnType cn) ) 
 ) 
 ( 
   "<GUID=5>;<SID=0x0105...00000000>;dc=microsoft,dc=com" 
   ( (objectGUID 5) (parent 0) (dc "microsoft") 
     (objectClass top ... domainDNS) 
     (name "microsoft") (rdnType dc) 
     (objectSid 0x0105...94E1F2E6) ) 
   ( (objectGUID 2) (parent 5) (ou "NTDEV") 
     (objectClass top ... organizationalUnit) 
     (name "NTDEV") (rdnType ou)) 
   ( (objectGUID 9) (parent 2) (cn "Peter Houston") 
     (objectClass top ... user)  
     (name "Peter Houston") (rdnType cn) 
     (objectSid 0x0105...94E1F2E607080000) ) 
   ( (objectGUID 6) (parent 2) (cn "DSYS") 
     (objectClass top ... group)  
     (name "DSYS") (rdnType cn) 
     (objectSid 0x0105...94E1F2E60B080000) 
     (members 
       "<GUID=9>;<SID=0x0105...07080000>; 
       cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com" ) ) 
 ) 

This example illustrates the dn relationships between the root domain NC, config NC, and schema NC. 

It shows that in a forest, the parent relationship does not cross NC boundaries. It also illustrates the 

object classes of the config NC and schema NC root objects and the lack of a sid in these NCs. It does 
not show the contents of these NCs, which are specified in sections 6.1 and 3.1.1.2. 

Every object in a forest has a canonical name. The canonical name of an object is a syntactic 
transformation of its DN into something resembling a pathname that still identifies the object. A 
canonical name is a DNS name, followed by a "/", followed by a sequence of zero or more names 
separated by "/". The DNS name is the translation of the final sequence of "dc=" DN components into 

an equivalent DNS name (following [RFC2247]). The sequence of names is the sequence of names in 
the non-"dc=" DN components, appearing in the reverse order to the order they appeared in the DN. 
Here are several examples of this translation drawn from the preceding example. 

 DN:             cn=Peter Houston, ou=NTDEV, dc=microsoft, 
                 dc=com 
 canonical name: microsoft.com/NTDEV/Peter Houston 
  
 DN:             cn=Configuration, dc=microsoft, dc=com 
 canonical name: microsoft.com/Configuration 
  
 DN:             dc=microsoft, dc=com 
 canonical name: microsoft.com/ 

Active Directory supports a constructed attribute canonicalName on every object. Its value is the 
object's canonical name. 



 

106 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.1.8 GC 

In AD DS, the global catalog (GC) is a partial view of a forest's NCs, with these properties: 

▪ The GC view includes all domain NCs, the config NC, and the schema NC. 

▪ The GC view is partial. It includes all objects in the included NCs, but only those attributes defined 
as members of the partial attribute set in the schema NC (as specified in section 3.1.1.2). If the 
GC is an RODC, the attribute list is further restricted to those attributes not present in the filtered 
attribute set in the schema NC (as specified in section 3.1.1.2). 

▪ The GC view is read-only. 

The GC has no state model impact outside the schema NC, which defines the forest's partial attribute 
set. The implementation of the GC (that is, actually providing the specified view to LDAP clients) does 

have impact, explained in section 3.1.1.1.9. 

In AD LDS there is no support for the GC. 

3.1.1.1.9 DCs, USN Counters, and the Originating Update Stamp 

The model defines the state of a DC as a tuple of type DC. 

 type DC = [ 
     serverGuid: GUID, 
     invocationId: GUID, 
     usn: 64-bit integer, 
     prefixTable: PrefixTable, 
     defaultNC: domain NC replica, 
     configNC: config NC replica, 
     schemaNC: schema NC replica, 
     partialDomainNCs: set of partial domain NC replica, 
     appNCs: set of application NC replica, 
     pdcChangeLog: PDCChangeLog 
     nt4ReplicationState: NT4ReplicationState 
     ldapConnections: LDAPConnections, 
     replicationQueue: ReplicationQueue, 
     kccFailedConnections: KCCFailedConnections, 
     kccFailedLinks: KCCFailedLinks, 
     rpcClientContexts: RPCClientContexts, 
     rpcOutgoingContexts: RPCOutgoingContexts, 
     fLinkValueStampEnabled: boolean, 
     nt4EmulatorEnabled: boolean, 
     fEnableUpdates: boolean 
     dnsRegistrationSettings: DNSRegistrationSettings 
     minimumGetChangesRequestVersion: integer 
     minimumGetChangesReplyVersion: integer 
 ] 

The variable dc is the only global variable in this specification. It contains the state of the DC. 

 dc: DC 

serverGuid is initialized to a GUID when the dc is created and does not change thereafter. Section 
6.1.1.2.2.1.2.1.1 describes the nTDSDSA object; serverGuid equals the objectGUID of the DC's 
nTDSDSA object. serverGuid is independent of the objectGUID of the computer object for the 
computer playing the role of this DC. 

invocationId is initialized to a GUID that is generated by the DC when the dc is created. This GUID 
MUST NOT be the NULL GUID. The circumstances under which a DC changes its invocationId are 
outside the effects of the state model. A DC changes its invocationId when Active Directory is restored 



 

107 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

from a backup. Section 6.1.1.2.2.1.2.1.1 describes the nTDSDSA object; invocationId equals the 
invocationId of the DC's nTDSDSA object. 

usn is a counter used in assigning replication metadata to every originating update to an NC replica in 
the DC, as detailed later in this section. The invocationId of dc's nTDSDSA object is an "epoch 

number" for usn; if an observer reads a dc at times t1 and t2 with t1 < t2, and invocationId is the 
same, then usn at time t1 is less than or equal to usn at time t2. If the invocationId has been changed 
between t1 and t2, the DC at t2 is treated as a different DC then at t1 for the purposes of replication, 
and the usn of the DC is not compared. 

prefixTable is the PrefixTable used to translate all ATTRTYP values stored in this DC's NC replicas; 
section 3.1.1.2.6 specifies the translation process.  

The default NC replica of an AD DS DC, modeled as dc.defaultNC, is a domain NC replica of some 

domain NC in the forest. In an AD LDS DC, dc.defaultNC is null. 

The fields dc.configNC and dc.schemaNC contain replicas of the forest's config NC and schema NC. 

If dc is not an AD DS GC server (as determined by the state of the GC bit of the options attribute of 
the nTDSDSA object as specified in section 6.1.1.2.2.1.2.1.1), then dc.partialDomainNCs is null. 
Otherwise it contains a partial domain NC replica for each domain NC in the forest, excluding the 
default domain NC of dc. 

The field dc.appNCs contains replicas of the application NCs hosted by the DC. An AD DS DC can be an 
RODC; [MS-DRSR] section 5.7, AmIRODC, specifies how this is determined by state in the config NC. 

All NC replicas of an RODC are read-only; that is, they do not accept originating updates. In other 
DCs, all NC replicas are writable except for dc.partialDomainNCs, but writes to these NC replicas are 
controlled by the constraints and processing specifics described in section 3.1.1.5. Also, on an RODC 
the dc.defaultNC is a filtered partial domain NC replica. On other DCs, the dc.defaultNC is a full 
domain NC replica, and is the only full domain NC replica in the state of a DC. 

The nt4ReplicationState and pdcChangeLog variables contain state used by the 
IDL_DRSGetNT4ChangeLog method ([MS-DRSR] section 4.1.11.3). Section 3.1.1.7 specifies the 

format of these variables and how they are maintained during state changes in AD DS. 

The ldapConnections, replicationQueue, kccFailedConnections, kccFailedLinks, rpcClientContexts, and 
rpcOutgoingContexts fields of a DC are volatile state. Each volatile field is set to the empty sequence 
on server startup. The other fields are persistent state, updated using transactions. 

The construction of the kccFailedConnections and kccFailedLinks fields of a DC are discussed in section 

6.2. The construction of the replicationQueue, kccFailedConnections, and rpcOutgoingContexts fields 
are discussed in [MS-DRSR]. The construction of the fLinkValueStampEnabled field is described later in 
this section. 

The nt4EmulatorEnabled field determines how the DC responds to a Mailslot Ping request, as 
described in section 6.3.5. The nt4EmulatorEnabled field is not configurable through the Active 
Directory. The nt4EmulatorEnabled field can be configured by an implementation-dependent 

mechanism. On applicable Windows Server releases, the nt4EmulatorEnabled field can be configured 
at the following registry key path: 

 HKEY_LOCAL_MACHINE\system\currentcontrolset\services\netlogon\parameters\NT4Emulator  

This registry value is of type REG_DWORD. If the value is 0 or not present, the field 

nt4EmulatorEnabled is set to FALSE; otherwise, the field is set to TRUE. By default, this registry value 
is not set. 

The fEnableUpdates field determines whether or not a DC allows updates, as described in section 
3.1.1.5.1.9. The field is initialized to TRUE. 



 

108 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The dnsRegistrationSettings field contains the settings that determine whether the DC registers DNS 
records (for the purpose of DC location), and which DNS records it registers. The field is of type 

DNSRegistrationSettings (section 6.3.1.10) and is initialized as described in section 6.3.1.10. 

The minimumGetChangesRequestVersion field contains a value limiting the acceptable versions of the 

input message for a replication request. See [MS-DRSR] section 4.1.10.5.1. The value is set by DSA 
Heuristics (section 6.1.1.2.4.1.2). 

The minimumGetChangesReplyVersion field contains a value limiting the acceptable versions of the 
output message for a replication request. See [MS-DRSR] section 4.1.10.5.20. The value is set by DSA 
Heuristics (section 6.1.1.2.4.1.2). 

Each originating update on a DC creates replication metadata values (AttributeStamp and 
LinkValueStamp values), as will now be described. 

AttributeStamp and LinkValueStamp values contain times read from the system clock of the server 
creating the value. If clocks on different DCs disagree by a significant fraction of the tombstone 
lifetime, then it is probable that different DCs will eventually disagree about whether some objects 

have been deleted or not; see section 3.1.1.1.15. DCs use Kerberos for mutual authentication, and 
Kerberos does not mutually authenticate two DCs whose clocks are more than 5 minutes out of sync. 
The tombstone lifetime is generally several months, so synchronization within 5 minutes is much 

better than required to avoid object lifetime issues. 

The type AttributeStamp is defined authoritatively in [MS-DRSR] section 5.11. In summary, it is the 
following tuple. 

 AttributeStamp: [ 
     dwVersion: 32-bit Integer; 
     timeChanged: 64-bit number of seconds 
                  since January 1, 1601, 12:00:00am; 
     uuidOriginating: GUID; 
     usnOriginating: 64-bit Integer] 

Similarly, the type LinkValueStamp is defined authoritatively in [MS-DRSR] section 5.118. In 
summary, it is an AttributeStamp tuple extended on the bottom with the following fields: 

▪ timeCreated: 64-bit number of seconds since January 1, 1601, 12:00:00 A.M. 

▪ timeDeleted: 64-bit number of seconds since January 1, 1601, 12:00:00 A.M. 

An AttributeStamp stamp is associated with all replicated attributes, except forward link attributes 
updated when the forest functional level is greater than DS_BEHAVIOR_WIN2000 or 
dc.fLinkValueStampEnabled is TRUE, that have ever had values on an object. For forward link 
attributes updated when the forest functional level is greater than DS_BEHAVIOR_WIN2000 or 
dc.fLinkValueStampEnabled is TRUE, a LinkValueStamp stamp is associated with each value of the 
attribute, both current link values and tombstoned link values. More details on tombstoned link values 

are given later in this section. 

Together with forest functional level, dc.fLinkValueStampEnabled regulates whether a DC creates 

replication metadata for forward link attributes. dc.fLinkValueStampEnabled is initialized to TRUE when 
the forest functional level is greater than DS_BEHAVIOR_WIN2000. When the forest functional level is 
DS_BEHAVIOR_WIN2000, dc.fLinkValueStampEnabled is initialized to FALSE. When a DC receives an 
update containing LinkValueStamp values, it sets dc.fLinkValueStampEnabled to TRUE. (For more 

information, see [MS-DRSR] sections 4.1.10.5.5 and 4.1.10.6.1.) 

When an originating write occurs, either the AttributeStamp or the LinkValueStamp of the attribute's 
value is updated, but not both. This chart specifies the conditions under which each is updated. 



 

109 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute type Forest functional level 

AttributeStamp 
associated with 
the attribute 

LinkValueStamp 
associated with 
the attribute's 
values 

Any type of  attribute other than a 
forward link attribute 

Any Updated Not updated 

Forward link attribute DS_BEHAVIOR_WIN2000 Updated Not updated 

Forward link attribute Greater than 
DS_BEHAVIOR_WIN2000 

Not updated Updated 

Whether an attribute value has an AttributeStamp or LinkValueStamp depends on the state at the 
time of the originating update. The data model does not require an attribute to have an 
AttributeStamp or LinkValueStamp. If an attribute has never had a value, it will not have an 
AttributeStamp. 

A forward link attribute will have an AttributeStamp if it is updated when the forest functional level is 
DS_BEHAVIOR_WIN2000. However, if the forest functional level is changed to be greater than 

DS_BEHAVIOR_WIN2000, then any further updates will cause the attribute's value to have a 
LinkValueStamp. The previously associated AttributeStamp of the attribute will be left unchanged. 

On the other hand, if the attribute is a forward link attribute that was never updated when the forest 
functional level was DS_BEHAVIOR_WIN2000, it will not have an associated AttributeStamp. If a value 
of the attribute is updated when the forest functional level is greater than DS_BEHAVIOR_WIN2000, 
the attribute value will have a LinkValueStamp and the attribute will still not have an AttributeStamp. 

Let o!a.stamp denote the AttributeStamp associated with replicated attribute a on object o. When an 

originating update creates or modifies replicated attribute a on object o, the value of o!a.stamp is 
determined as follows: 

▪ dwVersion: If the attribute did not exist on this object before the originating update (that is, an 
LDAP Add operation of this object, or an LDAP Modify operation creating the initial value of this 

attribute on this object), dwVersion equals one. Otherwise dwVersion equals o!a.stamp.dwVersion 
before the update, plus one. 

▪ timeChanged: The time of the originating update, according to the system clock on this DC. 

▪ uuidOriginating: the invocationId of the dc's nTDSDSA object. 

▪ usnOriginating: dc.usn. 

Once a replicated attribute exists on an object, it will continue to exist for the lifetime of the object, in 
order to carry the stamp. If all values have been removed from the attribute, the attribute will be 
absent from the LDAP perspective, but it remains present in the state model in order to preserve the 
stamp. If a value is added to o!a and o!a.stamp exists, even if o!a had no values before the addition, 

the value of o!a.stamp.dwVersion is used as described previously in creating the new stamp's 
dwVersion. 

Let o!a.r denote a single link value r that is part of a replicated forward link attribute a, and let 
o!a.r.stamp denote the LinkValueStamp associated with this value. An originating update cannot 
modify a single link value r that is part of a forward link attribute, except to delete it or to re-create it. 
A link value r is deleted, but exists as a tombstone, if r.stamp.timeDeleted ≠ 0. When the current time 
minus r.stamp.timeDeleted exceeds the tombstone lifetime, the link value r is garbage-collected; that 

is, removed from its containing forward link attribute. 

When an originating update creates a link value r of a forward link attribute a of object o, the 
LinkValueStamp o!a.r.stamp is computed as follows: 



 

110 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ dwVersion: 1. 

▪ timeChanged: The time of the originating update, according to the system clock on this DC. 

▪ uuidOriginating: the invocationId of dc's nTDSDSA object. 

▪ usnOriginating: dc.usn. 

▪ timeCreated: The time of the originating update, according to the system clock on this DC. 

▪ timeDeleted: Zeros. 

When an originating update re-creates a link value r of a forward link attribute a of object o, that is, a 
create occurs when the same link value exists as a tombstone, the LinkValueStamp o!a.r.stamp is 
computed as follows: 

▪ dwVersion: o!a.r.stamp.dwVersion before the originating update, plus one. 

▪ timeChanged: The time of the originating update, according to the system clock on this DC. 

▪ uuidOriginating: the invocationId of dc's nTDSDSA object. 

▪ usnOriginating: dc.usn. 

▪ timeCreated: o!a.r.stamp.timeCreated before the originating update. 

▪ timeDeleted: Zeros. 

When an originating update deletes a link value r of a forward link attribute a of object o, the 
LinkValueStamp o!a.r.stamp is computed as follows: 

▪ dwVersion: o!a.r.stamp.dwVersion before the originating update, plus one. 

▪ timeChanged: The time of the originating update, according to the system clock on this DC. 

▪ uuidOriginating: the invocationId of dc's nTDSDSA object. 

▪ usnOriginating: dc.usn. 

▪ timeCreated: o!a.r.stamp.timeCreated before the originating update. 

▪ timeDeleted: The time of the originating update, according to the system clock on this DC. 

The stamp values created by originating updates are used by protocols described in [MS-DRSR]. Some 

stamp values maintained in this state model are not used by those protocols; see [MS-DRSR] section 
4.1.10.5.6 (FilterAttribute) for specifics on the stamps that are filtered out. 

When all updates associated with an originating update request are complete, the variable dc.usn is 
increased by at least one. Between originating updates, the variable dc.usn does not decrease. 

The effects of an originating update are captured in the state model by committing a transaction. 
When the originating update is initiated by a protocol request, such as an LDAP Modify, the transaction 

is committed before sending the appropriate protocol response. The transaction has the ACID 

properties [GRAY] and provides at least degree 2 isolation of concurrent read and update requests 
[GRAY]. 

Each read request is performed as a transaction. When multiple read requests are used to retrieve a 
large set of results, each request is its own transaction. Section 3.1.1.5 specifies the transaction 
boundaries that are used for all originating updates. To preview: An originating update is almost 
always performed as a single transaction; a few are processed as multiple transactions. In some 

cases, an originating update request will cause transactions to occur after the response has been sent; 
section 3.1.1.5 specifies all cases where processing of an update continues after the response. 



 

111 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The following example illustrates the effects of originating updates on stamp values. In this example, 
the forest functional level is assumed to be greater than DS_BEHAVIOR_WIN2000, so 

LinkValueStamps are used for updates to forward link attributes. In the example, stamp values are 
represented as lists whose elements are the elements of the stamp, in the order listed in the type 

definition. Thus dwVersion is always first, and timeDeleted is last in a LinkValueStamp. An 
AttributeStamp is placed between the attribute's lDAPDisplayName and the first value, if any. A 
LinkValueStamp is placed immediately following the link value. 

This example shows the stamp values on two attributes of a single group object: the description 
attribute and the member attribute (a forward link attribute). In the initial state neither attribute is 
present. 

 ( 
   "<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com" 
   . . . 
   ( (objectGUID 6) (parent 2) (cn "DSYS") 
     (objectClass top ... group)  
     (name "DSYS") (rdnType cn) 
     (objectSid 0x0105...94E1F2E60B080000) 
   ) 
 ) 

An LDAP Modify adds a value for description. This DC's invocationId is 103, and its usn is 501 at the 
time of the originating update. 

 ( 
   "<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com" 
   . . . 
   ( (objectGUID 6) (parent 2) (cn "DSYS") 
     (objectClass top ... group)  
     (name "DSYS") (rdnType cn) 
     (objectSid 0x0105...94E1F2E60B080000) 
     (description (1 0x2FA9A74EA 103 501) "QWERTY") 
   ) 
 ) 

An LDAP Modify adds a value for member. This originating update occurred one second after the 
previous one, with no updates in between. This pattern continues for the rest of this example. 

 ( 
   "<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com" 
   . . . 
   ( (objectGUID 6) (parent 2) (cn "DSYS") 
     (objectClass top ... group)  
     (name "DSYS") (rdnType cn) 
     (objectSid 0x0105...94E1F2E60B080000) 
     (description (1 0x2FA9A74EA 103 501) "QWERTY") 
     (member 
       "<GUID=9>;<SID=0x0105...07080000>; 
        cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"  
       (1 0x2FA9A74EB 103 502 0x2FA9A74EB 0) ) 
   ) 
 ) 

An LDAP Modify removes the values of both description and member. 

 ( 
   "<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com" 
   . . . 
   ( (objectGUID 6) (parent 2) (cn "DSYS") 



 

112 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     (objectClass top ... group)  
     (name "DSYS") (rdnType cn) 
     (objectSid 0x0105...94E1F2E60B080000) 
     (description (2 0x2FA9A74EC 103 503) ) 
     (member 
       "<GUID=9>;<SID=0x0105...07080000>; 
        cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"  
       (2 0x2FA9A74EC 103 503 0x2FA9A74EB 0x2FA9A74EC) ) 
   ) 
 ) 

An LDAP Modify sets member back to the value it had before the previous update. The stamp it 
receives is not what it had before. 

 ( 
   "<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com" 
   . . . 
   ( (objectGUID 6) (parent 2) (cn "DSYS") 
     (objectClass top ... group)  
     (name "DSYS") (rdnType cn) 
     (objectSid 0x0105...94E1F2E60B080000) 
     (description (2 0x2FA9A74EC 103 503) ) 
     (member 
       "<GUID=9>;<SID=0x0105...07080000>; 
        cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"  
       (3 0x2FA9A74ED 103 504 0x2FA9A74EB 0) ) 
   ) 
 ) 

Finally, an LDAP Modify sets description to a new value. 

 ( 
   "<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com" 
   . . . 
   ( (objectGUID 6) (parent 2) (cn "DSYS") 
     (objectClass top ... group)  
     (name "DSYS") (rdnType cn) 
     (objectSid 0x0105...94E1F2E60B080000) 
     (description (3 0x2fa9a74ee 103 505) "SHRDLU") 
     (member 
       "<GUID=9>;<SID=0x0105...07080000>; 
        cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"  
       (3 0x2FA9A74ED 103 504 0x2FA9A74EB 0) ) 
   ) 
 ) 

3.1.1.1.10 GC Server 

An AD DS DC can be a GC server as determined by state in the config NC, as specified in section 
6.1.1.2.2.1.2.1.1. A GC server provides LDAP access to the GC view of the forest via a special LDAP 
port, as specified in section 3.1.1.3. 

3.1.1.1.11 FSMO Roles 

Each DC accepts originating updates for most attributes of most objects within its writable NC replicas. 
But certain updates are only accepted if the DC is the single designated "master" DC for the update, 
as specified in this section. The mechanism is called FSMO roles, which stands for flexible single 
master operation (FSMO) roles. 

If some or all of the updates to an object are single-mastered, that object belongs to a defined set of 
objects. [MS-DRSR] section 4.1.10.5.3 (GetReplScope) specifies these sets, which are called FSMO 



 

113 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

roles. Each FSMO role is contained within a single NC. Each domain NC contains three FSMO roles 
called InfrastructureMasterRole, RidAllocationMasterRole, and PdcEmulationMasterRole. A config NC 

contains one FSMO role called DomainNamingMasterRole. A schema NC contains one FSMO role called 
SchemaMasterRole. An application NC has no FSMO roles. 

Since a DC operating as AD LDS does not host domain NCs, it cannot own any of the three roles 
contained by domain NCs. It can own the Schema Master and Domain Naming FSMO roles. 

In a given NC, each FSMO role is represented by an object. [MS-DRSR] section 4.1.10.5.3 
(GetReplScope) specifies these objects, which are called FSMO role objects. 

The fSMORoleOwner attribute of each FSMO role object is an object reference to the nTDSDSA object 
of the DC that owns the role; that is, the DC that performs updates to objects in the role. nTDSDSA 
objects and how they represent DCs are specified in section 6.1. 

An originating update to an object within a FSMO role generates an LDAP referral if the DC that 
receives the request cannot perform the update; the referral is to the DC represented by the 
nTDSDSA object referenced by the FSMO role object's fSMORoleOwner attribute on the DC that 

received the request. 

The processing of updates affected by FSMO roles is fully specified in section 3.1.1.5. 

The IDL_DRSGetNCChanges method ([MS-DRSR] section 4.1.10) makes an originating update to the 

fSMORoleOwner attribute of a FSMO role object while preserving single-mastering of updates to the 
FSMO role. The ability to update the fSMORoleOwner attribute in this way is exposed through LDAP as 
the root DSE updates becomeDomainMaster, becomeInfrastructureMaster, becomePdc, 
becomePdcWithCheckPoint, becomeRidMaster, and becomeSchemaMaster specified in section 3.1.1.3. 

Reading the rootDSE attribute validFSMOs on a DC returns the set of all FSMO roles (represented as 
FSMO role objects) that the DC will update; this is specified in section 3.1.1.3. 

3.1.1.1.12 Cross-NC Object References 

Section 3.1.1.1.6 specifies the referential integrity behavior of attributes with object reference 

syntaxes. That section only specifies the case of references within a single NC. This section specifies 
the differences for the case of object references that cross an NC boundary. 

Suppose src and dst are objects in different NCs, src has an attribute a with an object reference 
syntax, and dc is a DC hosting a writable replica of src's NC. 

▪ When an LDAP Add or Modify creates an object reference within attribute src.a, the server uses 

the DN (or SID or GUID) specified in the Add or Modify to locate an existing object dst. The 
behavior is identical to the single NC case, with two exceptions: 

1. Locating the object dst can fail if dc does not host a replica of dst and if dc fails to 
communicate with a server that hosts a dst replica; the response is error unavailable / 
<unrestricted>. 

2. Certain cross-NC references are not allowed; the specific references that are not allowed are 

specified in section 3.1.1.2.2.3. If the reference is not allowed, the response is error 

constraintViolation / ERROR_DS_NAME_REFERENCE_INVALID. 

▪ After the assignment, the referential integrity behavior is the same as if the reference did not 
cross an NC boundary, except that reference src.a reflects the state of object dst at some time t in 
the past, not at the current time. If the distributed system of DCs in the forest is functioning 
normally, the difference between the current time and the time t of the previous sentence is 
bounded by an administrator-configurable amount of time. (During this period of time, between t 

and the current time, the cross-NC reference can refer to the object by its previous name or at its 
previous location, or it can refer to the object after the object has been deleted.) The phrase 



 

114 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

"functioning normally" shown previously means that the DCs are running and communicating as 
needed, with only transient failures. 

The mechanism the system uses for restoring the integrity of object references is specified in section 
3.1.1.6. 

3.1.1.1.13 NC Replica Graph 

This section uses directed graphs to model replication topology. Use [KNUTH1] section 2.3.4.2 as a 
reference for the terms directed graph, vertex, arc, initial vertex, final vertex, path, and strongly-
connected. 

This section introduces concepts that are used in specifying the KCC in section 6.2. The concepts are 
simplified here because this section ignores the SMTP replication transport [MS-SRPL] and RODCs. 

Section 6.2 specifies the concepts in full generality. 

Associated with each NC replica is a repsFrom abstract attribute as specified in [MS-DRSR] section 
5.172. The value of this attribute is a set of tuples. Each tuple contains a field uuidDsa that contains 

the objectGUID of an nTDSDSA object. The nTDSDSA object represents a DC as specified in section 
6.1. 

Given a forest and an NC within the forest, define the NC replica graph as follows: 

▪ Each DC of the given forest is a vertex of the directed graph. 

▪ For each DC d containing a replica of the given NC: 

▪ Set r to the given NC's repsFrom on the DC d, as a sequence in any order. 

▪ For i in [0 .. r.length-1]: 

▪ r[i].uuidDsa is a directed arc to d (the final vertex of the arc) from the DC represented by 
the nTDSDSA object with objectGUID = r[i].uuidDsa (the initial vertex of the arc). 

Each arc in the directed graph represents a replication relationship. The DC at the final vertex of an 

arc performs cycles of IDL_DRSGetNCChanges requests ([MS-DRSR] section 4.1.10.1) to the DC at 
the initial vertex of that arc, applying the results of these requests to update the replica of the given 
NC at the final vertex. The events that trigger a cycle of IDL_DRSGetNCChanges request over a given 
arc of the NC replica graph are specified in the next section. 

The KCC is an automated management component of Active Directory that controls the repsFrom 
values on each DC and thereby controls the NC replica graph for each NC. One of the KCC's goals is to 
keep each NC replica graph of the forest in a good state, defined as follows: 

1. Each DC in the NC replica graph contains a replica of the given NC. 

2. If the DC at the initial vertex of an arc contains a partial replica of the given NC, so does the DC at 
the final vertex of that arc. 

3. If d is any DC that contains a partial replica of the given NC, there is a path to d from some DC 

that contains a full replica of the given NC. 

4. Define F as the set of all DCs that contain full replicas of the given NC. The subgraph of the NC 

replica graph whose vertex set is F is strongly-connected. 

For example, the following NC replica graph contains five DCs. DC 1, DC 2, and DC 3 contain full 
replicas of the given NC and DC 4 and DC 5 contain partial replicas of the given NC. 



 

115 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 

Figure 3: A sample NC replica graph 

Per item 1 in the numbered list above, every DC present in the graph contains a replica of the given 
NC. 

There is an arc from DC 4 to DC 5. DC 4 is the initial vertex of this arc and DC 5 is the final vertex. Per 
item 2 in the list above, because DC 4 contains a partial replica of the NC, DC 5 also contains a partial 
replica of the NC. 

Per item 3 in the list above, there is a path from DC 1, which contains a full replica of the NC, to both 

DC 4 and DC 5 that contains a partial replica of the NC. 

Per item 4 in the list above, the subgraph of the NC replica graph made by DC 1, DC 2, and DC 3 that 
contains a full replica of the NC is strongly connected because there is a path from each vertex in the 

subgraph to every other vertex in the subgraph. 

The KCC performs this management by first creating connection objects (specified in section 
6.1.1.2.2.1.2.1.2), then creating repsFrom values from those connection objects (specified in section 

6.2). An administrator can create specially marked connection objects, with the 
NTDSCONN_OPT_IS_GENERATED bit not set in the options attribute, that the KCC will not modify but 
will use in creating repsFrom values. 

3.1.1.1.14 Scheduled and Event-Driven Replication 

If client and server are two DCs in the NC replica graph of a given NC and forest, where server is the 
initial vertex of an arc and client is the final vertex of the same arc, client will perform a replication 

cycle from server by calling IDL_DRSGetNCChanges ([MS-DRSR] section 4.1.10) until the cycle is 
complete in either of these two cases: 

1. The DC client's repsFrom tuple for server contains a schedule field that calls for replication at the 
current time. The schedule contains a REPLTIMES structure as specified in [MS-DRSR] section 
5.165. This is scheduled replication. 

2. The DC server calls the IDL_DRSReplicaSync method ([MS-DRSR] section 4.1.23.2) on the client. 
This is event-driven replication. The events that cause this form of replication are specified later in 

this section. 

A precondition for event-driven replication involves server's repsTo abstract attribute, specified in 
[MS-DRSR] section 5.173. The repsTo abstract attribute is a sequence tuples, like repsFrom. Like 
repsFrom, each repsTo tuple contains a field uuidDsa that contains the objectGUID of an nTDSDSA 



 

116 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

object. The nTDSDSA object represents a DC as specified in section 6.1. If server's repsTo abstract 
attribute contains a tuple whose uuidDsa field contains the objectGUID of client's nTDSDSA object, 

server performs event-driven replication to client. 

It remains to specify how a DC's repsTo abstract attribute is populated, and to specify the events that 

trigger event-driven replication. 

A DC's repsTo abstract attribute is populated as follows: 

1. A DC server's repsTo abstract attribute is populated for event-driven replication to client if client's 
repsFrom tuple for server has the DRS_ADD_REF bit set in its replicaFlags field, and client calls 
the IDL_DRSGetNCChanges method on server during scheduled replication. The DC client sets the 
DRS_ADD_REF bit in Request.ulFlags on the scheduled call to IDL_DRSGetNCChanges on server 
([MS-DRSR] section 4.1.10.4.1) and server updates repsTo for event-driven replication to client as 

a result ([MS-DRSR] section 4.1.10.5.2). 

Since the KCC running on client writes client's repsFrom, this behavior is controlled by the state of 
KCC objects as specified in section 6.2. 

2. A DC server's repsTo abstract attribute is populated for event-driven replication to DC client if the 
IDL_DRSReplicaAdd method ([MS-DRSR] section 4.1.19.2) is called on client, specifying server as 
the replication source (either pmsgIn.V1.pszSourceDsaAddress or pmsgIn.V2.pszDsaSrc, 

depending upon the request version used). If the IDL_DRSReplicaAdd adds a new tuple to client's 
repsFrom, it proceeds to call IDL_DRSUpdateRefs ([MS-DRSR] section 4.1.26.2) on server to 
update server's repsTo abstract attribute. 

Since IDL_DRSReplicaAdd is an RPC method, this behavior is controlled by any authorized 
requester of this method. Within Active Directory itself, IDL_DRSReplicaAdd is called by the KCC 
to maintain repsFrom. 

The events that trigger event-driven replication from a DC server are as follows: 

1. The DC server receives an update, either originating or replicated, as specified in section 
3.1.1.5.1.7 (Urgent Replication). 

2. A configurable time expires after DC server receives any update, as specified in section 3.1.1.5.1.6 
(Replication notification). 

3.1.1.1.15 Replication Latency and Tombstone Lifetime 

Replication latency is the delay between the time of an originating update to an NC and the time when 

this update is reflected in all replicas of that NC. Some updates are superseded before reaching all 
replicas, but for the purposes of this simplified definition, consider an attribute update that is not 
followed by other updates to that attribute for a long time. 

Administrators of Active Directory control replication latency by setting several variables, specified in 
section 6.1 and section 6.2. These variables ultimately control the schedules used for scheduled 
replication, and they control the use of event-driven replication. Replication latency is not fully 

predictable in a real system, because it depends upon the volume of read requests to DCs, the volume 
of originating update requests to DCs, and the availability of DCs and communications links. 

If the typical replication latency is larger than the tombstone lifetime (the value of the 
tombstoneLifetime attribute of the Directory Services object specified in section 6.1.1.2.4.1.1, 
interpreted as a number of days), some tombstones or recycled-objects will be garbage collected 
before they have replicated to every NC replica. As a result, some objects will never be deleted in 
some replicas. To restore consistency of object existence, an administrator cleans up such lingering 

objects with utility programs. 

3.1.1.1.16 (Updated Section) Delayed Link Processing 



 

117 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

When an update to an object would result in removal of more than 10,000 forward link values, or the 
update would result in more than 10,000 forward link values to be made either visible or invisible to 

LDAP operations that do not specify the LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID control, then 
at least 10,000 of the value changes so directed are completed within the transaction encompassing 

the modification (that is, the "originating transaction").  

Note  In Windows Server 2003, Windows Server 2003 R2, and Windows Server 2008, the number is 
1,000 instead of 10,000. 

Any values not so changed within the originating transaction are changed by continuing processing 
after and outside of that originating transaction. These changes that occur outside the originating 
transactions are called "delayed link processing". Delayed link processing occurs within one or more 
transactions subsequent to the originating transaction. 

Although delayed link processing always uses at least one subsequent transaction, there is no 
constraint on the upper bound of the number of transactions that Active Directory uses during delayed 
link processing. Therefore, there is no requirement that at any given time all such values have been 
removed, made visible, or made invisible. It is possible that there is a period of time during which an 

object that shouldSHOULD not have a specific value for a link valued attribute will continue to have 
that value. Likewise, it is possible that there is a period of time during which an object that 

shouldSHOULD have a specific value for a link valued attribute be either visible or invisible might not 
have that value in the correct state. Although the protocol places no boundary or requirements on the 
length of this period of time, it is recommended that implementations minimize the length of this 
period of time to improve usability of the directory for clients. 

The server MUST guarantee that all such changes to values of link valued attributes are eventually 
made to all affected link valued attributes. 

Note  In Windows 2000 Server, delayed link processing is not supported. 

3.1.1.2 (Updated Section) Active Directory Schema 

In Active Directory, the schema contains definitions for the objects that can be stored in the directory, 

and it enforces the rules that govern both the structure and the content of the directory. The schema 

consists of a set of classes, attributes, and syntaxes. A class is a category of objects that share a set 
of common characteristics. It is a formal description of a discrete, identifiable type of object that can 
be stored in the directory. Each object in the directory is an instance of one or more classes in the 
schema. Attributes define the types of information that an object can hold. For each class, the schema 
specifies the mandatory attributes and optional attributes that constitute the set of shared 
characteristics of the class. A syntax is the data type of a particular attribute. Syntaxes determine 
what data type an attribute can have. Active Directory uses a set of predefined syntaxes. The 

predefined syntaxes do not actually appear in the directory, and new syntaxes cannot be added. 

The schema itself is represented in Active Directory by a set of objects known as schema objects. For 
each class in the schema, there is a schema object that defines the class. This object is a classSchema 
object. For each attribute in the schema, there is a schema object that defines the attribute. This 
object is an attributeSchema object. Therefore, every class is actually an instance of the classSchema 
class, and every attribute is an instance of the attributeSchema class. Administrators and applications 

can extend the schema by adding new attributes and classes and by modifying existing ones. 

A schema object cannot be deleted, but it can be made defunct by setting the isDefunct attribute to 
trueTRUE. A schema object that is not defunct is active. The primary effect of the defunct state is to 
prevent the schema object from being used in the creation or modification of new objects. For 
instance, attempts to perform an LDAP Add of an object with a defunct class fails, just as an attempt 
to perform an LDAP Add of a nonexistent class fails. The full effects of the defunct state are specified 
later in this section. 

3.1.1.2.1 (Updated Section) Schema NC 



 

118 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The schema NC contains all of the objects that define object classes and attributes used in a forest. 

The root object of the schema NC, called the schema container, is an instance of class dMD. 

The contents of the schema NC are established when a forest is created. To enable a DC of a forest to 
be upgraded to a newer version of the operating system, a schema upgrade process is first performed. 

This process updates the portion of the schema that the new operating system depends upon. 

The attribute objectVersion on the schema container object stores the schema version of the forest. 
This attribute is set during the creation of the first domain in a forest and is changed during schema 
upgrade after the schema is successfully upgraded to a newer version. In AD DS, to add a DC running 
a particular Windows release to an existing forest, the objectVersion of the forest's schema container 
mustMUST be greater than or equal to the value for that Windows release. In AD LDS, this is not a 
requirement. In AD LDS, to add a DC running a particular Windows release to an existing forest, the 

objectVersion of the forest's schema container can be less than the value for that Windows release. 
The correspondence between Windows releases and values of the schema container objectVersion is 
the following: 

▪ Windows 2000 Server: 13 

▪ Windows Server 2003: 30 

▪ Windows Server 2003 R2: 31 

▪ Windows Server 2008 (AD DS): 44 

▪ Windows Server 2008 R2 (AD DS): 47 

▪ Windows Server 2012 (AD DS): 56 

▪ Windows Server 2012 R2 (AD DS): 69 

▪ Windows Server 2016 (AD DS): 87 

▪ Windows Server v1709 (AD DS): 87 

▪ Windows Server v1803 (AD DS): 88 

▪ Windows Server v1809 (AD DS): 88 

▪ Windows Server 2019 (AD DS): 88 

▪ ADAM: 30 

▪ Windows Server 2008 (AD LDS): 30 

▪ Windows Server 2008 R2 (AD LDS): 31 

▪ Windows Server 2012 (AD LDS): 31 

▪ Windows Server 2012 R2 (AD LDS): 31 

▪ Windows Server 2016 (AD LDS): 31 

▪ Windows Server v1709 (AD LDS): 31 

▪ Windows Server v1803 (AD LDS): 31 

▪ Windows Server v1809 (AD LDS): 31 

▪ Windows Server 2019 (AD LDS): 31 



 

119 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute schemaInfo on the schema container stores a String(Octet) value of length 21 bytes. This 
attribute has no value in a new forest. This attribute is updated on every original schema Add or 

Modify in the same transaction, and it is replicated to all the domain controllers in the forest upon 
completion of schema NC replication. The first byte of schemaInfo is 0xFF. The next 4 bytes are a 32-

bit integer in big-endian byte order, used as the version of the update. The first update sets the 
version to 1. For subsequent updates, the version is incremented by one. The last 16 bytes are the 
invocationId of the DC where the schema change is made. The invocationId attribute is specified in 
section 3.1.1.1.9. 

For example, here is a value of schemaInfo: 

0xFF 0x00 0x00 0x07 0xC7 0x20 0x79 0x92 0xE6 0x84 0xB6 0xF6 0x40 0x99 0x47 0x21 0x8B 0xC9 
0xE0 0xF1 0xF3 

After a schema change is done on the schema master, the following is the new value: 

0xFF 0x00 0x00 0x07 0xC8 0x20 0x79 0x92 0xE6 0x84 0xB6 0xF6 0x40 0x99 0x47 0x21 0x8B 0xC9 
0xE0 0xF1 0xF3  

There is a child of the schema container with RDN cn=Aggregate and class subSchema. This object 
has several constructed attributes that are compliant with [RFC2251] section 4.5.2, through which the 
client can retrieve the forest's current schema. See constructed attributes in section 3.1.1.4.5. This 

object cannot be modified. 

3.1.1.2.2 Syntaxes 

3.1.1.2.2.1 Introduction 

This section describes the LDAP syntaxes used in attributes in Active Directory DCs. 

3.1.1.2.2.2 LDAP Representations 

The LDAP syntaxes supported by DCs are as shown in the following table. The set of syntaxes 

supported is not extensible by schema modifications. Each syntax is identified by the combination of 
the attributeSyntax, oMSyntax and, in select cases, oMObjectClass attributes of an attributeSchema 
object. The cases for which oMObjectClass is not used are indicated by the presence of a hyphen in 
the oMObjectClass column in the table. The combinations shown in the following table are exhaustive; 
this table is consistent and identical for Windows 2000 Server and later. 

While oMObjectClass conceptually contains an object identifier (OID), it is declared in the schema as 
String(Octet) syntax, requiring that values read from and written to it be expressed as the Basic 
Encoding Rules (BER) encoding of the OID (BER encoding is defined in [ITUX690]). In the table, both 
the BER-encoded form and the dotted string form of the OID are given. 

LDAP syntax name  attributeSyntax oMSyntax oMObjectClass 

Boolean 2.5.5.8 1 - 

Enumeration 2.5.5.9 10 - 

Integer 2.5.5.9 2 - 

LargeInteger 2.5.5.16 65 - 

Object(Access-Point) 2.5.5.14 127 0x2B 0x0C 0x02 0x87 0x73 0x1C 0x00 
0x85 0x3E (1.3.12.2.1011.28.0.702) 

Object(DN-String) 2.5.5.14 127 0x2A 0x86 0x48 0x86 0xF7 0x14 0x01 
0x01 0x01 0x0C 
(1.2.840.113556.1.1.1.12) 



 

120 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LDAP syntax name  attributeSyntax oMSyntax oMObjectClass 

Object(OR-Name) 2.5.5.7 127 0x56 0x06 0x01 0x02 0x05 0x0B 0x1D 
(2.6.6.1.2.5.11.29) 

Object(DN-Binary) 2.5.5.7 127 0x2A 0x86 0x48 0x86 0xF7 0x14 0x01 
0x01 0x01 0x0B 
(1.2.840.113556.1.1.1.11) 

Object(DS-DN) 2.5.5.1 127 0x2B 0x0C 0x02 0x87 0x73 0x1C 0x00 
0x85 0x4A (1.3.12.2.1011.28.0.714) 

Object(Presentation-Address) 2.5.5.13 127 0x2B 0x0C 0x02 0x87 0x73 0x1C 0x00 
0x85 0x5C (1.3.12.2.1011.28.0.732) 

Object(Replica-Link) 2.5.5.10 127 0x2A 0x86 0x48 0x86 0xF7 0x14 0x01 
0x01 0x01 0x06 
(1.2.840.113556.1.1.1.6) 

String(Case) 2.5.5.3 27 - 

String(IA5) 2.5.5.5 22 - 

String(NT-Sec-Desc) 2.5.5.15 66 - 

String(Numeric) 2.5.5.6 18 - 

String(Object-Identifier) 2.5.5.2 6 - 

String(Octet) 2.5.5.10 4 - 

String(Printable) 2.5.5.5 19 - 

String(Sid) 2.5.5.17 4 - 

String(Teletex) 2.5.5.4 20 - 

String(Unicode) 2.5.5.12 64 - 

String(UTC-Time) 2.5.5.11 23 - 

String(Generalized-Time) 2.5.5.11 24 - 

The representation for many of the preceding syntaxes is adopted from [RFC2252]. The following 
table lists the syntaxes whose representation is adopted from that RFC, the [RFC2252] name of that 
syntax, and the associated section of [RFC2252] that specifies the representation. 

LDAP syntax name  RFC 2252 name  Section of RFC 2252  

Boolean Boolean 6.4 

Enumeration INTEGER 6.16 

Integer INTEGER 6.16* 

LargeInteger INTEGER 6.16* 

Object(DS-DN) DN 6.9 (see also [RFC2253])** 

Object(Presentation-Address) Presentation Address 6.28*** 

Object(Replica-Link) Binary 6.2 

String(IA5) IA5 String 6.15† 



 

121 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LDAP syntax name  RFC 2252 name  Section of RFC 2252  

String(Numeric) Numeric String 6.23†† 

String(Object-Identifier) OID 6.25††† 

String(Octet) Binary 6.2 

String(Printable) Printable String 6.29†††† 

String(Unicode) Directory String 6.10 

String(UTC-Time) UTC Time 6.31††††† 

String(Generalized-Time) Generalized Time 6.14††††† 

* The Integer syntax in Active Directory is restricted to 32-bit integers. The LargeInteger syntax is 
restricted to 64-bit integers. 

** While Active Directory uses the [RFC2252] and [RFC2253] representation of DNs, it can also use 
alternative forms of the DN representation when it accepts requests and sends responses, if requested 

by the client. This is documented in LDAP_SERVER_EXTENDED_DN_OID (section 3.1.1.3.4.1.5). 

*** No validation is done by the DC to confirm that the value conforms to the representation specified 
in [RFC1278]. 

† Values restricted to ASN.1 IA5 strings (as specified in [ITUX680]). 

†† Values restricted to ASN.1 Numeric strings (as specified in [ITUX680]). 

††† Values of attributes of syntax String(OID) are accepted in either the numericoid (numeric OID) or 

descr (the LDAP display name of the attribute or class identified by that OID) format, as defined in 
[RFC2252] section 4.1. The server determines the format of returning OID values using the first 
matching rule in the following set of processing rules: 

1. If a "Binary Option" is present on the AttributeDescription (as described in [RFC2251] section 
4.1.5.1) of the request, the server MUST return the OID converted to binary format as described 
in [RFC2252] section 4.3.1. The result is a binary encoded value using Basic Encoding Rules 
defined in [ITUX690]. 

2. If a value of either attributeID of an AttributeSchema object or governsID of a ClassSchema object 
is requested, the server MUST return the OID in numericoid (Numeric OID) format. 

3. If the attribute requested is not attributeID or governsID, but the value of the attribute identifies 
an attribute or class, the server MUST return the value in Descr format. 

4. If none of the above applies, the server MUST return the OID in numericoid (Numeric OID) format. 

†††† Active Directory has two differences from the character set specified in [RFC2252]: 

1. The quote character ("), or ASCII 0x22, is part of the character set in the RFC but not in Active 

Directory. 

2. The "@" symbol, or ASCII 0x40, is not part of the character set in the RFC, but it is part of the 
character set in Active Directory. 

††††† Times are measured in granularity of 1 second. 

The remaining syntaxes are represented as shown in the following sections. 

3.1.1.2.2.2.1 Object(DN-String) 



 

122 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

A value with this syntax is a UTF-8 string in the following format: 

S:byte_count:string_value:object_DN 

where byte_count is the number (in decimal) of bytes in the string_value string, object_DN is a 
DN in Object(DS-DN) form, and all remaining characters are string literals. Since string_value is a 

UTF-8 string, one character can require more than one byte to represent it. 

3.1.1.2.2.2.2 Object(Access-Point) 

A value with this syntax is a UTF-8 string in the following format: 

presentation_address#X500:object_DN 

where presentation_address is a value encoded in the Object(Presentation-Address) syntax, 
object_DN is a DN in Object(DS-DN) form, and all remaining characters are string literals. 

3.1.1.2.2.2.3 Object(DN-Binary) 

A value with this syntax is a UTF-8 string in the following format: 

B:char_count:binary_value:object_DN 

where char_count is the number (in decimal) of hexadecimal digits in binary_value, binary_value 
is the hexadecimal representation of a binary value, object_DN is a DN in Object(DS-DN) form, and 

all remaining characters are string literals. Each byte is represented by a pair of hexadecimal 
characters in binary_value, with the first character of each pair corresponding to the most-significant 
nibble of the byte. The first pair in binary_value corresponds to the first byte of the binary value, 
with subsequent pairs corresponding to the remaining bytes in sequential order. Note that 
char_count is always even in a syntactically-valid Object(DN-Binary) value. 

3.1.1.2.2.2.4 Object(OR-Name) 

A value with this syntax is a UTF-8 string in the following format: 

object_DN 

where object_DN is a DN in Object(DS-DN) form. 

3.1.1.2.2.2.5 (Updated Section) String(Case) 

A value with this syntax is a case-sensitive UTF-8 string, but the server does not enforce that a value 
of this syntax mustMUST be a valid UTF-8 string. 

3.1.1.2.2.2.6 String(NT-Sec-Desc) 

A value with this syntax contains a Windows security descriptor in binary form. The binary form is that 
of a SECURITY_DESCRIPTOR structure and is specified in [MS-DTYP] section 2.4.6. It is otherwise 
encoded the same as the String(Octet) syntax. 

3.1.1.2.2.2.7 String(Sid) 

A value with this syntax contains a SID in binary form. The binary form is that of a SID structure (the 
SID structure is specified in [MS-DTYP] section 2.4.2.2; all multibyte fields have little-endian byte 
ordering). It is otherwise encoded the same as the String(Octet) syntax. 

3.1.1.2.2.2.8 String(Teletex) 



 

123 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

A value with this syntax is a UTF-8 string restricted to characters with values between 0x20 and 0x7E, 
inclusive. 

3.1.1.2.2.3 Referential Integrity 

Attributes with object reference syntaxes have special behavior, called referential integrity, as 
specified in section 3.1.1.1.6. The following are object reference syntaxes: 

▪ Object(Access-Point) 

▪ Object(DN-String) 

▪ Object(OR-Name) 

▪ Object(DN-Binary) 

▪ Object(DS-DN) 

For the four syntaxes other than Object(DS-DN), referential integrity only applies to the object_DN 
portion of the value. 

Active Directory imposes restrictions on which objects can be referenced by an attribute that has 
referential integrity. An attribute can reference any object in the same NC as the object on which that 
attribute is located. Additionally, attributes on an object in the domain NC, schema NC, or config NC 
can reference any object in any domain NC in the forest, any object in the schema NC or the config 

NC, or the root object of any application NC. For objects in application NCs, such attributes can 
reference any object in the config NC or the schema NC, or the root object of any application NC, in 
addition to any object in the same application NC as the object doing the referencing. All other 
references are disallowed by the server. 

These restrictions are identical for AD DS and for AD LDS. Because AD LDS does not support domain 
NCs, the only cross-NC references in an AD LDS forest are from any NC to any object in the config and 
schema NCs or to the root of an application NC. 

3.1.1.2.2.4 Supported Comparison Operations 

In addition to determining what can be stored in an attribute, the syntaxes determine what 
comparison operations the server permits on an attribute in an LDAP search filter, as well as how the 
server performs those comparisons. The following table maps each of the LDAP syntaxes to a 
comparison rule. All syntaxes of the same comparison rule support the same comparison operations 
and are compared using the same comparison rules. 

LDAP syntax Comparison rule 

Boolean Bool 

Enumeration Integer 

Integer Integer 

LargeInteger Integer 

Object(Access-Point) DN-String 

Object(DN-String) DN-String 

Object(OR-Name) DN-Binary 

Object(DN-Binary) DN-Binary 

Object(DS-DN) DN 



 

124 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LDAP syntax Comparison rule 

Object(Presentation-Address) PresentationAddress 

Object(Replica-Link) Octet 

String(Case) CaseString 

String(IA5) CaseString 

String(NT-Sec-Desc) SecDesc 

String(Numeric) CaseString 

String(Object-Identifier) OID 

String(Octet) Octet 

String(Printable) CaseString 

String(Sid) Sid 

String(Teletex) NoCaseString 

String(Unicode) UnicodeString 

String(UTC-Time) Time 

String(Generalized-Time) Time 

The following table (split into three parts for readability) shows which of the choices in an LDAP filter 

(that is, which comparison operations) are supported for each comparison rule. The LDAP filter 
structure is defined in [RFC2251] section 4.5.1. Each comparison rule (for example, the rule for 
comparing two Bool values) is discussed following the table. The "and", "or", and "not" choices in an 
LDAP filter are not included in this table because they are not comparisons performed against an 

attribute value. Active Directory treats approxMatch as equivalent to equalityMatch. For details on the 
three extensible matching rules, see section 3.1.1.3.4.4. 

Comparison rule present equalityMatch approxMatch 

Bool X X X 

Integer X X X 

DN-String X X X 

DN-Binary X X X 

DN X X X 

PresentationAddress X X X 

Octet X X X 

CaseString X X X 

SecDesc X   

OID X X X 

Sid X X X 

NoCaseString X X X 



 

125 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Comparison rule present equalityMatch approxMatch 

UnicodeString X X X 

Time X X X 

 

Comparison rule lessOrEqual 
greaterOrEqu
al substrings 

Bool X X  

Integer X X  

DN-String    

DN-Binary    

DN    

PresentationAddress    

Octet X X X 

CaseString X X X 

SecDesc    

OID    

Sid X X X 

NoCaseString X X X 

UnicodeString X X X 

Time X X  

Note  In the following table, the constant names in the headers for the extensibleMatch columns are 
prefixed with "LDAP_MATCHING_RULE_". For example, "...BIT_AND" is actually 
"LDAP_MATCHING_RULE_BIT_AND". 

Comparison rule 
extensibleMatch: 
...BIT_AND 

extensibleMatch: 
...BIT_OR 

extensibleMatch: 
...TRANSITIVE_EVAL 

Bool    

Integer X X  

DN-String   X* 

DN-Binary   X* 

DN   X* 

PresentationAddress    

Octet    

CaseString    

SecDesc    



 

126 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Comparison rule 
extensibleMatch: 
...BIT_AND 

extensibleMatch: 
...BIT_OR 

extensibleMatch: 
...TRANSITIVE_EVAL 

OID    

Sid    

NoCaseString    

UnicodeString    

Time    

* Supported only if the attribute is a link attribute. Evaluates to Undefined otherwise. 

3.1.1.2.2.4.1 (Updated Section) Bool Comparison Rule 

A value of trueTRUE is considered to be greater than a value of falseFALSE. 

3.1.1.2.2.4.2 Integer Comparison Rule 

A signed comparison of integer values is performed. 

3.1.1.2.2.4.3 DN-String Comparison Rule 

Values of String(DN-String) or String(Access-Point) are equal if the object_DN components name the 
same object and the string_value or presentation_address components are equal according to the 
UnicodeString comparison rule. 

Evaluation of an LDAP_MATCHING_RULE_TRANSITIVE_EVAL matching rule is performed as 
documented in section 3.1.1.3.4.4. Only the object_DN component is considered when evaluating a 
filter clause that uses this rule; string_value or presentation_address is ignored. 

3.1.1.2.2.4.4 DN-Binary Comparison Rule 

Values of String(DN-Binary) or String(OR-Name) are equal if the object_DN components name the 
same object and the binary_value or OR_address components are identical in length and in 
content. 

Evaluation of an LDAP_MATCHING_RULE_TRANSITIVE_EVAL matching rule is performed as 
documented in section 3.1.1.3.4.4. Only the object_DN component is considered when evaluating a 

filter clause that uses this rule; binary_value or OR_address is ignored. 

3.1.1.2.2.4.5 DN Comparison Rule 

DN values are equal when they name the same object. 

Evaluation of an LDAP_MATCHING_RULE_TRANSITIVE_EVAL matching rule is performed as 
documented in section 3.1.1.3.4.4. 

3.1.1.2.2.4.6 PresentationAddress Comparison Rule 

Two Object(Presentation-Address) values are equal when they have the same length and content. 

3.1.1.2.2.4.7 Octet Comparison Rule 

Two values are equal when they are the same length and have identical contents. A value S1 is less 
than a value S2, where L is the smaller of the length of S1 and the length of S2, if either the first L 
bytes of S1 are less than the first L bytes of S2, or if the first L bytes of S1 and S2 are identical but 



 

127 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

the length of S1 is less than the length of S2. Given L = 1, S1 is less than S2 if the value of the first 
byte of S1 is less than the value of the first byte of S2. Given L > 1, for the first L bytes of S1 to be 

less than the first L bytes of S2 means that there exists an N (where N<L) such that bytes 0...N-1 of 
S1 and S2 are identical, and byte N of S1 is less than byte N of S2. 

For substring purposes, each byte in the value is treated as if it was a character. Values are compared 
using the ordinary rules for a SubstringFilter, as defined in [RFC2251] section 4.5.1. The "characters" 
are treated as if they were case-sensitive; that is, two characters are considered identical if and only if 
the bytes that represent them are identical. 

3.1.1.2.2.4.8 CaseString Comparison Rule 

When compared using this comparison rule, two values are equal if they have identical length and 

contents. A value S1 is less than a value S2, where L is the smaller of the length of S1 and the length 
of S2, if either the first L bytes of S1 are less than the first L bytes of S2, or if the first L bytes of S1 
and S2 are identical but the length of S1 is less than the length of S2. Given L = 1, S1 is less than S2 
if the value of the first byte of S1 is less than the value of the first byte of S2. Given L > 1, for the 

first L bytes of S1 to be less than the first L bytes of S2 means that there exists an N (where N<L) 
such that bytes 0...N-1 of S1 and S2 are identical, and byte N of S1 is less than byte N of S2. 

For substring purposes, this comparison rule treats values as if they were case-sensitive strings of 
characters and obey the ordinary rules for a SubstringFilter, as defined in [RFC2251] section 4.5.1. In 
this comparison, two characters are considered identical if and only if the bytes that represent them 
are identical. 

3.1.1.2.2.4.9 SecDesc Comparison Rule 

SecDescs are compared as octet strings as in section 3.1.1.2.2.4.7. 

3.1.1.2.2.4.10 OID Comparison Rule 

Two String(Object-Identifier) values are equal when they are the same OID. 

3.1.1.2.2.4.11 Sid Comparison Rule 

String(SID) values are treated as the binary representation of the SID (see section 3.1.1.2.2.2.7). The 
binary representations of the SID are compared using the Octet comparison rule. 

3.1.1.2.2.4.12 NoCaseString Comparison Rule 

This comparison rule is identical to the CaseString comparison rule, except that for each comparison, 
characters are treated in a case-insensitive fashion. For equality, ordering (greater-than-or-equals and 
less-than-or-equals), and substrings, two characters are identical if the bytes that represent them are 
identical or if the characters differ from each other only by their case. The "C" locale, as defined in 
[ISO/IEC-9899], is used for determining whether two characters differ by case. 

3.1.1.2.2.4.13 UnicodeString Comparison Rule 

Comparison of values using this comparison rule is performed via Unicode comparison, which is 
specified in section 6.5. If an LDAP_SERVER_SORT_OID extended control (see section 3.1.1.3.4) is 
attached to the search request and specifies a locale in its orderingRule field, the locale specified is 
used for the Unicode comparison. Otherwise, the Unicode comparison is performed using United 
States English (LCID 0409). The comparison function is independent of the server locale and therefore 

gives the same result on all DCs. The comparison function operates on Unicode strings containing 
characters from all alphabets and does not, for instance, involve reducing the string to the alphabet 
used by United States English before performing the comparison. This comparison function is used to 
determine both equality and ordering (greater-than-or-equals and less-than-or-equals), as well as to 
determine equality of substrings when performing a substring comparison. 



 

128 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

This comparison rule is used in processing search filters, not in sorting search results. See section 
3.1.1.3.4.1.13 for per-locale sorting of search results. 

3.1.1.2.2.4.14 Time Comparison Rule 

Time T1 is greater than time T2 if T1 denotes a time subsequent to T2. 

3.1.1.2.3 (Updated Section) Attributes 

The attributes of class attributeSchema are specified in the following table. 

The term "Unique" (in quotation marks) in the following table, and in the similar table for classSchema 
in section 3.1.1.2.4.8, means that the value satisfies the following constraint: 

▪ If the forest functional level is less than DS_BEHAVIOR_WIN2003, the value is unique among all 

values of this attribute in the set containing every attributeSchema and classSchema object in the 
schema NC. 

▪ If the forest functional level is DS_BEHAVIOR_WIN2003 or greater, the value is unique among all 
values of this attribute in the set containing every attributeSchema and classSchema object S in 
the schema NC that satisfies at least one of the following three conditions: 

▪ S!isDefunct ≠ trueTRUE, that is, S is active. 

▪ FLAG_ATTR_IS_RDN is present in S!systemFlags (defined in the following table). 

▪ S = C!rDNAttID (section 3.1.1.2.4.8) for some classSchema object C. 

The term system-only in the following table means that the attribute is defined with systemOnly 
trueTRUE. The value of the system-only attributes in the table can be specified on Add (except where 
noted) but cannot be modified on existing objects by LDAP Modify requests (except as specified in 
section 3.1.1.5.3.2), only by the system. The table is ordered with the system-only attributes before 
the other attributes. 

Attribute  Description  

objectClass Equals the sequence [ top, classSchema ]. System-only. 

attributeID "Unique" OID that identifies this attribute. System-only. 

schemaIDGUID "Unique" GUID that identifies this attribute, used in security descriptors (SDs). If 
not specified on Add, the DC generates a GUID. This GUID MUST NOT be the 
NULL GUID. System-only. 

msDS-IntId Not specified on Add (if specified in the Add request, the DC returns error 
unwillingToPerform / <unrestricted>); the value (a 32-bit unsigned integer in 
the subrange [0x80000000..0xBFFFFFFF]) is generated by the DC. Present on 
attributeSchema objects added when forest functional level is 
DS_BEHAVIOR_WIN2003 or greater with FLAG_SCHEMA_BASE_OBJECT not 
present in systemFlags (below). The value of msDS-IntId is the ATTRTYP of this 
attributeSchema object. Unique among all values of this attribute on objects in 
the schema NC, regardless of forest functional level. System-only. 

linkID Optional. If present, and not zero, this is a link attribute, and the linkID value is 
unique among all values of this attribute on objects in the schema NC, 
regardless of forest functional level. If linkID is even, the attribute is a forward 
link attribute; otherwise it is a back link attribute. The linkID for back link 
attribute equals to the linkID of the corresponding forward link attribute plus 
one. Special auto-generation behavior for the linkID attribute is specified in 
section 3.1.1.2.3.1. System-only. 



 

129 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute  Description  

mAPIID Optional. "Unique" integer that identifies this attribute, used by Messaging 
Application Programming Interface (MAPI) clients. Not present on 
attributeSchema objects in AD LDS. Special auto-generation behavior for the 
mAPIID attribute is specified in section 3.1.1.2.3.2. System-only. If the DC 
functional level is DS_BEHAVIOR_WIN2008 or greater, the mAPIID attribute can 
be modified on attributeSchema objects that do not include 
FLAG_SCHEMA_BASE_OBJECT as the systemFlags attribute. Otherwise, the 
mAPIID attribute cannot be modified. 

attributeSyntax One of the three attributes that identify the syntax of the attribute. See section 
3.1.1.2.2. System-only. 

oMSyntax One of the three attributes that identify the syntax of the attribute. See section 

3.1.1.2.2. System-only. 

oMObjectClass Optional. One of the three attributes that identify the syntax of the attribute. 
See section 3.1.1.2.2. System-only. 

isSingleValued TrueTRUE if this attribute is single-valued; falseFALSE, if it is multivalued. If an 
attribute is multivalued, all values have the syntax specified for the attribute. 
System-only. 

systemFlags Optional. Flags that determine specific system operations; see section 2.2.10 for 
values. The systemFlags values specific to an attributeSchema object are: 

FLAG_ATTR_NOT_REPLICATED: This attribute is nonreplicated. 

Note  If the FLAG_ATTR_NOT_REPLICATED bit is not specified on Add and the 
linkID value is odd (denoting a back link attribute), the DC adds the 
FLAG_ATTR_NOT_REPLICATED bit to the systemFlags value using a bitwise OR. 

FLAG_ATTR_REQ_PARTIAL_SET_MEMBER: This attribute is a member of PAS 
regardless the value of attribute isMemberOfPartialAttributeSet. 

FLAG_ATTR_IS_CONSTRUCTED: This attribute is a constructed attribute. 

FLAG_ATTR_IS_OPERATIONAL: This attribute is an operational attribute, as 
defined in [RFC2251] section 3.2.1. 

FLAG_SCHEMA_BASE_OBJECT: This class is part of the base schema. 
Modifications to a base schema object are restricted as described in section 
3.1.1.2.5. 

FLAG_ATTR_IS_RDN: This attribute can be used as an RDN attribute of a class. 

System-only. 

systemOnly Optional. The value of a system-only attribute cannot be modified on existing 
objects by LDAP Modify requests (except as specified in section 3.1.1.5.3.2), 
only by the system. System-only. 

cn RDN for the schema object. 

lDAPDisplayName "Unique" name that identifies this attribute, used by LDAP clients. If not 
specified on Add, the DC generates a value as specified in section 3.1.1.2.3.4. 
The syntax of lDAPDisplayName is described in [RFC2251] section 4.1.4. 

attributeSecurityGUID Optional. GUID by which the security system identifies the property set of this 

attribute. If present, this value MUST NOT be the NULL GUID. See the 
specification of property sets in section 3.1.1.2.3.3. 

extendedCharsAllowed Optional. If trueTRUE, character set constraint is not enforced on values of this 
attribute. Applies to attributes of syntax String(IA5), String(Numeric), 
String(Teletex), String(Printable). 

rangeLower Optional. Lower range of values that are allowed for this attribute. For syntax 
Integer, LargeInteger, Enumeration, String(UTC-Time), and String(Generalized-
Time), rangeLower equals the minimum allowed value. For syntax Object(DN-



 

130 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute  Description  

binary), Object(DN-String), rangeLower equals the minimum length of the 
binary_value or string_value portion of the given value. For String(Unicode), 
rangeLower is the minimum length in characters. rangeLower does not affect the 
allowed values for syntax Boolean and Object(DS-DN). For all other syntaxes, 
rangeLower equals the minimum length in bytes. Note that rangeLower is a 32-
bit integer and cannot express the full range of LargeInteger, String(UTC-Time), 
and String(Generalized-Time). 

rangeUpper Optional. Upper range of values that are allowed for this attribute. For syntax 
Integer, LargeInteger, Enumeration, String(UTC-Time), and String(Generalized-
Time), rangeUpper equals the maximum allowed value. For syntax Object(DN-
binary), Object(DN-String), rangeUpper equals the maximum length of the 
binary_value or string_value portion of the given value. For String(Unicode), 
rangeUpper is the maximum length in character. rangeUpper does not affect the 
allowed values for syntax Boolean and Object(DS-DN). For all other syntaxes, 
rangeUpper equals the maximum length in bytes. Note that rangeUpper is a 32-
bit integer and cannot express the full range of LargeInteger, String(UTC-Time), 
and String(Generalized-Time). 

searchFlags Optional. The searchFlags attribute specifies whether an attribute is indexed, 
among other things; see section 2.2.9 for values. It contains bitwise flags as 
follows: 

fATTINDEX: * 

fPDNTATTINDEX: * 

fANR: Add this attribute to the ambiguous name resolution (ANR) set. If this flag 
is set, then fATTINDEX mustMUST also be set. See 3.1.1.3.1.3.4 for ANR search. 

fPRESERVEONDELETE: Specifies that the attribute values MUST be preserved on 
objects after deletion of the object (that is, when the object is transformed to a 
tombstone or recycled-object). This flag is ignored for the attributes 
objectCategory and sAMAccountType, plus all linked attributes. 

fCOPY: Specifies a hint to LDAP clients that the attribute is intended to be copied 
when copying the object. This flag is not interpreted by the server.  

fTUPLEINDEX: * 

fSUBTREEATTINDEX: * 

fCONFIDENTIAL: This attribute is confidential, so a special access check is 
required; for details, see the Extended Access Checks in section 3.1.1.4.4. 

fNEVERVALUEAUDIT: Auditing of changes to values contained in this attribute 
MUST NOT be performed. Auditing is outside the state model. 

fRODCFilteredAttribute: This attribute is part of the filtered attribute set. This 
flag is only effective on a DC whose DC functionality level is 
DS_BEHAVIOR_WIN2008 or greater. See section 3.1.1.2.3.5 for additional 
restrictions. 

fEXTENDEDLINKTRACKING: The effects of this search flag are outside the state 
model. Suggests that a DC do additional internal tracking for link changes. This 
flag can be ignored by other implementations but mustMUST not be used in a 
conflicting way that would affect the performance of Windows DCs. 

fBASEONLY: This attribute is returned only on searches scoped to one object. 

fPARTITIONSECRET: This attribute requires extended access checks to add, 
read, and update. 

The effects of searchFlags marked * are outside the state model. They direct the 
server to construct certain indexes that affect system performance. These flags 
can be ignored by other implementations but mustMUST not be used in a 
conflicting way that would affect the performance of Windows DCs. 

schemaFlagsEx Optional. The schemaFlagsEx attribute specifies whether an attribute can be part 
of the filtered attribute set; see section 2.2.11 for values. It contains bitwise 
flags as follows: 

FLAG_ATTR_IS_CRITICAL: If this flag is set and the fRODCFilteredAttribute flag 



 

131 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute  Description  

in searchFlags is also set, the fRODCFilteredAttribute flag is ignored. If 
fRODCFilteredAttribute is not set, then setting this flag has no effect. This flag is 
effective only on a DC whose DC functionality level is DS_BEHAVIOR_WIN2008 
or greater; it is ignored by a DC that is not at that level or greater. 

isMemberOfPartialAttribu
teSet 

Optional. If trueTRUE, the attribute is a member of the forest's partial attribute 
set. 

An attribute is a member of the forest's partial attribute set if and only if either 
(1) this attribute is trueTRUE or (2) the 
FLAG_ATTR_REQ_PARTIAL_SET_MEMBER bit is set in the systemFlags attribute. 

If this attribute is trueTRUE and the FLAG_ATTR_NOT_REPLICATED bit is set in 
the systemFlags attribute, and if the attribute is modified on a DC that is also a 
GC server, then the value of the attribute is accessible through that GC server, 
but the value of the attribute does not replicate. If the 
FLAG_ATTR_NOT_REPLICATED bit is set in the systemFlags attribute, the 
attribute value does not replicate to other GC servers. 

 

3.1.1.2.3.1 Auto-Generated linkID 

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, and an attributeSchema object is 
created with LDAP Add, and the Add request assigns the OID 1.2.840.113556.1.2.50 as the value of 
the linkID attribute, the DC sets the linkID attribute to an even integer that does not already appear 
as the linkID on a schema object. The attribute created by the Add is a forward link attribute. 

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, and an attributeSchema object is 
created with LDAP Add, and the Add request assigns either the attributeID or the lDAPDisplayName of 
an existing forward link attribute as the value of the linkID attribute, the DC sets the linkID attribute 
to the linkID of the given forward link attribute plus one. The attribute created by the Add is a back 
link attribute corresponding to the given forward link attribute. 

The aforementioned values that trigger auto-generation behavior for the linkID are of syntax 
String(Object-Identifier) or String(Unicode), and therefore do not conform to the declared syntax of 

the linkID attribute. The DC accepts these values without the error that would normally occur in such 
a case. 

3.1.1.2.3.2 Auto-Generated mAPIID 

If the DC functional level is DS_BEHAVIOR_WIN2008 or greater, and an attributeSchema object is 
created with LDAP Add, and the Add request assigns the OID 1.2.840.113556.1.2.49 as the value of 
the mAPIID attribute, the DC sets the mAPIID attribute to an integer that does not already appear as 

the mAPIID on a schema object. An implementation can use any algorithm to choose the next integer 
as long as that algorithm satisfies this uniqueness constraint. This mAPIID uniqueness spans all the 
mAPIID attributes on schema objects that are currently persisted in the directory. 

The aforementioned value that triggers auto-generation behavior for mAPIID is of syntax String 

(Object-Identifier), which does not conform to the declared syntax of the mAPIID attribute. The DC 
accepts these values without the error that would normally occur in such a case. 

3.1.1.2.3.3 Property Set 

A property set consists of a set of related attributes. An attribute whose attributeSchema object has a 
value for the attributeSecurityGUID attribute belongs to that property set; the property set is 
identified by the property set GUID, which is the attributeSecurityGUID value. 



 

132 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

A property set GUID can be used instead of the schemaIDGUID of an attribute when defining a 
security descriptor, as specified in section 5.1.3.2, to grant or deny access to all attributes in one 

access control entry (ACE). 

The following table lists the property sets present in the default AD DS schema. 

Name Property set GUID 

Domain Password & 

Lockout Policies 

C7407360-20BF-11D0-A768-00AA006E0529 

General Information 59BA2F42-79A2-11D0-9020-00C04FC2D3CF 

Account Restrictions 4C164200-20C0-11D0-A768-00AA006E0529 

Logon Information 5F202010-79A5-11D0-9020-00C04FC2D4CF 

Group Membership BC0AC240-79A9-11D0-9020-00C04FC2D4CF 

Phone and Mail Options E45795B2-9455-11D1-AEBD-0000F80367C1 

Personal Information 77B5B886-944A-11D1-AEBD-0000F80367C1 

Web Information E45795B3-9455-11D1-AEBD-0000F80367C1 

Public Information E48D0154-BCF8-11D1-8702-00C04FB96050 

Remote Access Information 037088F8-0AE1-11D2-B422-00A0C968F939 

Other Domain Parameters 

(for use by SAM) 

B8119FD0-04F6-4762-AB7A-4986C76B3F9A 

DNS Host Name Attributes 72E39547-7B18-11D1-ADEF-00C04FD8D5CD 

MS-TS-GatewayAccess (*) FFA6F046-CA4B-4FEB-B40D-04DFEE722543 

Private Information (*) 91E647DE-D96F-4B70-9557-D63FF4F3CCD8 

Terminal Server License Server (*) 5805BC62-BDC9-4428-A5E2-856A0F4C185E 

(*) The last three property sets are present only in Windows Server 2008 and later AD DS forests. 

To determine the set of attributes that belong to a property set, search for the corresponding 
property-set GUID in [MS-ADA1], [MS-ADA2], and [MS-ADA3] for AD DS, or in [MS-ADLS] for AD 
LDS. All attributeSchema classes that have their attributeSecurityGUID set as the property-set GUID 
belong to that property set. 

New property sets can be created by adding controlAccessRight objects to the Extended-Rights 
container as described in section 5.1.3.2.1. The rightsGuid attribute of the controlAccessRight object is 

the property set GUID. This GUID MUST NOT be the NULL GUID. 

AD LDS installs a reduced schema by default. The default AD LDS schema only includes the following 

property sets: 

▪ General Information 

▪ Account Restrictions 

▪ Logon Information 

▪ Group Membership 



 

133 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Phone and Mail Options 

▪ Personal Information 

▪ Web Information 

▪ Public Information 

3.1.1.2.3.4 lDAPDisplayName Generation 

When lDAPDisplayName is not given explicitly when creating an attribute or class, the system will 
generate a default one from the value of cn with the following routine: 

 String generateLdapDisplayName(IN cn: String) 
 { 
   Identify the substrings in cn that are delimited by 
     one or more characters in the set {' ', '-', '_'}, 
     let S be a string array containing all the substrings; 
   Let T be a string array with the same number of elements 
     as S, such that 
     1. First string in T (T[1]) is exactly the same string 
        as S[1], except the first character  of T[1] is the 
        lower case form of the first character of S[1];  
     2. For the remaining strings, T[i] is the same as S[i], 
        except the first character of T[i] is the upper case 
        of the first character of S[i]; 
   Let string st be the concatenation of the strings in T; 
   Return st; 
 } 

For example, if the cn of a new class is Sam-Domain, the default lDAPDisplayName is samDomain. 

3.1.1.2.3.5 (Updated Section) Flag fRODCFilteredAttribute in Attribute searchFlags 

An attribute cannot be a member of a filtered attribute set if one of the following conditions is 
trueTRUE: 

▪ The FLAG_ATTR_NOT_REPLICATED bit is set in attribute systemFlags of the attributeSchema 
object; 

▪ The FLAG_ATTR_REQ_PARTIAL_SET_MEMBER bit is set in attribute systemFlags of the 
attributeSchema object; 

▪ The FLAG_ATTR_IS_CONSTRUCTED bit is set in attribute systemFlags of the attributeSchema 
object; 

▪ The FLAG_ATTR_IS_CRITICAL bit is set in attribute schemaFlagsEx of the attributeSchema object; 

▪ Attribute systemOnly of the attributeSchema object is trueTRUE; 

▪ The attribute is in the following list: currentValue, dBCSPwd, unicodePwd, ntPwdHistory, 

priorValue, supplementalCredentials, trustAuthIncoming, trustAuthOutgoing, lmPwdHistory, 
initialAuthIncoming, initialAuthOutgoing, msDS-ExecuteScriptPassword, displayName, codePage, 
creationTime, lockoutDuration, lockOutObservationWindow, logonHours, lockoutThreshold, 
maxPwdAge, minPwdAge, minPwdLength, nETBIOSName, pwdProperties, pwdHistoryLength, 
pwdLastSet, securityIdentifier, trustDirection, trustPartner, trustPosixOffset, trustType, rid, 
domainReplica, accountExpires, nTMixedDomain, operatingSystem, operatingSystemVersion, 
operatingSystemServicePack, fSMORoleOwner, trustAttributes, trustParent, flatName, sIDHistory, 

dNSHostName, lockoutTime, servicePrincipalName, isCriticalSystemObject, msDS-
TrustForestTrustInfo, msDS-SPNSuffixes, msDS-AdditionalDnsHostName, msDS-



 

134 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

AdditionalSamAccountName, msDS-AllowedToDelegateTo, msDS-KrbTgtLink, msDS-
AuthenticatedAtDC, msDS-SupportedEncryptionTypes. 

If one of the conditions is trueTRUE, the attribute will not be in the filtered attribute set even if the 
flag fRODCFilteredAttribute is set in attribute searchFlags of the attributeSchema object. 

3.1.1.2.4 Classes 

3.1.1.2.4.1 Class Categories 

There are four categories of classes: 

Structural classes: Structural classes are the classes that can have instances in the directory. 

Abstract classes: Abstract classes are templates that are used to derive new classes. Abstract 

classes cannot be instantiated in the directory. 

Auxiliary classes: Auxiliary classes contain a list of attributes. Adding the auxiliary class to the 

definition of a structural or abstract class adds the auxiliary class's attributes to the definition. An 
auxiliary class cannot be instantiated by itself in the directory. 

88 classes: 88 classes do not fall into any of the preceding categories. An 88 class can be used as an 
abstract class, a structural class, or an auxiliary class. 

Structural class, abstract class, and auxiliary class are defined in [X501] section 8.3. 88 class 
corresponds to the definition of object classes described in [X501] section 8.3.4. 88 class is included 
for compatibility with this older standard and is not intended to be used in new schema extensions. 

3.1.1.2.4.2 Inheritance 

Inheritance is the ability to build new classes from existing classes. The new class is defined as a 
subclass of another class, called its superclass. A subclass inherits from its superclass the mandatory 

and optional attributes and its structural parent classes in the directory hierarchy. All classes are 

subclasses, directly or indirectly, of a single abstract object class, called top. In Active Directory, a 
class has exactly one superclass; top is its own superclass. An ordered set of superclasses of a class, 
ending with class top, is its superclass chain ([X501]). The superclass chain of a class does not include 
the class itself, except that the superclass chain of top is the single-element sequence [ top ]. 

Abstract classes can inherit only from abstract classes, auxiliary classes can inherit from all classes 
except structural classes, and structural classes can inherit from all classes except auxiliary classes. 

Classes of the category 88 class (section 3.1.1.2.4.1) can inherit from all classes.  

3.1.1.2.4.3 objectClass 

Attribute objectClass is a multivalued attribute that appears on all the objects in the directory. When 
instantiating a structural class or an 88 object class, the objectClass attribute of the new object 
contains a sequence of class names. The first element is always class top. The last element is the 
name of the structural class or the 88 object class that was instantiated (referred to as the most 

specific class). The rest of the classes in the superclass chain are listed in between in the order of 

inheritance from class top. For example, a user object has the following four-element sequence as the 
value of objectClass: 

[ top, person, organizationalPerson, user ] 

For information on instantiating auxiliary classes see section 3.1.1.2.4.6. 

3.1.1.2.4.4 Structure Rules 



 

135 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Structure rules define the possible tree structures. In Active Directory, the structure rules (for 
directory hierarchy, see section 3.1.1.2.4.2) are completely expressed by the possSuperiors and 

systemPossSuperiors attributes that are present on each classSchema object. The union of values in 
these two attributes specifies the list of classes, instances of which are allowed to be parents of an 

object instance of the class in question.  

3.1.1.2.4.5 Content Rules 

Content rules determine the mandatory and optional attributes of the class instances that are stored 
in the directory. In Active Directory, the content rules are completely expressed by the mustContain, 
mayContain, systemMustContain, and systemMayContain attributes of the schema definitions for each 
class. The union of values in the mustContain and systemMustContain attributes specifies the 

attributes that are required to be present on an object instance of the class in question. The union of 
values in the mustContain, systemMustContain, mayContain, and systemMayContain attributes 
specifies the attributes that are allowed to be present on an object instance of the class in question.  

3.1.1.2.4.6 (Updated Section) Auxiliary Class 

Active Directory provides support for statically linking auxiliary classes to the classSchema definition of 

another object class. When an auxiliary class aux is statically linked to some other class cl, it is as if all 
of the mandatory and optional attributes of the auxiliary class aux are added to the class cl. 

The governsID of auxiliary class aux is contained in the auxiliaryClass attribute of cl if aux was 
statically linked to cl by modifying the auxiliaryClass attribute of cl's classSchema definition as 
specified in section 3.1.1.3.1.1.5. The governsID of auxiliary class aux is contained in the 
systemAuxiliaryClass attribute of cl if aux was statically linked to cl by modifying the 
systemAuxiliaryClass attribute of cl's classSchema definition as specified in section 3.1.1.3.1.1.5. 

A statically linked auxiliary class with mandatory attributes mustMUST be linked to the class cl through 
the systemAuxiliaryClass attribute of cl at the time cl is defined as described in section 3.1.1.3.1.1.5. 
The objectClass attribute of objects of class cl does not include the names of statically linked auxiliary 
classes or the classes in their superclass chains. 

Active Directory also provides support for dynamically linking auxiliary classes on objects, which 
reflects the model of auxiliary object classes described in [X501] section 8.3.3. In this case, the 
dynamically linked auxiliary class affects only the individual object to which it is linked, as opposed to 

a statically linked auxiliary class, which is linked to a class and affects every object of that class. The 
classSchema of the class is not affected by dynamic auxiliary classes. When an auxiliary class is 
dynamically linked to an object, the mandatory and optional attributes of the auxiliary class become 
mandatory and optional attributes of the object. Refer to section 3.1.1.3.1.1.5 for auxiliary class 
related LDAP operations supported by Active Directory. 

If an object is dynamically linked to one or more auxiliary classes, attribute objectClass of the object 

contains the following values in the order described below. 

1. Class top remains as the first value; 

2. Then it is followed by the set of dynamic auxiliary classes and the classes in their superclass 
chains, excluding those already present in the superclass chain of the most specific structural 

class. There is no specific order among the classes in this set, and no class is listed more than 
once. 

3. Next, the classes in the superclass chain of the most specific structural class are listed after that, 

in the order of inheritance from top. 

4. The most specific structural class remains last in the sequence. 

The auxiliaryClass or systemAuxiliaryClass attributes are not affected by dynamic auxiliary classes. 



 

136 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

For example, a user object with auxiliary class mailRecipient dynamically added has the following five-
element sequence as the value of objectClass: 

[ top, mailRecipient, person, organizationalPerson, user ] 

Dynamic auxiliary classes are not supported when the forest functional level is 

DS_BEHAVIOR_WIN2000. 

3.1.1.2.4.7 RDN Attribute of a Class 

Each class designates an RDN attribute. The RDN attribute's name and value provide the RDN for the 
class, for example "ou=ntdev", "cn=Peter Houston". If not specified in a class by attribute rDNAttID, 
the RDN attribute is inherited from the superclass of the class. The RDN attribute is of syntax 
String(Unicode). 

3.1.1.2.4.8 (Updated Section) Class classSchema 

The attributes of class classSchema are specified in the following table. 

The term "Unique" (in quotation marks) in the table is defined in section 3.1.1.2.3. 

The term system-only in the table is defined in section 3.1.1.2.3. 

Attribute  Description  

objectClass Equals the sequence [ top, classSchema ]. System-only. 

governsID "Unique" OID that identifies this class. System-only. 

schemaIDGUID "Unique" GUID that identifies this class, used in security descriptors. If not 
specified on Add, the DC generates a GUID. This GUID MUST NOT be the NULL 
GUID. System-only. 

msDS-IntId Optional. 32-bit unsigned integer. System-only. 

rDNAttID Optional. attributeID of the RDN attribute. If the rDNAttID is not present, the RDN 
attribute is inherited from the superclass of this class. System-only. 

subClassOf governsID of the superclass of this class. System-only. Also see section 
3.1.1.2.5.2 for auto-generated behavior when a new classSchema object is 
created.  

systemMustContain Optional. attributeIDs of the mandatory attributes of this class. This attribute is 
system-only.  

systemMayContain Optional. attributeIDs of the optional attributes of this class. This attribute is 
system-only. 

systemPossSuperiors Optional. governsIDs of the classes that can be parents of this class within an NC 
tree. This attribute is system-only. 

systemAuxiliaryClass Optional. governsIDs of the auxiliary classes that are statically linked to this class. 
This attribute is system-only. 

objectClassCategory Class category (section 3.1.1.2.4.1), encoded as follows:  

0: 88 Class 

1: Structural class 

2: Abstract class  

3: Auxiliary class 

System-only. 



 

137 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute  Description  

systemFlags Optional. Flags that determine specific system operations; see section 2.2.10 for 
values. The single systemFlags value specific to a classSchema object is: 

FLAG_SCHEMA_BASE_OBJECT: this class is part of the base schema. Modifications 
to a base schema object are restricted as described in section 3.1.1.2.5. 

System-only. 

systemOnly Optional. Only a DC can create (section 3.1.1.5.2.2) and modify (section 
3.1.1.5.3.2) instances of a system-only class. System-only. 

cn RDN for the schema object. 

lDAPDisplayName "Unique" name that identifies this class, used by LDAP clients. If not specified on 
Add, the DC generates a value as specified in section 3.1.1.2.3.4. The syntax of 
lDAPDisplayName is described in [RFC2251] section 4.1.4. 

mustContain Optional. attributeIDs of the mandatory attributes of this class in addition to the 
systemMustContain attributes. 

mayContain Optional. attributeIDs of the optional attributes of this class in addition to the 
systemMayContain attributes. 

possSuperiors Optional. governsIDs of the classes that can be parents of this class within an NC 
tree, in addition to the systemPossSuperiors classes. 

auxiliaryClass Optional. governsIDs of the auxiliary classes that are statically linked to this class, 
in addition to the systemAuxiliaryClass classes. 

defaultSecurityDescriptor Optional. The default security descriptor (in SDDL format, [MS-DTYP] section 
2.5.1) that is assigned to new instances of this class if no security descriptor is 
specified during creation of the class or is merged into a security descriptor if one 
is specified. The rules for security descriptor merging are specified in [MS-DTYP] 
section 2.5.3.4. 

defaultObjectCategory A reference to some classSchema object. This value is the default value of the 
objectCategory attribute of new instances of this class if none is specified during 
LDAP Add. Also see section 3.1.1.2.5.2 for auto-generated behavior when a new 
classSchema object is created. 

defaultHidingValue Optional. If defaultHidingValue is trueTRUE on a classSchema object, then when 
an Add creates an instance of this class (that is, where this class is the most 
specific class) and the Add does not specify a value for the 
showInAdvancedViewOnly attribute, it is as if the Add had specified trueTRUE for 
the showInAdvancedViewOnly attribute. 

The showInAdvancedViewOnly attribute is interpreted by LDAP clients, not by the 
DC. If trueTRUE, certain user interfaces do not display the object. 

showInAdvancedViewOnly Specifies whether the attribute is to be visible in the advanced mode of user 
interfaces. 

Also see defaultHidingValue defined previously and section 3.1.1.2.5.2 for auto-
generated behavior when a new classSchema object is created. 

 

3.1.1.2.5 Schema Modifications 

This section documents the special behavior of schema objects with respect to LDAP Add, Modify, 
Modify DN, and Delete requests. 

Only the DC that owns the Schema Master FSMO role performs originating updates of objects in the 
schema NC, as specified in section 3.1.1.1.11. 



 

138 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

All transactions that perform originating updates to objects in the schema NC are serialized, even if 
the updates do not appear to conflict and thus do not seem to require serialization. 

Many attributes of attributeSchema and classSchema objects are system-only, as specified in sections 
3.1.1.2.3 and 3.1.1.2.4. An LDAP Modify request that attempts to modify a system-only attribute 

(except as specified in section 3.1.1.5.3.2) fails with error constraintViolation / 
ERROR_DS_CANT_MOD_SYSTEM_ONLY. 

A Delete of an attributeSchema or classSchema object fails, with error unwillingToPerform / 
ERROR_DS_CANT_DELETE. 

An attempt to add any object other than a schema object in the schema NC fails with the error 
unwillingToPerform / ERROR_DS_CANT_CREATE_UNDER_SCHEMA. 

There is no constraint on the amount of time between when an object in the schema NC is successfully 

added or modified and when the DC enforces the updated schema. Therefore, it is possible that there 
is a period of time during which the schema enforced by the DC does not reflect the schema 
represented by the objects in the schema NC. Although the protocol places no boundary or 

requirements on the length of this time period, it is recommended that implementations minimize the 
length of this time period to improve the usability of the directory for clients. 

The server MUST guarantee that all successful schema modifications are eventually enforced. 

3.1.1.2.5.1 Consistency and Safety Checks 

This section documents schema object special behaviors that are not closely tied to the defunct state. 
These special behaviors are divided into two classes: 

▪ Consistency checks  

▪ Safety checks  

Consistency checks maintain the consistency of the schema. Safety checks reduce the possibility of a 

schema update by one application breaking another application. 

If an Add or Modify request fails either a consistency or a safety check, the response is error 
unwillingToPerform / <unrestricted>. 

3.1.1.2.5.1.1 Consistency Checks 

The term "Unique" (in quotation marks) in the following statements is defined in section 3.1.1.2.3. 

An Add or Modify request on an attributeSchema object succeeds only if the resulting object passes all 

of the following tests: 

▪ The value of lDAPDisplayName is syntactically valid, per [RFC2251] section 4.1.4. 

▪ The values of attributeID, lDAPDisplayName, mAPIID (if present) and schemaIDGUID are 
"Unique". 

▪ A nonzero linkID, if any, is unique among all values of the linkID attribute on objects in the 
schema NC, regardless of forest functional level. If a linkID is an odd number, it is not one, and an 

object exists whose linkID is the even number one smaller. 

▪ The values of attributeSyntax, oMSyntax, and oMObjectClass match some defined syntax (section 
3.1.1.2.2). 

▪ Flag fANR is only present in the searchFlags attribute if the syntax is String(Unicode), String(IA5), 
String(Printable), String(Teletex) or String(Case). 

▪ If rangeLower and rangeUpper are present, rangeLower is smaller than or equal to rangeUpper. 



 

139 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

An Add or Modify request on a classSchema object succeeds only if the resulting object passes all of 
the following tests. 

▪ The value of lDAPDisplayName is syntactically valid, per [RFC2251] section 4.1.4. 

▪ The values of governsID, lDAPDisplayName, and schemaIDGUID are "Unique". 

▪ All attributes that are referenced in the systemMayContain, mayContain, systemMustContain, and 
mustContain lists exist and are active.  

▪ All classes that are referenced in the subClassOf, systemAuxiliaryClass, auxiliaryClass, 
systemPossSuperiors, and possSuperiors lists exist and are active.  

▪ All classes in the systemAuxiliaryClass and auxiliaryClass attributes have either 88 class or 
auxiliary class specified as their objectClassCategory.  

▪ All classes in the systemPossSuperiors and possSuperiors attributes have either 88 class or 

structural class specified as their objectClassCategory.  

▪ The superclass chain of a class follows the rules for inheritance as specified in section 3.1.1.2.4.2. 

▪ The dynamicObject class is not referenced by the subClassOf attribute of a class. 

▪ The attribute specified in the rDNAttID attribute has syntax String(Unicode).  

▪ Attribute defaultSecurityDescriptor, if present, is a valid SDDL string. 

3.1.1.2.5.1.2 Safety Checks 

The following checks reduce the possibility of schema updates by one application breaking another 
application. 

These checks apply to all schema objects: 

▪ A Modify adds no attributes to the mustContain or systemMustContain of an existing class. 

▪ A Modify does not add an auxiliary class to the auxiliaryClass or systemAuxiliaryClass of an 
existing class, if doing so would effectively add either mustContain or systemMustContain 

attributes to the class. 

▪ A Modify does not change the objectClassCategory of an existing class. 

▪ A Modify does not change a constructed attribute (an attribute with 
FLAG_ATTR_IS_CONSTRUCTED in systemFlags). 

▪ A Modify does not change class top, except to add back link attributes as may-contains, either by 
adding back link attributes to mayContain of top, or by adding auxiliary classes to auxiliaryClass of 
top whose only effect on top is adding back link attributes as may-contains. 

▪ A Modify does not change the subSchema object. 

▪ A Modify does not change the fRODCFilteredAttribute bit of the searchFlags attribute of an 
attributeSchema object, if the DC functional level is DS_BEHAVIOR_WIN2008 or higher, and the 
attributeSchema object cannot be a member of the filtered attribute set (see section 3.1.1.2.3.5). 

These checks apply to schema objects that include FLAG_SCHEMA_BASE_OBJECT in the systemFlags 
attribute: 

▪ A Modify does not change the lDAPDisplayName or cn of an attributeSchema or classSchema 
object, or the defaultObjectCategory of a classSchema object. 



 

140 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ A Modify does not change the classSchema objects attributeSchema, classSchema, subSchema 
and dMD. 

▪ A Modify does not change the fCONFIDENTIAL bit of the searchFlags attribute of an 
attributeSchema object. 

▪ A Modify does not change the attributeSecurityGUID on the following fixed list of attributeSchema 
objects: accountExpires, badPwdCount, codePage, countryCode, description, displayName, 
domainReplica, forceLogoff, homeDirectory, homeDrive, memberOf, lastLogoff, lastLogon, 
lockOutObservationWindow, lockoutDuration, lockoutThreshold, logonCount, logonHours, 
logonWorkstation, maxPwdAge, member, minPwdAge, minPwdLength, modifiedCount, objectSid, 
oEMInformation, profilePath, primaryGroupID, pwdHistoryLength, pwdProperties, 
sAMAccountName, scriptPath, serverState, serverRole, uASCompat, comment, pwdLastSet, 

userAccountControl, userParameters.  

3.1.1.2.5.2 (Updated Section) Auto-Generated Attributes 

If a classSchema object is created with an LDAP Add operation and the following attributes are not 

included as part of the Add, they mustMUST be created on the object as specified in the following 
table. 

Attribute Default auto-generated value 

subClassOf Must refer to class top 

showInAdvancedViewOnly TRUE 

defaultObjectCategory Must refer to the new classSchema object itself 

 

3.1.1.2.5.3 (Updated Section) Defunct 

A schema object with isDefunct = trueTRUE is defunct; a schema object that is not defunct is active. 
This section documents the special behavior of attributeSchema and classSchema objects related to 
the defunct state. 

The effect of being defunct depends upon the forest functional level as specified in the following 
subsections. The following statements are independent of the forest functional level. 

▪ The isDefunct attribute being not present on an attributeSchema or classSchema object is 
equivalent to isDefunct = falseFALSE; modifications that move between these two representations 

of the active state have no special behavior. 

▪ If an LDAP Modify changes the isDefunct attribute (giving it a value of trueTRUE or falseFALSE, or 
removing it), this change mustMUST be the only change in the LDAP Modify request; otherwise, 
the request fails with error unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ If a Modify sets isDefunct to trueTRUE but the attributeSchema or classSchema object is base 

(that is, it has FLAG_SCHEMA_BASE_OBJECT present in its systemFlags attribute), the Modify 
fails, with error unwillingToPerform / ERROR_DS_ILLEGAL_BASE_SCHEMA_MOD. 

▪ LDAP Add cannot create instances of a defunct class (section 3.1.1.5.2.2), and LDAP Add and 
Modify cannot create instances of a defunct attribute (see sections 3.1.1.5.2.2 and 3.1.1.5.3.2). 

▪ Making an attributeSchema or classSchema object defunct has no effect on the state of existing 
objects that use the defunct attribute or class, but it changes the behavior of reads and updates of 
such objects as described in sections 3.1.1.4.8 (Search), 3.1.1.5.2.2 (Add), 3.1.1.5.3.2 (Modify), 
and 3.1.1.5.5 (Delete). 



 

141 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.2.5.3.1 (Updated Section) Forest Functional Level Less Than WIN2003 

If the forest functional level is less than DS_BEHAVIOR_WIN2003, a DC behaves as follows with 
respect to the defunct state: 

▪ The isDefunct attribute can be changed from not present (or falseFALSE) to trueTRUE on an 
attributeSchema or classSchema object. This modification is subject to the following checks: 

▪ If the modification is to an attributeSchema object and the object is a mustContain, 
systemMustContain, mayContain, or systemMayContain of an active class, the modification 
fails. 

▪ If the modification is to a classSchema object and the object is a subClassOf, auxiliaryClass, or 
possSuperiors of an active class, the modification fails. 

The error if the isDefunct modification fails is unwillingToPerform / <unrestricted>. 

▪ When isDefunct is trueTRUE on an attributeSchema or classSchema object, an LDAP Modify can 

set isDefunct to falseFALSE (or remove the isDefunct attribute). This modification is subject to the 
following check: 

▪ If the modification is to a classSchema object and the object references any defunct attributes 
through its mustContain, systemMustContain, mayContain, or systemMayContain attributes, or 

references any defunct classes through its subClassOf, auxiliaryClass, or possSuperiors 
attributes, the modification fails. 

The error if the isDefunct modification fails is unwillingToPerform / <unrestricted>. 

▪ No other modification to a defunct attributeSchema or classSchema object is allowed. The error if 
the modification fails is noSuchObject / <unrestricted>. 

3.1.1.2.5.3.2 (Updated Section) Forest Functional Level WIN2003 or Greater 

If the forest functional level is DS_BEHAVIOR_WIN2003 or greater, a DC behaves as follows with 

respect to the defunct state: 

▪ An LDAP Modify can change the isDefunct attribute from not present (or falseFALSE) to trueTRUE 
on an attributeSchema or classSchema object. This modification is subject to the following checks, 
in addition to the checks performed when the forest functional level is less than 
DS_BEHAVIOR_WIN2003: 

▪ If the modification is to an attributeSchema object and the object is a mustContain, 

systemMustContain, mayContain, systemMayContain, or rDNAttID of an active class, the 
modification fails. 

▪ If the modification is to a classSchema object and the object is a subClassOf, auxiliaryClass, or 
possSuperiors of an active class, the modification fails. 

The error if the isDefunct modification fails is unwillingToPerform / <unrestricted>. 

▪ An LDAP Modify can change the isDefunct attribute from trueTRUE to falseFALSE (or not present) 

on an attributeSchema or classSchema object. This modification is subject to the following checks, 
in addition to the checks performed when the forest functional level is less than 
DS_BEHAVIOR_WIN2003: 

▪ If the modification is to a classSchema object and the object references any defunct attributes 
through its mustContain, systemMustContain, mayContain, systemMayContain or rDNAttID 
attributes, or references any defunct classes through its subClassOf, auxiliaryClass, or 
possSuperiors attributes, the modification fails. 



 

142 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ The same uniqueness checks are performed when setting isDefunct to falseFALSE as would 
have been performed if the same object were being added to a schema where it was not 

present. In particular, the uniqueness checks on attributeID, governsID, schemaIDGUID, 
mAPIID, linkID, and lDAPDisplayName mustMUST pass. 

The error if the isDefunct modification fails is unwillingToPerform / <unrestricted>. 

▪ An LDAP Modify can change the other attributes of defunct schema objects subject to the same 
checks that apply to changes to active schema objects. 

Therefore, for instance, a Modify can change the lDAPDisplayName of a defunct attributeSchema 
object, or the lDAPDisplayName, mustContain, mayContain, subClassOf, auxiliaryClass, and 
possSuperiors of a defunct classSchema object. 

Because the checks that apply to changes to active schema objects are still in force, Modify cannot 

(for instance) change the attributeID, governsID, schemaIDGUID, mAPIID, linkID, 
attributeSyntax, oMSyntax, and oMObjectClass attributes of defunct schema objects. 

▪ Section 3.1.1.4.8 specifies the effects of the defunct state on reads of OID-valued attributes that 
identify schema objects (mustContain, systemMustContain, mayContain, systemMayContain, 
subClassOf, auxiliaryClass, and possSuperiors). 

3.1.1.2.6 ATTRTYP 

Any OID-valued quantity stored on an object is stored as an ATTRTYP ([MS-DRSR] section 5.14), a 
32-bit unsigned integer. The ATTRTYP space is 32 bits wide and is divided into the following ranges. 

Range  Description  

[0x00000000..0x7FFFFFFF] ATTRTYPs that map to OIDs via the prefix table. 

[0x80000000..0xBFFFFFFF] ATTRTYPs used as values of msDS-IntId attribute. 

[0xC0000000..0xFFFEFFFF] Reserved for future use. 

[0xFFFF0000.. 0xFFFFFFFF] Reserved for internal use (never appear on the wire). 

The mapping from ATTRTYPs A to OID O works as follows: 

▪ If A in [0x00000000..0x7FFFFFFF], A maps to O via a prefix table as specified in [MS-DRSR] 
section 5.16.4 (the OidFromAttid procedure). 

▪ If A in [0x80000000..0xBFFFFFFF], let X be the object such that X!msDS-IntId equals A. If X is an 

attributeSchema object, O is X!attributeID; otherwise X is an classSchema object, and O is 
X!governsID. 

Given an OID O, the schema object X representing the class or attribute identified by O is the object X 
such that either X!attributeID equals O or X!governsID equals O. 

3.1.1.3 LDAP 

Active Directory is a server for LDAP. This section specifies the extensions and variations of LDAP that 
are supported by Active Directory. Except as otherwise noted, all material applies to both AD DS and 
AD LDS. Also, except as noted, all information applies to all versions of AD DS and AD LDS. 

This section is structured as follows: 

▪ Section 3.1.1.3.1 documents the interpretation of the LDAP RFCs made by Active Directory and 
deviations from the LDAP RFCs. 



 

143 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ The rootDSE (empty DN) is a mechanism for clients of an LDAP server to interact with the server 
itself, rather than with particular objects contained by the server. Section 3.1.1.3.2 specifies the 

rootDSE reads supported by Active Directory, and section 3.1.1.3.3 specifies the rootDSE updates. 

▪ LDAP has several extension mechanisms in addition to the rootDSE. Section 3.1.1.3.4 specifies the 

LDAP extensions that Active Directory supports. 

3.1.1.3.1 LDAP Conformance 

The purpose of this section is to document how the implementation of Active Directory DCs interprets 
the LDAP v3 RFCs, including differences from those RFCs. Except as noted in the following 
subsections, Active Directory is compliant to [RFC3377]. 

Active Directory DCs nominally implement support for LDAP v2 [RFC1777]. However, except as noted 

in the next paragraph, Active Directory processes LDAP v2 requests and generates responses as if 
LDAP v3 had been requested by the client. 

When processing an LDAP v2 request, Active Directory exhibits the following behavioral differences 

from processing an LDAP v3 request: 

▪ Instead of using the UTF-8 character encoding for LDAPString [RFC2251], the system's configured 
code page is used. The code page is configured locally on the DC by the DC's administrator. 

▪ Referrals and continuation references are generated using the format for LDAP v2 referrals as 
specified in section 3.1.1.3.4. 

All LDAP error codes returned by Active Directory are taken from the resultCode enumeration of the 
LDAPResult structure defined in [RFC2251] section 4.1.10. 

3.1.1.3.1.1 Schema 

This section discusses the implementation of the schema in Active Directory DCs, as it relates to the 

IETF RFC standards for LDAP schemas. 

3.1.1.3.1.1.1 (Updated Section) subSchema 

Per [RFC2251] and [RFC2252], Active Directory exposes a subSchema object that is pointed to by the 
subschemaSubentry attribute on the rootDSE. In accord with [RFC2251] section 3.2.2, this 
subSchema object contains the required cn, objectClass, objectClasses, and attributeTypes attributes. 
Additionally, it contains the dITContentRules attribute. It does not contain the matchingRules, 

matchingRuleUse, dITStructureRules, nameForms, or ldapSyntaxes attributes. It contains the 
modifyTimeStamp attribute but not the createTimeStamp attribute. The subSchema object does not 
support the createTimeStamp attribute even though its object class derives from top, which contains 
the createTimeStamp attribute as part of systemMayContain. In contrast to [RFC2252] section 7.2, in 
Active Directory the subSchema class is defined to be structural rather than auxiliary. 

The meaning of the attributeTypes, objectClasses, and dITContentRules attributes are as described in 
those RFCs. However, the values stored in these attributes use only a subset of the 

AttributeTypeDescription, ObjectClassDescription, and DITContentRuleDescription grammars described 

in [RFC2252]. The following grammars are used by Active Directory. Other than the removal of certain 
elements, these grammars are identical to those of [RFC2252]. 

 SQUOTE  = %x27 ; single quote ("'") 
 syntaxoid = SQUOTE (numericoid / “OctetString”) SQUOTE 
  
 AttributeTypeDescription = "(" whsp 
     numericoid whsp                  ; attributeID 
     [ "NAME" qdescrs ]               ; lDAPDisplayName 
     [ "SYNTAX" whsp syntaxoid whsp ] ; 
      



 

144 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     [ "SINGLE-VALUE" whsp ]          ; default multi-valued 
     [ "NO-USER-MODIFICATION" whsp ]  ; default user modifiable 
     whsp ")" 
  
 ObjectClassDescription = "(" whsp 
     numericoid whsp         ; governsID 
     [ "NAME" qdescrs ]      ; lDAPDisplayName 
     [ "SUP" oids ]          ; governsIDs of superior object classes 
     [ ( "ABSTRACT" / "STRUCTURAL" / "AUXILIARY" ) whsp ]  
                             ; default structural 
     [ "MUST" oids ]         ; attributeIDs of required attributes 
     [ "MAY" oids ]          ; attributeIDs of optional attributes 
     whsp ")" 
  
 DITContentRuleDescription = "(" 
     numericoid            ; governsID of structural object class 
     [ "NAME" qdescrs ]    ; lDAPDisplayName 
     [ "AUX" oids ]        ; governsIDs of auxiliary classes 
     [ "MUST" oids ]       ; attributeIDs of required attributes 
     [ "MAY" oids ]        ; attributeIDs of optional attributes 
     ")" 

Note  The AttributeTypeDescription grammar updates above deviate slightly from 
[RFC2252] sections 4.2 and 4.3, as the syntax OID (syntaxoid) is wrapped in single quotes; 
while in the case of octet string syntax, the syntax numeric OID (numericoid) is replaced with 
the hard-coded literal string value “OctetString". 

Active Directory supports additional SYNTAX values not defined in [RFC2252]. The following table lists 
the SYNTAX values returned for each LDAP syntax name. See section 3.1.1.2.2 for more information 

on syntaxes. 

LDAP syntax name SYNTAX Value 

Boolean 1.3.6.1.4.1.1466.115.121.1.7 

Enumeration 1.3.6.1.4.1.1466.115.121.1.27 

Integer 1.3.6.1.4.1.1466.115.121.1.27 

LargeInteger 1.2.840.113556.1.4.906 

Object(Access-Point) 1.3.6.1.4.1.1466.115.121.1.2 

Object(DN-Binary) 1.2.840.113556.1.4.903 

Object(DN-String) 1.2.840.113556.1.4.904 

Object(DS-DN) 1.3.6.1.4.1.1466.115.121.1.12 

Object(OR-Name) 1.2.840.113556.1.4.1221 

Object(Presentation-Address) 1.3.6.1.4.1.1466.115.121.1.43 

Object(Replica-Link) OctetString 

String(Case) 1.2.840.113556.1.4.1362 

String(Generalized-Time) 1.3.6.1.4.1.1466.115.121.1.24 

String(IA5) 1.3.6.1.4.1.1466.115.121.1.26 

String(NT-Sec-Desc) 1.2.840.113556.1.4.907 

String(Numeric) 1.3.6.1.4.1.1466.115.121.1.36 



 

145 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LDAP syntax name SYNTAX Value 

String(Object-Identifier) 1.3.6.1.4.1.1466.115.121.1.38 

String(Octet) 1.3.6.1.4.1.1466.115.121.1.40 

String(Printable) 1.3.6.1.4.1.1466.115.121.1.44 

String(Sid) 1.3.6.1.4.1.1466.115.121.1.40 

String(Teletex) 1.2.840.113556.1.4.905 

String(Unicode) 1.3.6.1.4.1.1466.115.121.1.15 

String(UTC-Time) 1.3.6.1.4.1.1466.115.121.1.53 

In addition to the preceding attributes, Active Directory contains two additional subSchema attributes, 
named extendedClassInfo and extendedAttributeInfo. These return additional data about the classes 

and attributes in a format similar to objectClasses and attributeTypes, respectively. The grammar 
used for extendedClassInfo is as follows. 

 ObjectClassDescriptionExtended = "(" whsp 
     numericoid whsp               ; governsID 
     [ "NAME" qdescrs ]            ; lDAPDisplayName 
     [ "CLASS-GUID" whsp guid ]    ; schemaIDGUID 
     whsp ")" 

The NAME field is as in the ObjectClassDescription grammar. The CLASS-GUID field contains the value 
of the class's schemaIDGUID attribute. That value, which is a GUID, is expressed not in the dashed-

string GUID format of [RFC4122] section 3 but rather as the hexadecimal representation of the binary 
format of the GUID. For example, the GUID whose dashed-string representation is "3fdfee4f-47f4-
11d1-a9c3-0000f80367c1" would be expressed as "4feedf3ff447d111a9c30000f80367c1" in the 
CLASS-GUID field. 

The grammar for extendedAttributeInfo is as follows. 

 AttributeTypeDescriptionExtended = "(" whsp 
     numericoid whsp                      ; attributeID 
     [ "NAME" qdescrs ]                   ; lDAPDisplayName 
     [ "RANGE-LOWER" whsp numericstring ] ; rangeLower 
     [ "RANGE-UPPER" whsp numericstring ] ; rangeUpper 
     [ "PROPERTY-GUID" whsp guid ]        ; schemaIDGUID 
     [ "PROPERTY-SET-GUID" whsp guid ]    ; attributeSecurityGUID 
     [ "INDEXED" whsp ]                   ; fATTINDEX in searchFlags 
     [ "SYSTEM-ONLY" whsp ]               ; systemOnly 
     whsp ")" 

The NAME field is as in the AttributeTypeDescription grammar. The RANGE-LOWER and RANGE-UPPER 

fields are only present if the attribute's attributeSchema contains values for the rangeLower and 

rangeUpper attributes, respectively. If present, those fields contain the values of those attributes. The 
PROPERTY-GUID field contains the value of the attribute's schemaIDGUID. If the attribute has an 
attributeSecurityGUID attribute, the PROPERTY-SET-GUID field contains the value of that attribute; 
otherwise, it contains the value of the NULL GUID. For both PROPERTY-GUID and PROPERTY-SET-
GUID, the GUID is represented in the same form as that CLASS-GUID from the 

ObjectClassDescriptionExtended grammar. If the fATTINDEX bit of the attribute's searchFlags is set, 
the INDEXED field is present. If the attribute's systemOnly attribute is trueTRUE, the SYSTEM-ONLY 
field is present. 



 

146 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The attributeTypes, objectClasses, dITContentRules, extendedClassInfo, and extendedAttributeInfo 
attributes on the subSchema object are read-only. They permit applications to discover the schema on 

the DC, but they are not the mechanism for changing the schema on the DC. DCs change their 
schema in response to the addition or modification of classSchema and attributeSchema objects in the 

schema NC. These objects also contain attributes that supply additional information about the schema 
that is not present in the attributes of the subSchema object, such as the systemFlags attribute, which 
specifies additional properties of an attribute (for example, whether it is a constructed attribute). The 
attributeSchema and classSchema objects and their associated attributes are specified in section 
3.1.1.2. 

If the forest functional level is DS_BEHAVIOR_WIN2003 or greater, the attributeTypes, 
dITContentRules, extendedAttributeInfo, extendedClassInfo, and objectClasses attributes on the 

subSchema object do not contain defunct attributes or classes, only active attributes or classes. 

3.1.1.3.1.1.2 Syntaxes 

The syntaxes used in Active Directory are based on [RFC2252] section 6. Where Active Directory and 

[RFC2252] have syntaxes in common, the same means of encoding the value into the syntax is used. 
However, Active Directory has a number of syntaxes that are not defined in [RFC2252], and vice 

versa. Additionally, even when Active Directory and [RFC2252] have syntaxes in common, in many 
cases they use different names for the same syntax, and in all cases they use different OIDs to 
identify the same syntax. 

Active Directory does not use the syntaxes defined in [RFC2256] section 6. The list of syntaxes in 
Active Directory, their encodings, and how they map to the [RFC2252] syntaxes are documented in 
section 3.1.1.2.2. 

3.1.1.3.1.1.3 Attributes 

Sections 5.1 through 5.4 of [RFC2252], as well as section 5 of [RFC2256] and section 2 of [RFC2798], 
define a set of attributes common to LDAP directories. Additionally, portions of the Active Directory 
schema are derived from [RFC1274] and [RFC2307]. The following tables show, for each of these 
RFCs, the attributes that are either included in the Active Directory default schemas of Windows 

Server 2003 and later, or present as readable attributes of the rootDSE of Windows 2000 and later 
DCs (both AD DS and AD LDS). Some of these attributes were added to the schema of Windows 

Server 2003 or Windows Server 2003 R2 but were not present in the Windows 2000 schema; [MS-
ADA1], [MS-ADA2], [MS-ADA3], and [MS-ADLS] specify the attributes included in each version of the 
schema. For more information about rootDSE attributes, which are not part of the schema, see section 
3.1.1.3.2. 

RFC 1274 

Attribute Included by AD DS? Included by AD LDS? 

objectClass Yes Yes 

knowledgeInformation Yes No 

serialNumber Yes Yes 

streetAddress Yes Yes 

title Yes Yes 

description Yes Yes 

searchGuide Yes Yes 

businessCategory Yes Yes 



 

147 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute Included by AD DS? Included by AD LDS? 

postalAddress Yes Yes 

postalCode Yes Yes 

postOfficeBox Yes Yes 

physicalDeliveryOfficeName Yes Yes 

telephoneNumber Yes Yes 

telexNumber Yes Yes 

teletexTerminalIdentifier Yes Yes 

facsimileTelephoneNumber Yes Yes 

x121Address Yes Yes 

internationalISDNNumber Yes Yes 

registeredAddress Yes Yes 

destinationIndicator Yes Yes 

preferredDeliveryMethod Yes Yes 

presentationAddress Yes No 

supportedApplicationContext Yes No 

member Yes Yes 

owner Yes Yes 

roleOccupant Yes No 

seeAlso Yes Yes 

userPassword Yes* Yes* 

userCertificate Yes Yes 

cACertificate Yes No 

authorityRevocationList Yes No 

certificateRevocationList Yes No 

crossCertificatePair Yes No 

textEncodedORAddress Yes No 

roomNumber Yes Yes 

photo Yes Yes 

userClass Yes No 

host Yes No 

manager Yes Yes 

documentIdentifier Yes No 



 

148 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute Included by AD DS? Included by AD LDS? 

documentTitle Yes No 

documentVersion Yes No 

documentAuthor Yes No 

documentLocation Yes No 

secretary Yes Yes 

otherMailbox Yes No 

associatedDomain Yes No 

associatedName Yes No 

homePostalAddress Yes Yes 

personalTitle Yes Yes 

organizationalStatus Yes No 

buildingName Yes No 

audio Yes Yes 

documentPublisher Yes No 

aliasedObjectName No No 

commonName No No 

surname No No 

countryName No No 

localityName No No 

stateOrProvinceName No No 

organizationName No No 

mhsDeliverableContentLength No No 

mhsDeliverableContentTypes No No 

mhsDeliverableEits No No 

mhsDLMembers No No 

mhsDLSubmitPermissions No No 

mhsMessageStoreName No No 

mhsORAddresses No No 

mhsPreferredDeliveryMethods No No 

mhsSupportedAutomaticActions No No 

mhsSupportedContentTypes No No 

mhsSupportedOptionalAttributes No No 



 

149 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute Included by AD DS? Included by AD LDS? 

userid No No 

rfc822Mailbox No No 

info No No 

favouriteDrink No No 

homeTelephoneNumber No No 

lastModifiedTime No No 

lastModifiedBy No No 

domainComponent No No 

aRecord No No 

mXRecord No No 

nSRecord No No 

sOARecord No No 

cNAMERecord No No 

mobileTelephoneNumber No No 

pagerTelephoneNumber No No 

friendlyCountryName No No 

uniqueIdentifier No No 

janetMailbox No No 

mailPreferenceOption No No 

dSAQuality No No 

singleLevelQuality No No 

subtreeMinimumQuality No No 

subtreeMaximumQuality No No 

personalSignature No No 

dITRedirect No No 

* Active Directory uses the userPassword attribute to set or change passwords only in limited 

circumstances. See section 3.1.1.3.1.5. 

RFC 2252 

Attribute Included by AD DS? Included by AD LDS? 

createTimeStamp Yes Yes 

modifyTimeStamp Yes Yes 

subSchemaSubEntry Yes Yes 



 

150 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute Included by AD DS? Included by AD LDS? 

attributeTypes Yes Yes 

objectClasses Yes Yes 

namingContexts Yes Yes 

supportedExtension Yes Yes 

supportedControl Yes Yes 

supportedSASLMechanisms Yes Yes 

supportedLDAPVersion Yes Yes 

dITContentRules Yes Yes 

creatorsName No No 

modifiersName No No 

matchingRules No No 

matchingRulesUse No No 

altServer No No 

ldapSyntaxes No No 

dITStructureRules No No 

nameForms No No 

RFC 2256 

Attribute Included by AD DS? Included by AD LDS? 

objectClass Yes Yes 

knowledgeInformation Yes No 

cn Yes Yes 

sn Yes Yes 

serialNumber Yes Yes 

c Yes Yes 

l Yes Yes 

st Yes Yes 

street Yes Yes 

o Yes Yes 

ou Yes Yes 

title Yes Yes 

description Yes Yes 



 

151 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute Included by AD DS? Included by AD LDS? 

searchGuide Yes Yes 

businessCategory Yes Yes 

postalAddress Yes Yes 

postalCode Yes Yes 

postOfficeBox Yes Yes 

physicalDeliveryOfficeName Yes Yes 

telephoneNumber Yes Yes 

telexNumber Yes Yes 

teletexTerminalIdentifier Yes Yes 

facsimileTelephoneNumber Yes Yes 

x121Address Yes Yes 

internationalISDNNumber Yes Yes 

registeredAddress Yes Yes 

destinationIndicator Yes Yes 

preferredDeliveryMethod Yes Yes 

presentationAddress Yes No 

supportedApplicationContext Yes No 

member Yes Yes 

owner Yes Yes 

roleOccupant Yes No 

seeAlso Yes Yes 

userPassword Yes* Yes* 

userCertificate Yes Yes 

cACertificate Yes No 

authorityRevocationList Yes No 

certificateRevocationList Yes No 

crossCertificatePair Yes No 

name Yes Yes 

givenName Yes Yes 

initials Yes Yes 

generationQualifier Yes Yes 

x500uniqueIdentifier Yes Yes 



 

152 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute Included by AD DS? Included by AD LDS? 

distinguishedName Yes Yes 

uniqueMember Yes Yes 

houseIdentifier Yes No 

deltaRevocationList Yes No 

dmdName Yes Yes 

aliasedObjectName No No 

dnQualifier No No 

protocolInformation No No 

supportedAlgorithms No No 

* Active Directory uses the userPassword attribute to set or change passwords only in limited 
circumstances. See section 3.1.1.3.1.5. 

RFC 2798 

Attribute Included by AD DS? Included by AD LDS? 

carLicense Yes Yes 

departmentNumber Yes Yes 

displayName Yes Yes 

employeeNumber Yes Yes 

employeeType Yes Yes 

jpegPhoto Yes Yes 

preferredLanguage Yes Yes 

userSMIMECertificate Yes Yes 

userPKCS12 Yes Yes 

RFC 2307 

Attribute Included by AD DS? Included by AD LDS? 

uidNumber Yes No 

gidNumber Yes No 

gecos Yes No 

homeDirectory Yes No 

loginShell Yes No 

shadowLastChange Yes No 

shadowMin Yes No 



 

153 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute Included by AD DS? Included by AD LDS? 

shadowMax Yes No 

shadowWarning Yes No 

shadowInactive Yes No 

shadowExpire Yes No 

shadowFlag Yes No 

memberUid Yes No 

memberNisNetgroup Yes No 

nisNetgroupTriple Yes No 

ipServicePort Yes No 

ipServiceProtocol Yes No 

ipProtocolNumber Yes No 

oncRpcNumber Yes No 

ipHostNumber Yes No 

ipNetworkNumber Yes No 

ipNetmaskNumber Yes No 

macAddress Yes No 

bootParameter Yes No 

bootFile Yes No 

nisMapName Yes No 

nisMapEntry Yes No 

 

3.1.1.3.1.1.4 Classes 

Section 7 of [RFC2252], as well as section 7 of [RFC2256] and section 3 of [RFC2798], defines a set of 
classes common to LDAP directories. In addition, portions of the Active Directory schema are derived 
from [RFC1274] and [RFC2307]. The following tables show, for each of these RFCs, the classes 
included in the Active Directory default schemas of Windows Server 2003 and later (including ADAM). 

Some of these classes were added to the schema of Windows Server 2003 or Windows Server 2003 
R2 but were not present in the Windows 2000 schema; [MS-ADSC] and [MS-ADLS] specify the classes 

included in each version of the schema. 

RFC 1274 

Class Included by AD DS? Included by AD LDS? 

top Yes Yes 

country Yes Yes 



 

154 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Class Included by AD DS? Included by AD LDS? 

locality Yes Yes 

organization Yes Yes 

organizationalUnit Yes Yes 

person Yes Yes 

organizationalPerson Yes Yes 

organizationalRole Yes No 

groupOfNames Yes Yes 

residentialPerson Yes No 

applicationProcess Yes No 

applicationEntity Yes No 

dSA Yes No 

device Yes No 

certificationAuthority Yes No 

account Yes No 

document Yes No 

room Yes No 

documentSeries Yes No 

domain Yes Yes 

rFC822LocalPart Yes No 

domainRelatedObject Yes No 

friendlyCountry Yes No 

simpleSecurityObject Yes No 

Alias No No 

strongAuthenticationUser No No 

mhsDistributionList No No 

mhsMessageStore No No 

mhsMessageTransferAgent No No 

mhsOrganizationalUser No No 

mhsResidentialUser No No 

mhsUserAgent No No 

pilotObject No No 

pilotPerson No No 



 

155 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Class Included by AD DS? Included by AD LDS? 

dNSDomain No No 

pilotOrganization No No 

pilotDSA No No 

qualityLabelledData No No 

RFC 2252 

Class Included by AD DS? Included by AD LDS? 

subSchema Yes Yes 

extensibleObject No No 

RFC 2256 

Class Included by AD DS? Included by AD LDS? 

top Yes Yes 

country Yes Yes 

locality Yes Yes 

organization Yes Yes 

organizationalUnit Yes Yes 

person Yes Yes 

organizationalPerson Yes Yes 

organizationalRole Yes No 

groupOfNames Yes Yes 

residentialPerson Yes No 

applicationProcess Yes No 

applicationEntity Yes No 

dSA Yes No 

device Yes No 

certificationAuthority Yes No 

groupOfUniqueNames Yes No 

cRLDistributionPoint Yes No 

dMD Yes Yes 

alias No No 

strongAuthenticationUser No No 

userSecurityInformation No No 



 

156 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Class Included by AD DS? Included by AD LDS? 

certificationAuthority-V2 No No 

RFC 2798 

Class Included by AD DS? Included by AD LDS? 

inetOrgPerson Yes Yes 

RFC 2307 

Class Included by AD DS? Included by AD LDS? 

posixAccount Yes No 

shadowAccount Yes No 

posixGroup Yes No 

ipService Yes No 

ipProtocol Yes No 

oncRpc Yes No 

ipHost Yes No 

ipNetwork Yes No 

nisNetgroup Yes No 

nisMap Yes No 

nisObject Yes No 

ieee802Device Yes No 

bootableDevice Yes No 

 

3.1.1.3.1.1.5 Auxiliary Classes 

Windows 2000 had limited support for LDAP auxiliary classes. An auxiliary class would be associated 
with the schema definition of a particular class C when the auxiliary class was added to the 
auxiliaryClass or systemAuxiliaryClass attribute of the classSchema object that defines C. In this case, 
all instances of C will inherit the attributes of the auxiliary class. 

The server permits adding or removing an auxiliary class to or from the auxiliaryClass attribute of C at 

any point in time. Doing so adds or removes the auxiliary class from every existing instance of C but 

does not cause the object class of the auxiliary class to appear in the objectClass attribute of those 
instances. Such an auxiliary class can have optional (mayContain) attributes but not mandatory 
(mustContain) attributes. This is because there can be existing instances of C, in which case adding a 
new mandatory attribute would cause those existing instances to violate the modified schema. 

The server permits adding an auxiliary class to the systemAuxiliaryClass attribute of C only when C is 
defined, that is, when C's classSchema object is added to the schema NC. After a classSchema object 
has been created, its systemAuxiliaryClass attribute cannot be modified. An auxiliary class that is 

associated with C by the addition of it to C!systemAuxiliaryClass can have mandatory (mustContain) 



 

157 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

as well as optional (mayContain) attributes. As in the previous case, the auxiliary classes added in this 
manner are not shown in the objectClass attribute of the instances of C. 

In addition to the Windows 2000 auxiliary class mechanism, dynamic auxiliary classes are supported 
in Windows Server 2003 and later. This dynamic auxiliary class mechanism reflects the model of 

auxiliary object classes described in [X501] section 8.3.3. The server permits adding an auxiliary class 
to any instance I of a class by a request to add that auxiliary class to I!objectClass. This will cause 
only that instance I to inherit the attributes of the auxiliary class. The dynamic auxiliary class will be 
removed from I, after the values of all attributes in the auxiliary class have been cleared by the client, 
by a request to remove the auxiliary class from I!objectClass. Dynamic auxiliary classes can have both 
mandatory (mustContain) and optional (mayContain) attributes. 

If the dynamic auxiliary class that is added to I is a subclass of another auxiliary class, both auxiliary 

classes are added to I when the child auxiliary class is added to I. However, removing the child 
auxiliary class does not cause the server to remove its parent from I. A parent auxiliary class can be 
removed from I only when all child auxiliary classes that inherit from the parent are also removed 
from I. 

For each I, I!objectClass contains the structural, abstract, and dynamic auxiliary object classes of 
which I is an instance (and their inheritance chains). I!structuralObjectClass includes only the 

structural class of which I is an instance and its inheritance chain. I!msDS-Auxiliary-Classes contains 
the dynamic auxiliary classes of which I is an instance along with their inheritance chain, except it 
does not include those classes in the inheritance chain that are in I!structuralObjectClass. 

3.1.1.3.1.2 Object Naming 

This section discusses the naming of objects via distinguished names in Active Directory, as it differs 
from the appropriate RFCs. 

3.1.1.3.1.2.1 (Updated Section) Naming Attributes 

As with [RFC2253] section 2.3, Active Directory permits any attribute to be used as the AttributeType 
in an RDN. However, Active Directory imposes the additional restriction that the AttributeType used 

mustMUST be of String(Unicode) syntax. Furthermore, all objects of the same class use the same 
attribute in their RDN. The attribute to be used in the RDN is specified by the rDNAttID attribute in the 
classSchema object that defines the class. The rDNAttID attribute contains the attribute to be used in 

the RDN. Multivalued RDNs are not permitted (see section 3.1.1.3.1.2.3), so if the attribute A 
specified by rDNAttID is multivalued, an attempt to add an additional value to A on an object O for 
which O!rDNAttID = A is rejected with the error invalidDNSyntax / ERROR_DS_BAD_NAME_SYNTAX if 
it takes place at the time of the object's creation, or the error notAllowedOnRDN / <unrestricted> if it 
takes place in a subsequent LDAP Modify operation. 

The AttributeValue of the RDN mustMUST be unique among sibling objects. For example, the following 

two DNs cannot coexist in the directory, because two identical AttributeValues ("Abc") would exist in 
the same container ("OU=Users,DC=Fabrikam,DC=com"): 

▪ CN=Abc,OU=Users,DC=Fabrikam,DC=com 

▪ L=Abc,OU=Users,DC=Fabrikam,DC=com 

The server will reject an attempt to create such a non-uniquely named object with the error 
entryAlreadyExists / <unrestricted>. This requirement for unique AttributeValues guarantees the 
uniqueness of canonical names. 

3.1.1.3.1.2.2 NC Naming 

The DN of a domain NC is derived from the DNS name of the domain using the transformation 
algorithm of [RFC2247] section 3. The object at the root of each domain NC is a domainDNS object, in 
accord with section 5.2 of that RFC. The rDNAttID for the domainDNS class is dc, in accord with 



 

158 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

section 4 of the RFC. While the same attribute OID is used for the dc attribute in Active Directory as in 
section 4 of the RFC, the syntax of the attribute in Active Directory is String(Unicode) rather than the 

specified String(IA5). The dcObject auxiliary class, specified in section 5.1 of the RFC, is not present in 
Active Directory.  

When operating as AD DS, the DN for the config NC is the RDN "CN=Configuration", followed by the 
DN of the domain NC of the forest root domain. When operating as AD LDS, the DN for the config NC 
is the RDN "CN=Configuration, CN={guid}", where guid is a GUID in dashed-string form ([RFC4122] 
section 3). For example, 

CN=Configuration, CN={FD783EE9-0216-4B83-8A2A-60E45AECCB81} 

is a possible DN of the config NC when operating as AD LDS. 

The DN for the schema NC is the RDN "CN=Schema" followed by the DN of the config NC. 

When operating as AD DS, an application NC is named in the same way as a domain NC; the root of 
each AD DS application NC is a domainDNS object. When operating as AD LDS, the DN of an 

application NC consists of one or more RDNs. 

3.1.1.3.1.2.3 Multivalued and Multiple-Attribute RDNs 

[RFC2253] section 2 defines the following grammar rule for RelativeDistinguishedName, which 

explicitly allows RDNs to contain multiple attributes and values: 

▪ RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndValue 

Active Directory is conformant with this rule, with the restriction that MAX equals 1 within the scope of 
the rule. As a result, multivalued RDNs that consist of multiple attributes (sometimes referred to as 
"multi-AVA RDNs"), or multiple instances of the same attribute, are both disallowed in Active 
Directory. An attempt to create such a DN is considered an attempt to create a syntactically invalid 
DN, and returns the error invalidDNSyntax / ERROR_DS_BAD_NAME_SYNTAX. For example, assuming 

that F is a multivalued attribute of String(Unicode) syntax, the following two DNs are both disallowed 
because they contain multivalued RDNs: 

▪ F=John Smith+F=David Jones, OU=Users,DC=Fabrikam,DC=com 

▪ F=John Smith+l=Redmond, OU=Users,DC=Fabrikam,DC=com 

(Note that, if it is assumed that these DNs represent an object of a class C for which C!rDNAttID = F, 
the second example is also disallowed because it contains the l attribute in the RDN. The server will 
return a namingViolation  / <unrestricted> error when an attempt is made to add an object of class C 

whose RDN contains a different AttributeType than that declared in C!rDNAttID.) 

3.1.1.3.1.2.4 Alternative Forms of DNs 

In addition to the form of the DN defined in [RFC2253], Active Directory supports several alternative 
forms of DNs that can be used to specify objects in requests sent to the DC, for example, as the 
baseObject in a SearchRequest or as an AttributeValue in a ModifyRequest. 

The first alternative form is in the format 

 <GUID=object_guid> 

where object_guid is a GUID that corresponds to the value of the objectGUID attribute of the object 
being specified. All DCs support object_guid expressed as the hexadecimal representation of the 
binary form of a GUID ([MS-DTYP] section 2.3.4). Windows Server 2003 and later DCs also support 

the dashed-string form of a GUID ([RFC4122] section 3). 



 

159 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The second alternative form is in the format 

 <SID=sid> 

where sid is the security identifier (SID) that corresponds to the value of the objectSid attribute of the 
object being specified. The sid is expressed as either the hexadecimal representation of a binary SID 
structure ([MS-DTYP] section 2.4.2.2) in little-endian byte order, or as a SID string ([MS-DTYP] 
section 2.4.2.1). Windows 2000 DCs support only the hexadecimal representation. 

The third alternative form is in the format 

 <WKGUID=guid, object_DN> 

where guid is a GUID expressed as the hexadecimal representation of the binary form of the GUID. A 
DN of this form is resolved to an object O by applying the following algorithm. 

 MapWellKnownGuidToDN(GUID guid, DN object_DN) 

This algorithm resolves a well-known GUID, expressed as a GUID, guid, and an object, object_DN, 
into the DN of the object O that is identified by that well-known GUID.  

▪ If object_DN does not name an object in the directory, reject the DN. 

▪ Otherwise, let C be the object named by object_DN. 

▪ If there exists a value V in C!wellKnownObjects such that the binary portion of V contains the 

same GUID as guid, then the DN of O is the DN portion of V. 

▪ Otherwise, if there exists a value V' in C!otherWellKnownObjects such that the binary portion of V' 
contains the same GUID as guid, then the DN of O is the DN portion of V'. 

▪ Otherwise, reject the DN. 

The fourth alternative form is referred to as a TTL-DN. 

Note  The TTL-DN form is not supported by Windows 2000, Windows Server 2003, Windows Server 
2003 R2, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, or Windows Server 

2012 R2. Additionally, this form is only valid under the following conditions. 

▪ When the Privileged Access Management optional feature is enabled (see section 3.1.1.9.2). 

▪ When specifying or retrieving values for link valued attributes. 

The TTL-DN form is in the format 

 <TTL=seconds,<dn>> 

where seconds is the number of seconds, expressed as an integer in ASCII text, until the expiry time 
for the link valued attribute value, and dn is any valid form of DN, including alternative forms of DNs 
except for this fourth alternative form. DCs MUST treat the literal "TTL" in a case-insensitive manner. 
This protocol does not specify the character case to use when a DC creates a TTL-DN. 

When a client adds a new value or modifies an existing value for a link valued attribute, and provides 
a TTL-DN where seconds is 0, any existing expiry time associated with the link value is removed and 

the link no longer has an expiry time. 



 

160 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

When a client provides any DN form other than a TTL-DN, the server MUST treat that as a value 
without an expiry time; that is, in the same manner as a TTL-DN where seconds is 0. 

Normally, Active Directory will return DNs in the [RFC2253] format. However, clients can request that 
Active Directory return DNs in the "extended DN" format. This format combines an RFC 2253-style DN 

with a representation of the object's objectGUID and objectSid attributes. This form is documented in 
the LDAP section 3.1.1.3.4.1.5, which defines the LDAP_SERVER_EXTENDED_DN_OID control that is 
used by the client to request that the DC use the "extended DN" form when returning DNs. The 
"extended DN" form is not accepted as a means of specifying DNs in requests sent to the DC. The 
"extended DN" form is only used in LDAP responses from the DC, and only when the 
LDAP_SERVER_EXTENDED_DN_OID control is used to request such a form. 

Additionally, clients can request that Active Directory return DNs for link valued attributes in the TTL-

DN form. This form is documented in the LDAP section 3.1.1.3.4.1.36, which defines the 
LDAP_SERVER_LINK_TTL_OID control that is used by the client to request that the DC use the TTL-DN 
form when returning DNs.   

When returning a TTL-DN, seconds is the remaining number of seconds until the expiry time 

associated with the link value. 

A DC MUST NOT return a TTL-DN for a link value with no associated expiry time, even if 

LDAP_SERVER_LINK_TTL_OID has been specified. Another DN format MUST be used. 

Note that a request for a TTL-DN can be combined with a request for an extended DN. In this case, 
the DN portion of the TTL-DN is an extended DN. 

3.1.1.3.1.2.5 Alternative Form of SIDs 

Attributes of String(SID) syntax contain a SID in binary form. However, a client can instead specify a 
value for such an attribute as a UTF-8 string that is a valid SDDL SID string beginning with "S-" (see 

[MS-DTYP] section 2.4.2.1). The server will convert such a string to the binary form of the SID and 
use that binary form as the value of the attribute. 

3.1.1.3.1.3 Search Operations 

3.1.1.3.1.3.1 (Updated Section) Search Filters 

Active Directory does not support the extensible match rules defined in [RFC2252] section 8, 

[RFC2256] section 8, and [RFC2798] section 9. Active Directory exposes extensible match rules, which 
are defined in section 3.1.1.3.4.4. Other than these rules, the rules that Active Directory uses for 
comparing values (for example, comparing two String(Unicode) attributes for equality or ordering) are 
not exposed as extensible match rules. These comparison rules are documented for each syntax type 
in section 3.1.1.2.2.4. When performing an extensible match search against Active Directory, if the 
type field of the MatchingRuleAssertion is not specified ([RFC2251] section 4.5.1), the extensible 
match filter clause is evaluated to "Undefined". The dnAttributes field of the MatchingRuleAssertion is 

ignored and always treated as if set to falseFALSE. 

Active Directory supports the approxMatch filter clause of [RFC2251] section 4.5.1. However, it is 
implemented identically to equalityMatch; for example, the filter is trueTRUE if the values are equal. 

No approximation is performed. Filter clauses of the form "(X=Y)" and "(X~=Y)" can be freely 
substituted for each other. 

Active Directory in Windows 2000 does not implement three-value logic for search filter evaluation as 

defined in [RFC2251] section 4.5.1. In Windows 2000, filters evaluate to either "trueTRUE" or 
"falseFALSE". Filters that would evaluate to "Undefined", as per the RFC, are instead evaluated to 
"falseFALSE". Active Directory in Windows Server 2003 and later uses three-value logic for evaluating 
search filters, in conformance with the RFC. 



 

161 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Active Directory does not support constructed attributes (defined in section 3.1.1.4.5) in search filters. 
When a search operation is performed with such a search filter, Active Directory fails with 

inappropriateMatching ([RFC2251] section 4.1.10). 

Filter clauses of the form (objectClass=*), (distinguishedName=*), (name=*), and (objectGUID=*) 

always evaluate to trueTRUE for all objects. 

A filter can be constructed recursively such that the filter clause takes the form of another filter. The 
maximum recursion depth supported by Active Directory is hardcoded to 512. 

3.1.1.3.1.3.2 Selection Filters 

Active Directory supports the ability to filter the values of an attribute that are returned. By default, all 
values up to the default range of a given attribute are returned. A selection filter is used to filter 

values to be returned by the server. When no selection filter is specified, the returned values of an 
attribute MUST NOT be filtered. An explicit selection filter specifies the filtering on the attribute values 
to be returned by the server. 

Selection filtering is requested by specifying an Attribute Description ([RFC2251] section 4.1.5) with 
the "filtered" option. This option takes the form 

filtered=B:char_count:binary_value 

where char_count is the number (in decimal) of hexadecimal digits in binary_value and 
binary_value is the hexadecimal representation of a binary value. Each byte is represented by a pair 
of hexadecimal characters in binary_value, with the first character of each pair corresponding to the 
most-significant nibble of the byte. The first pair in binary_value corresponds to the first byte of the 
binary value, with subsequent pairs corresponding to the remaining bytes in sequential order. Note 
that char_count is always even in a syntactically valid selection filter. 

The binary value is a BER encoded filter, as specified in [RFC2251] section 4.5.1. 

Selection filters are available in DCs with a functional level of DS_BEHAVIOR_WIN2012R2 or greater. 

3.1.1.3.1.3.3 Range Retrieval of Attribute Values 

When retrieving the values from a multivalued attribute, Active Directory limits the number of values 
that can be retrieved from one attribute in a single search request. The maximum number of values 
that will be returned by Active Directory at one time is determined by the MaxValRange policy (see 
section 3.1.1.3.4.6). To permit all the values of a multivalued attribute to be retrieved, Active 

Directory provides a "range retrieval" mechanism. This mechanism permits a client-specified subset of 
the values to be retrieved in a search request. By performing multiple search requests, each retrieving 
a distinct subset, the complete set of values for the attribute can be retrieved. 

Range retrieval is requested by attaching a range option to the name of the attribute (for example, 
the AttributeDescription, as specified in [RFC2251] section 4.1.5) to be retrieved by the search 
request. This option takes the form 

range=low-high 

where low is the zero-based index of the first value of the attribute to retrieve, and high is the zero-
based index of the last value of the attribute to retrieve. For example, to retrieve the 100th through 
the 500th values of the member attribute, the attributes list in the SearchRequest would specify the 
AttributeDescription "member;range=99-499". Zero is used for low to specify the first entry. A client 
can substitute an asterisk for high to indicate all remaining entries (subject to any limitations imposed 
by the server on the maximum number of values to return). The server can return fewer values than 

requested. 

When the server receives a range retrieval request, it will include a range option in the 
AttributeDescription returned. This range option will take the same form as described previously, with 



 

162 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

low indicating the zero-based index of the first value of the attribute that the server returned and 
high indicating the zero-based index of the last value of the attribute that the server returned. 

However, if the set of attributes returned includes the last value in the attribute, the server will 
substitute an asterisk for high, indicating to the client that there are no more values to be retrieved. 

If a SearchRequest does not contain a range option for a given attribute, but that attribute has too 
many values to be returned at one time, the server returns a SearchResultEntry containing (1) the 
attribute requested without the range option and with no values, and (2) the attribute requested with 
a range option attached and with the values corresponding to that range option. 

The ordering of the values returned in a range retrieval request is arbitrary but consistent across 
multiple range retrieval requests on the same LDAP connection, provided that the attribute is not 
modified between successive range retrieval requests. 

3.1.1.3.1.3.4 (Updated Section) Ambiguous Name Resolution 

ANR is a search algorithm in Active Directory that permits a client to search multiple naming-related 
attributes on objects via a single clause in a search filter. A substring search against the aNR attribute 

is interpreted by the DC as a substring search against a set of attributes, known as the "ANR attribute 
set". The intent is that the attributes in the ANR attribute set are those attributes that are commonly 

used to identify an object, such as the displayName and name attributes, thereby permitting a client 
to query for an object when the client possesses some identifying material related to the object but 
does not know the attribute of the object that contains that identifying material. The ANR attribute set 
consists of those attributes whose searchFlags attribute contains the fANR flag (see section 3.1.1.2.3). 

A server performs an ANR search by rewriting a search filter that contains one or more occurrences of 
the aNR attribute so that the filter no longer contains any occurrences of the aNR attribute, then 
performing a regular LDAP search using the rewritten search filter. The search filter is rewritten 

according to the following algorithm: 

1. If the ANR attribute set does not contain the attribute legacyExchangeDN, then let S be the ANR 
attribute set and let PLegacy be falseFALSE. Otherwise, let S be the ANR attribute set excluding 
legacyExchangeDN and let PLegacy be trueTRUE. In either case, S is a set containing attributes 

A1...An. 

2. Let P1 be the value of the fSupFirstLastANR heuristic of the dSHeuristics attribute (see section 
6.1.1.2.4.1.2). Let P2 be the value of the fSupLastFirstANR heuristic of the dSHeuristics attribute. 

3. Let F be the search filter of the search request. 

4. For each LDAP search filter clause C of the form "(aNR=*)" in F, resolve the clause to 
"falseFALSE". (Such a clause tests for the presence of a value for the aNR attribute itself, and this 
attribute is not present on any object.) 

5. For each LDAP search filter clause C of the form "(aNR=substringFilter)", where substringFilter 
is an LDAP substring filter of the form "i*f", in F: 

1. If i is the empty string, resolve clause C to the value "Undefined" (see [RFC2251] section 
4.5.1). 

2. If i is non-empty, replace clause C with the clause "(aNR=i)" and apply the rule for 
"(aNR=value) in the next step of this algorithm. 

6. For each LDAP search filter clause C of the form "(aNR=value)" or "(aNR~=value)" or 
"(aNR>=value)" or "(aNR<=value)" in F: 

1. If value's first non-space character is an equal sign ("=") similar to "=value1" or " =value1", 

it is used for an exact string search instead of a substring search. Set "value" to "value1", 
apply the following steps in rule 6, and replace all the "value*" with "value". 



 

163 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

2. If value does not contain any space characters, or if P1 is trueTRUE and P2 is trueTRUE, 
construct an LDAP search filter clause C' of the form "(|(A1=value*)...(An=value*))" if 

PLegacy is falseFALSE, or of the form 
"(|(A1=value*)...(An=value*)(legacyExchangeDN=value)" if PLegacy is trueTRUE. (This 

clause resolves to "trueTRUE" for an object if value is a prefix of the value of any attribute in 
the ANR set on that object, except an exact match is always performed on the 
legacyExchangeDN attribute.) 

3. If value does contain one or more space characters, then: 

1. Split value into two components, value1 and value2, at the location of the first space, 
discarding that space. 

2. If PLegacy is falseFALSE, do the following: 

1. If P1 is falseFALSE and P2 is falseFALSE, then construct an LDAP search filter clause C' 
of the form "(|(A1=value*)...(An=value*)(&(givenName=value1*) (sn=value2*)) 
(&(givenName=value2*)(sn=value1*)))". (This clause resolves to "trueTRUE" for an 

object if value is a prefix of the value of any attribute in the ANR set on that object, or 
if the two parts of the split value are prefixes of the givenName and sn attributes 
([MS-ADA3] section 2.275) on that object, regardless of which part matches which 

attribute.) 

2. If P1 is trueTRUE and P2 is falseFALSE, then construct an LDAP search filter clause C' 
of the form "(|(A1=value*)...(An=value*)(&(givenName=value2*) 
(sn=value1*)))". (This clause will resolve to "trueTRUE" for an object if value is a 
prefix of the value of any attribute in the ANR set on that object, or if the first part of 
the split value is a prefix of the sn attribute and the second part is a prefix of the 
givenName attribute on that object.) 

3. If P1 is falseFALSE and P2 is trueTRUE, then construct an LDAP search filter clause C' 
of the form "(|(A1=value*)...(An=value*)(&(givenName=value1*) 
(sn=value2*)))". (This clause will resolve to "trueTRUE" for an object if value is a 
prefix of the value of any attribute in the ANR set on that object, or if the first part of 

the split value is a prefix of the givenName attribute and the second part is a prefix of 
the sn attribute on that object.) 

3. If PLegacy is trueTRUE, do the following: 

1. If P1 is falseFALSE and P2 is falseFALSE, then construct an LDAP search filter clause C' 
of the form 
"(|(A1=value*)...(An=value*)(legacyExchangeDN=value)(&(givenName=value1*) 
(sn=value2*)) (&(givenName=value2*)(sn=value1*)))". (This clause resolves to 
"trueTRUE" for an object if value equals the value of legacyExchangeDN on that 
object or value is a prefix of the value of any attribute in the ANR set on that object, 

or if the two parts of the split value are prefixes of the givenName and sn attributes 
on that object, regardless of which part matches which attribute.) 

2. If P1 is trueTRUE and P2 is falseFALSE, then construct an LDAP search filter clause C' 

of the form "(|(A1=value*)...(An=value*)(legacyExchangeDN=value) 
(&(givenName=value2*) (sn=value1*)))". (This clause will resolve to "trueTRUE" for 
an object if value equals the value of legacyExchangeDN on that object or value is a 
prefix of the value of any attribute in the ANR set on that object, or if the first part of 

the split value is a prefix of the sn attribute and the second part is a prefix of the 
givenName attribute on that object.) 

3. If P1 is falseFALSE and P2 is trueTRUE, then construct an LDAP search filter clause C' 
of the form "(|(A1=value*)...(An=value*)(legacyExchangeDN=value) 
(&(givenName=value1*) (sn=value2*)))". (This clause will resolve to "trueTRUE" for 
an object if value equals the value of legacyExchangeDN on that object or value is a 



 

164 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

prefix of the value of any other attribute in the ANR set on that object, or if the first 
part of the split value is a prefix of the givenName attribute and the second part is a 

prefix of the sn attribute on that object.) 

4. Remove clause C from F, and insert C' into F at the position vacated by C. 

Note that the replacement clause C' always contains equality matches, regardless of the type of match 
in the original clause C. 

3.1.1.3.1.3.5 Searches Using the objectCategory Attribute 

When an LDAP search filter F contains a clause C of the form "(objectCategory=V)", if V is not a DN 
but there exists an object O such that O!objectClass = classSchema and O!lDAPDisplayName = V, 
then the server treats the search filter as if clause C was replaced in F with the clause 

"(objectCategory=V')", where V' is O!defaultObjectCategory. 

For example, if the LDAP search filter contains clause "(objectCategory=contact)", because the 
defaultObjectCategory of class contact is 

CN=person,CN=schema,CN=configuration,DC=Fabrikam,DC=com, Active Directory will treat the 
clause as "(objectCategory=CN=person,CN=schema,CN=configuration,DC=Fabrikam,DC=com)". 

3.1.1.3.1.3.6 (Updated Section) Restrictions on rootDSE Searches 

When performing a search against the rootDSE and specifying a list of attributes to be returned, the 
attributes to be returned mustMUST be specified by their LDAP display name. Specifying the attribute 
by their numeric OID will be treated by the server the same as specifying a nonexistent attribute. The 
server supports specifying the attributes to be returned by their numeric OIDs in searches that do not 
use the rootDSE as the search base. 

When performing a search against the rootDSE, the server will ignore the contents of the search filter, 

except as noted in section 6.3. 

3.1.1.3.1.4 Referrals in LDAPv2 and LDAPv3 

When using the LDAPv3 protocol, Active Directory returns referrals and continuation references in 
accord with [RFC2251] section 4.5.3. When using the LDAPv2 protocol, Active Directory also returns 
referrals and continuation references, although these are not part of the LDAPv2 protocol, as defined 
in [RFC1777]. 

When Active Directory generates a referral in the LDAPv2 protocol, it sets the resultCode field in the 
LDAPResult structure (defined in [RFC1777]) to the value 9. This is a value not defined in [RFC1777] 
or [RFC2251] but that, by convention, is used by LDAPv2 servers to indicate the presence of a referral 
in the response. 

The contents of the referral are conveyed in the errorMessage field of the LDAPResult. This field 
consists of the string "Referral:", followed by a newline character, followed by one or more LDAPURLs 
(defined in [RFC2255]). Each LDAPURL is separated by a newline character. The meaning of these 

LDAPURLs is equivalent to that of an LDAPURL in an LDAPv3 referral; that is, they indicate a server or 
servers against which the operation can be retried. 

Active Directory uses the same mechanism to return continuation references in LDAPv2. When a 
continuation reference is required, the DC will return a SearchResponse message (defined in 
[RFC1777]) in which the resultCode and errorMessage fields in the embedded LDAPResult are set as 
described previously for LDAPv2 referrals. As with the LDAPv2 referrals, the meaning of the LDAPURLs 

embedded in the errorMessage field is equivalent to their LDAPv3 equivalent; that is, they indicate 
another server or NC in which the search can be continued. 

3.1.1.3.1.5 Password Modify Operations 



 

165 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Active Directory provides the ability to change the password of a security principal (that is, the 
Windows password for that security principal) by performing LDAP Modify operations. The password 

change is modeled as an LDAP modify of either the unicodePwd or userPassword attribute of the 
security principal object. The difference between these two attributes is discussed in the sections that 

follow. However, regardless of whether the password is modified via unicodePwd or userPassword, the 
same attribute on the object is modified. If running as AD DS, both are treated like a write to the 
clearTextPassword attribute in [MS-SAMR] section 3.1.1.8.5. If running as AD LDS, a write to 
userPassword updates unicodePwd. 

3.1.1.3.1.5.1 (Updated Section) unicodePwd 

Active Directory stores the password on a user object or inetOrgPerson object in the unicodePwd 

attribute. This attribute is written by an LDAP Modify under the following restricted conditions. 
Windows 2000 servers require that the client have a 128-bit (or better) SSL/TLS-encrypted connection 
to the DC in order to modify this attribute. On Windows Server 2003 and later, the DC also permits 
modification of the unicodePwd attribute on a connection protected by 128-bit (or better) Simple 
Authentication and Security Layer (SASL)-layer encryption instead of SSL/TLS. In Windows Server 

2008 and later, if the fAllowPasswordOperationsOverNonSecureConnection heuristic of the 

dSHeuristics attribute (section 6.1.1.2.4.1.2) is trueTRUE and Active Directory is operating as AD LDS, 
then the DC permits modification of the unicodePwd attribute over a connection that is neither 
SSL/TLS-encrypted nor SASL-encrypted. The unicodePwd attribute is never returned by an LDAP 
search. 

When a DC receives an LDAP Modify request to modify this attribute, it follows the following 
procedure: 

▪ If the Modify request contains a delete operation containing a value Vdel for unicodePwd followed 

by an add operation containing a value Vadd for unicodePwd, the server considers the request to 
be a request to change the password. The server decodes Vadd and Vdel using the password 
decoding procedure documented later in this section. Vdel is the old password, while Vadd is the 
new password. 

▪ If the Modify request contains a single replace operation containing a value Vrep for unicodePwd, 

the server considers the request to be an administrative reset of the password, that is, a password 
modification without knowledge of the old password. The server decodes Vrep using the password 

decoding procedure documented later in this section and uses it as the new password. 

For the password change operation to succeed, the server enforces the requirement that the user or 
inetOrgPerson object whose password is being changed mustMUST possess the "User-Change-
Password" control access right on itself, and that Vdel mustMUST be the current password on the 
object. For the password reset to succeed, the server enforces the requirement that the client possess 
the "User-Force-Change-Password" control access right on the user or inetOrgPerson object whose 

password is to be reset. 

The syntax of the unicodePwd attribute is Object(Replica-Link). However, the DC requires that the 
password value be specified in a UTF-16 encoded Unicode string containing the password surrounded 
by quotation marks, which has been BER-encoded as an octet string per the Object(Replica-Link) 
syntax. BER encoding and decoding is defined in [ITUX690]. To decode such a value V, the server 
follows this password decoding procedure: 

▪ If V is not a valid BER-encoding of an octet string, reject the password operation with the error 

protocolError / ERROR_DS_DECODING_ERROR. 

▪ BER-decode V to produce Vdecoded. 

▪ If the first and last characters of Vdecoded are not the UTF-16 Unicode representation of 
quotation marks, reject the password operation with the error constraintViolation/ 
ERROR_DS_UNICODEPWD_NOT_IN_QUOTES. 



 

166 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Remove the first and last characters from Vdecoded to produce Vpassword. 

Vpassword is the value the DC uses for the password—the actual password, not a password hash. 
This encoding is used for both the old and the new passwords in a password change request. 

Following is an example of the first steps of password encoding. Suppose the implementer wants to 

set unicodePwd to the string "new". 

 ASCII "new":     0x6E 0x65 0x77 
 UTF-16 "new":    0x6E 0x00 0x65 0x00 0x77 0x00 
 UTF-16 "new" 
     with quotes: 0x22 0x00 0x6E 0x00 0x65 0x00 0x77 0x00 0x22 0x00 

The 10-byte octet string is then BER-encoded and sent in an LDAP Modify request as described 
previously. 

3.1.1.3.1.5.2 (Updated Section) userPassword 

Active Directory supports modifying passwords on objects via the userPassword attribute, provided 

that (1) either the DC is running as AD LDS, or the DC is running as AD DS and the domain functional 
level is DS_BEHAVIOR_WIN2003 or greater, and (2) the fUserPwdSupport heuristic is trueTRUE in the 
dSHeuristics attribute (section 6.1.1.2.4.1.2). If fUserPwdSupport is falseFALSE, the userPassword 
attribute is treated as an ordinary attribute and has no special semantics associated with it. If 
fUserPwdSupport is trueTRUE but the DC is running as AD DS and the domain functional level is less 
than DS_BEHAVIOR_WIN2003, the DC fails the operation with the error constraintViolation / 
ERROR_NOT_SUPPORTED. 

As with the unicodePwd attribute, changing a password via the userPassword attribute is modeled as 
an LDAP Modify operation containing a Delete operation followed by an Add operation, and resetting a 
password is modeled as an LDAP Modify operation containing a single Replace operation. The control 
access rights required are the same as for the unicodePwd attribute, as is the requirement that when 
changing a password, Vdel mustMUST match the object's current password. 

The special encoding required for updating the unicodePwd attribute is not used with the 

userPassword attribute; that is, Vpassword = V. The same restrictions on SSL/TLS- or SASL-
protected connections are enforced. The password values are sent to the server as UTF-8 strings, and 
surrounding quotation marks are not used. For example, the following LDAP Data Interchange Format 
(LDIF) sample changes a password from oldPassword to newPassword. 

 dn: CN=John Smith, OU=Users,DC=Fabrikam,DC=com 
 changetype: modify 
 delete: userPassword 
 userPassword: oldPassword 
 - 
 add: userPassword 
 userPassword: newPassword 
 - 

The following example uses LDIF to reset the password to newPassword. 

 dn: CN=John Smith, OU=Users,DC=Fabrikam,DC=com 
 changetype: modify 
 replace: userPassword 
 userPassword: newPassword 
 - 



 

167 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Optionally, when performing a password change operation, the add operation portion of the LDAP 
modify can be omitted. The server treats this as a request to change the user or inetOrgPerson 

object's password to the empty string. 

3.1.1.3.1.6 Dynamic Objects 

The Windows Server 2003 and later versions of Active Directory have support for dynamic objects, as 
specified in [RFC2589]. The Active Directory implementation is conformant to that RFC, except that it 
does not implement the dynamicSubtrees attribute used to represent which NCs support dynamic 
objects. 

Dynamic objects are supported in all NCs except for the schema NC and the config NC. A dynamic 
object cannot be the parent of an object that is not dynamic, and the server will reject such a request 

with the error unwillingToPerform / ERROR_DS_UNWILLING_TO_PERFORM. When a dynamic object 
reaches the end of its time-to-live, the object is expunged from the directory by the server and does 
not leave behind a tombstone. 

3.1.1.3.1.7 (Updated Section) Modify DN Operations 

Because Active Directory does not support multivalued RDNs (see section 3.1.1.3.1.2.3), the 

deleteoldrdn field of a ModifyDNRequest (defined in [RFC2251] section 4.9) mustMUST always be set 
to trueTRUE. If deleteoldrdn is set to falseFALSE, the server fails the request with the error 
unwillingToPerform / ERROR_INVALID_PARAMETER. 

3.1.1.3.1.8 Aliases 

LDAP aliases, the class for which is defined in [RFC2256] section 7.2 and which are discussed in 
[RFC2251] section 4.1.10, are not supported in Active Directory. 

3.1.1.3.1.9 Error Message Strings 

When the server fails an LDAP operation with an error, and the server has sufficient resources to 
compute a string value for the errorMessage field of the LDAPResult, it includes a string in the 

errorMessage field of the LDAPResult (see [RFC2251] section 4.1.10). The string contains further 
information about the error. 

The first eight characters of the errorMessage string are a 32-bit integer, expressed in hexadecimal. 

Where protocol specifies the extended error code "<unrestricted>" there is no restriction on the value 
of the 32-bit integer.  It is recommended that implementations use a Windows error code for the 32-
bit integer in this case in order to improve usability of the directory for clients.  Where protocol 
specifies an extended error code which is a Windows error code, the 32-bit integer is the specified 
Windows error code.  Any data after the eighth character is strictly informational and used only for 
debugging. Conformant implementations need not put any value beyond the eighth character of the 
errorMessage field. 

When the server returns a referral and not an error, the errorMessage field is used as described in 
section 3.1.1.3.1.1.4. 

3.1.1.3.1.10 Ports 

An AD DS DC accepts LDAP connections on the standard LDAP and LDAPS (LDAP over SSL/TLS) ports: 
389 and 636. If the AD DS DC is a GC server, it also accepts LDAP connections for GC access on port 
3268 and LDAPS connections for GC access on port 3269. 

An AD LDS DC accepts LDAP and LDAPS connections on ports that are configured when creating the 
DC. 

3.1.1.3.1.11 LDAP Search Over UDP 



 

168 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Active Directory supports search over UDP only for searches against rootDSE. It encodes the results of 
an LDAP search performed over UDP in the same manner as it does a search performed over TCP; 

specifically, as one or more SearchResultEntry messages followed by a SearchResultDone message, as 
described in [RFC2251]. This means that the search response is not encoded as described in 

[RFC1798]. Only LDAP search and LDAP abandon operations are supported over UDP by Active 
Directory. 

3.1.1.3.1.12 Unbind Operation 

Upon receipt of an unbind request on an LDAP connection, all outstanding requests on the connection 
are abandoned, and the Active Directory DC closes the connection. 

3.1.1.3.2 rootDSE Attributes 

This section specifies the readable attributes on the rootDSE of Windows 2000 and later DCs (both AD 
DS and AD LDS). 

All of these rootDSE attributes are read-only; an LDAP request to modify any of them will be rejected 
with the error unwillingToPerform / <unrestricted>. 

The rootDSE attributes are not described by the schema, but occurrences of rootDSE attribute names 

are underlined in this document as per the convention for any other LDAP attribute. 

The following table specifies which of these rootDSE attributes are supported by applicable Windows 
Server releases or ADAM versions. 

The table contains information for the following products. See section 3 for more information. 

▪ A --> Windows 2000 

▪ D --> Windows Server 2003 

▪ DR2 --> Windows Server 2003 R2 

▪ G --> ADAM 

▪ K --> Windows Server 2008 AD DS 

▪ L --> Windows Server 2008 AD LDS 

▪ N --> Windows Server 2008 R2 AD DS 

▪ P --> Windows Server 2008 R2 AD LDS 

▪ S --> Windows Server 2012 AD DS 

▪ T --> Windows Server 2012 AD LDS 

▪ V --> Windows Server 2012 R2 AD DS 

▪ W --> Windows Server 2012 R2 AD LDS 

▪ Y --> Windows Server 2016 AD DS 

▪ Z --> Windows Server 2016 AD LDS 

▪ B2 --> Windows Server v1709 AD DS 

▪ C2 --> Windows Server v1709 AD LDS 

▪ E2 --> Windows Server v1803 AD DS 



 

169 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ F2 --> Windows Server v1803 AD LDS 

▪ H2 --> Windows Server v1809 AD DS 

▪ I2 --> Windows Server v1809 AD LDS 

▪ K2 --> Windows Server 2019 AD DS 

▪ L2 --> Windows Server 2019 AD LDS 

▪ M2 --> Windows Server v1903 AD DS 

▪ N2 --> Windows Server v1903 AD LDS 

▪ P2 --> Windows Server 2022 AD DS 

▪ Q2 --> Windows Server 2022 AD LDS 

▪ R2 --> Windows Server 2022, 23H2 AD-DS 

▪ S2 --> Windows Server 2022, 23H2 AD-LDS 

Attri
bute 
nam
e A 

D, 
DR
2 G K, N L, P S T V W Y Z B2 C2 

E2, 
H2, 
K2, 

M2,                                                                                                                                                 

P2                                                                                                                                                 

F2, 
I2, 
L2,  

N2,  

Q2                                                                                                                                                 
R2, 
S2  

config
uratio
nNam
ingCo
ntext 

X X X X X X X X X X X X X X X  

curre
ntTim
e 

X X X X X X X X X X X X X X X  

defau
ltNam
ingCo
ntext 

X X X X X X X X X X X X X X X  

dNSH
ostNa
me 

X X X X X X X X X X X X X X X  

dsSch
emaA
ttrCo
unt 

X X X X X X X X X X X X X X X  

dsSch
emaC
lassC
ount 

X X X X X X X X X X X X X X X  

dsSch
emaP
refixC
ount 

X X X X X X X X X X X X X X X  

dsSer X X X X X X X X X X X X X X X  



 

170 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attri
bute 
nam
e A 

D, 
DR
2 G K, N L, P S T V W Y Z B2 C2 

E2, 
H2, 
K2, 

M2,                                                                                                                                                 

P2                                                                                                                                                 

F2, 
I2, 
L2,  

N2,  

Q2                                                                                                                                                 
R2, 
S2  

viceN
ame 

highe
stCo
mmitt
edUS
N 

X X X X X X X X X X X X X X X  

isGlo
balCa
talog
Read
y 

X X  X  X  X  X  X  X   

isSyn
chron
ized 

X X X X X X X X X X X X X X X  

ldapS
ervice
Name 

X X  X  X  X  X  X  X   

nami
ngCo
ntext
s 

X X X X X X X X X X X X X X X  

netlo
gon 

X X  X  X  X  X  X  X   

pendi
ngPro
pagat
ions 

X X X X X X X X X X X X X X X  

rootD
omai
nNam
ingCo
ntext 

X X  X  X  X  X  X  X   

sche
maNa
ming
Conte

xt 

X X X X X X X X X X X X X X X  

serve
rNam
e 

X X X X X X X X X X X X X X X  

subsc
hema
Sube
ntry 

X X X X X X X X X X X X X X X  

suppo X X X X X X X X X X X X X X X  



 

171 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attri
bute 
nam
e A 

D, 
DR
2 G K, N L, P S T V W Y Z B2 C2 

E2, 
H2, 
K2, 

M2,                                                                                                                                                 

P2                                                                                                                                                 

F2, 
I2, 
L2,  

N2,  

Q2                                                                                                                                                 
R2, 
S2  

rtedC
apabil
ities 

suppo
rtedC
ontrol 

X X X X X X X X X X X X X X X  

suppo

rtedL
DAPP
olicie
s 

X X X X X X X X X X X X X X X  

suppo
rtedL
DAPV
ersio
n 

X X X X X X X X X X X X X X X  

suppo
rtedS
ASLM
echan
isms 

X X X X X X X X X X X X X X X  

doma
inCon
troller
Funct
ionali
ty 

 X X X X X X X X X X X X X X  

doma
inFun
ction
ality 

 X  X  X  X  X  X  X   

forest
Funct
ionali
ty 

 X X X X X X X X X X X X X X  

msDS
-
ReplA
llInbo
undN
eighb
ors 

 X X X X X X X X X X X X X X  

msDS
-
ReplA
llOutb
ound
Neigh
bors 

 X X X X X X X X X X X X X X  



 

172 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attri
bute 
nam
e A 

D, 
DR
2 G K, N L, P S T V W Y Z B2 C2 

E2, 
H2, 
K2, 

M2,                                                                                                                                                 

P2                                                                                                                                                 

F2, 
I2, 
L2,  

N2,  

Q2                                                                                                                                                 
R2, 
S2  

msDS
-
ReplC
onnec
tionF
ailure
s 

 X X X X X X X X X X X X X X  

msDS
-
ReplL
inkFai
lures 

 X X X X X X X X X X X X X X  

msDS
-
ReplP
endin
gOps 

 X X X X X X X X X X X X X X  

msDS
-
ReplQ
ueue
Statis
tics 

 X X X X X X X X X X X X X X  

msDS
-
TopQ
uotaU
sage 

 X X X X X X X X X X X X X X  

suppo
rtedC
onfig
urabl
eSetti
ngs 

 X X X X X X X X X X X X X X  

suppo
rtedE
xtensi

on 

 X X X X X X X X X X X X X X  

validF
SMOs 

 X X X X X X X X X X X X X X  

dsaV
ersio
nStri
ng 

  X X X X X X X X X X X X X  

msDS
-
PortL
DAP 

  X X X X X X X X X X X X X  



 

173 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attri
bute 
nam
e A 

D, 
DR
2 G K, N L, P S T V W Y Z B2 C2 

E2, 
H2, 
K2, 

M2,                                                                                                                                                 

P2                                                                                                                                                 

F2, 
I2, 
L2,  

N2,  

Q2                                                                                                                                                 
R2, 
S2  

msDS
-
PortS
SL 

  X X X X X X X X X X X X X  

msDS
-
Princi
palNa
me 

  X X X X X X X X X X X X X  

servic
eAcco
untIn
fo 

  X X X X X X X X X X X X X  

spnR
egistr
ation
Resul
t 

  X X X X X X X X X X X X X  

token
Grou
ps 

  X X X X X X X X X X X X X  

usnAt
Rifm 

   X X X X X X X X X X X X  

appro
ximat
eHigh
estInt
ernal
Objec
tID 

     X X X X X X X X X X  

datab
aseG
uid 

       X X X X X X X X  

sche
maIn
dexU
pdate
State 

       X X X X X X X X  

dump
Ldap
Notifi
catio
ns 

         X X X X X X  

msDS
-
Proce
ssLin
ksOp

       X X X X X X X X  



 

174 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attri
bute 
nam
e A 

D, 
DR
2 G K, N L, P S T V W Y Z B2 C2 

E2, 
H2, 
K2, 

M2,                                                                                                                                                 

P2                                                                                                                                                 

F2, 
I2, 
L2,  

N2,  

Q2                                                                                                                                                 
R2, 
S2  

eratio
ns * 

msDS
-
Segm
entCa
cheIn
fo ** 

       X X        

msDS
-
Threa
dStat
es 
*** 

         X X X X X X  

Confi
gurab
leSett
ingsE
ffecti
ve 

           X X X X  

LDAP
Polici

esEff
ective 

           X X X X  

msDS
-
Arena
Info 

           X X X X  

msDS
-
Anch
or 

             X X  

msDS
-
Prefix
Table 

             X X  

msDS
-
Supp
orted
Root
DSEA
ttribu
tes 

             X X  

msDS
-
Supp
orted
Root

             X X  



 

175 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attri
bute 
nam
e A 

D, 
DR
2 G K, N L, P S T V W Y Z B2 C2 

E2, 
H2, 
K2, 

M2,                                                                                                                                                 

P2                                                                                                                                                 

F2, 
I2, 
L2,  

N2,  

Q2                                                                                                                                                 
R2, 
S2  

DSEM
odific
ation
s 

msDS
-
DiskU
sage 
**** 

             X X  

msDS
-
Datab
aseIn
dices 
**** 

             X X  

msDS 
-
Datab
aseIn
dices
WithS
ize 
**** 

             X X  

msDS
-
Priorit
yBoos
t 

               X 

* The msDS-ProcessLinksOperations rootDSE attribute is available in Windows Server 2012 R2 only if 
[MSKB-3192404] is installed. The attribute is available in Windows Server 2016 only if [MSKB-
4038801] is installed. 

** The msDS-SegmentCacheInfo rootDSE attribute is available in Windows Server 2012 R2 only if 
[MSKB-4019217] is installed. 

*** The msDS-ThreadStates rootDSE attribute is available in Windows Server 2016 only if [MSKB-
4025334] is installed. 

**** The rootDSE attributes msDS-DiskUsage, msDS-DatabaseIndices, and msDS -
DatabaseIndicesWithSize are supported by the operating systems specified in [MSKB-5023705], 
[MSKB-5023702], [MSKB-5023706], [MSKB-5023698], and [MSKB-5023696]; each with its related KB 

article download installed. 

The following table shows, for each rootDSE attribute, whether or not the attribute is operational (that 
is, whether the server returns the attribute only when it is explicitly requested) and the LDAP syntax 
of the returned value. 

Attribute name Operational? LDAP syntax 

configurationNamingContext N Object(DS-DN) 



 

176 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute name Operational? LDAP syntax 

currentTime N String(Generalized-Time) 

defaultNamingContext N Object(DS-DN) 

dNSHostName N String(Unicode) 

dsSchemaAttrCount Y Integer 

dsSchemaClassCount Y Integer 

dsSchemaPrefixCount Y Integer 

dsServiceName N Object(DS-DN) 

highestCommittedUSN N LargeInteger 

isGlobalCatalogReady N Boolean 

isSynchronized N Boolean 

ldapServiceName N String(Unicode) 

namingContexts N Object(DS-DN) 

netlogon Y String(Octet) 

pendingPropagations Y Object(DS-DN) 

rootDomainNamingContext N Object(DS-DN) 

schemaNamingContext N Object(DS-DN) 

serverName N Object(DS-DN) 

 subschemaSubentry N Object(DS-DN) 

supportedCapabilities N String(Object-Identifier) 

supportedControl N String(Object-Identifier) 

supportedLDAPPolicies N String(Unicode) 

supportedLDAPVersion N Integer 

supportedSASLMechanisms N String(Unicode) 

domainControllerFunctionality N Integer 

domainFunctionality N Integer 

forestFunctionality N Integer 

msDS-ReplAllInboundNeighbors Y String(Unicode)* 

msDS-ReplAllOutboundNeighbors Y String(Unicode)* 

msDS-ReplConnectionFailures Y String(Unicode)* 

msDS-ReplLinkFailures Y String(Unicode)* 

msDS-ReplPendingOps Y String(Unicode)* 

msDS-ReplQueueStatistics Y String(Unicode)* 



 

177 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute name Operational? LDAP syntax 

msDS-TopQuotaUsage Y String(Unicode)** 

supportedConfigurableSettings Y String(Unicode) 

supportedExtension Y String(Object-Identifier) 

validFSMOs Y Object(DS-DN) 

dsaVersionString Y String(Unicode) 

msDS-PortLDAP Y Integer 

msDS-PortSSL Y Integer 

msDS-PrincipalName Y String(Unicode) 

serviceAccountInfo Y String(Unicode) 

spnRegistrationResult Y Integer 

tokenGroups Y String (SID) 

usnAtRifm Y LargeInteger 

approximateHighestInternalObjectID Y Integer 

databaseGuid Y String(Teletex) 

schemaIndexUpdateState Y Integer 

dumpLdapNotifications Y String(Unicode) 

msDS-ProcessLinksOperations Y String(Unicode) 

msDS-SegmentCacheInfo Y String(Unicode) 

msDS-ThreadStates Y String(Unicode) 

ConfigurableSettingsEffective Y String(Unicode) 

LDAPPoliciesEffective Y String(Unicode) 

msDS-ArenaInfo Y String(Unicode) 

msDS-Anchor Y String(Unicode) 

msDS-PrefixTable Y String(Unicode) 

msDS-SupportedRootDSEAttributes Y String(Unicode) 

msDS-SupportedRootDSEModifications Y String(Unicode) 

msDS-DiskUsage Y String(Unicode) 

msDS-DatabaseIndices Y String(Unicode) 

msDS-DatabaseIndicesWithSize Y String(Unicode) 

msDS-PriorityBoost Y Integer 

* These values contain XML. At the client's request, the server will return the value as binary data in 
String(Octet) syntax instead. 



 

178 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

** This value contains XML. 

3.1.1.3.2.1 configurationNamingContext 

Returns the DN of the root of the config NC on this DC. 

3.1.1.3.2.2 currentTime 

Returns the current system time on the DC, as expressed as a string in the Generalized Time format 
defined by ASN.1 (see [ISO-8601] and [ITUX680], as well as the documentation for the LDAP 
String(Generalized-Time) syntax in 3.1.1.2.2.2). 

3.1.1.3.2.3 defaultNamingContext 

Returns the DN of the root of the default NC of this DC. For AD LDS, the defaultNamingContext 
attribute does not exist if a value has not been set for the msDS-DefaultNamingContext attribute of 
the DC's nTDSDSA object. 

3.1.1.3.2.4 dNSHostName 

Returns the DNS address of this DC. 

3.1.1.3.2.5 dsSchemaAttrCount 

Returns an integer specifying the total number of attributes that are defined in the schema. 

3.1.1.3.2.6 dsSchemaClassCount 

Returns an integer specifying the total number of classes that are defined in the schema. 

3.1.1.3.2.7 dsSchemaPrefixCount 

Returns the number of entries in the DC's prefix table: the field prefixTable of the variable dc specified 
in [MS-DRSR] section 5.30. 

3.1.1.3.2.8 dsServiceName 

Returns the DN of the nTDSDSA object for the DC. 

3.1.1.3.2.9 highestCommittedUSN 

Returns the USN of this DC. In terms of the state model of section 3.1.1.1 this is dc.usn. 

3.1.1.3.2.10 (Updated Section) isGlobalCatalogReady 

Returns a Boolean value indicating if this DC is a global catalog that has completed at least one 
synchronization of its global catalog data with its replication partners. Returns trueTRUE if it meets 
this criteria or falseFALSE if either the global catalog on this DC has not completed synchronization or 

this DC does not host a global catalog. 

3.1.1.3.2.11 (Updated Section) isSynchronized 

Returns a Boolean value indicating if the DC has completed at least one synchronization with its 
replication partners. Returns either trueTRUE, if it is synchronized, or falseFALSE, if it is not. 

3.1.1.3.2.12 ldapServiceName 



 

179 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Returns the LDAP service name for the LDAP server on the DC. The format of the value is <DNS 
name of the forest root domain>:<Kerberos principal name>, where Kerberos principal 

name is a string representation of the Kerberos principal name for the DC's computer object, as 
defined in [RFC1964] section 2.1.1. 

3.1.1.3.2.13 namingContexts 

Returns a multivalued set of DNs. For each NC-replica n hosted on this DC, this attribute contains the 
DN of the root of n. 

3.1.1.3.2.14 netlogon 

LDAP searches that request this rootDSE attribute get resolved as LDAP ping operations, as specified 

in section 6.3. Active Directory supports LDAP searches for this attribute via both UDP and TCP/IP. See 
section 3.1.1.3.1.11 for details on LDAP over UDP. 

3.1.1.3.2.15 pendingPropagations 

Returns a set of DNs of objects whose nTSecurityDescriptor attribute (that is, the object's security 
descriptor) has been updated but the inheritable portion of the update has not yet been propagated to 
descendant objects (see Security Descriptor Requirements, section 6.1.3). An object is included in the 

set only if the update that caused the temporary inconsistency in the object's nTSecurityDescriptor 
was performed on the LDAP connection that is reading the pendingPropagations rootDSE attribute. 

3.1.1.3.2.16 rootDomainNamingContext 

Returns the DN of the root domain NC for this DC's forest. 

3.1.1.3.2.17 schemaNamingContext 

Returns the DN of the root of the schema NC on this DC. 

3.1.1.3.2.18 serverName 

Returns the DN of the server object, contained in the config NC, that represents this DC. 

3.1.1.3.2.19 subschemaSubentry 

Returns the DN for the location of the subSchema object where the classes and attributes in the 

directory are defined. The subSchema object pointed to by this attribute contains a read-only copy of 
the schema described in the format specified in section 3.1.1.3.1.1.1 

3.1.1.3.2.20 supportedCapabilities 

Returns a multivalued set of OIDs specifying the capabilities supported by this DC. The definition of 
each OID is explained in section 3.1.1.3.4.3. 

3.1.1.3.2.21 supportedControl 

Returns a multivalued set of OIDs specifying the LDAP controls supported by this DC. The definition of 
each OID is explained in section 3.1.1.3.4.1 

3.1.1.3.2.22 supportedLDAPPolicies 

Returns a multivalued set of strings specifying the LDAP administrative query policies supported by 

this DC. The policy strings returned are listed in section 3.1.1.3.4.6. 



 

180 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.3.2.23 supportedLDAPVersion 

Returns a set of integers specifying the versions of LDAP supported by this DC. Active Directory 
supports version 2 and version 3 of LDAP, so it returns {2,3} as an LDAP multivalue. 

3.1.1.3.2.24 supportedSASLMechanisms 

Returns a multivalued set of strings specifying the security mechanisms supported for SASL 
negotiation (see [RFC2222], [RFC2829], and [RFC2831]). The definition of each value is explained in 
section 3.1.1.3.4.5. 

3.1.1.3.2.25 domainControllerFunctionality 

Returns an integer indicating the functional level of the DC. This value is populated from the msDS-
Behavior-Version attribute on the nTDSDSA object that represents the DC (section 6.1.4.2). 

Value Identifier 

0 DS_BEHAVIOR_WIN2000 

2 DS_BEHAVIOR_WIN2003 

3 DS_BEHAVIOR_WIN2008 

4 DS_BEHAVIOR_WIN2008R2 

5 DS_BEHAVIOR_WIN2012 

6 DS_BEHAVIOR_WIN2012R2 

7 DS_BEHAVIOR_WIN2016 

 

3.1.1.3.2.26 domainFunctionality 

Returns an integer indicating the functional level of the domain. This value is populated from the 
msDS-Behavior-Version attribute on the domain NC root object and the crossRef object that 

represents the domain (section 6.1.4.3). 

Value Identifier 

0 DS_BEHAVIOR_WIN2000 

1 DS_BEHAVIOR_WIN2003_WITH_MIXED_DOMAINS 

2 DS_BEHAVIOR_WIN2003 

3 DS_BEHAVIOR_WIN2008 

4 DS_BEHAVIOR_WIN2008R2 

5 DS_BEHAVIOR_WIN2012 

6 DS_BEHAVIOR_WIN2012R2 

7 DS_BEHAVIOR_WIN2016 

 



 

181 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.3.2.27 forestFunctionality 

Returns an integer indicating the functional level of the forest. This value is populated from the msDS-
Behavior-Version attribute on the crossRefContainer object (section 6.1.4.4). 

Value Identifier 

0 DS_BEHAVIOR_WIN2000 

1 DS_BEHAVIOR_WIN2003_WITH_MIXED_DOMAINS 

2 DS_BEHAVIOR_WIN2003 

3 DS_BEHAVIOR_WIN2008 

4 DS_BEHAVIOR_WIN2008R2 

5 DS_BEHAVIOR_WIN2012 

6 DS_BEHAVIOR_WIN2012R2 

7 DS_BEHAVIOR_WIN2016 

 

3.1.1.3.2.28 msDS-ReplAllInboundNeighbors, msDS-ReplConnectionFailures, msDS-

ReplLinkFailures, and msDS-ReplPendingOps 

Returns alternate representations of the structures returned by IDL_DRSGetReplInfo() (see [MS-
DRSR] section 4.1.13), either as binary data structures or as XML. The relationship between each of 
these rootDSE attributes and the IDL_DRSGetReplInfo data is shown in the following table. 

rootDSE 
attribute name  

Equivalent DS_REPL_ 
INFO_TYPE  XML structure  Binary structure  

msDS-
ReplAllInboundNei
ghbors 

DS_REPL_INFO_NEIGHBORS DS_REPL_NEIGHBORW DS_REPL_NEIGHBORW_BL
OB 

msDS-
ReplConnectionFai
lures 

DS_REPL_INFO_KCC_DSA_CONNE
CT_FAILURES 

DS_REPL_KCC_DSA_F
AILUREW 

DS_REPL_KCC_DSA_FAILU
REW_BLOB 

msDS-
ReplLinkFailures 

DS_REPL_INFO_KCC_DSA_LINK_F
AILURES 

DS_REPL_KCC_DSA_F
AILUREW 

DS_REPL_KCC_DSA_FAILU
REW_BLOB 

msDS-
ReplPendingOps 

DS_REPL_INFO_PENDING_OPS DS_REPL_OPW DS_REPL_OPW_BLOB 

For each rootDSE attribute named in the first column, the information returned is exactly the same 
information that is returned by a call to IDL_DRSGetReplInfo, specifying the value in the second 

column as the DRS_MSG_GETREPLINFO_REQ_V1.InfoType or 

DRS_MSG_GETREPLINFO_REQ_V2.InfoType. See [MS-DRSR] for the definition of these, as well as for 
the definition of the following constants and structures used in the table above: 

▪ DS_REPL_INFO_NEIGHBORS 

▪ DS_REPL_INFO_KCC_DSA_CONNECT_FAILURES 

▪ DS_REPL_INFO_KCC_DSA_LINK_FAILURES 



 

182 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ DS_REPL_INFO_PENDING_OPS 

▪ DS_REPL_NEIGHBORW 

▪ DS_REPL_KCC_DSA_FAILUREW 

▪ DS_REPL_OPW 

The remaining structures in the table above are documented in section 2.2. 

Without any attribute qualifier, the data is returned as XML. The parent element of the XML is the 
name of the structure contained in the "XML structure" column in the table, and the child element 
names and order in the XML exactly follow the names of the fields in that structure as well. The 
meaning of each child element is the same as the meaning of the corresponding field in the structure. 
Values of integer types are represented as decimal strings. Values of FILETIME type are represented 
as XML dateTime values in Coordinated Universal Time (UTC), for example, "04-07T18:39:09Z", as 

defined in [XMLSCHEMA2/2]. Values of GUID fields are represented as GUIDStrings. 

If the ";binary" attribute qualifier is specified when the attribute is requested, the value of this 
attribute is returned as binary data, specifically, the structure contained in the "Binary structure" 
column. In this representation, fields that would contain strings are represented as integer offsets 
(relative to the beginning of the binary data) to a null-terminated UTF-16 encoded string embedded in 
the returned binary data. 

3.1.1.3.2.29 msDS-ReplAllOutboundNeighbors 

This attribute is equivalent to msDS-ReplAllInboundNeighbors, except that it returns representations 
of each value of the repsTo abstract attribute for each NC-replica (for example, outbound replication), 
while msDS-ReplAllInboundNeighbors returns representations of each value of the repsFrom abstract 
attribute (for example, inbound replication). Like msDS-ReplAllInboundNeighbors, the server will 
return the data in either XML or binary form, depending on the presence of the ";binary" attribute 

qualifier, and uses the DS_REPL_NEIGHBOR and DS_REPL_NEIGHBORW_BLOB structures for its XML 
and binary representations, respectively. 

3.1.1.3.2.30 msDS-ReplQueueStatistics 

Reading the msDS-ReplQueueStatistics attribute returns replication queue statistics. 

Like the other ms-dsRepl* rootDSE attributes, the server returns either XML or binary data, depending 
on the presence of the ";binary" attribute qualifier. For XML, it returns the following representation: 

<DS_REPL_QUEUE_STATISTICSW> 

<ftimeCurrentOpStarted> ftimeCurrentOpStartedValue </ftimeCurrentOpStarted> 

<cNumPendingOps> cNumPendingOpsValue </cNumPendingOps> 

<ftimeOldestSync> ftimeOldestSyncValue </ftimeOldestSync> 

<ftimeOldestAdd> ftimeOldestAddValue </ftimeOldestAdd> 

<ftimeOldestMod> ftimeOldestModValue </ftimeOldestMod> 

<ftimeOldestDel> ftimeOldestDelValue </ftimeOldestDel> 

<ftimeOldestUpdRefs> ftimeOldestUpdRefsValue </ftimeOldestUpdRefs> 

</DS_REPL_QUEUE_STATISTICSW> 

The structure returned by this attribute for the binary representation is 
DS_REPL_QUEUE_STATISTICSW_BLOB (section 2.2.5). 



 

183 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The information returned by reading this attribute is derived from the field replicationQueue of the 
variable dc specified in [MS-DRSR] section 5.30. dc.replicationQueue is used to serialize 

IDL_DRSReplicaSync, IDL_DRSReplicaAdd, IDL_DRSReplicaModify, IDL_DRSReplicaDel, and 
IDL_DRSUpdateRefs request processing [MS-DRSR] on the DC. msDS-ReplQueueStatistics returns the 

following information about the current state of this queue: 

▪ ftimeCurrentOpStartedValue is the date and time that the current IDL_DRSReplicaSync, 
IDL_DRSReplicaAdd, IDL_DRSReplicaModify, IDL_DRSReplicaDel, or IDL_DRSUpdateRefs request 
left the queue and started running.  

▪ cNumPendingOpsValue is the number of queued IDL_DRSReplicaSync, IDL_DRSReplicaAdd, 
IDL_DRSReplicaModify, IDL_DRSReplicaDel, or IDL_DRSUpdateRefs requests.  

▪ ftimeOldestSyncValue is the date and time that the oldest queued IDL_DRSReplicaSync request 

entered the queue.  

▪ ftimeOldestAddValue is the date and time that the oldest queued IDL_DRSReplicaAdd request 
entered the queue.  

▪ ftimeOldestModValue is the date and time that the oldest queued IDL_DRSReplicaModify 
request entered the queue.  

▪ ftimeOldestDelValue is the date and time that the oldest queued IDL_DRSReplicaDel request 

entered the queue.  

▪ ftimeOldestUpdRefsValue is the date and time that the oldest queued IDL_DRSUpdateRefs 
request entered the queue. 

cNumPendingOpsValue is an integer represented as a decimal string. The remaining values are 
represented as XML dateTime values in UTC, defined in [XMLSCHEMA2/2]. 

If a designated request does not exist, the corresponding portion of the msDS-ReplQueueStatistics 
response contains a zero filetime in the binary format, and the XML dateTime value "1601-01-

01T00:00:00Z" in XML format. For instance, if there is no IDL_DRSUpdateRefs request in the 

replication queue, the msDS-ReplQueueStatistics XML response includes: 

<ftimeOldestUpdRefs>1601-01-01T00:00:00Z</ftimeOldestUpdRefs> 

3.1.1.3.2.31 (Updated Section) msDS-TopQuotaUsage 

Returns a multivalued set of strings specifying the top 10 quota users in all NC-replicas on this DC. 
The format of each value is as follows, where quota usage is measured in number of objects: 

<MS_DS_TOP_QUOTA_USAGE> 

<partitionDN> DN of NC-replica </partitionDN> 

<ownerSID> Security Identifier (SID) of quota user </ownerSID> 

<quotaUsed> Amount of quota used by this quota user </quotaUsed> 

<tombstoneCount> Number of tombstoned objects owned by this quota user 
</tombstoneCount> 

<liveCount> Number of live (non-deleted) objects owned by this quota user </liveCount > 

</MS_DS_TOP_QUOTA_USAGE> 

A client qualifies the attribute description for this attribute in an LDAP query with a "range qualifier" to 
specify a different range of quota users to return other than the top 10. The DC responds to this by 



 

184 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

returning the quota usage for the requested range of quota users. Following are examples of range 
qualifiers and what would be returned: 

▪ An attribute specification of the form msDS-TopQuotaUsage;Range=0-* will return the complete 
list of quota usage. 

▪ An attribute specification of the form msDS-TopQuotaUsage;Range=1-9 will return the second 
highest through the 10th highest quota usage. 

▪ An attribute specification of the form msDS-TopQuotaUsage;Range=2-2 will return the third 
highest quota usage. 

The caller mustMUST have the RIGHT_DS_READ_PROPERTY access right on the Quotas container (see 
section 6.1.1.4.3). If the caller does not have this access right, the search operation will succeed but 
no results will be returned. 

3.1.1.3.2.32 supportedConfigurableSettings 

Returns a multivalued set of strings specifying the configurable settings supported by this DC. The 
setting strings returned are listed in section 3.1.1.3.4.7. 

3.1.1.3.2.33 supportedExtension 

Returns a multivalued set of OIDs specifying the extended LDAP operations that the DC supports. The 
definition of each OID is explained in section 3.1.1.3.4.2. 

3.1.1.3.2.34 (Updated Section) validFSMOs 

Returns a set of DNs of objects representing the FSMO roles owned by this DC. Each object identifies a 
distinct FSMO role. 

The valid types of FSMO role, and the object used to represent an instance of that type in the 

validFSMOs attribute, are as follows: 

▪ Schema Master FSMO Role - the root of the schema NC 

▪ Domain Naming FSMO Role - the Partitions container in the config NC 

▪ Infrastructure Master FSMO Role - the Infrastructure container in a domain NC 

▪ Primary Domain Controller (PDC) Emulator FSMO Role - the root of a domain NC 

▪ RID Master FSMO Role - the RID Manager object of a domain NC, which is the object referenced 
by the rIDManagerReference attribute on the root of the domain NC 

Because an AD LDS forest does not contain domain NCs, it does not contain instances of the 
Infrastructure Master, PDC Emulator, and RID Master FSMO roles, and the corresponding objects will 
not be present in the validFSMOs attribute of any DC running AD LDS. 

A server indicates that it owns a given FSMO role F only if IsEffectiveRoleOwner(RoleObject(nc, e)) 

returns trueTRUE, where the procedures IsEffectiveRoleOwner and RoleObject are defined in section 
3.1.1.5.1.8. The parameters nc and e are defined as follows for each FSMO Role F: 

▪ Schema Master FSMO 

▪ nc: Schema NC 

▪ e: SchemaMasterRole 

▪ Domain Naming FSMO 



 

185 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ nc: Config NC 

▪ e: DomainNamingMasterRole 

▪ Infrastructure Master FSMO 

▪ nc: Default NC (AD DS) 

▪ e: InfrastructureMasterRole 

▪ RID Master FSMO 

▪ nc: Default NC (AD DS) 

▪ e: RidAllocationMasterRole 

▪ PDC Emulator FSMO 

▪ nc: Default NC (AD DS) 

▪ e: PdcEmulationMasterRole 

3.1.1.3.2.35 dsaVersionString 

Returns a string indicating the version of Active Directory running on the DC. For instance, when 
running Windows Server 2008 Beta 2, the Active Directory version string is "6.0.5384.32 
(winmain_beta2.060727-1500)". 

This rootDSE attribute is readable by Domain Administrators (section 6.1.1.6.5) and Enterprise 

Administrators (section 6.1.1.6.10) only. 

3.1.1.3.2.36 msDS-PortLDAP 

Returns the integer TCP/UDP port number on which the DC is listening for LDAP requests. For AD DS, 

this always equals 389. For AD LDS, the port is configurable. 

Note  This rootDSE attribute is different from the schema attribute of the same name, msDS-
PortLDAP. 

3.1.1.3.2.37 msDS-PortSSL 

Returns the integer TCP/UDP port number on which the DC is listening for TLS/SSL-protected LDAP 
requests. For AD DS, this always equals 636. For AD LDS, the port is configurable. 

Note  This rootDSE attribute is different from the schema attribute of the same name, msDS-PortSSL. 

3.1.1.3.2.38 (Updated Section) msDS-PrincipalName 

Returns a string name of the security principal that has authenticated on the LDAP connection. If the 
client authenticated as a Windows security principal, the string contains either (1) the NetBIOS 

domain name, followed by a backslash ("\"), followed by the sAMAccountName of the security 
principal, or (2) the SID of the security principal, in SDDL SID string format ([MS-DTYP] section 
2.4.2.1). If the client authenticated as an AD LDS security principal, the string contains the DN of the 
security principal. If the connection is not authenticated (only possible if the fLDAPBlockAnonOps 
heuristic in the dSHeuristics attribute is falseFALSE; see section 6.1.1.2.4.1.2), the string is "NT 

AUTHORITY\ANONYMOUS LOGON". 

Note  This rootDSE attribute is different from the schema attribute of the same name, msDS-
PrincipalName. 



 

186 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.3.2.39 (Updated Section) serviceAccountInfo 

Returns a set of strings, each string containing a name-value pair encoded as name=value. 

The serviceAccountInfo attribute contains information outside the state model. The possible name-

value pairs are as follows: 

replAuthenticationMode: The value is the value of the msDS-ReplAuthenticationMode attribute on 
the root of the config NC, or "1" if that attribute is not set. See section 6.1.1.1.2 for the effects of the 
msDS-ReplAuthenticationMode attribute. 

accountType: If the service account is a domain account account, the value is "domain". Otherwise 
the service account is a local account, and the value is "local". 

systemAccount: If the service account is a system account (meaning it has one of the SIDs SID "S-

1-5-20" and "S-1-5-18") the value is "trueTRUE"; otherwise the value is "falseFALSE". 

domainType: If the DC is running on a computer that is part of an Active Directory domain (always 

the case for an AD DS DC), the value is "domainWithKerb". If the DC is running on a computer that 
is part of an NT (pre–Active Directory) domain, the value is "domainNoKerb". Otherwise the DC is 
running on a computer that is not part of a domain, and the value is "nonMember". 

serviceAcccountName: If the value of replAuthenticationMode is "0", the value is the SAM name 

of the DC's service account. Otherwise this name-value pair is not present. 

machineDomainName: If domainType is "domainWithKerb" or "domainNoKerb" the value is 
the NetBIOS name of the domain. Otherwise the value is the NetBIOS name of the computer. 

3.1.1.3.2.40 spnRegistrationResult 

When running as AD DS on Windows Server 2008 R2 and later, this value is 0. When running as AD 
LDS, if the DC was unable to register its service principal names (SPNs) (2) ([MS-DRSR] section 

2.2.2), this attribute returns the Windows error code associated with the failure. Otherwise, it returns 
zero. 

Note  When running as AD DS on Windows Server 2003 through Windows Server 2008, this value is 
the Windows error code that is associated with the failure if the DC was unable to register its SPNs 
(2), or zero upon success. 

3.1.1.3.2.41 tokenGroups 

Returns the SIDs contained in the security context as which the client has authenticated the LDAP 
connection. Refer to section 5.1.3 for details on LDAP Authorization. Refer to section 3.1.1.4.5.19 for 
details on the algorithm used to compute this attribute. 

3.1.1.3.2.42 usnAtRifm 

This attribute contains information outside the state model. If the DC is an RODC and was installed 
using the Install From Media feature, reading the usnAtRifm attribute returns the value of dc.usn 

(section 3.1.1.1.9) that was present in the Active Directory database on the installation media. 

3.1.1.3.2.43 approximateHighestInternalObjectID 

This attribute contains information outside the state model. Reading 
approximateHighestInternalObjectID returns an approximation of the highest value a DC has for an 
implementation-specific object identifier. 

3.1.1.3.2.44 databaseGuid 



 

187 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

This attribute contains information outside the state model. Reading this attribute returns a GUID.  
There is no significance to the value of the GUID. 

3.1.1.3.2.45 schemaIndexUpdateState 

This attribute contains information outside the state model. Reading this attribute returns the value 
'3'. There is no significance to this value. 

3.1.1.3.2.46 dumpLdapNotifications 

If the requestor is not a member of the BUILTIN\Administrators group (section 6.1.1.4.12.2), 
attempting to read this attribute will return an error. Reading this attribute returns an XML-formatted 
string that describes the asynchronous notifications that have been registered with the DC (section 

3.1.1.3.4.1.9). The specific contents of the XML string are implementation-defined. 

3.1.1.3.2.47 msDS-ProcessLinksOperations 

Reading this attribute returns an XML-formatted string that contains a list of objects for which delayed 
link processing (section 3.1.1.1.16) has not completed. The list contains no more than 500 values, 
even if there are more such objects. No ordering of objects is implied by the list. The specific contents 
of the XML string are implementation-defined. 

3.1.1.3.2.48 msDS-SegmentCacheInfo 

This attribute contains information that is outside the state model. Reading this attribute returns a 
string that describes memory and processor usage of the instance. The specific contents of the string 
are implementation-defined. 

3.1.1.3.2.49 msDS-ThreadStates 

If the requestor is not a member of the BUILTIN\Administrators group (section 6.1.1.4.12.2), 
attempting to read this attribute will return an error. This attribute contains information outside the 

state model. Reading this attribute returns an XML-formatted string that describes memory and 
processor usage of the instance. The specific contents of the XML string are implementation-defined. 

3.1.1.3.2.50 ConfigurableSettingsEffective 

This attribute returns a multivalued set of strings that specify the configurable settings supported by 
this DC and their values. The setting names returned are listed in section 3.1.1.3.4.7. The format for 
each string is "settingName:settingValue". 

3.1.1.3.2.51 LDAPPoliciesEffective 

This attribute returns a multivalued set of strings that specify the LDAP administrative query policies 
supported by this DC and their values. The policy names returned are listed in section 3.1.1.3.4.6. The 

format for each string is "policyName:policyValue". 

3.1.1.3.2.52 msDS-ArenaInfo 

If the requestor is not a member of the BUILTIN\Administrators group (section 6.1.1.4.12.2), 
attempting to read this attribute will return an error. This attribute contains information outside the 
state model. Reading this attribute returns an XML-formatted string that describes memory and 
processor usage of the instance. The specific contents of the XML string are implementation-defined. 

3.1.1.3.2.53 msDS-Anchor 



 

188 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

This attribute contains information outside the state model. Reading this attribute returns an XML-
formatted string that describes internal state of the instance. The specific contents of the XML string 

are implementation-defined. 

3.1.1.3.2.54 msDS-PrefixTable 

This attribute contains information outside the state model. Reading this attribute returns a string that 
describes internal state of the instance. The specific contents of the string are implementation-defined. 

3.1.1.3.2.55 msDS-SupportedRootDSEAttributes 

Reading this attribute returns a multivalued string containing the names of all the rootDSE attributes 
the instance supports. 

3.1.1.3.2.56 msDS-SupportedRootDSEModifications 

Reading this attribute returns a multivalued string containing the names of all the rootDSE modify 

operations the instance supports. 

3.1.1.3.2.57 msDS-DiskUsage 

If the requestor is not a member of the BUILTIN\Administrators group (section 6.1.1.4.12.2), 

attempting to read this attribute will return an error. This attribute contains information outside the 
state model. Reading this attribute returns an XML-formatted string that describes the database tables 
and disk usage of the instance. The specific contents of the XML string are implementation-specific. 

Note: The rootDSE attributes msDS-DiskUsage, msDS-DatabaseIndices, and msDS -
DatabaseIndicesWithSize are supported by the operating systems specified in [MSKB-5023705], 
[MSKB-5023702], [MSKB-5023706], [MSKB-5023698], and [MSKB-5023696], each with its related KB 

article download installed. 

3.1.1.3.2.58 msDS-DatabaseIndices 

If the requestor is not a member of the BUILTIN\Administrators group (section 6.1.1.4.12.2), 
attempting to read this attribute will return an error. This attribute contains information outside the 
state model. Reading this attribute returns a string with the list of database indices of the instance. 
The specific contents of the string are implementation-specific. 

3.1.1.3.2.59 msDS-DatabaseIndicesWithSize 

This attribute is similar to msDS-DatabaseIndices attribute, but in addition returns the size of the 
indices. This attribute only returns non-empty indices. The specific contents of the string are 
implementation-specific. 

3.1.1.3.2.60 msDS-PriorityBoost 

Reading this attribute returns the current customized boost factor on a naming context of a source 
replication partner. The requested naming context and source replica is provided in the 

AttributeDescription parameter of this attribute. An example of reading this attribute is like "msds-
PriorityBoost;parameter=CN=domainNC,DC=foo:srcDsaObjectGUID", where "CN=domainNC,DC=foo" 
is the requested naming context and srcDsaObjectGUID is the DSAGUID of the requested source 
replication partner. 

3.1.1.3.3 (Updated Section) rootDSE Modify Operations 

This section specifies the modifiable attributes on the rootDSE of Windows 2000 and later DCs (both 
AD DS and AD LDS).rootDSE modify operations are used to trigger behaviors on a specific DC. For 



 

189 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

example, one such operation causes the DC to acquire the Schema Master FSMO. All of these rootDSE 
attributes are write-only; an LDAP request to read will be treated as if the attribute does not exist. 

The following table specifies the set of modifiable rootDSE attributes included in applicable Windows 
Server releases or ADAM versions. 

The table contains information for the following products. See section 3 for more information. 

▪ A --> Windows 2000 

▪ B --> Windows 2000 SP1 

▪ D --> Windows Server 2003 

▪ DR2 --> Windows Server 2003 R2 

▪ F --> Windows Server 2003 SP2 

▪ H --> ADAM RTW 

▪ I --> ADAM SP1 

▪ K --> Windows Server 2008 AD DS 

▪ L --> Windows Server 2008 AD LDS 

▪ N --> Windows Server 2008 R2 AD DS 

▪ P --> Windows Server 2008 R2 AD LDS 

▪ S --> Windows Server 2012 AD DS 

▪ T --> Windows Server 2012 AD LDS 

▪ V --> Windows Server 2012 R2 AD DS 

▪ W --> Windows Server 2012 R2 AD LDS 

▪ Y --> Windows Server 2016 AD DS 

▪ Z --> Windows Server 2016 AD LDS 

▪ B2 --> Windows Server v1709 AD DS 

▪ C2 --> Windows Server v1709 AD LDS 

▪ E2 --> Windows Server v1803 AD DS 

▪ F2 --> Windows Server v1803 AD LDS 

▪ H2 --> Windows Server v1809 AD DS 

▪ I2 --> Windows Server v1809 AD LDS 

▪ K2 --> Windows Server 2019 AD DS 

▪ L2 --> Windows Server 2019 AD LDS 

▪ M2 --> Windows Server v1903 AD DS 

▪ N2 --> Windows Server v1903 AD LDS 

▪ R2 --> Windows Server 2022, 23H2 AD DS 



 

190 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ S2 --> Windows Server 2022, 23H2 AD LDS 

Attribute name A B D 

D
R
2, 
F H I K L N P S T V W 

Y
, 
B
2 

Z
, 
C
2 

E
2 

F
2 

H
2
, 
K
2 

I
2
, 
L
2 

                                   
M
2
_                                                                                                                                                                                             

N
2
_ 

R
2 
, 
S
2  

becomeDomainMa
ster 

X X X X X X X X X X X X X X X X X X X X X X  

becomeInfrastruct
ureMaster 

X X X X   X  X  X  X  X  X  X  X   

becomePdc X X X X   X  X  X  X  X  X  X  X   

becomePdcWithCh
eckPoint 

X X X X   X  X  X  X  X  X  X  X   

becomeRidMaster X X X X   X  X  X  X  X  X  X  X   

becomeSchemaMa
ster 

X X X X X X X X X X X X X X X X X X X X X X  

checkPhantoms X X X X   X  X  X  X  X  X  X  X   

doGarbageCollecti
on 

X X X X X X X X X X X X X X X X X X X X X X  

dumpDatabase X X X X X X X X X X X X X X X X X X X X X X  

fixupInheritance X X X X X X X X X X X X X X X X X X X X X X  

invalidateRidPool X X X X   X  X  X  X  X  X  X  X   

recalcHierarchy X X X X   X  X  X  X  X  X  X  X   

schemaUpdateNow X X X X X X X X X X X X X X X X X X X X X X  

schemaUpgradeIn
Progress 

  X X   X  X  X  X  X  X  X  X   

removeLingeringO
bject 

 X X X X X X X X X X X X X X X X X X X X X  

doLinkCleanup   X X X X X X X X X X X X X X X X X X X X  

doOnlineDefrag   X X X X X X X X X X X X X X X X X X X X  

replicateSingleObj
ect 

  X X X X X X X X X X X X X X X X X X X X  

updateCachedMem
berships 

  X X   X  X  X  X  X  X  X  X   

doGarbageCollecti
onPhantomsNow 

   X  X X  X  X  X  X  X  X  X   

invalidateGCConne
ction 

      X X X X X X X X X X X X X X X X  

renewServerCertifi
cate 

      X X X X X X X X X X X X X X X X  

rODCPurgeAccount       X  X  X  X  X  X  X  X   



 

191 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute name A B D 

D
R
2, 
F H I K L N P S T V W 

Y
, 
B
2 

Z
, 
C
2 

E
2 

F
2 

H
2
, 
K
2 

I
2
, 
L
2 

                                   
M
2
_                                                                                                                                                                                             

N
2
_ 

R
2 
, 
S
2  

runSamUpgradeTa
sks 

      X  X  X  X  X  X  X  X   

sqmRunOnce       X X X X X X X X X X X X X X X X  

runProtectAdminG
roupsTask 

        X  X  X  X  X  X  X   

disableOptionalFea
ture 

        X X X X X X X X X X X X X X  

enableOptionalFea
ture 

        X X X X X X X X X X X X X X  

dumpReferences           X X   X X X X X X X X  

sidCompatibilityVe
rsion 

          X  X  X  X  X  X   

dumpLinks             X X X X X X X X X X  

schemaUpdateIndi
cesNow 

            X X X X X X X X X X  

null             X X X X X X X X X X  

dumpQuota             X X X X X X X X X X  

dumpLinksExtende
d 

              X X X X X X X X  

dumpLDAPState               X X X X X X X X  

msDS-
ProcessLinksAband

onOperation * 

            X X X X X X X X X X  

msDS-
ProcessLinksSched
uleOperation * 

            X X X X X X X X X X  

stopService                 X X X X X X  

msDS-
RunDeletedPhanto
msWithLinksTask 

                  X X X X  

dumpDatabaseExt
ended 

                    X X  

setPriorityBoost                       X 

* These rootDSE operations are available in Windows Server 2012 R2 only if [MSKB-3192404] is 
installed. The operations are available in Windows Server 2016 only if [MSKB-4038801] is installed. 

Each of these operations that are described in the subtopics of this section, are executed by 
performing an LDAP Modify operation with a NULL DN for the object to be modified (indicating the 
rootDSE) and specifying the name of the operation as the attribute to be modified. In [RFC2849] 



 

192 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

terminology the rootDSE attribute to be modified is the "AttributeDescription" of the "mod-spec" 
associated with the "change-modify" record. In many of the cases, the type of the modify (add or 

replace) and the values specified do not matter and are ignored. Whether the type and values matter, 
and what the client specifies if they do matter, will be indicated for each operation in the following 

sections. Examples are given as LDAP Data Interchange Format (LDIF) samples, described in 
[RFC2849]. In Windows, LDIF is implemented by the ldifde.exe command-line tool. 

To perform many of these operations, the caller mustMUST be authenticated as a user that has a 
particular control access right or privilege; or, in some cases, as a user that is a member of a 
particular group. In each section that follows, the rights, privileges, or group membership, if any, that 
are required of the caller to perform a specific operation are specified. If the caller does not have the 
required rights, privileges, or group membership, the server returns the error insufficientAccessRights 

/ ERROR_ACCESS_DENIED. 

3.1.1.3.3.1 (Updated Section) becomeDomainMaster 

Performing this operation causes the DC to request a transfer of the Domain Naming FSMO to itself, 

per the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3 
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_REQ_ROLE). The requester 

mustMUST have the "Change-Domain-Master" control access right on the Partitions container in the 
config NC for this to succeed. This operation cannot be performed on an RODC; an RODC will return 
error unwillingToPerform / ERROR_INVALID_PARAMETER. The LDAP operation returns success after 
the transfer of the Domain Naming FSMO has completed successfully. 

The type of modification can be add or replace, and the values specified in the LDAP modify operation 
do not matter. The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: becomeDomainMaster 
 becomeDomainMaster: 1 
 - 

3.1.1.3.3.2 (Updated Section) becomeInfrastructureMaster 

Performing this operation causes the DC to request a transfer of the Infrastructure Master FSMO to 
itself, per the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3 

(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_REQ_ROLE). The requester 
mustMUST have the "Change-Infrastructure-Master" control access right on the Infrastructure 
container in the domain NC replica. This operation cannot be performed on an RODC; an RODC will 
return the error unwillingToPerform / ERROR_INVALID_PARAMETER. The LDAP operation returns 
success after the transfer of the Infrastructure Master FSMO has completed successfully. 

The type of modification can be add or replace, and the values specified in the LDAP modify operation 

do not matter. The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: becomeInfrastructureMaster 
 becomeInfrastructureMaster: 1 
 - 

3.1.1.3.3.3 (Updated Section) becomePdc 

Performing this operation causes the DC to request a transfer of the PDC Emulator FSMO to itself, per 
the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3 
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_REQ_PDC). The requester mustMUST 
have the "Change-PDC" control access right on the root of the domain NC replica. This operation 



 

193 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

cannot be performed on an RODC; an RODC will return the error unwillingToPerform / 
ERROR_INVALID_PARAMETER. The LDAP operation returns success after the transfer of the PDC 

Emulator FSMO has completed successfully. 

Prior to transferring the PDC FSMO to the DC, if the domain is in mixed mode, the DC attempts to 

synchronize with the DC that is currently the Owner of the PDC FSMO in such a way as to avoid 
causing a full synchronization by BDCs running Windows NT 4.0 operating system (see section 
3.1.1.7). However, the FSMO role transfer will be performed even if this synchronization is 
unsuccessful. 

In order to perform this operation, the requester mustMUST provide the domain's SID, in binary 
format (defined in [MS-DTYP] section 2.4.2), as the value of the modify operation. In LDIF, this would 
be performed as follows. Note that LDIF requires that binary values be base-64 encoded. 

 dn: 
 changetype: modify 
 add: becomePdc 
 becomePdc:: base-64 encoding of the domain SID in binary 
 - 

3.1.1.3.3.4 becomePdcWithCheckPoint 

This operation is the same as becomePdc except for the following. Prior to transferring the PDC FSMO, 
if the domain is in mixed mode, the DC attempts to synchronize with the DC that is the current the 
owner of the PDC FSMO. becomePdc transfers the PDC FSMO role even if this synchronization is 
unsuccessful, while becomePdcWithCheckPoint does not. 

3.1.1.3.3.5 (Updated Section) becomeRidMaster 

Performing this operation causes the DC to request a transfer of the RID Master FSMO to itself, per 

the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3 
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_RID_REQ_ROLE). The requester 

mustMUST have the "Change-RID-Master" control access right on the RID Manager object, which is 
the object referenced by the rIDManagerReference attribute located on the root of the domain NC. The 
requester mustMUST also have read permission on the previously mentioned rIDManagerReference 
attribute. This operation cannot be performed on an RODC; an RODC returns the error 
unwillingToPerform / ERROR_INVALID_PARAMETER. The LDAP operation returns success after the 

transfer of the RID Master FSMO has completed successfully. 

The type of modification can be add or replace, and the values specified in the LDAP modify operation 
do not matter. The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: becomeRidMaster 
 becomeRidMaster: 1 
 - 

3.1.1.3.3.6 (Updated Section) becomeSchemaMaster 

Performing this operation causes the DC to request a transfer of the Schema Master FSMO to itself, 
per the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3 
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_REQ_ROLE). The requester 
mustMUST have the "Change-Schema-Master" control access right on the root of the schema NC 

replica. This operation cannot be performed on an RODC; an RODC will return the error 
unwillingToPerform / ERROR_INVALID_PARAMETER. The LDAP operation returns success after the 
transfer of the Schema Master FSMO has completed successfully. 



 

194 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The type of modification can be add or replace, and the values specified in the LDAP modify operation 
do not matter. The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: becomeSchemaMaster 
 becomeSchemaMaster: 1 
 - 

3.1.1.3.3.7 (Updated Section) checkPhantoms 

This operation requests that the reference update task (see section 3.1.1.6.2) be immediately 
performed on the DC. During the operation, if the referential integrity on any of the objects is found to 
be incorrect and it cannot be corrected, then the operation returns an error and does not process any 

of the remaining objects. This task runs periodically; on a correctly functioning DC, there is no need to 
run it explicitly. The requester mustMUST have the "DS-Check-Stale-Phantoms" control access right 
on the nTDSDSA object for the DC. 

No action is taken if the Recycle Bin optional feature is not enabled and the operation is performed 
against a DC that does not own the Infrastructure Master FSMO. 

No action is taken if the operation is performed against a DC that is a global catalog. 

The type of modification can be add or replace, and the values specified in the LDAP modify operation 
do not matter. 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: checkPhantoms 
 checkPhantoms: 1 
 - 

3.1.1.3.3.8 (Updated Section) doGarbageCollection 

This operation requests that garbage collection be immediately performed on the DC. Tombstones and 
recycled-objects are subject to the requirement that they mustMUST be kept for at least the 
tombstone lifetime (see 3.1.1.6.2), but they can be kept longer. Deleted-objects are subject to the 
requirement that they mustMUST be kept for at least the deleted-object lifetime. Garbage collection 
identifies tombstones and recycled-objects that have been kept for at least the tombstone lifetime and 

removes them. Additionally, garbage collection identifies deleted-objects that have been kept for at 
least the deleted-object lifetime and transforms them to recycled-objects. On a correctly functioning 
DC, there is no need to manually trigger garbage collection via this operation. The requester 
mustMUST have the "Do-Garbage-Collection" control access right on the DC's DSA object. 

This operation is triggered by setting the doGarbageCollection attribute to "1". 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: doGarbageCollection 
 doGarbageCollection: 1 
 - 

3.1.1.3.3.9 (Updated Section) dumpDatabase 



 

195 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

This operation is triggered by setting the attribute to a space-separated list of attributes. The 
requester mustMUST be a member of the BUILTIN\Administrators group (section 6.1.1.4.12.2). 

The following shows an LDIF sample that performs this operation for the description attribute ([MS-
ADA1] section 2.153) and sn attribute ([MS-ADA3] section 2.275). 

 dn:  
 changetype: modify  
 add: dumpDatabase  
 dumpDatabase: description sn  
 - 

The effects of dumpDatabase are outside the state model. An update of dumpDatabase causes the 
contents of the DC's database to be written to a text file on the DC's disk. All the attributes specified 

in the dumpDatabase value are included in the dump, except that certain security-sensitive attributes 
are omitted from the dump even if requested. The dump can include attributes that were not explicitly 
requested. 

3.1.1.3.3.10 (Updated Section) fixupInheritance 

The fixupInheritance attribute permits administrative tools to request that the DC recompute inherited 
security permissions on objects to ensure that they conform to the security descriptor requirements 

(see section 6.1.3), in case the current state of the permissions on the object is erroneous. This 
operation is not necessary on a correctly functioning DC. The requester mustMUST have the 
"Recalculate-Security-Inheritance" control access right on the nTDSDSA object for the DC. The LDAP 
operation returning success means the system accepts the request to perform security-descriptor 
propagation. 

This operation is triggered by setting the fixupInheritance attribute to "1". 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: fixupInheritance 
 fixupInheritance: 1 
 - 

In Windows Server 2003 and later, setting the fixupInheritance attribute to the special values 
"forceupdate" and "downgrade" has effects outside the state model. 

In Windows Server 2003 and later, the fixupInheritance attribute can trigger security-descriptor 

propagation under an object, specified using an identifier outside the state model, rather than 
throughout the directory. This is performed by setting the fixupInheritance attribute to the string 
"dnt:" followed by an implementation-specific identifier representing the object. Consider the following 
example. 

 dn: 
 changetype: modify 
 add: fixupInheritance 
 fixupInheritance: dnt:54758 
 - 

3.1.1.3.3.11 (Updated Section) invalidateRidPool 

This operation causes the DC to discard its current pool of RIDs, used for allocating security principals 
in the directory. The DC requests a fresh pool of RIDs from the DC that owns the RID Master FSMO, 



 

196 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

per the procedure documented in [MS-DRSR] section 4.1.10.4.3 (PerformExtendedOpRequestMsg, 
ulExtendedOp = EXOP_FSMO_REQ_RID_ALLOC). The LDAP operation returns success when the RID 

pool has been invalidated. Obtaining a fresh pool of RIDs from the DC that owns the RID Master FSMO 
is an asynchronous operation. 

The requester mustMUST have the "Change-RID-Master" control access right on the RID Manager 
object, which is the object referenced by the rIDManagerReference attribute located on the root of the 
domain NC. The requester mustMUST also have read permission on the previously mentioned 
rIDManagerReference attribute. This operation cannot be performed on an RODC; an RODC returns 
the error unwillingToPerform / ERROR_INVALID_PARAMETER. 

In order to perform this operation, the requester provides the domain's SID, in binary format (defined 
in [MS-DTYP] section 2.4.2), as the value of the modify operation. 

The following shows an LDIF sample that performs this operation. LDIF requires that binary values, 
like the domain SID, be base-64 encoded. 

 dn: 
 changetype: modify 
 add: invalidateRidPool 
 invalidateRidPool:: base-64 encoding of the binary-format domain SID 
 - 

3.1.1.3.3.12 (Updated Section) recalcHierarchy 

The requester mustMUST have the "Recalculate-Hierarchy" control access right on the nTDSDSA 
object for the DC. The type of modification can be add or replace, and the values specified in the LDAP 
Modify operation do not matter. The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: recalcHierarchy 
 recalcHierarchy: 1 
 - 

The effects of recalcHierarchy are outside the state model. An update of recalcHierarchy causes the 
hierarchy table used to support the MAPI address book to be recalculated immediately. 

3.1.1.3.3.13 (Updated Section) schemaUpdateNow 

The requester mustMUST have the "Update-Schema-Cache" control access right on the nTDSDSA 

object for the DC or on the root of the schema NC. After the completion of this operation, the 
subschema exposed by the server reflects the current state of the schema as defined by the 
attributeSchema and classSchema objects in the schema NC. 

The type of modification can be add or replace, and the values specified in the LDAP modify operation 
do not matter. The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: schemaUpdateNow 
 schemaUpdateNow: 1 
 - 

The other effects of schemaUpdateNow are outside the state model. An update of schemaUpdateNow 
causes the in-memory cache of the schema to be recalculated from the copy of the schema stored in 
the schema NC. 



 

197 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.3.3.14 (Updated Section) schemaUpgradeInProgress 

This operation causes the fschemaUpgradeInProgress field of LDAPConnection instances in 
dc.LDAPConnections ([MS-DRSR] section 5.116) to be set. schemaUpgradeInProgress causes the DC 

to skip certain constraint validations when adding, updating, or removing directory objects. The 
skipped constraint validations are documented in the applicable constraint sections of this document. 
The requester mustMUST have the "Change-Schema-Master" control access right on the root of the 
schema NC-replica. 

On the Windows Server 2008 and later, when schemaUpgradeInProgress is set to 1 the 
fschemaUpgradeInProgress field is set to trueTRUE on the LDAPConnection instance in 
dc.ldapConnections that corresponds to the LDAP connection on which the schemaUpgradeInProgress 

operation was performed. On these operating systems, when schemaUpgradeInProgress is set to zero 
the fschemaUpgradeInProgress field is set to falseFALSE on the LDAPConnection instance in 
dc.ldapConnections that corresponds to the LDAP connection on which the schemaUpgradeInProgress 
operation was performed. 

On the Windows Server 2003 and Windows Server 2003 R2, when schemaUpgradeInProgress is set to 

1 the fschemaUpgradeInProgress field is set to trueTRUE in every LDAPConnection instance in 

dc.ldapConnections. On these operating systems, when schemaUpgradeInProgress is set to zero the 
fschemaUpgradeInProgess field is set to falseFALSE on every LDAPConnection instance in 
dc.ldapConnections. 

The type of modification can be add or replace. The following shows an LDIF sample that performs this 
operation. 

 dn: 
 changetype: modify 
 add: schemaUpgradeInProgress 
 schemaUpgradeInProgress: 1 
 - 

schemaUpgradeInProgress operation permits modifications to be performed that would otherwise 

violate constraints had schemaUpgradeInProgress not been set. 

3.1.1.3.3.15 (Updated Section) removeLingeringObject 

This operation causes the DC to expunge a lingering object. A DC that was offline for longer than the 

value of the tombstone lifetime can contain objects that have been deleted on other DCs and for which 
tombstones no longer exist. The result is that when that DC is brought back online, any such objects 
can continue to exist in its NC replica even though the objects should have been deleted.were 
improperly retained. Such objects are known as lingering objects. 

Expunge is specified in section 3.1.1.1.6. Lingering object expunge can be performed on an object in a 
read-only NC. For more details on the lingering object expunge process, see 

IDL_DRSReplicaVerifyObjects and IDL_DRSGetObjectExistence in [MS-DRSR] sections 4.1.24 and 
4.1.12. 

The requester mustMUST have the "DS-Replication-Synchronize" control access right on the root of 
the NC replica that contains the lingering object. 

The value specified for this operation contains (1) the DN of the DSA object of a DC holding a writable 
replica of the NC containing the lingering object, and (2) the DN of the lingering object. These are 
encoded in the value string as two DNs separated by a colon: "DSA Object DN:Lingering Object DN". 

Each DN specified is either an [RFC2253]-style DN or one of the alternative DN formats described in 
section 3.1.1.3.1.2.4. If the value is not in the specified format, the server rejects the request with the 
error operationsError / ERROR_DS_OBJ_NOT_FOUND. 



 

198 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The DC performing the modify request first verifies that the lingering object specified in the request 
does not exist on the DC specified in the request. If this verification fails for any reason, the request 

returns the error operationsError / ERROR_DS_GENERIC_ERROR. If the verification succeeds, the DC 
expunges the lingering object specified in the request and then returns success. 

The following shows an LDIF sample that performs this operation. The sample requests that the 
lingering object whose DN is "CN=TestObject, CN=Users, DC=Fabrikam, DC=com" be removed, and 
specifies that the server whose nTDSDSA object is "CN=NTDS Settings,CN=TESTDC-
01,CN=Servers,CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=Fabrikam,DC=com" be 
used to verify the nonexistence of the lingering object. 

 dn: 
 changetype: modify 
 replace: removeLingeringObject 
 removeLingeringObject: CN=NTDS Settings, 
 CN=TESTDC-01,CN=Servers,CN=Default-First-Site-Name, 
 CN=Sites,CN=Configuration,DC=Fabrikam,DC=com:CN=TestObject, 
 CN=Users, DC=Fabrikam, DC=com 
 - 

3.1.1.3.3.16 (Updated Section) doLinkCleanup 

This operation causes the DC to immediately begin performing any delayed link processing necessary 
to satisfy the requirements of delayed link processing, as specified in section 3.1.1.1.16. This 
processing runs automatically as needed to satisfy those requirements; on a correctly functioning DC, 
there is no need to explicitly request such processing. The requester mustMUST have the "Do-
Garbage-Collection" control access right on the nTDSDSA object for the DC. 

The type of modification can be add or replace, and the values specified in the LDAP modify operation 
do not matter. The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: doLinkCleanup 
 doLinkCleanup: 1 
 - 

3.1.1.3.3.17 (Updated Section) doOnlineDefrag 

This operation is triggered by setting the doOnlineDefrag attribute to a non-negative integer. The 
requester mustMUST have the "Do-Garbage-Collection" control access right on the nTDSDSA object 
for the DC. The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 replace: doOnlineDefrag 
 doOnlineDefrag: 60 
 - 

The effects of doOnlineDefrag are outside the state model. An update of doOnlineDefrag causes an 
online defragmentation of the DC's directory database. If the doOnlineDefrag value is positive, it starts 
the defragmentation task, which runs until complete or until the specified number of seconds have 
elapsed. If the doOnlineDefrag value is zero, the defragmentation task is stopped if it is running.  

3.1.1.3.3.18 (Updated Section) replicateSingleObject 



 

199 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

This operation causes the DC to request replication of a single object, specified in the modify request, 
from a source DC to the DC processing the request. The requester mustMUST have the "DS-

Replication-Synchronize" control access right on the root of the NC that contains the object to be 
replicated. 

The type of modification specified in the LDAP modify operation does not matter; however the value 
specified does matter. The value specified for the replicateSingleObject attribute in the modify request 
contains (1) the DN of the DSA object of the source DC, and (2) the DN of the object to be replicated. 
These are encoded in the value string as two DNs separated by a colon: "DSA Object DN:Object To 
Be Replicated DN". Each DN specified is either an [RFC2253]-style DN or one of the alternative DN 
formats described in section 3.1.1.3.1.2.4. If the value is not in the specified format, the server 
rejects the request with the error operationsError / ERROR_DS_OBJ_NOT_FOUND. 

If the DC is an RODC, an additional colon can be added to the end of the value string, followed by the 
literal string "SECRETS_ONLY". The presence of this additional parameter indicates that the RODC 
mustMUST request replication of the object's secret attributes instead of the other attributes. When 
this flag is specified, the "DS-Replication-Synchronize" control access right is not checked. Instead, 
the requester mustMUST possess the "Read-Only-Replication-Secret-Synchronization" control access 

right on the root of the NC containing the object whose secret attributes are to be replicated. 

This operation is a synchronous operation. The LDAP response is returned by the server after the 
replication of the object from the source DC to the DC processing the request has completed. 
However, if the object to be replicated does not exist on the source DC, or if the object to be 
replicated has been deleted on the source DC, or if the object to be replicated does not have a parent 
object on the DC processing the request, an error is returned and the replication is not performed. 

The following shows an LDIF sample that performs the replicateSingleObject operation. This sample 
requests that the object whose DN is "CN=TestObject, CN=Users, DC=Fabrikam, DC=com" be 

replicated from the DC whose nTDSDSA object is "CN=NTDS Settings,CN=TESTDC-
01,CN=Servers,CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=Fabrikam,DC=com". 

 dn: 
 changetype: modify 
 replace: replicateSingleObject 
 replicateSingleObject: CN=NTDS Settings, 
 CN=TESTDC-01,CN=Servers,CN=Default-First-Site-Name, 
 CN=Sites,CN=Configuration,DC=Fabrikam,DC=com:CN=TestObject, 
 CN=Users, DC=Fabrikam, DC=com 
 - 

3.1.1.3.3.19 (Updated Section) updateCachedMemberships 

The type of modification can be add or replace, and the values specified in the LDAP modify operation 
do not matter. The requester mustMUST have the "Refresh-Group-Cache" control access right on the 

nTDSDSA object for the DC. 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: updateCachedMemberships 
 updateCachedMemberships: 1 
 - 

The effects of updateCachedMemberships are outside the state model. An update of 
updateCachedMemberships causes the DC to refresh its cache of universal group memberships from a 
GC server. 



 

200 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.3.3.20 (Updated Section) doGarbageCollectionPhantomsNow 

This operation is triggered by setting the doGarbageCollectionPhantomsNow attribute to "1". The 
requester mustMUST have the "Do-Garbage-Collection" control access right on the nTDSDSA object 

for the DC. 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: doGarbageCollectionPhantomsNow 
 doGarbageCollectionPhantomsNow: 1 
 - 

The effects of doGarbageCollectionPhantomsNow are outside the state model. An update of 

doGarbageCollectionPhantomsNow causes a garbage-collector to run that reclaims storage used to 
implement referential integrity. 

3.1.1.3.3.21 (Updated Section) invalidateGCConnection 

The type of modification to the invalidateGCConnection attribute and the values specified in the LDAP 
Modify operation do not matter. The requester mustMUST be a member of either the 

BUILTIN\Administrators group (section 6.1.1.4.12.2) or the BUILTIN\Server Operators group (section 
6.1.1.4.12.18). 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: invalidateGCConnection 
 invalidateGCConnection: 1 
 - 

The effects of invalidateGCConnection are outside the state model. This operation causes the DC to 
rediscover the GC server that it uses in its implementation of referential integrity (section 3.1.1.1.6). 

3.1.1.3.3.22 (Updated Section) renewServerCertificate 

The persistent state of a DC does not include the certificates that are necessary to authenticate the DC 
when a client makes an LDAPS (LDAP over SSL/TLS) connection. A DC obtains the certificates it needs 
by querying the operating system for them at startup. This operation provides a means for the 

requester to request that the DC repeat the query to the operating system for the certificates—for 
example, if the available certificates have changed since startup. The requester mustMUST have the 
"Reload-SSL-Certificate" control access right on the nTDSDSA object for the DC. 

An LDAP Modify of the renewServerCertificate attribute causes the DC to query the operating system 
for certificates. When the operation returns, the DC has performed the query and the certificates it 

found are available for use in LDAPS connections. 

The type of modification can be add or replace, and the values specified in the LDAP modify operation 

do not matter. 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: renewServerCertificate 
 renewServerCertificate: 1 



 

201 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 - 

3.1.1.3.3.23 (Updated Section) rODCPurgeAccount 

An LDAP Modify of the rODCPurgeAccount attribute causes the RODC to purge cached secret attributes 

of a specified security principal. The requester mustMUST have the "Read-Only-Replication-Secret-
Synchronization" control access right on the root of the default NC. The Modify request mustMUST be 
directed to an RODC that hosts an NC replica that contains the specified RODC object. If the RODC to 
which the operation is directed does not host such an NC, then the error operationsError / 
ERROR_DS_CANT_FIND_EXPECTED_NC is returned. If the operation is sent to a DC that is not an 
RODC, then the error operationsError / ERROR_DS_GENERIC_ERROR is returned. 

The value specified for the rODCPurgeAccount attribute in the LDAP modify request mustMUST be the 
DN of the object whose secret attributes are to be purged. The DN specified is either an [RFC2253]-
style DN or one of the alternative DN formats described in section 3.1.1.3.1.2.4. If the value is not in 
the specified format or the object does not exist, the server rejects the request with the error 
operationsError / ERROR_DS_OBJ_NOT_FOUND. The server returns success upon successfully purging 

the secret attributes of the specified security principal. 

The following shows an LDIF sample that performs this operation. This sample purges the cached 

secret attributes of the user whose DN is "CN=TestUser, CN=Users, DC=Fabrikam, DC=com" from the 
RODC to which this operation is sent. 

 dn: 
 changetype: modify 
 replace: rODCPurgeAccount 
 rODCPurgeAccount: CN=TestUser, CN=Users, DC=Fabrikam, DC=com 
 - 

3.1.1.3.3.24 runSamUpgradeTasks 

An LDAP Modify of the runSamUpgradeTasks attribute causes the default groups and memberships (as 

specified in [MS-SAMR] section 3.1.4.2) to be created in the domain if they are not already created. 
This operation is useful in a domain with different versions of domain controllers where the default 
groups and memberships are not yet created. 

If a partial set of these modifications has already been performed in the domain through this task, the 
Modify operation of this attribute MUST cause the rest of the operations to be performed. If all such 

modifications have already been performed, the Modify operation of this attribute MUST NOT make 
any changes in the domain. 

The requester MUST be a member of the "Domain Admins" group in the domain to perform this 
operation. 

The DC, on receiving this request, MUST verify that the otherWellKnownObjects attribute on the object 
"CN=Server, CN=System, DC=<domain>" on the DC with the PDC role contains "B:32: 

6ACDD74F3F314AE396F62BBE6B2DB961:X", where <domain> is the domain NC DN, and X is the DN 
of the nTDSDSA object of the DC receiving the request. If this condition is not satisfied, the LDAP 

Modify returns operationsError / ERROR_DS_GENERIC_ERROR. 

If these conditions are satisfied, the default groups and memberships (as specified in [MS-SAMR] 
section 3.1.4.2) are created in the domain. 

The type of modification and values specified in the LDAP Modify operation do not matter. The 
following shows an LDIF sample that performs this operation. This sample triggers the default groups 

and memberships created on the target domain. 

 dn: 



 

202 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 changetype: modify 
 add: runSamUpgradeTasks 
 runSamUpgradeTasks: 1 
 - 

3.1.1.3.3.25 (Updated Section) sqmRunOnce 

The type of modification can be add or replace, and the values specified in the LDAP modify operation 
do not matter. The requester mustMUST have the SE_DEBUG_PRIVILEGE. 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: sqmRunOnce 
 sqmRunOnce: 1 
 - 

The effects of sqmRunOnce are outside the state model. An update of sqmRunOnce causes the DC to 
report statistical data on the types and numbers of operations that the DC has performed using an 
implementation-defined reporting mechanism. 

3.1.1.3.3.26 (Updated Section) runProtectAdminGroupsTask 

The type of modification made to the runProtectAdminGroupsTask attribute and the values specified in 
the LDAP Modify operation have no significance. If the DC is the PDC FSMO role owner, an LDAP 
Modify of the runProtectAdminGroupsTask attribute causes the DC to run the AdminSDHolder 
protection operation (section 3.1.1.6.1). Otherwise, the Modify request does not have any effect. The 
requester mustMUST have the "Run-Protect-Admin-Groups-Task" control access right on the domain 

root of the DC. The LDAP server returns success after the AdminSDHolder operation has completed. 

An LDIF sample that performs this operation is shown as follows. 

 dn: 
 changetype: modify 
 add: runProtectAdminGroupsTask 
 runProtectAdminGroupsTask: 1 
 - 

3.1.1.3.3.27 (Updated Section) disableOptionalFeature 

This operation requests that an optional feature (as described in section 3.1.1.9) be disabled for some 
scope. The requester mustMUST have the correct "Manage-Optional-Features" control access on the 
object representing the scope. 

This operation is triggered by setting the disableOptionalFeature attribute to a value that contains the 
DN of the object that represents the scope, followed by the colon (:) character, followed by the GUID 

of the optional feature to be disabled, expressed as a GUIDString. 

If the server does not recognize the GUID as identifying a known feature, the server will return the 
error operationsError / ERROR_INVALID_PARAMETER. 

If the DN represents an existing object but the object does not represent a scope, the server will 
return the error unwillingToPerform / ERROR_DS_NOT_SUPPORTED. If the DN does not represent an 
existing object, the server will return the error operationsError / ERROR_INVALID_PARAMETER. 

If the feature is not marked as being valid for the specified scope, the server will return the error 

unwillingToPerform / ERROR_DS_NOT_SUPPORTED. 



 

203 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

If the specified scope is forest-wide, and this operation is not performed against the DC that holds the 
Domain Naming Master role, the server will return the error unwillingToPerform / 

ERROR_DS_NOT_SUPPORTED. 

If the feature is not marked as being able to be disabled, the server will return the error 

unwillingToPerform / ERROR_DS_NOT_SUPPORTED. 

If the specified optional feature is not already enabled in the specified scope, the server will return the 
error noSuchAttribute / ERROR_DS_CANT_REM_MISSING_ATT_VAL. 

The LDAP server returns success when the specified optional feature has been successfully disabled. 

An LDIF sample that performs this operation is shown as follows. 

 dn: 
 changetype: modify 
 add: disableOptionalFeature 
 disableOptionalFeature: cn=Partitions,cn=Configuration,DC=Contoso,DC=Com:766DDCD8-ACD0-445E-
F3B9-A7F9B6744F2A 

 - 

3.1.1.3.3.28 (Updated Section) enableOptionalFeature 

This operation requests that an optional feature (as described in section 3.1.1.9) be enabled for some 
scope. The requester mustMUST have the "Manage-Optional-Features" control access right on the 
object representing the scope. 

This operation is triggered by setting the enableOptionalFeature attribute to a value that contains the 
DN of the object that represents the scope, followed by the ':' character, followed by the GUID of the 

optional feature to be enabled, expressed as a GUIDString. 

If the server does not recognize the GUID as identifying a known feature, the server will return the 
error operationsError / ERROR_INVALID_PARAMETER. 

If the DN represents an existing object but the object does not represent a scope, the server will 
return the error unwillingToPerform / ERROR_DS_NOT_SUPPORTED. If the DN does not represent an 
existing object, the server will return the error operationsError / ERROR_INVALID_PARAMETER. 

If the feature is not marked as being valid for the specified scope, the server will return the error 

unwillingToPerform / ERROR_DS_NOT_SUPPORTED. 

If the specified scope is forest-wide and this operation is not performed against the DC that holds the 
Domain Naming Master role, the server will return the error unwillingToPerform / 
ERROR_DS_NOT_SUPPORTED. 

If the specified optional feature is already enabled in the specified scope, the server will return the 
error attributeOrValueExists / ERROR_DS_ATT_VAL_ALREADY_EXISTS. 

The LDAP server returns success when the specified optional feature has been successfully enabled. 

An LDIF sample that performs this operation is shown as follows. 

 dn: 
 changetype: modify 
 add: enableOptionalFeature 
 enableOptionalFeature: cn=Partitions,cn=Configuration,DC=Contoso,DC=Com:766DDCD8-ACD0-445E-
F3B9-A7F9B6744F2A 

 - 



 

204 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.3.3.29 (Updated Section) dumpReferences 

This operation is triggered by setting the attribute to the DN of an existing object. The requester 
mustMUST be a member of the BUILTIN\Administrators group (section 6.1.1.4.12.2). 

The following shows an LDIF sample that performs this operation for the object whose DN is 
"CN=TestObject,CN=Users,DC=Fabrikam,DC=com": 

 dn: 
 changetype: modify  
 add: dumpReferences  
 dumpReferences: CN=TestObject,CN=Users,DC=Fabrikam,DC=com  
 - 

The effects of dumpReferences are outside the state model. An update of dumpReferences causes all 

attributes that reference the given DN and all objects containing those attributes to be written to a 
text file on the DC's disk. 

3.1.1.3.3.30 (Updated Section) sidCompatibilityVersion 

The requester mustMUST have the "Allocate-Rids" control access right on the domain root of the DC. 
The requester mustMUST have the SE_DEBUG_PRIVILEGE. The DC mustMUST be the RID Master 

FSMO role owner. If any of these constraints are not met, an error is returned. 

This operation is triggered by setting the attribute to a decimal number that represents the 
sidCompatibilityVersion. The type of the modification can be add or replace. Allowed values are "0" 
and "1". The DC returns an error if the value is not one of the allowed values. This operation updates 
the value of the rIDAvailablePool attribute on the RID Manager object (section 6.1.5.3). 

When the caller sets the SID compatibility version to "0", the updated value for the attribute is 
calculated as follows: 

updatedValue = 0x3FFFFFFF00000000 | (existingValue & 0xFFFFFFFF) 

When the caller sets the SID compatibility version to "1", the updated value for the attribute is 
calculated as follows: 

updatedValue = 0x7FFFFFFF00000000 | (existingValue & 0xFFFFFFFF) 

If updatedValue is less than existingValue, an error is returned. Otherwise, updatedValue replaces 
existingValue. 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify  
 add: sidCompatibilityVersion  
 sidCompatibilityVersion: 1  
 - 

3.1.1.3.3.31 (Updated Section) dumpLinks 

The type of modification made to the dumpLinks attribute and the values specified in the LDAP Modify 

operation have no significance. The requester mustMUST be a member of the BUILTIN\Administrators 
group (section 6.1.1.4.12.2). 

The following shows an LDIF sample that performs this operation. 



 

205 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 dn:  
 changetype: modify  
 add: dumpLinks 
 dumpLinks: 1  
 - 

The effects of dumpLinks are outside the state model. An update of dumpLinks causes the portion of 
the contents of the DC's database relating to link values to be written to a text file on the DC's disk. 

3.1.1.3.3.32 (Updated Section) schemaUpdateIndicesNow 

The requester mustMUST have the "Update-Schema-Cache" control access right on the nTDSDSA 
object for the DC or on the root of the schema NC. This operation is supported only when the 
fDisableAutoIndexingOnSchemaUpdate heuristic (section 6.1.1.2.4.1.2) is "2". If 

fDisableAutoIndexingOnSchemaUpdate is not "2", the operation fails with an error. After the 
completion of this operation, the subschema exposed by the server reflects the current state of the 
schema as defined by the attributeSchema and classSchema objects in the schema NC. 

The type of modification can be add or replace, and the values specified in the LDAP modify operation 
do not matter. The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: schemaUpdateIndicesNow 
 schemaUpdateIndicesNow: 1 
 - 

The other effects of schemaUpdateIndicesNow are outside the state model. An update of 
schemaUpdateIndicesNow causes the DC to verify its data indices. See section 3.1.1.3.4.1.32.1 for a 
note on indices. 

3.1.1.3.3.33 null 

The type of modification made to the null attribute and the values specified in the LDAP Modify 
operation have no significance. Writing to this attribute has no effect. 

3.1.1.3.3.34 (Updated Section) dumpQuota 

The type of modification made to the dumpQuota attribute and the values specified in the LDAP Modify 
operation have no significance. The requester mustMUST be a member of the BUILTIN\Administrators 

group (section 6.1.1.4.12.2). 

The following shows an LDIF sample that performs this operation for the description attribute ([MS-
ADA1] section 2.153) and sn attribute ([MS-ADA3] section 2.275). 

 dn: 
 changetype: modify  
 add: dumpQuota  
 dumpQuota: 1  
 - 

The effects of dumpQuota are outside the state model. An update of dumpQuota causes the portion of 
the contents of the DC's database related to quotas (section 3.1.1.5.2.5) to be written to a text file on 
the DC's disk. The data written is implementation specific. 

3.1.1.3.3.35 (Updated Section) dumpLinksExtended 



 

206 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

This operation is triggered by setting the attribute to a two-digit hexadecimal number followed by the 
colon (':') character. The requester mustMUST be a member of the BUILTIN\Administrators group 

(section 6.1.1.4.12.2). 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify  
 add: dumpLinksExtended 
 dumpLinksExtended: 1  
 - 

The effects of dumpLinksExtended are outside the state model. An update of dumpLinksExtended 
causes the portion of the contents of the DC's database relating to link values to be written to a text 

file on the DC's disk. The hexadecimal number provides implementation-specific modifiers as to what 
data is to be written. The data written is implementation specific. 

3.1.1.3.3.36 (Updated Section) dumpLDAPState 

The type of modification made to the dumpLDAPState attribute and the values specified in the LDAP 
Modify operation have no significance. The requester mustMUST be a member of the 
BUILTIN\Administrators group (section 6.1.1.4.12.2). 

The following shows an LDIF sample that performs this operation for the description attribute ([MS-
ADA1] section 2.153) and sn attribute ([MS-ADA3] section 2.275). 

 dn: 
 changetype: modify  
 add: dumpLDAPState  
 dumpLDAPState: 1  
 - 

The effects of dumpLDAPState are outside the state model. An update of dumpLDAPState causes 

implementation-specific data related to a DC's LDAP client connections to be written to a text file on 
the DC's disk. The data written is implementation specific. 

3.1.1.3.3.37 (Updated Section) msDS-ProcessLinksAbandonOperation 

The value specified for this operation contains the DN of an object. 

The type of modification can be add or replace, and the value specified in the LDAP modify operation is 
the DN of an existing object. The requester mustMUST have the SE_DEBUG_PRIVILEGE. If any of 

these constraints are not met, an error is returned. 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: msDS-ProcessLinksAbandonOperation 
 msDS-ProcessLinksAbandonOperation: cn=User1,DC=Contoso,DC=Com 
 - 

Writing this attribute causes the instance to abandon any pending delayed link processing (section 
3.1.1.1.16) for the specified DN. 

3.1.1.3.3.38 (Updated Section) msDS-ProcessLinksScheduleOperation 



 

207 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The type of modification can be add or replace, and the value specified in the LDAP modify operation is 
the DN of an existing object. The requester mustMUST have the SE_DEBUG_PRIVILEGE. If any of 

these constraints are not met, an error is returned. 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: msDS-ProcessLinksScheduleOperation 
 msDS-ProcessLinksScheduleOperation: cn=User1,DC=Contoso,DC=Com 
 - 

Writing this attribute causes the instance to schedule pending delayed link processing (section 
3.1.1.1.16) for the specified DN. 

3.1.1.3.3.39 stopService 

The type of modification made to the stopService attribute and the values specified in the LDAP modify 
operation have no significance. 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify  
 add: stopService  
 stopService: 1  
 - 

An update of stopService causes the instance to return the error unwillingToPerform. 

3.1.1.3.3.40 (Updated Section) msDS-RunDeletedPhantomsWithLinksTask 

The type of modification made to the msDS-RunDeletedPhantomsWithLinksTask attribute and the 
values specified in the LDAP Modify operation have no significance. The requester mustMUST have the 

"Do-Garbage-Collection" control access right on the nTDSDSA object for the DC. 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify  
 add: msDS-RunDeletedPhantomsWithLinksTask  
 msDS-RunDeletedPhantomsWithLinksTask: 1  
 - 

The effects of msDS-RunDeletedPhantomsWithLinksTask are outside the state model. An update of 

msDS-RunDeletedPhantomsWithLinksTask causes the DC to verify a set of implementation-specific 
data related to link values. 

3.1.1.3.3.41 (Updated Section) dumpDatabaseExtended 

This operation is triggered by setting the attribute to an implementation-defined formatted value. The 
requester mustMUST be a member of the BUILT-IN\Administrators group (section 6.1.1.4.12.2). 

The following shows an LDIF sample that performs this operation for the description attribute ([MS-

ADA1] section 2.153) and sn attribute ([MS-ADA3] section 2.275). 

 dn:  



 

208 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 changetype: modify  
 add: dumpDatabaseEx  
 dumpDatabase: 01:01:*:description sn  
 - 

The effects of dumpDatabaseExtended are outside of the state model. An update of 
dumpDatabaseExtended causes part of the contents of the Active Directory DCs database to be 
written to a text file on the DCs disk. 

3.1.1.3.3.42 (Updated Section) setPriorityBoost 

The type of modification can be add or replace, and the value specified in the LDAP modify operation 

is a string of <namingContext>:<srcDsaObjGUID>:<priorityBoost>, separated by colon. 
srcDsaObjGUID mustMUST be the DSAGUID of an existing replication partner. The namingContext 
MUST be an existing naming context of this partner. The requester mustMUST have the 
RIGHT_DS_REPL_MANAGE_TOPOLOGY. If any of these constraints are not met, an error is returned. 

The following shows an LDIF sample that performs this operation. 

 dn: 
 changetype: modify 
 add: setPriorityBoost 
 setPriorityBoost: DC=Contoso,DC=Com:41b48d52-e079-41ee-9f59-b7009bf99332:5 
 - 

Writing this attribute causes the instance to boost the replication sync priority of the specified naming 
context of the specified DSA partner by priorityBoost times a constant factor. 

3.1.1.3.4 LDAP Extensions 

This section describes the extensions to LDAP that are supported by Active Directory DCs in Windows 
2000 and later (including ADAM). These extensions are: 

▪ LDAP extended controls 

▪ LDAP extended operations 

▪ LDAP capabilities 

▪ Matching rules 

▪ SASL mechanisms 

▪ Policies 

▪ Configurable settings 

▪ IP Deny list 

3.1.1.3.4.1 (Updated Section) LDAP Extended Controls 

LDAP extended controls are an extensibility mechanism in version 3 of LDAP, as discussed in 
[RFC2251] section 4.1.12. The following sections describe the LDAP extended controls implemented 

by DCs in Windows 2000 and later (both AD DS and AD LDS). 

The LDAP extended controls supported by a DC are exposed as OIDs in the supportedControl attribute 
of the rootDSE. Each OID corresponds to a human-readable name, as shown in the following table. 



 

209 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Extended control name OID 

LDAP_PAGED_RESULT_OID_STRING 1.2.840.113556.1.4.319 

LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID 1.2.840.113556.1.4.521 

LDAP_SERVER_DIRSYNC_OID 1.2.840.113556.1.4.841 

LDAP_SERVER_DOMAIN_SCOPE_OID 1.2.840.113556.1.4.1339 

LDAP_SERVER_EXTENDED_DN_OID 1.2.840.113556.1.4.529 

LDAP_SERVER_GET_STATS_OID 1.2.840.113556.1.4.970 

LDAP_SERVER_LAZY_COMMIT_OID 1.2.840.113556.1.4.619 

LDAP_SERVER_PERMISSIVE_MODIFY_OID 1.2.840.113556.1.4.1413 

LDAP_SERVER_NOTIFICATION_OID 1.2.840.113556.1.4.528 

LDAP_SERVER_RESP_SORT_OID 1.2.840.113556.1.4.474 

LDAP_SERVER_SD_FLAGS_OID 1.2.840.113556.1.4.801 

LDAP_SERVER_SEARCH_OPTIONS_OID 1.2.840.113556.1.4.1340 

LDAP_SERVER_SORT_OID 1.2.840.113556.1.4.473 

LDAP_SERVER_SHOW_DELETED_OID 1.2.840.113556.1.4.417 

LDAP_SERVER_TREE_DELETE_OID 1.2.840.113556.1.4.805 

LDAP_SERVER_VERIFY_NAME_OID 1.2.840.113556.1.4.1338 

LDAP_CONTROL_VLVREQUEST 2.16.840.1.113730.3.4.9 

LDAP_CONTROL_VLVRESPONSE 2.16.840.1.113730.3.4.10 

LDAP_SERVER_ASQ_OID 1.2.840.113556.1.4.1504 

LDAP_SERVER_QUOTA_CONTROL_OID 1.2.840.113556.1.4.1852 

LDAP_SERVER_RANGE_OPTION_OID 1.2.840.113556.1.4.802 

LDAP_SERVER_SHUTDOWN_NOTIFY_OID 1.2.840.113556.1.4.1907 

LDAP_SERVER_FORCE_UPDATE_OID  1.2.840.113556.1.4.1974 

LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID 1.2.840.113556.1.4.1948 

LDAP_SERVER_RODC_DCPROMO_OID 1.2.840.113556.1.4.1341 

LDAP_SERVER_DN_INPUT_OID 1.2.840.113556.1.4.2026 

LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID 1.2.840.113556.1.4.2065 

LDAP_SERVER_SHOW_RECYCLED_OID 1.2.840.113556.1.4.2064 

LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID 1.2.840.113556.1.4.2066 

LDAP_SERVER_DIRSYNC_EX_OID 1.2.840.113556.1.4.2090 

LDAP_SERVER_UPDATE_STATS_OID 1.2.840.113556.1.4.2205 

LDAP_SERVER_TREE_DELETE_EX_OID 1.2.840.113556.1.4.2204 



 

210 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Extended control name OID 

LDAP_SERVER_SEARCH_HINTS_OID 1.2.840.113556.1.4.2206 

LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID 1.2.840.113556.1.4.2211 

LDAP_SERVER_POLICY_HINTS_OID 1.2.840.113556.1.4.2239 

LDAP_SERVER_SET_OWNER_OID 1.2.840.113556.1.4.2255 

LDAP_SERVER_BYPASS_QUOTA_OID 1.2.840.113556.1.4.2256 

LDAP_SERVER_LINK_TTL_OID 1.2.840.113556.1.4.2309 

LDAP_SERVER_SET_CORRELATION_ID_OID 1.2.840.113556.1.4.2330 

LDAP_SERVER_THREAD_TRACE_OVERRIDE_OID 1.2.840.113556.1.4.2354 

The following table lists the set of LDAP extended controls supported in applicable Windows Server 

releases or ADAM versions. 

The table contains information for the following products. See section 3 for more information. 

▪ A --> Windows 2000 

▪ D --> Windows Server 2003 

▪ E --> Windows Server 2003 with SP1 

▪ DR2 --> Windows Server 2003 R2 

▪ H --> ADAM RTW 

▪ I --> ADAM SP1 

▪ J --> Windows Server 2008 

▪ M --> Windows Server 2008 R2 

▪ R --> Windows Server 2012 

▪ U --> Windows Server 2012 R2 

▪ X --> Windows Server 2016 

▪ A2 --> Windows Server v1709 

▪ D2 --> Windows Server v1803 

▪ G2 --> Windows Server v1809 

▪ J2 --> Windows Server 2019 

Extended control name A D 
E, 
DR2 H I J M R U 

X, 
A2 

D2, 
G2, 
J2 

LDAP_PAGED_RESULT_OID_
STRING 

X X X X X X X X X X X 

LDAP_SERVER_CROSSDOM_
MOVE_TARGET_OID 

X X X X X X X X X X X 



 

211 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Extended control name A D 
E, 
DR2 H I J M R U 

X, 
A2 

D2, 
G2, 
J2 

LDAP_SERVER_DIRSYNC_OI
D*** 

X X X X X X X X X X X 

LDAP_SERVER_DOMAIN_SC
OPE_OID 

X X X X X X X X X X X 

LDAP_SERVER_EXTENDED_D
N_OID 

X X X X X X X X X X X 

LDAP_SERVER_GET_STATS_
OID 

X X X X X X X X X X X 

LDAP_SERVER_LAZY_COMMI
T_OID 

X X X X X X X X X X X 

LDAP_SERVER_PERMISSIVE_
MODIFY_OID 

X X X X X X X X X X X 

LDAP_SERVER_NOTIFICATIO
N_OID 

X X X X X X X X X X X 

LDAP_SERVER_RANGE_OPTI
ON_OID* 

X X X X X X X X X X X 

LDAP_SERVER_RESP_SORT_
OID 

X X X X X X X X X X X 

LDAP_SERVER_SD_FLAGS_O
ID 

X X X X X X X X X X X 

LDAP_SERVER_SEARCH_OPT
IONS_OID 

X X X X X X X X X X X 

LDAP_SERVER_SORT_OID X X X X X X X X X X X 

LDAP_SERVER_SHOW_DELE
TED_OID 

X X X X X X X X X X X 

LDAP_SERVER_TREE_DELET
E_OID 

X X X X X X X X X X X 

LDAP_SERVER_VERIFY_NAM
E_OID 

X X X X X X X X X X X 

LDAP_CONTROL_VLVREQUES
T 

 X X X X X X X X X X 

LDAP_CONTROL_VLVRESPON
SE 

 X X X X X X X X X X 

LDAP_SERVER_ASQ_OID  X X X X X X X X X X 

LDAP_SERVER_QUOTA_CON
TROL_OID 

 X X X X X X X X X X 

LDAP_SERVER_SHUTDOWN_
NOTIFY_OID** 

  X  X X X X X X X 

LDAP_SERVER_FORCE_UPDA
TE_OID 

     X X X X X X 



 

212 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Extended control name A D 
E, 
DR2 H I J M R U 

X, 
A2 

D2, 
G2, 
J2 

LDAP_SERVER_RANGE_RETR
IEVAL_NOERR_OID 

    X X X X X X X 

LDAP_SERVER_RODC_DCPR
OMO_OID 

     X X X X X X 

LDAP_SERVER_DN_INPUT_O
ID 

     X X X X X X 

LDAP_SERVER_SHOW_DEAC
TIVATED_LINK_OID 

      X X X X X 

LDAP_SERVER_SHOW_RECY
CLED_OID 

      X X X X X 

LDAP_SERVER_POLICY_HINT
S_DEPRECATED_OID 

      X X X X X 

LDAP_SERVER_DIRSYNC_EX
_OID*** 

       X X X X 

LDAP_SERVER_UPDATE_STA
TS_OID 

       X X X X 

LDAP_SERVER_TREE_DELET
E_EX_OID 

       X X X X 

LDAP_SERVER_SEARCH_HIN
TS_OID 

       X X X X 

LDAP_SERVER_EXPECTED_E
NTRY_COUNT_OID 

       X X X X 

LDAP_SERVER_POLICY_HINT
S_OID 

       X X X X 

LDAP_SERVER_SET_OWNER
_OID 

        X X X 

LDAP_SERVER_BYPASS_QUO
TA_OID 

        X X X 

LDAP_SERVER_LINK_TTL_OI
D 

         X X 

LDAP_SERVER_SET_CORREL
ATION_ID_OID 

          X 

LDAP_SERVER_THREAD_TRA
CE_OVERRIDE_OID 

          X 

* This OID does not identify an LDAP extended control. Its presence in the supportedControl attribute 
indicates that the DC is capable of range retrieval (see section 3.1.1.3.1.3.3) of LDAP multivalued 
attributes. However, its absence does not indicate lack of support for range retrieval. This OID is not 
present in the supportedControl attribute of Windows 2000 DCs, but those DCs do support range 

retrieval. 

** Although exposed on the supportedControl attribute of Windows Server 2003 with SP1 and 
Windows Server 2003 R2 and later DCs, this control is only functional on DCs running the Small 
Business Server version of that operating system. 



 

213 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

*** These two OID values are mutually exclusive. If used together in a request, a protocolError / 
<unrestricted> is returned. 

A client sends a control to the DC by attaching a Control structure (defined in [RFC2251] section 
4.1.12) to an LDAP operation. The client sets the controlType field to the control's OID and the 

controlValue field as specified in the discussion for the control that follows. If the controlValue field 
contains data that is not in conformance with the specification of the control, including the case where 
the controlValue field contains data and the specification of the control states that the controlValue 
field is omitted, then if the control is marked critical the server returns the error 
unavailableCriticalExtension / ERROR_INVALID_PARAMETER. If the controlValue field is incorrect but 
the control is not marked critical, the server ignores the control. 

A control sent by the client to a DC is known as a request control. In some cases, the server includes 

a corresponding Control structure attached to the response for the LDAP operation. These controls, 
known as response controls, are discussed below in conjunction with the request control that causes 
that response control to be returned. 

A brief description of each LDAP control is given in the following table. Additionally, each control is 

discussed in more detail in the sections that follow. References to ASN.1 and BER encoding in the 
following section are references to [ITUX680] and [ITUX690], respectively. 

Extended control name Description 

LDAP_PAGED_RESULT_OID_STRING Splits the results of an LDAP search across multiple result 
sets. 

LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID Used with an LDAP Modify DN operation to move an object 
from one domain to another domain. 

LDAP_SERVER_DIRSYNC_OID Used with an LDAP search operation to retrieve the changes 
made to objects since a previous 
LDAP_SERVER_DIRSYNC_OID search was performed. 

LDAP_SERVER_DOMAIN_SCOPE_OID Instructs the DC not to generate LDAP continuation 
references in response to a search operation. 

LDAP_SERVER_EXTENDED_DN_OID Used to request than an LDAP search operation return DNs 
in an extended format containing the values of the 
objectGUID and objectSid attributes. 

LDAP_SERVER_GET_STATS_OID Used with an LDAP search request to instruct the DC to 
return statistical data related to how the search was 
performed. 

LDAP_SERVER_LAZY_COMMIT_OID Instructs the DC that it MAY sacrifice durability guarantees 

on updates to improve performance. 

LDAP_SERVER_PERMISSIVE_MODIFY_OID Instructs the DC that an LDAP modify mustMUST succeed 
even if it attempts to add a value already present on the 
attribute or remove a value not present on the attribute. 

LDAP_SERVER_NOTIFICATION_OID Used with an LDAP search operation to register the client to 
be notified when changes are made to an object in the 
directory. 

LDAP_SERVER_SD_FLAGS_OID Instructs the DC which portions of a Windows security 
descriptor to either retrieve during an LDAP search 
operation or to set during an LDAP modify operation. 

LDAP_SERVER_SEARCH_OPTIONS_OID Used to pass flags to the DC to control search behaviors; 
specifically, to prevent LDAP continuation references from 
being generated and to search all NC replicas that are 
subordinate to the search base, even if the search base is 



 

214 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Extended control name Description 

not instantiated on the DC. 

LDAP_SERVER_SORT_OID and 
LDAP_SERVER_RESP_SORT_OID 

Request and response controls, respectively, for instructing 
the DC to sort the search results. 

LDAP_SERVER_SHOW_DELETED_OID Used with an LDAP operation to specify that tombstones and 
deleted-objects are visible to the operation. 

LDAP_SERVER_TREE_DELETE_OID Used with an LDAP delete operation to cause the server to 
recursively delete the entire subtree of objects located 
under the object specified in the search request (including 
the specified object). 

LDAP_SERVER_VERIFY_NAME_OID Permits the client to specify which GC the DC is to use when 
processing an add or modify request to verify the existence 
of any objects pointed to by DN attribute values. 

LDAP_CONTROL_VLVREQUEST and 
LDAP_CONTROL_VLVRESPONSE 

Request and response control, respectively, used with an 
LDAP search operation to retrieve a "sliding window" subset 
of the objects that satisfy the search request. 

LDAP_SERVER_ASQ_OID Used to specify that an LDAP search operation mustMUST 
not be performed against the object specified as the base in 
the search, but rather against the set of objects named by a 
specified attribute of Object(DS-DN) syntax on the base 
object. 

LDAP_SERVER_QUOTA_CONTROL_OID Used with an LDAP search operation to retrieve the quota of 
a user. 

LDAP_SERVER_RANGE_OPTION_OID Indicates that the server is capable of range retrieval (see 
section 3.1.1.3.1.3.3). 

LDAP_SERVER_SHUTDOWN_NOTIFY_OID Used with an LDAP search operation to cause the client to 
be notified when the DC is shutting down. 

LDAP_SERVER_FORCE_UPDATE_OID When attached to an LDAP update operation, causes the DC 
to perform the update even if that update would not affect 
the state of the DC. 

LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID Instructs the DC that, when performing a search using 
range retrieval (see section 3.1.1.3.1.3.3) on an attribute 
whose values are forward link values or back link values and 
the value of low is greater than or equal to the number of 
values in the attribute, no error is to be returned. 

LDAP_SERVER_RODC_DCPROMO_OID This control is used as part of the process of promoting a 
computer to be an RODC. 

LDAP_SERVER_DN_INPUT_OID This control is used to specify the DN of an object during an 
LDAP operation. Currently this control is used only while 
retrieving the constructed attribute msDS-
IsUserCachableAtRodc (see section 3.1.1.3.4.1.24). 

LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID Used with an LDAP search operation to specify that link 
attributes that refer to deleted-objects are visible to the 
search operation. If used in conjunction with 
LDAP_SERVER_SHOW_DELETED_OID or 
LDAP_SERVER_SHOW_RECYCLED_OID, link attributes that 
are stored on deleted-objects are also visible to the search 
operation. This applies both to the search filter and the set 
of attributes returned by the search operation. 



 

215 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Extended control name Description 

LDAP_SERVER_SHOW_RECYCLED_OID Used with an LDAP operation to specify that tombstones, 
deleted-objects, and recycled-objects are visible to the 
operation. 

LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID The LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID 
control has the exact semantics and behaviors as 
LDAP_SERVER_POLICY_HINTS_OID (section 
3.1.1.3.4.1.27); this control MAY be used by clients when 
the server does not support 
LDAP_SERVER_POLICY_HINTS_OID. Clients SHOULD use 
LDAP_SERVER_POLICY_HINTS_OID when it is supported by 
the server. 

LDAP_SERVER_DIRSYNC_EX_OID Used with an LDAP search operation to retrieve the changes 
made to objects since a previous 
LDAP_SERVER_DIRSYNC_EX_OID search was performed. 

LDAP_SERVER_UPDATE_STATS_OID The LDAP_SERVER_UPDATE_STATS_OID control indicates 
that the requester requires statistics from the DC. 

LDAP_SERVER_TREE_DELETE_EX_OID Used with an LDAP delete operation to cause the server to 
recursively delete the entire subtree of objects, up to a 
specified number of objects, located under the object 
specified in the search request (including the specified 
object). 

LDAP_SERVER_SEARCH_HINTS_OID Provides hints to the DC during LDAP search operations. 

LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID Monitors the result of an LDAP search operation and 
potentially modifies the return code. 

LDAP_SERVER_POLICY_HINTS_OID Used with an LDAP operation to enforce password history 
policies during password set. 

LDAP_SERVER_SET_OWNER_OID Used with an LDAP add operation to set the owner of the 
object to a SID other than that of the requester. 

LDAP_SERVER_BYPASS_QUOTA_OID Used with an LDAP add operation to specify that quota limits 
do not apply for the add operation. 

LDAP_SERVER_LINK_TTL_OID Used to request that an LDAP search operation return link 
values in the TTL-DN form. 

LDAP_SERVER_SET_CORRELATION_ID_OID Allows the caller to provide an identifier that a DC can use 
for implementation-defined troubleshooting. 

LDAP_SERVER_THREAD_TRACE_OVERRIDE_OID Allows the caller to provide a request to the DC to perform 
additional implementation-defined troubleshooting. 

Note: The Extended Control Name LDAP_SERVER_SD_FLAGS_OID impacts the portions of the 
Windows security descriptor to retrieve during an LDAP search or to set during an LDAP modify 

operation, as supported on the operating systems specified in [MSFT-CVE-2021-42291]; each with its 
related MSKB article download installed. This feature is also supported in Windows 11, version 22H2 
operating system and later. 

3.1.1.3.4.1.1 LDAP_PAGED_RESULT_OID_STRING 

This control, which is used as both a request control and a response control, is documented in 
[RFC2696]. 



 

216 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

DCs limit the number of objects that can be returned in a single search operation to the value 
specified by the MaxPageSize policy defined in section 3.1.1.3.4.6. The use of the 

LDAP_PAGED_RESULT_OID_STRING control permits clients to perform searches that return more 
objects than this limit by splitting the search into multiple searches, each of which returns no more 

objects than this limit. 

3.1.1.3.4.1.2 LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID 

The LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID control is used with an LDAP Modify DN 
operation to instruct the DC to move an object from one domain to another (see the Modify DN 
operation in section 3.1.1.5). This control is used by the client when moving an object from one 
domain to another. The client sends the LDAP Modify DN operation to which this control is attached to 

a DC in the domain containing the object to be moved. If the client does not specify the 
LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID control in the LDAP Modify DN request, then the 
server interprets the update as an intradomain Modify DN operation. 

When operating as AD LDS, a DC rejects this control with the error operationsError / <unrestricted>. 

When sending this control to the DC, the controlValue field is set to a UTF-8 string containing the 
fully qualified domain name (1) of a DC in the domain to which the object is to be moved. The string is 

not BER-encoded. Sending this control to the DC does not cause the server to include any controls in 
its response. 

3.1.1.3.4.1.3 LDAP_SERVER_DIRSYNC_OID 

The LDAP_SERVER_DIRSYNC_OID control is used with an LDAP search operation to retrieve the 
changes made to objects since a previous search with an LDAP_SERVER_DIRSYNC_OID control was 
performed. The LDAP_SERVER_DIRSYNC_OID control can only be used to monitor for changes across 

an entire NC replica, not a subtree within an NC replica. 

When sending this control to the DC, the controlValue field is set to the BER encoding of the following 
ASN.1 structure. 

 DirSyncRequestValue ::= SEQUENCE { 
     Flags       INTEGER 
     MaxBytes    INTEGER 
     Cookie      OCTET STRING 
 } 

The Flags value has the following format presented in big-endian byte order. X denotes unused bits 
set to 0 by the client and ignored by the server. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

I 
V 

X X X X X X X X X X X X X X X X X P 
D 
O 

X A 
F 
O 

X X X X X X X X X X O 
S 

The Flags value is a combination of zero or more bit flags from the following table, and is used to 
specify additional behaviors for the LDAP_SERVER_DIRSYNC_OID control. 

Bit flag name and value  Description 

LDAP_DIRSYNC_OBJECT_SECURITY (OS) 

0x00000001 

Windows Server 2003 and later: If this flag is present, 
the client can only view objects and attributes that are 
otherwise accessible to the client. If this flag is not 
present, the server checks if the client has access rights 



 

217 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Bit flag name and value  Description 

to read the changes in the NC. 

Windows 2000: Not supported. 

LDAP_DIRSYNC_ANCESTORS_FIRST_ORDER (AFO) 

0x00000800 

The server returns parent objects before child objects. 

LDAP_DIRSYNC_PUBLIC_DATA_ONLY (PDO) 

0x00002000 

Windows Server 2003 and later: This flag can optionally 
be passed to the DC, but it has no effect. 

Windows 2000: Not supported. 

LDAP_DIRSYNC_INCREMENTAL_VALUES (IV) 

0x80000000 

Windows Server 2003 and later: If this flag is not 
present, all of the values, up to a server-specified limit, 
in a multivalued attribute are returned when any value 
changes. If this flag is present, only the changed values 
are returned, provided the attribute is a forward link 
value. 

Windows 2000: Not supported. 

MaxBytes specifies the maximum number of bytes to return in the reply message. 

The minimum value for MaxBytes is 0x100000. When a lower value is specified, the value is ignored 
and the maximum number of bytes in the reply message is 0x100000. 

The maximum value for MaxBytes is determined by the size, in bytes, of a response with the 
maximum number of objects that can be returned in a single search as specified by the MaxPageSize 
policy, section 3.1.1.3.4.6. When a higher value is specified, the value is ignored and the maximum 
number of bytes in the reply message is the size, in bytes, of a response with the MaxPageSize 
number of objects. 

Cookie is an opaque value that was returned by the DC on a previous search request that included 

the LDAP_SERVER_DIRSYNC_OID control. The contents of Cookie are defined by the server and 
cannot be interpreted by the client. A search request with the LDAP_SERVER_DIRSYNC_OID control 

attached will return the changes made to objects since the point in time when the previous search 
request, which returned the value of Cookie that is being used in the current search request, took 
place. If there was no previous LDAP_SERVER_DIRSYNC_OID search request, Cookie is NULL, in 
which case the search will return all objects that satisfy the search request, along with a value of 
Cookie to use for the next LDAP_SERVER_DIRSYNC_OID search request. 

If the base of the search is not the root of an NC, and the LDAP_DIRSYNC_OBJECT_SECURITY bit in 
the Flags field is not set, the server will return the error insufficientAccessRights / 
ERROR_DS_DRA_ACCESS_DENIED. If the LDAP_DIRSYNC_OBJECT_SECURITY bit in the Flags field is 
set, the server will return the error unwillingToPerform / <unrestricted>. If the search scope is not 
subtree scope, the server will treat the search as if subtree scope was specified. 

Any valid LDAP search filter can be specified. 

Any attributes can be requested in the search. Only those objects for which these attributes have been 

created or modified since the time represented by Cookie will be considered for inclusion in the 

search. 

If the list of requested attributes contains an asterisk (*) plus some attribute, then the asterisk is 
ignored. That is, the list is effectively equal to the list with only the attributes explicitly requested. 

The search results MUST always contain the objectGUID and instanceType attributes of each object, 
even if those attributes were not specified in the search request. 

When the server receives a search request with the LDAP_SERVER_DIRSYNC_OID control attached to 
it, it includes a response control in the search response. The controlType field of the returned Control 



 

218 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

structure is set to the OID of the LDAP_SERVER_DIRSYNC_OID control, and the controlValue is the 
BER encoding of the following ASN.1 structure. 

 DirSyncResponseValue ::= SEQUENCE { 
     MoreResults     INTEGER 
     unused          INTEGER 
     CookieServer    OCTET STRING 
 } 

The structure of the controlValue in the response control is the same as the structure of the 
controlValue in the request control, but the fields are interpreted differently. MoreResults is nonzero 
if there are more changes to retrieve, unused is not used, and CookieServer is the value to be used 
for Cookie in the next LDAP_SERVER_DIRSYNC_OID control sent in a search request to the server to 

retrieve more changes. 

Further details about how this control is processed are described in the pseudocode for the 
ProcessDirSyncSearchRequest procedure in [MS-DRSR] section 5.115.3. 

3.1.1.3.4.1.4 LDAP_SERVER_DOMAIN_SCOPE_OID 

The LDAP_SERVER_DOMAIN_SCOPE_OID control is used to instruct the DC not to generate any LDAP 
continuation references when performing an LDAP operation. The effect of this is to limit any search 

using it to the single NC replica in which the object that serves as the root of the search is located. 

When sending this control to the DC, the controlValue field of the Control structure is set to an 
OctetString of length zero as described in section 2.1. The server MUST ignore any controlValue 
provided in the request. Sending this control to the DC does not cause the server to include any 
controls in its response. 

3.1.1.3.4.1.5 LDAP_SERVER_EXTENDED_DN_OID 

The LDAP_SERVER_EXTENDED_DN_OID control is used with an LDAP search request to cause the DC 

to return extended DNs. The extended form of an object's DN includes a string representation of the 
object's objectGUID attribute; for objects that have an objectSid attribute, the extended form also 
includes a string representation of that attribute. The DC uses this extended DN for all DNs in the 
LDAP search response. Attributes with Object(OR-Name) syntax are not affected by this control, 
because in those cases, the DC always uses the DN form as specified in [RFC2253]. 

The extended DN format is as follows: 

<GUID=guid_value>;<SID=sid_value>;dn 

where guid_value is the value of the object's objectGUID attribute, sid_value is the value of the 
object's objectSid attribute, and dn is the object's [RFC2253] DN. For objects that do not have an 
objectSid attribute, the format is instead as follows: 

<GUID=guid_value>;dn 

When sending this control to a Windows 2000 DC, the controlValue field is omitted. When sending this 

control to a Windows Server 2003 and later DC, the controlValue field is either omitted or is set to the 
BER encoding of the following ASN.1 structure: 

 ExtendedDNRequestValue ::= SEQUENCE { 
     Flag    INTEGER 
 } 

If the controlValue field is omitted, the value of Flag is treated as 0. 



 

219 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

If the value of Flag is 0, the DC returns the values of the objectGUID and objectSid attributes as a 
hexadecimal representation of their binary format. 

If the value of Flag is 1, the DC returns the GUID in dashed-string format ([RFC4122] section 3) and 
the SID in SDDL SID string format ([MS-DTYP] section 2.4.2.1). The returned SDDL SID string begins 

with "S-". 

If the value of Flag is neither 0 nor 1, then it does not conform with the specification of this control 
and the server behaves as described in section 3.1.1.3.4.1.  

For example, setting Flag to 0 (or omitting the controlValue field) might return the following extended 
DN: 

<GUID=b3d4bfbd3c45ee4298e27b4a698a61b8>;<SID=01050000000000051500000061eb5b8c50ef7
05befda808bf4010000>;CN=Administrator, CN=Users,DC=Fabrikam,DC=com 

While setting Flag to 1 would return the same object's extended DN in the following form: 

<GUID=bdbfd4b3-453c-42ee-98e2-7b4a698a61b8>;<SID=S-1-5-21-2354834273-1534127952-
2340477679-500>;CN=Administrator, CN=Users,DC=Fabrikam,DC=com 

Sending this control to the DC does not cause the server to include any controls in its response. 

3.1.1.3.4.1.6 LDAP_SERVER_GET_STATS_OID 

The LDAP_SERVER_GET_STATS_OID control is used with an LDAP search operation.  

When sending this control to a DC running Windows 2000, the client omits the controlValue field. 
When sending this control to a DC running Windows Server 2003 and later, the client either omits the 
controlValue field or sets the controlValue field to one of the 32-bit unsigned integer values in the 
following table. The values are not BER-encoded. 

Value name Value Description 

SO_NORMAL 0 Perform the search as if no LDAP_SERVER_GET_STATS_OID control was 
included in the search request. 

SO_STATS 1 Perform the search and return data related to the resources consumed 
performing the search, as well as the actual search results. 

SO_ONLY_OPTIMIZE 2 Return data related to how the search would be performed, but do not 
actually return the search results. 

SO_EXTENDED_FMT 4 Windows Server 2008 and later: Returns the data in an alternative format 
documented later in this section. 

Windows 2000, Windows Server 2003, Windows Server 2003 R2, and 
ADAM: Not supported. 

Omitting the controlValue field is equivalent to specifying the SO_STATS value. 

When the server receives a search request with the LDAP_SERVER_GET_STATS_OID control attached 

to it, it includes a response control in the search response. The controlType field of the returned 
Control structure is set to the OID of the LDAP_SERVER_GET_STATS_OID control. The controlValue 
field is included in the returned Control structure. 

The response to this control contains information outside the state model. This control instructs the 
server to return internal data related to how the LDAP search was performed.  

For Windows 2000 DCs, the returned controlValue is the BER encoding of the following ASN.1 

structure 



 

220 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 StatsResponseValueV1 ::= SEQUENCE { 
     threadCountTag            INTEGER 
     threadCount               INTEGER 
     coreTimeTag               INTEGER 
     coreTime                  INTEGER 
     callTimeTag               INTEGER 
     callTime                  INTEGER 
     searchSubOperationsTag    INTEGER 
     searchSubOperations       INTEGER 
 } 

where threadCountTag, coreTimeTag, callTimeTag, and searchSubOperationsTag are equal to 
1, 2, 3, and 4, respectively. threadCount is the number of threads that were processing LDAP 

requests on the DC at the time the search operation was performed, coreTime is the time, in 
milliseconds, that the core logic in the DC spent processing the request, callTime is the overall time, 
in milliseconds, that the DC spent processing the request, and searchSubOperations is the number 
of individual operations that the DC performed in processing the request. 

If the client does not have the SE_DEBUG_PRIVILEGE, a Windows 2000 DC MUST return the value 0 
for the searchSubOperations field of this structure. 

For Windows Server 2003, Windows Server 2003 R2, and ADAM DCs, the controlValue of the response 

control is the BER encoding of the following ASN.1 structure. 

 StatsResponseValueV2 ::= SEQUENCE { 
     threadCountTag        INTEGER 
     threadCount           INTEGER 
     callTimeTag           INTEGER 
     callTime              INTEGER 
     entriesReturnedTag    INTEGER 
     entriesReturned       INTEGER 
     entriesVisitedTag     INTEGER 
     entriesVisited        INTEGER 
     filterTag             INTEGER 
     filter                OCTET STRING 
     indexTag              INTEGER 
     index                 OCTET STRING 
 } 

In this structure, threadCountTag, threadCount, callTimeTag, and callTime are defined as in the 
Windows 2000 structure. entriesReturnedTag, entriesVisitedTag, filterTag, and indexTag are 5, 
6, 7, and 8, respectively. entriesReturned is the number of objects returned in the search result. 
entriesVisited is the number of objects that the DC considered for inclusion in the search result. 

filter is a UTF-8 string that represents the optimized form of the search filter that is used by the DC to 
perform a search. index is a string, defined by the system default code page, that indicates which 
database indexes were used by the DC to perform the search. 

If the client does not have the SE_DEBUG_PRIVILEGE, a Windows Server 2003, Windows Server 2003 
R2, or ADAM DC MUST return the value 0 for the entriesReturned and entriesVisited fields of this 
structure. The server MUST return NULL for the filter and index fields of this structure. 

For Windows Server 2008 and later DCs, the controlValue of the response control is the BER encoding 

of the following ASN.1 structure if the SO_EXTENDED_FMT flag is not specified. 

 StatsResponseValueV3 ::= SEQUENCE { 
     threadCountTag        INTEGER 
     threadCount           INTEGER 
     callTimeTag           INTEGER 
     callTime              INTEGER 
     entriesReturnedTag    INTEGER 
     entriesReturned       INTEGER 



 

221 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     entriesVisitedTag     INTEGER 
     entriesVisited        INTEGER 
     filterTag             INTEGER 
     filter                OCTET STRING 
     indexTag              INTEGER 
     index                 OCTET STRING 
     pagesReferencedTag    INTEGER 
     pagesReferenced       INTEGER 
     pagesReadTag          INTEGER 
     pagesRead             INTEGER 
     pagesPrereadTag       INTEGER 
     pagesPreread          INTEGER 
     pagesDirtiedTag       INTEGER 
     pagesDirtied          INTEGER 
     pagesRedirtiedTag     INTEGER 
     pagesRedirtied        INTEGER 
     logRecordCountTag     INTEGER 
     logRecordCount        INTEGER 
     logRecordBytesTag     INTEGER 
     logRecordBytes        INTEGER 
 } 

In this structure, fields with the same name as fields in the Windows Server 2003 structure are 
defined as in the Windows Server 2003 structure. pagesReferencedTag, pagesReadTag, 
pagesPrereadTag, pagesDirtiedTag, pagesRedirtiedTag, logRecordCountTag, and 
logRecordCountBytesTag are 9, 10, 11, 12, 13, 14, and 15, respectively. pagesReferenced is the 
number of database pages referenced by the DC in processing the search. pagesRead is the number 
of database pages read from disk, and pagesPreread is the number of database pages preread from 

disk by the DC in processing the search. pagesDirtied is the number of clean database pages 
modified by the DC in processing the search, while pagesRedirtied is the number of previously 
modified database pages that were modified by the DC in processing the search. logRecordCount 
and logRecordBytes are the number and size in bytes, respectively, of database log records 
generated by the DC in processing the search. 

For Windows Server 2008 and later DCs, if the SO_EXTENDED_FMT flag is specified, an alternative 

format is used for the controlValue of the response control instead of the format shown previously. 

Unlike the previous formats in which each statistic is assigned a fixed position within the structure, in 
the alternative format the ordering of the statistics can change. Rather than relying on position, each 
statistic has an associated human-readable string that specifies what that statistic is. Additionally, the 
use of these associated strings alleviates the need to hard-code the positional information into the 
client-side parser of the response control, permitting the DC to be updated to return addition statistics 
without necessitating a corresponding client-side change. 

When using the alternative format, the controlValue of the response control is the BER encoding of the 

following ASN.1 structure. 

 StatsResponseValueV4 ::= SEQUENCE OF SEQUENCE { 
     statisticName         OCTET STRING 
     CHOICE { 
         intStatistic [0]       INTEGER 
         stringStatistic [1]    OCTET STRING 
     } 
 } 

If the human-readable string in an element of the StatsResponseValueV4 structure is the empty 

string, then the element contains an undefined value of no significance. 

Effectively, this is an array of statistics, in which each statistic has a human-readable name (the 
statisticName field) and a value. If it is an integer-valued statistic, the value is stored in the 
intStatistic field. If it is a string-valued statistic, the value is stored in the stringStatistic field. 



 

222 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

When the SO_EXTENDED_FMT flag is specified, Windows Server 2008 and later DCs return the same 
statistics as if the flag was not specified. The only difference is the format used to return the statistics. 

The wording of the statisticName field is implementation-defined. Currently, the wording as it maps 
to each statistic as specified in the non-SO_EXTENDED_FMT version of the structure is as follows. 

 threadCount           "Thread count" 
 callTime              "Call time (in ms)" 
 entriesReturned       "Entries Returned" 
 entriesVisited        "Entries Visited" 
 filter                "Used Filter" 
 index                 "Used Indexes" 
 pagesReferenced       "Pages Referenced" 
 pagesRead             "Pages Read From Disk" 
 pagesPreread          "Pages Pre-read From Disk" 
 pagesDirtied          "Clean Pages Modified" 
 pagesRedirtied        "Dirty Pages Modified" 
 logRecordCount        "Log Records Generated" 
 logRecordBytes        "Log Record Bytes Generated" 

For Windows Server 2008 through Windows Server 2012 R2 DCs, a requestor is said to have debug 

search stats permitted when it holds the SE_DEBUG_PRIVILEGE. For Windows Server 2016 and later 
DCs, a requestor is said to have debug search stats permitted if it holds the SE_DEBUG_PRIVILEGE or 
if it has the control access right identified by the GUID {b3ab0434-7863-4891-bdbd-9ca79f1c099b} 
on the queryPolicy object for the DC (section 3.1.1.3.4.6). 

If the client does not have debug search stats permitted, Windows Server 2008 and later DCs MUST 
return the value 0 for the entriesReturned, entriesVisited, pagesReferenced, pagesRead, 
pagesPreread, pagesDirtied, pagesRedirtied, logRecordCount, and logRecordBytes fields, 

regardless of the format in which the data is returned. The server MUST return NULL for the filter and 
index fields, regardless of the format in which the data is returned. 

When the SO_EXTENDED_FMT flag is specified and the client has debug search stats permitted, 
Windows Server 2016 and later DCs additionally return the following statistics: 
indicesRequiredToOptimize, queryOptimizerState, atqDelay, cpuTime, and searchSignature. 

indicesRequiredToOptimize is a space-separated list of attributes for which no indices exist and for 
which the implementation could have performed a more optimized search if such indices existed. 

queryOptimizerState is a description of the final processing state of the implementation's query pre-
processing. This statistic is only returned when the SO_STATS or SO_ONLY_OPTIMIZE flags are 
specified in addition to the SO_EXTENDED_FMT flag. atqDelay is an approximation of the amount of 
time (in milliseconds) that the request spent on a queue on the DC before the DC began to actively 
process the request. cpuTime is an approximation of the amount of time (in milliseconds) that the DC 
spent to actively process the request. There is no protocol requirement regarding the accuracy of 

these approximations. searchSignature is an implementation-defined value that encapsulates some 
of the search parameters. The choice of which parameters to encapsulate and how to encapsulate 
them is an implementation detail and not normatively defined by the protocol. Informally, the intent of 
this statistic is to assign the same signature to "similar" searches. The wording of the statisticName 
field as it maps to these additional statistics is as follows. 

 indicesRequiredToOptimize "Indices required to optimize" 
 queryOptimizerState       "Query optimizer state" 
 atqDelay                  "Atq Delay" 
 cpuTime                   "CPU Time" 
 searchSignature           "Search Signature" 

When the SO_EXTENDED_FMT flag is specified, Windows Server v1803 and later DCs additionally 
return the following statistics: callTimeTotal, cpuTimeTotal, retryCount, and correlationId. 



 

223 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

If the client does not have debug search stats permitted, a Windows Server v1803 and later DC MUST 
return the value 0 for the callTimeTotal, cpuTimeTotal, and retryCount fields, regardless of the 

format in which the data is returned. 

The retryCount field is an integer containing the number of times the LDAP request was internally re-

attempted while fulfilling the request. callTimeTotal is an approximation of the overall time taken (in 
milliseconds) to fulfill a request including overhead real time. cpuTimeTotal is an approximation of 
the amount of time (in milliseconds) that the DC spent to actively process the request including 
overhead processing time. correlationId contains an identifier for the LDAP request. If a correlation 
identifier was provided to the DC via the LDAP_SERVER_SET_CORRELATION_ID_OID control, that 
value is returned. If no such correlation identifier was provided, there is no restriction on what value is 
returned. The wording of the statisticName field as it maps to these additional statistics is as follows. 

 callTimeTotal "Total call time (in ms)" 
 cpuTimeTotal  "Total CPU time" 
 retryCount    "Number of retries" 
 correlationId "Correlation ID" 

When the SO_EXTENDED_FMT flag is specified, Windows Server v1809 and later DCs and Windows 
Server 2019 and later DCs additionally return the following statistics: 

▪ linksAdded and linksDeleted. 

If the client does not have debug search stats permitted, or if the request is a search request, 
the DC MUST return the value 0 for these fields, regardless of the format in which the data is 
returned. 

▪ For values not equal to 0, DCs additionally return optimizedLinkSeeks, 
nonOptimizedLinkSeeks, selectionFilterOverhead, and linkIndexMisses. 

If the client does not have debug search stats permitted, the DC MUST NOT return these 
fields, regardless of the format in which the data is returned. Otherwise, the above specified 
values are additionally returned by the DC. 

The linksAdded field is an integer containing the number of object links added while fulfilling the 

request. The linksDeleted field is an integer containing the number of object links deleted while 
fulfilling the request. optimizedLinkSeeks is an implementation-defined value that approximates the 
relative optimized data-seek expense of retrieving object links while fulfilling the request. 
nonOptimizedLinkSeeks is an implementation-defined value that approximates the relative 
unoptimized data-seek expense of retrieving object links while fulfilling the request. 
selectionFilterOverhead is an implementation-defined value that approximates the relative data-
processing expense of applying a selection filter while fulfilling the request. linkIndexMisses is an 

implementation-defined value that approximates the number of times that indexes could not be used 
while applying a selection filter when fulfilling the request. The wording of the statisticName field as 
it maps to these additional statistics is as follows. 

 linksAdded              "Links Added" 
 linksDeleted            "Links Deleted" 
 optimizedLinkSeeks      "Optimized Link Seeks" 
 nonOptimizedLinkSeeks   "Non-Optimized Link Seeks" 
 selectionFilterOverhead "Selection Filter Overhead" 
 linkIndexMisses         "Link Index Misses" 

3.1.1.3.4.1.7 LDAP_SERVER_LAZY_COMMIT_OID 

The LDAP_SERVER_LAZY_COMMIT_OID control is used to modify the behavior of any LDAP operation. 

The presence of this control instructs the DC that it can sacrifice durability guarantees on updates to 
improve performance. 



 

224 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

When sending this control to the DC, the controlValue field of the Control structure is omitted. Sending 
this control to the DC does not cause the server to include any controls in its response. 

3.1.1.3.4.1.8 LDAP_SERVER_PERMISSIVE_MODIFY_OID 

The LDAP_SERVER_PERMISSIVE_MODIFY_OID control is used to modify the behavior of an LDAP 
modify operation. An LDAP modify operation normally returns an error if it attempts to add an 
attribute that already exists on an object to that object (or, in the case of multivalued attributes, it 
attempts to add a value that is already present in the attribute). An LDAP modify operation will also 
normally fail if it attempts to delete an attribute that does not exist on the specified object or that 
does not contain the value specified in the deletion request. With this control, adding a value to an 
attribute that already exists and already contains the value to be added will cause the server to return 

success even though no modification was actually performed by the server. Similarly, deletion of an 
attribute that does not exist or does not contain the specified value will return success. 

When sending this control to the DC, the controlValue field of the Control structure is omitted. Sending 
this control to the DC does not cause the server to include any controls in its response. 

3.1.1.3.4.1.9 LDAP_SERVER_NOTIFICATION_OID 

The LDAP_SERVER_NOTIFICATION_OID control is used with an LDAP search operation to register the 
client that is to be notified when changes are made to an object in the directory. 

Notifications are asynchronous operations. When the DC receives a search request with this control 
attached, it does not immediately send a response to the request. Instead, when an object is 
modified, if that object falls within the scope of the search request to which the 
LDAP_SERVER_NOTIFICATION_OID control was attached, the DC sends a SearchEntry response that 
contains the modified object to the client, using the messageID from the original search request 

(SearchEntry and messageID are defined in [RFC2251] section 4.1.1). The SearchEntry response will 
contain those attributes of the object that were requested in the original request. These attributes are 
not necessarily the attributes that were modified. A client indicates that it no longer requires 
notifications by sending an LDAP abandon operation, specifying the messageID of the original search 
request.  

LDAP search requests that include this control are subject to the following restrictions: 

▪ The only filter permitted in the search request is "(objectclass = *)". The server will return the 

error unwillingToPerform / <unrestricted> if this is not the case. 

▪ Base, one-level, and subtree search scopes are permitted. For Windows 2000 DCs, if the base DN 
specified in a subtree search is not the root of an NC, the server returns the error 
unwillingToPerform / <unrestricted>. Windows Server 2003 and later DCs do not have this 
restriction.  

When sending this control to the DC, the controlValue field of the Control structure is omitted. 

Sending this control to the DC does not cause the server to include any controls in its eventual 
responses. 

3.1.1.3.4.1.10 LDAP_SERVER_RANGE_OPTION_OID 

LDAP_SERVER_RANGE_OPTION_OID, unlike the other controls discussed in this section, does not 
actually designate an LDAP extended control. Nonetheless, it is included in this discussion because its 
OID is found in the supportedControl attribute of the DC's rootDSE. The presence of this OID indicates 

that the DC supports range retrieval of multivalued attributes. Range retrieval is a mechanism that 
permits attributes that have too many values to be retrieved in a single LDAP search request to be 
retrieved via multiple LDAP search requests. Range retrieval is documented in section 3.1.1.3.1.3.3. 

Note  Although this OID is not present in the supportedControl attribute of Windows 2000 DCs, such 
DCs nonetheless support range retrieval. 



 

225 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.3.4.1.11 LDAP_SERVER_SD_FLAGS_OID 

The LDAP_SERVER_SD_FLAGS_OID control is used with an LDAP Search request to control the portion 
of a Windows security descriptor to retrieve. The DC returns only the specified portion of the security 

descriptors. It is also used with LDAP Modify requests2 to control the portion of a Windows security 
descriptor to modify. The DC modifies only the specified portion of the security descriptor. 

When sending this control to the DC, the controlValue field is set to the BER encoding of the following 
ASN.1 structure. 

 SDFlagsRequestValue ::= SEQUENCE { 
     Flags    INTEGER 
 } 

The Flags value has the following format presented in big-endian byte order. X denotes unused bits 
that SHOULD be set to 0 by the client and that MUST be ignored by the server. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X S 
S 
I 

D 
S 
I 

G 
S 
I 

O 
S 
I 

The Flags value is a combination of zero or more bit flags from the following table. 

Bit flag name and value Portion of security descriptor to retrieve/update 

OWNER_SECURITY_INFORMATION (OSI) 

0x1 

Owner identifier of the object. 

GROUP_SECURITY_INFORMATION (GSI) 

0x2 

Primary group identifier. 

DACL_SECURITY_INFORMATION (DSI) 

0x4 

Discretionary access control list (DACL) of the object. 

SACL_SECURITY_INFORMATION (SSI) 

0x8 

System access control list (SACL) of the object. 

Specifying Flags with no bits set, or not using the LDAP_SERVER_SD_FLAGS_OID control, is 
equivalent to setting Flags to (OWNER_SECURITY_INFORMATION | GROUP_SECURITY_INFORMATION 
| DACL_SECURITY_INFORMATION | SACL_SECURITY_INFORMATION). Sending this control to the DC 

does not cause the server to include any controls in its response. 

2 Clarified the use of the LDAP_SERVER_SD_FLAGS_OID control with respect to LDAP Modify requests 

in the operating systems specified by [MSFT-CVE-2021-42291], each with its related MSKB article 
download installed. 

3.1.1.3.4.1.12 LDAP_SERVER_SEARCH_OPTIONS_OID 

The LDAP_SERVER_SEARCH_OPTIONS_OID control is used with an LDAP Search request to control 

various behaviors. 

When sending this control to the DC, the controlValue field is set to the BER encoding of the following 
ASN.1 structure. 



 

226 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 SearchOptionsRequestValue ::= SEQUENCE { 
     Flags    INTEGER 
 } 

The Flags value has the following format presented in big-endian byte order. X denotes unused bits 
that SHOULD be set to 0 by the client and that MUST be ignored by the server. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

S 
S 
F 
P 
R 

S 
S 
F 
D 
S 

The Flags value is a combination of zero or more bit flags from the following table. 

Bit flag name and value Description 

SERVER_SEARCH_FLAG_DOMAIN_SCOPE 
(SSFDS) 

1 

Prevents continuation references from being generated when the 
search results are returned. This performs the same function as 
the LDAP_SERVER_DOMAIN_SCOPE_OID control. 

SERVER_SEARCH_FLAG_PHANTOM_ROOT 
(SSFPR) 

2 

 For AD DS, instructs the server to search all NC replicas except 
application NC replicas that are subordinate to the search base, 
even if the search base is not instantiated on the server.  For AD 
LDS, the behavior is the same except that it also includes 
application NC replicas in the search.  For AD DS and AD LDS, this 
will cause the search to be executed over all NC replicas (except 
for application NCs on AD DS DCs) held on the DC that are 
subordinate to the search base. This enables search bases such as 
the empty string, which would cause the server to search all of the 
NC replicas (except for application NCs on AD DS DCs) that it 
holds. 

Sending this control to the DC does not cause the server to include any controls in its response. 

3.1.1.3.4.1.13 LDAP_SERVER_SORT_OID and LDAP_SERVER_RESP_SORT_OID 

This request control and its corresponding response control, LDAP_SERVER_RESP_SORT_OID, are 
documented in [RFC2891]. 

DCs only support sorting on a single attribute at a time. Therefore, the client constructs a SortKeyList 
that contains only one sequence. DCs running Windows 2000 do not support ordering rules when 

sorting, so the client omits the orderingRule field of the SortKeyList when sending this control to a DC 
running Windows 2000; sorting uses the English: United States sort order. Starting with Windows 
Server 2003, DCs support ordering rules for the sort orders specified in the following table; if no 

ordering rule is specified, the DC uses the English: United States sort order. Section 6.5 specifies, by 
reference to [MS-UCODEREF], the effect of each sort order. Section 2.2.1 specifies the mapping 
between the sort orders that follow and the LCIDs used in section 6.5. 

Ordering rule OID  Sort order  

1.2.840.113556.1.4.1461 Afrikaans 

1.2.840.113556.1.4.1462 Albanian 



 

227 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Ordering rule OID  Sort order  

1.2.840.113556.1.4.1463 Arabic: Saudi Arabia 

1.2.840.113556.1.4.1464 Arabic: Iraq 

1.2.840.113556.1.4.1465 Arabic: Egypt 

1.2.840.113556.1.4.1466 Arabic: Libya 

1.2.840.113556.1.4.1467 Arabic: Algeria 

1.2.840.113556.1.4.1468 Arabic: Morocco 

1.2.840.113556.1.4.1469 Arabic: Tunisia 

1.2.840.113556.1.4.1470 Arabic: Oman 

1.2.840.113556.1.4.1471 Arabic: Yemen 

1.2.840.113556.1.4.1472 Arabic: Syria 

1.2.840.113556.1.4.1473 Arabic: Jordan 

1.2.840.113556.1.4.1474 Arabic: Lebanon 

1.2.840.113556.1.4.1475 Arabic: Kuwait 

1.2.840.113556.1.4.1476 Arabic: UAE 

1.2.840.113556.1.4.1477 Arabic: Bahrain 

1.2.840.113556.1.4.1478 Arabic: Qatar 

1.2.840.113556.1.4.1479 Armenian 

1.2.840.113556.1.4.1480 Assamese 

1.2.840.113556.1.4.1481 Azeri: Latin 

1.2.840.113556.1.4.1482 Azeri: Cyrillic 

1.2.840.113556.1.4.1483 Basque 

1.2.840.113556.1.4.1484 Belarussian 

1.2.840.113556.1.4.1485 Bengali 

1.2.840.113556.1.4.1486 Bulgarian 

1.2.840.113556.1.4.1487 Burmese 

1.2.840.113556.1.4.1488 Catalan 

1.2.840.113556.1.4.1489 Chinese: Taiwan 

1.2.840.113556.1.4.1490 Chinese: PRC 

1.2.840.113556.1.4.1491 Chinese: Hong Kong SAR 

1.2.840.113556.1.4.1492 Chinese: Singapore 

1.2.840.113556.1.4.1493 Chinese: Macau SAR 

1.2.840.113556.1.4.1494 Croatian 



 

228 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Ordering rule OID  Sort order  

1.2.840.113556.1.4.1495 Czech 

1.2.840.113556.1.4.1496 Danish 

1.2.840.113556.1.4.1497 Dutch 

1.2.840.113556.1.4.1498 Dutch:Belgium 

1.2.840.113556.1.4.1499 English: United States 

1.2.840.113556.1.4.1500 English: United Kingdom 

1.2.840.113556.1.4.1665 English: Australia 

1.2.840.113556.1.4.1666 English: Canada 

1.2.840.113556.1.4.1667 English: New Zealand 

1.2.840.113556.1.4.1668 English: Ireland 

1.2.840.113556.1.4.1505 English: South Africa 

1.2.840.113556.1.4.1506 English: Jamaica 

1.2.840.113556.1.4.1507 English: Caribbean 

1.2.840.113556.1.4.1508 English: Belize 

1.2.840.113556.1.4.1509 English:Trinidad 

1.2.840.113556.1.4.1510 English: Zimbabwe 

1.2.840.113556.1.4.1511 English: Philippines 

1.2.840.113556.1.4.1512 Estonian 

1.2.840.113556.1.4.1513 Faeroese 

1.2.840.113556.1.4.1514 Persian 

1.2.840.113556.1.4.1515 Finnish 

1.2.840.113556.1.4.1516 French: France 

1.2.840.113556.1.4.1517 French: Belgium 

1.2.840.113556.1.4.1518 French: Canada 

1.2.840.113556.1.4.1519 French: Switzerland 

1.2.840.113556.1.4.1520 French: Luxembourg 

1.2.840.113556.1.4.1521 French: Monaco 

1.2.840.113556.1.4.1522 Georgian 

1.2.840.113556.1.4.1523 German: Germany 

1.2.840.113556.1.4.1524 German: Switzerland 

1.2.840.113556.1.4.1525 German: Austria 

1.2.840.113556.1.4.1526 German: Luxembourg 



 

229 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Ordering rule OID  Sort order  

1.2.840.113556.1.4.1527 German: Liechtenstein 

1.2.840.113556.1.4.1528 Greek 

1.2.840.113556.1.4.1529 Gujarati 

1.2.840.113556.1.4.1530 Hebrew 

1.2.840.113556.1.4.1531 Hindi 

1.2.840.113556.1.4.1532 Hungarian 

1.2.840.113556.1.4.1533 Icelandic 

1.2.840.113556.1.4.1534 Indonesian 

1.2.840.113556.1.4.1535 Inukitut 

1.2.840.113556.1.4.1536 Italian:Italy 

1.2.840.113556.1.4.1537 Italian:Switzerland 

1.2.840.113556.1.4.1538 Japanese 

1.2.840.113556.1.4.1539 Kannada 

1.2.840.113556.1.4.1540 Kashmiri Arabic 

1.2.840.113556.1.4.1541 Kashmiri 

1.2.840.113556.1.4.1542 Kazakh 

1.2.840.113556.1.4.1543 Khmer 

1.2.840.113556.1.4.1544 Kirghiz 

1.2.840.113556.1.4.1545 Konkani 

1.2.840.113556.1.4.1546 Korean 

1.2.840.113556.1.4.1547 Korean:Johab 

1.2.840.113556.1.4.1548 Latvian 

1.2.840.113556.1.4.1549 Lithuanian 

1.2.840.113556.1.4.1550 North Macedonian 

1.2.840.113556.1.4.1551 Malaysian 

1.2.840.113556.1.4.1552 Malay Brunei Darussalam 

1.2.840.113556.1.4.1553 Malayalam 

1.2.840.113556.1.4.1554 Maltese 

1.2.840.113556.1.4.1555 Manipuri 

1.2.840.113556.1.4.1556 Marathi 

1.2.840.113556.1.4.1557 Nepali:Nepal 

1.2.840.113556.1.4.1558 Norwegian:Bokmal 



 

230 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Ordering rule OID  Sort order  

1.2.840.113556.1.4.1559 Norwegian:Nynorsk 

1.2.840.113556.1.4.1560 Odia 

1.2.840.113556.1.4.1561 Polish 

1.2.840.113556.1.4.1562 Portuguese:Brazil 

1.2.840.113556.1.4.1563 Portuguese:Portugal 

1.2.840.113556.1.4.1564 Punjabi 

1.2.840.113556.1.4.1565 Romanian 

1.2.840.113556.1.4.1566 Russian 

1.2.840.113556.1.4.1567 Sanskrit 

1.2.840.113556.1.4.1568 Serbian:Cyrillic 

1.2.840.113556.1.4.1569 Serbian:Latin 

1.2.840.113556.1.4.1570 Sindhi:India 

1.2.840.113556.1.4.1571 Slovak 

1.2.840.113556.1.4.1572 Slovenian 

1.2.840.113556.1.4.1573 Spanish: SpainTraditional Sort 

1.2.840.113556.1.4.1574 Spanish: Mexico 

1.2.840.113556.1.4.1575 Spanish: SpainModern Sort 

1.2.840.113556.1.4.1576 Spanish: Guatemala 

1.2.840.113556.1.4.1577 Spanish: Costa Rica 

1.2.840.113556.1.4.1578 Spanish: Panama 

1.2.840.113556.1.4.1579 Spanish: Dominican Republic 

1.2.840.113556.1.4.1580 Spanish: Venezuela 

1.2.840.113556.1.4.1581 Spanish: Colombia 

1.2.840.113556.1.4.1582 Spanish: Peru 

1.2.840.113556.1.4.1583 Spanish: Argentina 

1.2.840.113556.1.4.1584 Spanish: Ecuador 

1.2.840.113556.1.4.1585 Spanish: Chile 

1.2.840.113556.1.4.1586 Spanish: Uruguay 

1.2.840.113556.1.4.1587 Spanish: Paraguay 

1.2.840.113556.1.4.1588 Spanish: Bolivia 

1.2.840.113556.1.4.1589 Spanish: El Salvador 

1.2.840.113556.1.4.1590 Spanish: Honduras 



 

231 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Ordering rule OID  Sort order  

1.2.840.113556.1.4.1591 Spanish: Nicaragua 

1.2.840.113556.1.4.1592 Spanish: Puerto Rico 

1.2.840.113556.1.4.1593 Swahili: Kenya 

1.2.840.113556.1.4.1594 Swedish 

1.2.840.113556.1.4.1595 Swedish: Finland 

1.2.840.113556.1.4.1596 Tamil 

1.2.840.113556.1.4.1597 Tatar: Tatarstan 

1.2.840.113556.1.4.1598 Telugu 

1.2.840.113556.1.4.1599 Thai 

1.2.840.113556.1.4.1600 Turkish 

1.2.840.113556.1.4.1601 Ukrainian 

1.2.840.113556.1.4.1602 Urdu: Pakistan 

1.2.840.113556.1.4.1603 Urdu: India 

1.2.840.113556.1.4.1604 Uzbek: Latin 

1.2.840.113556.1.4.1605 Uzbek: Cyrillic 

1.2.840.113556.1.4.1606 Vietnamese 

1.2.840.113556.1.4.1607 Japanese: XJIS 

1.2.840.113556.1.4.1608 Japanese: Unicode 

1.2.840.113556.1.4.1609 Chinese: Big5 

1.2.840.113556.1.4.1610 Chinese: PRCP 

1.2.840.113556.1.4.1611 Chinese: Unicode 

1.2.840.113556.1.4.1612 Chinese: PRC 

1.2.840.113556.1.4.1613 Chinese: BOPOMOFO 

1.2.840.113556.1.4.1614 Korean: KSC 

1.2.840.113556.1.4.1615 Korean: Unicode 

1.2.840.113556.1.4.1616 German Phone Book 

1.2.840.113556.1.4.1617 Hungarian: Default 

1.2.840.113556.1.4.1618 Hungarian: Technical 

1.2.840.113556.1.4.1619 Georgian: Traditional 

1.2.840.113556.1.4.1620 Georgian: Modern 

Windows Server 2008 and later support an additional sort behavior called "phonetic display name 
sort". This behavior is triggered by specifying "msDS-PhoneticDisplayName;extended" as the 



 

232 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

attributeType in the SortKeyList ([RFC2891] section 1.1). When this option is present, the DC checks 
that the LDAP request satisfies the following requirements: 

▪ The operation is an LDAP search request. 

▪ The orderingRule field specifies the Japanese sort order (namely, "1.2.840.113556.1.4.1538"). 

▪ The LDAP_CONTROL_VLVREQUEST control is attached to the search. 

▪ The search request has been sent to a global catalog port (port 3268 or 3269). 

▪ The scope of the search request is wholeSubtree. 

▪ The base object of the search request specifies the DN "". 

▪ The filter is set to (&(showInAddressBook=X)(displayName=*)), where X is a distinguished name 
and there exists an object O such that O!objectClass = addressBookContainer and 
O!distinguishedName = X. 

If one or more of these criteria are not satisfied, the server returns the error unwillingToPerform / 
<unrestricted>. 

If all of these criteria are satisfied, the DC performs a phonetic display name sort. In this sort, the 
search results are sorted on the msDS-PhoneticDisplayName attribute, using the Japanese sort order, 
in the normal fashion, except that if an object O does not have a value for the msDS-
PhoneticDisplayName attribute but does have a value V for the displayName attribute, the server 

treats V as the value of O!msDS-PhoneticDisplayName for the purposes of the sort. 

For example, consider an unsorted search result set consisting of four objects, as shown in the 
following table. Note that object #2 does not have a value for msDS-PhoneticDisplayName. 

Object # msDS-PhoneticDisplayName value displayName value 

1 A C 

2  D 

3 B E 

4 F C 

Assuming for the purpose of this example that the letters A...Z sort in the order {A, ..., Z}, the results 
of performing a phonetic display name sort on the preceding data is the following. 

Object # msDS-PhoneticDisplayName value displayName value 

1 A C 

3 B E 

2  D 

4 F C 

In particular, object #2 was placed before object #4 because the sort treated it as if it had the value 
"D" for its msDS-PhoneticDisplayName attribute. 

3.1.1.3.4.1.14 (Updated Section) LDAP_SERVER_SHOW_DELETED_OID 

The LDAP_SERVER_SHOW_DELETED_OID control is used with an LDAP operation to specify that 
tombstones and deleted-objects mustMUST be visible to the operation. For example, when the control 



 

233 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

is used with an LDAP search operation, the search results include any tombstones or deleted-objects 
that match the search filter. 

The following table compares the behavior of the two similar controls 
LDAP_SERVER_SHOW_DELETED_OID and 

LDAP_SERVER_SHOW_RECYCLED_OID (section 3.1.1.3.4.1.26).  

Extended control name Deleted-objects Tombstones Recycled-objects 

LDAP_SERVER_SHOW_DELETED_OID Visible Visible Not Visible 

LDAP_SERVER_SHOW_RECYCLED_OID Visible Visible Visible 

When sending this control to the DC, the controlValue field of the Control structure is omitted. Sending 
this control to the DC does not cause the server to include any controls in its response. 

3.1.1.3.4.1.15 LDAP_SERVER_TREE_DELETE_OID 

The LDAP_SERVER_TREE_DELETE_OID control is used with an LDAP delete operation to cause the 
server to recursively delete the entire subtree of objects located underneath the object specified in the 
delete operation. The object specified in the delete operation is also deleted. 

The server deletes between 1 and 16,384 objects. If the server does not delete the entire tree in a 
single LDAP delete request, it MUST NOT delete the root of the tree (the object specified in the delete 
operation), and MUST return the error code adminLimitExceeded / 
ERROR_DS_TREE_DELETE_NOT_FINISHED. 

When sending this control to the DC, the controlValue field of the Control structure is omitted. Sending 
this control to the DC does not cause the server to include any controls in its response. 

3.1.1.3.4.1.16 LDAP_SERVER_VERIFY_NAME_OID 

The LDAP_SERVER_VERIFY_NAME_OID control is used with LDAP Add and Modify requests to identify 

the global catalog server (GC server) that is used to verify the existence of any objects pointed to by 
DN attribute values (as specified in section 3.1.1.1.6). If the DC needs to call a GC server while 

processing the Add or Modify request, it calls the GC server specified in this control. If this control is 
not used, the DC is free to call any GC server in the forest. 

When sending this control to the DC, the controlValue field is set to the BER encoding of the 
following ASN.1 structure: 

 VerifyNameRequestValue ::= SEQUENCE { 
     Flags         INTEGER 
     ServerName    OCTET STRING 
 } 

where Flags is ignored and ServerName is a UTF-16 encoded Unicode string containing the FQDN (1) 
of the GC server to contact for verification. Sending this control to the DC does not cause the server to 

include any controls in its response. 

If the LDAP Add or Modify request needs to call a GC server and the server designated by this control 
in the request is not available or is not a GC server, the Add or Modify request fails with the error 
unavailable / <unrestricted>. 

3.1.1.3.4.1.17 (Updated Section) LDAP_CONTROL_VLVREQUEST and 

LDAP_CONTROL_VLVRESPONSE 



 

234 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The LDAP_CONTROL_VLVREQUEST control is used with an LDAP search operation to retrieve a subset 
of the objects that satisfy the search request. This control permits the client to specify a particular 

object (the "target object") in a sorted set of search results, and to request that the server return a 
specified number of objects before and after the target object, in addition to the target object itself. 

"Before" and "after" the target object are relative to the sort order of the search result set. The server 
will not return objects whose attribute value, used as the sort key, is absent. This control can only be 
used if the LDAP_SERVER_SORT_OID (section 3.1.1.3.4.1.13) control is also specified. 

When sending this control to the DC, the controlValue field is set to the BER encoding of the 
following ASN.1 structure (maxInt is defined in [RFC2251] section 4.1.1): 

 VLVRequestValue ::= SEQUENCE { 
   beforeCount        INTEGER (0..maxInt), 
   afterCount         INTEGER (0..maxInt), 
   CHOICE { 
     byoffset           [0] SEQUENCE { 
                            offset       INTEGER (0 .. maxInt), 
                            contentCount INTEGER (0 .. maxInt) 
                            }, 
     greaterThanOrEqual [1] AssertionValue 
   }, 
   contextID          OCTET STRING OPTIONAL 
 } 

where beforeCount indicates how many objects before the target object are to be included in the 
search results, and afterCount indicates how many objects after the target object are to be included 
in the search results. 

byoffset and greaterThanOrEqual provide two mutually exclusive ways of specifying the target 
object. These will now be discussed in turn.  

First, the target object can be specified by its position relative to the first object in the sorted set of 
objects that satisfy the search request, in which case the byoffset choice is used. In this case, 

contentCount contains the client's estimation of the total number of objects that satisfy the search 

criteria. If the client specifies 0 for contentCount, it is as if the client had specified a number identical 
to the server's estimate of the total number of objects that satisfy the search criteria—the quantity 
serverContentCount below. offset is used with contentCount to specify the position (relative to 
the first object in the sorted set of search results) of the object to use as the target object according 
to the following formula: 

p = serverContentCount * (offset / contentCount) 

where serverContentCount is the DC's estimate of the total number of objects that satisfy the 
search criteria. The object located at position p in the sorted list of search results is used as the target 
object. 

A value of offset equal to 1 means that the target object is the first object in the search result set, 
while a value of offset equal to contentCount means the target object is the last object in the search 
result set. The offset value cannot equal 0 unless contentCount also equals 0. If the client specified 

0 for contentCount, then p = offset in the preceding formula, so the target object is offset-1 

objects beyond the first object in the search result set, unless both offset and contentCount are 
equal to 0, in which case the previous rule applies. 

The second means of specifying the target object is by the greaterThanOrEqual choice, instead of 
the byoffset choice. In this case, greaterThanOrEqual is an AssertionValue as defined in [RFC2251] 
section 4.1.7. The target object is the first object in the sorted result set for which the value of the 
attribute on which it is sorted (that is, the attribute specified by attributeType in the 

LDAP_SERVER_SORT_OID control) is greater than or equal to the value specified by 
greaterThanOrEqual. However, if the sort order is reversed (by specifying that the reverseOrder 



 

235 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

field of the LDAP_SERVER_SORT_OID control is trueTRUE), then the target object is the first object for 
which the sort attribute value is less than or equal to the greaterThanOrEqual value. 

If the contextID field is present, it is the opaque value returned by the DC as the contextIDServer 
field of the LDAP_CONTROL_VLVRESPONSE control that was returned with the search response to the 

previous search over the same "list" as this search. A "list" is a sorted set of search results, defined by 
a search request value sent to a particular DC over a particular LDAP connection. The client omits this 
field if this is the first search request that included the LDAP_CONTROL_VLVREQUEST control for the 
"list", or if the client did not retain the contextIDServer field of the previous 
LDAP_CONTROL_VLVRESPONSE for the "list". The presence or absence of the contextID field in the 
request only affects performance. The contextID is valid only on the DC that returned it. If an invalid 
contextID is present, then the LDAP_CONTROL_VLVREQUEST control is ignored. 

When the server receives a search request with the LDAP_CONTROL_VLVREQUEST control attached to 
it, it includes a response control in the search response. The controlType field of the returned Control 
structure is set to the OID of the LDAP_CONTROL_VLVRESPONSE control, and the controlValue is the 
BER encoding of the following ASN.1 structure. 

 VLVResponseValue ::= SEQUENCE { 
     targetPosition        INTEGER (0 .. maxInt), 
     contentCount          INTEGER (0 .. maxInt), 
     virtualListViewResult ENUMERATED { 
                               success                  (0), 
                               operationsError          (1), 
                               unwillingToPerform       (53), 
                               insufficientAccessRights (50), 
                               busy                     (51), 
                               timeLimitExceeded        (3), 
                               adminLimitExceeded       (11), 
                               sortControlMissing       (60), 
                               offsetRangeError         (61), 
                               other                    (80) 
                               }, 
     contextIDServer       OCTET STRING OPTIONAL 
 } 

where targetPosition is the position of the target object relative to the beginning of the sorted set of 
search results, contentCount is the server's estimate of the total number of objects that satisfy the 
search request, contextIDServer is the opaque value described in the specification of the contextID 

field earlier in this section, and virtualListViewResult is an LDAP error code that indicates the 
success or failure of the DC in processing the LDAP_CONTROL_VLVREQUEST control. These codes 
have the same meanings as defined for LDAP in [RFC2251], but they pertain specifically to the 
processing of the control. Error codes sortControlMissing and offsetRangeError are not defined in 
[RFC2251]. In the Active Directory implementation of virtual list view (VLV), virtualListViewResult 
is set to error code sortControlMissing if the LDAP_SERVER_SORT_OID control is not specified in 
conjunction with the LDAP_CONTROL_VLVREQUEST control. It is set to error code offsetRangeError if 

contentCount is not equal to 0 but offset is equal to 0. 

Notes: 

▪ The Active Directory implementation of VLV is based on that described in [VLVDRAFT]. Although 
implementers can consult that document as an informative reference, the preceding description 
documents the protocol as implemented by Active Directory. No claim is made with regard to 
Active Directory's conformance or nonconformance with the protocol as specified in [VLVDRAFT]. 

▪ Active Directory support for VLV is specified in section 3.1.1.3.4.1 (see 
LDAP_CONTROL_VLVREQUEST and LDAP_CONTROL_VLVRESPONSE). The following information 
applies to the Active Directory implementation of VLV through Windows Server 2012 R2 without 
[MSKB-3106637] installed, or through Windows Server 2012 with [MSKB-3106637] installed: 



 

236 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

If an LDAP search has the LDAP_CONTROL_VLVREQUEST attached, a desired target object is 
specified using the greaterThanOrEqual choice, and the attribute specified in the sort control is 

of the 2.5.5.11 time syntax (section 3.1.1.2.2.2), a random object is returned, not an object that 
satisfies the greaterThanOrEqual value. 

3.1.1.3.4.1.18 LDAP_SERVER_ASQ_OID 

The LDAP_SERVER_ASQ_OID control is used with an LDAP search operation. When this control is 
used, the search is not performed against the object specified in the search, or the objects located 
underneath that object, but rather against the set of objects named by an attribute of Object(DS-DN) 
syntax that is located on the object specified by the base DN of the search request. The specific 
attribute to use to scope the search is named in the control. Only searches of base object scope can 

be used with the LDAP_SERVER_ASQ_OID control. 

For example, suppose there is an object o and a multivalued attribute A of Object(DS-DN) syntax such 
that o.A contains the DNs of objects o1, o2, and o3. An LDAP base-scope search operation that targets 
object o, with the LDAP_SERVER_ASQ_OID control attached and specifying the A attribute, will cause 

the server to perform the search not against object o but against objects o1, o2, and o3. 

When sending this control to the DC, the controlValue field is set to the BER encoding of the following 

ASN.1 structure: 

 ASQRequestValue ::= SEQUENCE { 
     sourceAttribute    OCTET STRING 
 } 

where sourceAttribute is a UTF-8 string that specifies the LDAP display name of the attribute to use 
to scope the search (for example, attribute A in the previous example). 

When the server receives a search request with the LDAP_SERVER_ASQ_OID control attached to it, it 
includes a response control in the search response. The controlType field of the returned Control 
structure is set to the OID of the LDAP_SERVER_ASQ_OID control, and the controlValue is the BER 

encoding of the following ASN.1 structure: 

 ASQResponseValue ::= SEQUENCE { 
     searchResults    ENUMERATED { 
                          success                   (0), 
                          invalidAttributeSyntax    (21), 
                          unwillingToPerform        (53), 
                          affectsMultipleDSAs       (71) 
                          }, 
 } 

where the meaning of searchResults is as indicated in the following table. 

searchResult name searchResult value Description  

success 0 Search results are returned for all objects referenced by 
sourceAttribute. 

invalidAttributeSyntax 21 sourceAttribute is not of Object(DS-DN) syntax. 

unwillingToPerform 53 The search scope was not set to base object scope. 

affectsMultipleDSAs 71 Partial results were returned, but not all the objects were 
available on the DC. 



 

237 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The search results consist of each object that is specified by the sourceAttribute attribute, and that 
matches the search filter returned as a SearchResultEntry (defined in [RFC2251] section 4.5.2) 

containing the attributes specified in the attribute list of the search request. If any of the objects 
specified by sourceAttribute are not available on the DC, the search results include all of the objects 

that are available on the DC, and the searchResults return value is set to the affectsMultipleDSAs 
error code to indicate that some data that might be otherwise available is not present in the results. 

3.1.1.3.4.1.19 LDAP_SERVER_QUOTA_CONTROL_OID 

This control is used with an LDAP search operation to retrieve the quota of a user. When used with an 
LDAP search operation that queries the constructed attributes msDS-QuotaEffective and msDS-
QuotaUsed on the msDS-QuotaContainer object, the server will return the quota of the user who is 

specified by the control, rather than the quota of the user whom the connection is authenticated as. 

If the caller attempts to retrieve the quota of a user other than the user whom the caller is 
authenticated as, and the caller does not have the RIGHT_DS_READ_PROPERTY right on the Quotas 
container (described in section 6.1.1.4.3), the server returns an empty result set. 

If the caller attempts to retrieve the quota of the user whom the caller is authenticated as, and the 
caller has neither the RIGHT_DS_READ_PROPERTY right on the Quotas container (described in section 

6.1.1.4.3) nor the DS-Query-Self-Quota control access right on the Quotas container, the server 
returns an empty result set. 

These access checks are also specified in section 3.1.1.4.4. 

When sending this control to the DC, the controlValue field is set to the BER encoding of the following 
ASN.1 structure. 

 QuotaRequestValue ::= SEQUENCE { 
     querySID    OCTET STRING 
 } 

Where querySID is the SID, in binary form, of the user whose quota is to be retrieved (the binary 
form of SIDs is documented in [MS-DTYP] section 2.4.2). Sending this control to the DC does not 
cause the server to include any controls in its response. 

3.1.1.3.4.1.20 LDAP_SERVER_SHUTDOWN_NOTIFY_OID 

This control is used with an LDAP Search request. The Search request has base object scope. The base 
DN of the search is the DN of the DC's nTDSDSA object, and the search filter is "(objectClass=*)". If 
the application sending the search request is not running on the same computer as the DC, the result 
is the error unwillingToPerform / <unrestricted>. 

When sending this control to the DC, the controlValue field of the Control structure is omitted. Sending 
this control to the DC does not cause the server to include any controls in its response. 

This control is only supported on the Small Business Server version of the Windows operating system. 

Because this control only has an effect for applications running on the same machine as the DC, the 
effects of this control are not observable on the network. This control causes the DC to notify the 
client when the DC is shutting down. When the DC receives a search request with this control 
attached, it does not immediately send a response to the request. Instead, it sends the 
SearchResultDone response (see [RFC2251] section 4.5.2) to the request when the DC is shutting 
down. 

3.1.1.3.4.1.21 LDAP_SERVER_FORCE_UPDATE_OID 



 

238 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

A DC does not perform originating updates that do not affect the state of the DC. For example, given 
an LDAP Modify operation that sets the value of an attribute A to a value V, if the value of A is already 

V prior to the Modify operation, the DC skips the update and returns success. The stamp associated 
with A is not changed, and the Modify operation does not cause replication traffic. 

When the LDAP_SERVER_FORCE_UPDATE_OID control is attached to an update operation, the DC 
does not perform the optimization described in the previous paragraph. The update always generates 
a new stamp for the attribute or link value and always replicates. 

When sending this control to a DC, the controlValue field of the Control structure is omitted. Sending 
this control to a DC does not cause the DC to include any controls in its response. 

3.1.1.3.4.1.22 LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID 

This control is used to modify the behavior of a range retrieval operation (see section 3.1.1.3.1.3.3). 
When this control is not specified, if range retrieval is being performed on an attribute whose values 
are forward link values or back link values, and the value of low is greater than or equal to the 
number of values in the attribute, the DC will return the error operationsError / <unrestricted>. If this 

control is specified, no error is returned in this case (and no values are returned). For example, if an 
object has a member attribute with 500 values, performing the range retrieval "member;range=500-

*" will return operationsError / <unrestricted> without this control, and success with this control. 

When sending this control to a DC, the controlValue field of the Control structure is omitted. Sending 
this control to a DC does not cause the DC to include any controls in its response. 

3.1.1.3.4.1.23 LDAP_SERVER_RODC_DCPROMO_OID 

If this control is specified and the caller does not have the DS-Install-Replica control access right on 
the root of the default NC, the result is the error insufficientAccessRights / ERROR_ACCESS_DENIED. 

If the request is an Add of an object of class user or a subclass of user, the presence of this control 
has the following effects: 

▪ The DC generates a value in the range [1 .. 65535] that is not used as a value of the msDS-
SecondaryKrbTgtNumber attribute on an object in this domain, and assigns the generated value to 
the msDS-SecondaryKrbTgtNumber attribute of the created object. If no such value exists, the 
result is the error other / ERROR_NO_SYSTEM_RESOURCES. 

▪ The generated value for msDS-SecondaryKrbTgtNumber is appended (in decimal form) to the 

string "krbtgt", and the resulting string is assigned to the sAMAccountName attribute on the 
created object. 

▪ The userAccountControl bits ADS_UF_ACCOUNT_DISABLE and ADS_UF_DONT_EXPIRE_PASSWD 
(section 2.2.16) are set on the object's userAccountControl attribute. 

▪ The object's account password is set to a randomly generated value that satisfies all criteria in 
[MS-SAMR] section 3.1.1.7.2 and is processed as described in [MS-SAMR] section 3.1.1.8.5. 

Note  In Windows Server 2008 and later, the DC servicing the request need not be the PDC FSMO 

role owner. 

If the request is an Add of an object of class nTDSDSA, the presence of this control has the following 
effects: 

▪ The DC creates the nTDSDSA object using the information provided in the Add request. The only 
special effect of the control is to perform the checking of the DS-Install-Replica control access 
right (specified previously in this section) to authorize the nTDSDSA object creation. Without this 

control, an Add that attempts to create an nTDSDSA object will fail because the class is system-
only (section 3.1.1.2.4.8). 



 

239 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

When sending this control to a DC, the controlValue field of the Control structure is omitted. Sending 
this control to a DC does not cause the DC to include any controls in its response. 

3.1.1.3.4.1.24 LDAP_SERVER_DN_INPUT_OID 

This control is used to specify the DN of an object during certain LDAP operations. 

When used with an LDAP search operation that queries the constructed attribute msDS-
IsUserCachableAtRodc on a computer object that represents an RODC, the server will return the 
administrative policy regarding whether the secret attributes of the security principal represented by 
the DN specified in the control can be cached on the RODC. If the caller does not have the Read-Only-
Replication-Secret-Synchronization control access right on the root of the default NC, the error 
operationsError / ERROR_DS_CANT_RETRIEVE_ATTRS is returned. This access check is also specified 

in section 3.1.1.4.4. 

When sending this control to the DC, the controlValue field is set to the BER encoding of the following 
ASN.1 structure. 

 DNInputRequestValue ::= SEQUENCE { 
     InputDN    OCTET STRING 
 } 

Where InputDN is a UTF-8 encoding of the DN of a security principal. The DN is either an RFC 2253–
style DN or one of the alternative DN formats described in section 3.1.1.3.1.2.4. 

3.1.1.3.4.1.25 LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID 

The LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID control is used with an LDAP search operation to 
specify that link attributes that refer to deleted-objects are visible to the search operation. If used in 

conjunction with LDAP_SERVER_SHOW_DELETED_OID or LDAP_SERVER_SHOW_RECYCLED_OID, link 
attributes that are stored on deleted-objects are also visible to the search operation. This applies to 
both the search filter and the set of attributes returned by the search operation. When this control is 

not used, linked attribute values referring to deleted-objects and link valued attributes stored on 
deleted-objects are not visible to search operation filters, and are not returned as requested attributes 
for the search operation. 

Extended control names 

Link values 
neither 
stored on 
nor 
referring to 
deleted-
objects 

Link 
values not 
stored on 
but 
referring 
to deleted-
objects 

Link values 
stored on 
deleted-
objects but 
not 
referring to 
deleted-
objects 

Link 
values 
stored on 
and 
referring 
to 
deleted-
objects 

LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID Visible Visible Not Visible Not Visible 

LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID in 
conjunction with 
LDAP_SERVER_SHOW_DELETED_OID or 
LDAP_SERVER_SHOW_RECYCLED_OID 

Visible Visible Visible Visible 

When sending this control to the DC, the controlValue field of the Control structure is omitted. 
Sending this control to the DC does not cause the server to include any controls in its response. 

3.1.1.3.4.1.26 (Updated Section) LDAP_SERVER_SHOW_RECYCLED_OID 



 

240 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The LDAP_SERVER_SHOW_RECYCLED_OID control is used with an LDAP operation to specify that 
tombstones, deleted-objects, and recycled-objects mustMUST be visible to the operation. For 

example, when the control is used with an LDAP search operation, the search results include any 
tombstones, deleted-objects, or recycled-objects that match the search filter. 

The following table compares the behavior of the two similar controls 
LDAP_SERVER_SHOW_DELETED_OID (section 3.1.1.3.4.1.14) and 
LDAP_SERVER_SHOW_RECYCLED_OID.  

Extended control name Deleted-objects Tombstones Recycled-objects 

LDAP_SERVER_SHOW_DELETED_OID Visible Visible Not Visible 

LDAP_SERVER_SHOW_RECYCLED_OID Visible Visible Visible 

When sending this control to the DC, the controlValue field of the Control structure is omitted. 
Sending this control to the DC does not cause the server to include any controls in its response. 

3.1.1.3.4.1.27 LDAP_SERVER_POLICY_HINTS_OID 

The LDAP_SERVER_POLICY_HINTS_OID control is used with an LDAP operation to enforce the 
password history length constraint ([MS-SAMR] section 3.1.1.7.1) during password set. The password 
history policy sets how frequently old passwords can be reused. 

When sending this control to the DC, the controlValue field is set to the BER encoding of the 
following ASN.1 structure. 

 PolicyHintsRequestValue ::= SEQUENCE { 
     Flags    INTEGER 
 } 

where Flags tells the server whether to apply the password history length constraint on password-set 

operations. If it is 0x1, then that constraint will be enforced. Otherwise, the constraint is not enforced.  

3.1.1.3.4.1.28 LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID 

The LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID control has the exact semantics and behaviors 
as LDAP_SERVER_POLICY_HINTS_OID (section 3.1.1.3.4.1.27); this control MAY be used by clients 
when the server does not support LDAP_SERVER_POLICY_HINTS_OID. Clients SHOULD use 
LDAP_SERVER_POLICY_HINTS_OID when it is supported by the server. 

3.1.1.3.4.1.29 LDAP_SERVER_DIRSYNC_EX_OID 

The LDAP_SERVER_DIRSYNC_EX_OID control is used with an LDAP search operation in exactly the 
same way as the LDAP_SERVER_DIRSYNC_OID control, except for differences specified in this section. 
All ASN.1 structures and the meaning of the fields of those structures are the same. 

As with the LDAP_SERVER_DIRSYNC_OID control, any attributes can be requested in the search. Only 

those objects for which these attributes have been created or modified since the time represented by 
Cookie will be considered for inclusion in the search. However, where the 

LDAP_SERVER_DIRSYNC_OID control returns only those attributes that have changed, the 
LDAP_SERVER_DIRSYNC_EX_OID control also returns unchanged attributes when the attribute name 
in the request is appended with the string ";dirSyncAlwaysReturn". 

3.1.1.3.4.1.30 LDAP_SERVER_UPDATE_STATS_OID 



 

241 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The LDAP_SERVER_UPDATE_STATS_OID control can be used with any LDAP operation. When sending 
this control to the DC, the controlValue field of the Control structure is omitted. 

When the server receives a request with the LDAP_SERVER_UPDATE_STATS_OID control attached to 
it, the server includes a response control in the response that contains statistics. The controlType 

field of the returned Control structure is set to the OID of the LDAP_SERVER_UPDATE_STATS_OID 
control. The controlValue field is included in the returned Control structure. 

The returned controlValue field is the BER encoding of the following ASN.1 structure: 

 UpdateStatsResponseValue ::= SEQUENCE OF SEQUENCE { 
     statID       LDAPOID 
     statValue    OCTET STRING 
 } 

where statID is an OID that corresponds to a specific statistic name, and statValue is a value related 
to that statistic. Each statistic specifies an encoding for its value. 

The following table specifies the statistics that a DC MUST return. A DC MAY return other 

implementation-defined statistics. No other statistics are returned by DCs in applicable Windows 
Server releases. 

Statistic name OID (specified by statID) 

Highest USN Allocated 1.2.840.113556.1.4.2208 

Invocation ID Of Server 1.2.840.113556.1.4.2209 

 

3.1.1.3.4.1.30.1 Highest USN Allocated 

The statValue for this statID contains the highest USN that the DC allocated during the LDAP 
operation. USNs allocated by an LDAP operation make up a set of USNs such that no LDAP operation 
other than the current operation can write the USN into the DC's state. Note that while no other LDAP 
operation can write these USNs, it is not required that the current operation actually write any or all of 
these USNs. If the USNs allocated by this LDAP operation make up the empty set, a value of 0 is 
returned in the statValue. 

The value in the statValue field is a 64-bit integer, in little-endian byte order. 

3.1.1.3.4.1.30.2 Invocation ID Of Server 

The statValue for this statID contains dc.invocationId (section 3.1.1.1.9). This value is returned in 
little-endian byte order. 

3.1.1.3.4.1.31 LDAP_SERVER_TREE_DELETE_EX_OID 

The LDAP_SERVER_TREE_DELETE_EX_OID control is used with an LDAP delete operation to cause the 

server to recursively delete the entire subtree of objects located underneath the object specified in the 
delete operation. The object specified in the delete operation is also deleted. 

When sending this control to the DC, the controlValue field is set to the BER encoding of the 
following ASN.1 structure. 

 TreeDeleteExRequestValue ::= SEQUENCE { 
     countOfObjectsToDelete    INTEGER 



 

242 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 } 

where countOfObjectsToDelete is a limit on the number of objects that will be deleted while 
processing this control. If the value of countOfObjectsToDelete is less than 2, then the value 2 is 
used rather than the value specified. If the value of countOfObjectsToDelete is greater than 

16,384, then the value 16,384 is used. 

The server deletes between 1 and countOfObjectsToDelete objects, inclusive. If the server does not 
delete the entire tree in a single LDAP delete request, it MUST NOT delete the root of the tree (the 
object specified in the delete operation), and MUST return the error code adminLimitExceeded / 
ERROR_DS_TREE_DELETE_NOT_FINISHED. 

3.1.1.3.4.1.32 LDAP_SERVER_SEARCH_HINTS_OID 

The LDAP_SERVER_SEARCH_HINTS_OID control is used with an LDAP search operation. This control 
supplies hints to the search operation on how to satisfy the search. When sending this control to the 
DC, the controlValue field is set to the BER encoding of the following ASN.1 structure. 

 SearchHintsRequestValue ::= SEQUENCE OF SEQUENCE{ 
     hintId    LDAPOID 
     hintValue OCTET STRING 
 } 

where hintId is an OID that corresponds to a specific hint name, and hintValue is a value related to 
that hint. Each hint specifies an encoding for its value. 

The following table specifies the hints that a DC MUST honor. A DC MAY honor other implementation-

defined search hints. No other search hints are honored by DCs in applicable Windows Server 
releases. 

Statistic name OID (as specified by hintId) 

Require Sort Index 1.2.840.113556.1.4.2207 

Soft Size Limit 1.2.840.113556.1.4.2210 

Multiple instances of the LDAP_SERVER_SEARCH_HINTS_OID control can be included with a single 
LDAP search operation. The hints are applied in the order in which the controls are encoded in the 
LDAP request; that is, a later hint can override an earlier hint, overriding both hintValue and control 

criticality. This behavior allows the application of different criticality to individual hints. 

If the control is critical and an unrecognized search hint is specified, the DC returns the error 
unwillingToPerform / <unrestricted>. If the control is not critical, unrecognized hints are ignored. 

3.1.1.3.4.1.32.1 (Updated Section) Require Sort Index 

The hintValue for this hint is a BER encoding specified by the following ASN.1 structure: 

 RequireSortIndexHintValue ::= SEQUENCE { 
     IndexOnly    BOOLEAN 
 } 

If the value of IndexOnly is falseFALSE, or if no LDAP_SERVER_SORT_OID control accompanies the 
LDAP_SERVER_SEARCH_HINTS_OID control, then the hint is ignored. 

This hint suggests to the DC that it use an index (as specified by the search flags IX and PI in section 

2.2.9) over the attribute specified in the LDAP_SERVER_SORT_OID control to satisfy the search. 



 

243 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

If the sort control is critical and no index is available, the search will fail with the error 
DB_ERR_CANT_SORT / <unrestricted>. 

If the sort control is not critical and no index is available, the hint is ignored. 

Exactly what an index is in relationship to a DC is implementation-specific. Therefore, the 

determination that an index is not available is not constrained by the protocol, but rather is 
implementation-specific. This hint is provided only as a facility to make suggestions to a DC that it 
favor search-operation execution that is based on information specified in the sort control rather than 
information that is specifically derived from the scope of the search, the filter, or any other 
parameters of the search. 

3.1.1.3.4.1.32.2 Soft Size Limit 

The hintValue for this hint is a BER encoding specified by the following ASN.1 structure: 

 SoftSizeLimitHintValue ::= SEQUENCE { 
     limitValue    INTEGER 
 } 

If an LDAP_SERVER_SORT_OID control does not accompany this hint, this hint is ignored. 

Given that the value of LimitValue is X, given an imposed LDAP size limit of Y (whether specified in 

the LDAP search operation or imposed by an implementation-specific default value), and given that a 
sort order is specified in an LDAP_SERVER_SORT_OID control, when these values are all applied to an 
LDAP search operation, the LDAP search operation conceptually results in a list of objects to return as 
a response to the request. Due to the size limit, the cardinality of the list is less than or equal to Y. 
The elements in the list are ordered by the attribute specified in the LDAP_SERVER_SORT_OID 
control. If the list of objects contains fewer than X objects, or exactly X objects, then the Soft Size 

Limit hint has no affect. If the LDAP search operation identifies more than X objects, then any objects 
in the list subsequent to the Xth object that do not have a value of the sort attribute that is equal to 
the sort value of the Xth object (as defined by the equality comparison rules for that attribute) are 

removed from the list before the response is returned to the client. 

If the search operation would otherwise have returned success and if one or more objects are 
removed from the list according to the earlier algorithm, the search operation will return 
sizeLimitExceeded / <unrestricted>. 

3.1.1.3.4.1.33 LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID 

The LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID is used with an LDAP search operation to 
potentially modify the return code of the operation. 

When sending this control to the DC, the controlValue field is set to the BER encoding of the 
following ASN.1 structure. 

 ExpectedEntryCountRequestValue ::= SEQUENCE { 
     searchEntriesMin    INTEGER 
     searchEntriesMax    INTEGER 
 } 

When the search operation would normally return success / <unrestricted> and the number of 
searchEntries returned by the search is less than searchEntriesMin or greater than 
searchEntriesMax, the return code of the search operation is modified to be constraintViolation / 
<unrestricted>. Note that this control affects only the return value of the search operation. It does not 
affect any other part of the returned data from the search operation. 



 

244 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.3.4.1.34 LDAP_SERVER_SET_OWNER_OID 

The LDAP_SERVER_SET_OWNER_OID is used with an LDAP add operation to specify the owner of the 
object to be created. The owner is to be set into the owner portion of the security descriptor stored in 

the ntSecurityDescriptor attribute of the object to be created. 

When sending this control to the DC, the controlValue field is set to the BER encoding of the 
following ASN.1 structure. 

 SID octetString 

The supplied SID value is a valid SDDL UTF-8 string representation of a SID ([MS-DTYP] section 
2.4.2.1). 

If an owner is specified both via this control and via a value for the ntSecurityDescriptor attribute, the 
value specified by this control takes precedence. 

3.1.1.3.4.1.35 LDAP_SERVER_BYPASS_QUOTA_OID 

The LDAP_SERVER_BYPASS_QUOTA_OID is used with an LDAP add operation to specify that 

exceeding quota limitations MUST NOT cause the add to fail. When sending this control to the DC, the 
controlValue field of the Control structure is omitted. Sending this control to the DC does not cause 
the server to include any controls in its response. 

3.1.1.3.4.1.36 LDAP_SERVER_LINK_TTL_OID 

The LDAP_SERVER_LINK_TTL_OID control is used with an LDAP search request to cause the DC to 
return TTL-DNs for link values with associated expiry times (see section 3.1.1.9.2). 

When sending this control to a DC, the controlValue field is omitted. 

Sending this control to the DC does not cause the server to include any controls in its response. 

3.1.1.3.4.1.37 LDAP_SERVER_SET_CORRELATION_ID_OID 

The LDAP_SERVER_SET_CORRELATION_ID_OID control is used with any LDAP operation to provide an 
identifier for the operation that the DC can use for implementation-defined troubleshooting. 
Additionally, the value can be returned to the caller via the LDAP_SERVER_GET_STATS_OID control 

(section 3.1.1.3.4.1.6). 

When sending this control to a DC, the controlValue field MUST contain 16 bytes. If controlValue 
does not contain 16 bytes and the control is critical, the DC returns the error 
unavailableCriticalExtension / <unrestricted>. 

Sending this control to the DC does not cause the server to include any controls in its response. 

3.1.1.3.4.1.38 LDAP_SERVER_THREAD_TRACE_OVERRIDE_OID 

The LDAP_SERVER_THREAD_TRACE_OVERRIDE_OID control is used with any LDAP operation to 
provide an indication to the DC to perform additional implementation-defined troubleshooting. 

When sending this control to a DC, the controlValue field is omitted. 

Sending this control to the DC does not cause the server to include any controls in its response. 

3.1.1.3.4.2 LDAP Extended Operations 



 

245 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LDAP extended operations are an extensibility mechanism in version 3 of LDAP, as discussed in 
[RFC2251] section 4.12. The following sections describe the LDAP extended operations that are 

implemented by DCs in Windows Server 2003 and later (including ADAM). 

The LDAP extended operations supported by a DC are exposed as OIDs in the supportedExtension 

attribute of the rootDSE. Each OID is mapped to a human-readable name as shown in the following 
table. 

Extended operation name OID 

LDAP_SERVER_FAST_BIND_OID  1.2.840.113556.1.4.1781 

LDAP_SERVER_START_TLS_OID 1.3.6.1.4.1.1466.20037 

LDAP_TTL_REFRESH_OID 1.3.6.1.4.1.1466.101.119.1 

LDAP_SERVER_WHO_AM_I_OID 1.3.6.1.4.1.4203.1.11.3 

LDAP_SERVER_BATCH_REQUEST_OID 1.2.840.113556.1.4.2212 

Only Windows Server 2003 and later DCs support extended operations. The following table specifies 
the set of LDAP extended operations supported in applicable Windows Server releases or ADAM 
versions that support extended operations. 

The table contains information for the following products. See section 3 for more information. 

▪ D --> Windows Server 2003 

▪ DR2 --> Windows Server 2003 R2 

▪ G --> ADAM 

▪ J --> Windows Server 2008 

▪ M --> Windows Server 2008 R2 

▪ R --> Windows Server 2012 

▪ U --> Windows Server 2012 R2 

▪ X --> Windows Server 2016 

▪ A2 --> Windows Server v1709 

▪ D2 --> Windows Server v1803 

▪ G2 --> Windows Server v1809 

▪ J2 --> Windows Server 2019 

Extended operation name D, DR2 G, J, M 
R, U, X, A2, D2, G2, 
J2 

LDAP_SERVER_FAST_BIND_
OID  

X X X 

LDAP_SERVER_START_TLS_
OID 

X X X 

LDAP_TTL_REFRESH_OID X X X 

LDAP_SERVER_WHO_AM_I_  X X 



 

246 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Extended operation name D, DR2 G, J, M 
R, U, X, A2, D2, G2, 
J2 

OID 

LDAP_SERVER_BATCH_REQU
EST_OID 

  X 

Each of these operations is executed by performing an LDAP ExtendedRequest operation, specifying 
the OID of the extended operation as the requestName field in the ExtendedRequest (see [RFC2251] 

section 4.12). The server responds to an ExtendedRequest by returning an ExtendedResponse, the 
fields of which are also documented in section 4.12 of the RFC. 

3.1.1.3.4.2.1 LDAP_SERVER_FAST_BIND_OID 

The presence of this OID in the supportedExtension attribute indicates that the DC provides support 
for fast bind mode. In fast bind mode, the server validates (authenticates) the credentials of LDAP 
bind requests that are sent on the connection. However, unlike a regular (non–fast bind mode) bind, 

the DC performs authentication only. The DC does not perform authorization steps, such as computing 
the group memberships of the authenticated security principal. 

The LDAP_SERVER_FAST_BIND_OID operation puts the LDAP connection on which it was sent into fast 
bind mode on the DC. The server will reject this operation with the error unwillingToPerform / 
ERROR_DS_UNWILLING_TO_PERFORM if a successful bind has already been performed on the 
connection. 

Note that a client can retrieve the supportedExtension attribute from the root DSE without having first 
performed a bind (since the supportedExtension attribute is anonymously accessible, and LDAPv3 does 
not require a bind to be performed for anonymous access). A client MUST NOT specify any control 
other than LDAP_SERVER_EXTENDED_DN_OID when querying the root DSE anonymously. Thus, a 
client can determine if the server supports fast bind mode without first having to bind to the server. 

Only simple binds are accepted on a connection in this mode. All other types of bind operations are 

rejected with the error unwillingToPerform / ERROR_DS_INAPPROPRIATE_AUTH. The connection is 

always treated as if no bind had occurred for the purposes of all other LDAP operations; that is, the 
connection is treated as the anonymous user (in other words, an anonymous bind). 

To send this extended operation to the DC, the client sends an LDAP ExtendedRequest with the 
requestName field containing the operation's OID. The requestValue field is omitted. The server will 
return an ExtendedResponse with the responseName field containing the operation's OID and the 
response field omitted. 

The following shows a typical sequence of operations in fast bind: 

1. The client establishes an LDAP connection with the DC. 

2. (Optional) The client checks the supportedExtension attribute on the root DSE to confirm that the 
DC supports fast bind mode. 

3. The client sends the LDAP_SERVER_FAST_BIND_OID extended operation to the DC to put the 

LDAP connection into fast bind mode. 

4. The client performs one or more simple binds on the connection. 

3.1.1.3.4.2.2 LDAP_SERVER_START_TLS_OID 

This presence of this OID in the supportedExtension attribute indicates that the DC provides support 
for the LDAP StartStopTLS protocol as described in [RFC2830]. 



 

247 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

A connection cannot be put into TLS mode if it is using an integrity validation or encryption 
mechanism that was negotiated as part of a bind request (for example, a SASL-layer encryption 

mechanism). Such an attempt will be rejected with the error operationsError / ERROR_SUCCESS. 

3.1.1.3.4.2.3 LDAP_TTL_REFRESH_OID 

The presence of this OID in the supportedExtension attribute indicates that the DC provides support 
for dynamic objects as defined in [RFC2589]. This extended operation is sent to the DC to refresh a 
specific dynamic object that has already been created. The extended operation is documented in 
[RFC2589]. The refresh operation is treated as a modify operation (section 3.1.1.5.3) of the entryTTL 
attribute (section 3.1.1.4.5.12). 

If the modify is successful, the responseTtl field ([RFC2589] section 4.2) is populated from the 

dynamic object's entryTTL constructed attribute according to  section 3.1.1.4.5.12, using the msDS-
Entry-Time-To-Die (section 3.1.1.5.3.3) and DynamicObjectMinTTL (section 3.1.1.3.4.7) attributes, 
and honoring the dynamic object's requirements, as specified in section 6.1.7. 

3.1.1.3.4.2.4 LDAP_SERVER_WHO_AM_I_OID 

The presence of this OID in the supportedExtension attribute indicates that the DC provides support 

for the "Who Am I?" LDAP extended operation described in [RFC4532]. Active Directory implements 
this operation in conformance with that RFC. 

If the client is authenticated as a Windows security principal, the authzId returned in the response will 
contain the string "u:" followed by either (1) the NetBIOS domain name, followed by a backslash ("\"), 
followed by the sAMAccountName of the security principal, or (2) the SID of the security principal, in 
SDDL SID string format ([MS-DTYP] section 2.4.2.1). If the client is authenticated as an AD LDS 
security principal, the returned authzId will contain the string "dn:" followed by the DN of the security 

principal. If the client has not authenticated, the returned authzId will be the empty string. 

Active Directory does not implement Proxied Authentication Control of [RFC4370], so section 4.1 of 
[RFC4532] is not applicable to Active Directory. 

3.1.1.3.4.2.5 (Updated Section) LDAP_SERVER_BATCH_REQUEST_OID 

The presence of this OID in the supportedExtension attribute indicates that the DC provides support 
for the batched LDAP extended operation. In a batched LDAP extended operation, the DC accepts an 

extended operation that contains a sequence of LDAP messages (that is, LDAP operations) encoded 
and packed into the operation data and then operates on the individual messages sequentially. 

When sending this extended operation to the DC, the data field is set to the BER encoding of the 
following ASN.1 structure. 

 BatchRequestRequestValue ::= SEQUENCE of OCTET STRING 

Each OCTET STRING contains a BER encoded ([ITUX690]) LDAPMessage as defined in [RFC2251]. 

The DC MUST support the following values of the protocolOp field of an LDAP message. 

▪ searchRequest 

▪ modifyRequest 

▪ addRequest 

▪ deleteRequest 



 

248 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The DC MAY support any of the other legal values of the protocolOp field of an LDAP message. No 
applicable Windows Server releases support any of these other values. 

The DC MUST accept the following controls (defined in section 3.1.1.3.4.1) as part of the encoded 
LDAPMessage: 

▪ LDAP_SERVER_DOMAIN_SCOPE_OID 

▪ LDAP_SERVER_EXTENDED_DN_OID 

▪ LDAP_SERVER_GET_STATS_OID 

▪ LDAP_SERVER_PERMISSIVE_MODIFY_OID 

▪ LDAP_SERVER_SD_FLAGS_OID 

▪ LDAP_SERVER_SEARCH_OPTIONS_OID 

▪ LDAP_SERVER_SHOW_DELETED_OID 

▪ LDAP_SERVER_DN_INPUT_OID 

▪ LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID 

▪ LDAP_SERVER_SHOW_RECYCLED_OID 

The DC MAY support other controls. No applicable Windows Server releases support any other 
controls. 

If the DC returns any return code for the batched LDAP extended operation other than success / 

<unrestricted>, then the DC returns no data for the batched LDAP extended operation. 

If the DC returns any data for the batched LDAP extended operation, the data is set to the BER 
encoding of the following ASN.1 structure. 

 BatchRequestResponseValue ::= SEQUENCE of LDAPMessage 

If the DC receives an LDAPMessage containing unsupported protocolOp values or controls, or if the 
data for the batched LDAP extended operation is not a legal BER encoding as required, the DC 
mustMUST return the error protocolError / <unrestricted>. 

If the number of individual messages in the return data exceeds the DC's limit, the overall batched 
LDAP extended operation returns the error sizeLimitExceeded / <unrestricted>. This limit is controlled 
by the MaxBatchReturnMessages LDAP policy (see section 3.1.1.3.4.6). 

If the amount of time spent processing the batched LDAP extended operation exceeds the DC's limit, 

the overall batched LDAP extended operation returns the error timeLimitExceeded / 
ERROR_INVALID_PARAMETER. This limit is implementation-defined. In Windows Server 2012 and later 
this limit is controlled by the MaxQueryDuration LDAP policy (see section 3.1.1.3.4.6). 

If any operation in a batched LDAP extended operation results in an LDAP return code other than 
success / <unrestricted>, then all subsequent operations in that batched LDAP operation are not 
performed and all prior operations are "rolled back"; that is, no changes that would have been caused 
by the operations are committed to the DC's state. Note that, other than where explicitly stated, the 

return codes of these individual operations do not affect the return code of the batched LDAP extended 
operation. 

If an individual operation in the batched LDAP extended operation returns busy / <unrestricted>, then 
the batched LDAP extended operation returns the return code generated by that individual operation. 



 

249 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

If no other error conditions are present, the DC returns the error code success / <unrestricted>. 

If the DC returns any return code for the batched LDAP extended operation other than success / 
<unrestricted>, then all operations in that batched LDAP operation are "rolled back"; that is, no 
changes caused by the operations are committed to the DC's state. 

The returned data for the batched LDAP extended operation is the sequence containing the return 
messages generated by performing the individual operations encoded in the incoming data. Note 
especially that if an individual operation fails, causing the whole sequence to be interrupted and 
"rolled back", the return sequence of messages includes all messages generated up to and including 
the message returning the individual operation's failure code. In this case, the returned data can show 
successful modifications to DC state, but since the final message in the incoming sequence of 
operations was not completed with a successful return code, these messages indicate only that the 

operations that modify the DC state would have succeeded and been committed if they had been the 
last operation in the sequence of messages; that is, these messages indicate that the operations up to 
the operation that failed would have succeeded. 

3.1.1.3.4.3 LDAP Capabilities 

The following sections specify the capabilities exposed by DCs on the supportedCapabilities attribute of 

the rootDSE. Capabilities are exposed in that attribute as OIDs, each of which is mapped to a human-
readable name, as shown in the following table. 

Capability name OID 

LDAP_CAP_ACTIVE_DIRECTORY_OID 1.2.840.113556.1.4.800 

LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID 1.2.840.113556.1.4.1791 

LDAP_CAP_ACTIVE_DIRECTORY_V51_OID 1.2.840.113556.1.4.1670 

LDAP_CAP_ACTIVE_DIRECTORY_ADAM_DIGEST_OID 1.2.840.113556.1.4.1880 

LDAP_CAP_ACTIVE_DIRECTORY_ADAM_OID 1.2.840.113556.1.4.1851 

LDAP_CAP_ACTIVE_DIRECTORY_PARTIAL_SECRETS_OID 1.2.840.113556.1.4.1920 

LDAP_CAP_ACTIVE_DIRECTORY_V60_OID 1.2.840.113556.1.4.1935 

LDAP_CAP_ACTIVE_DIRECTORY_V61_R2_OID 1.2.840.113556.1.4.2080 

LDAP_CAP_ACTIVE_DIRECTORY_W8_OID 1.2.840.113556.1.4.2237 

Not all applicable Windows Server releases and ADAM versions support all the LDAP capabilities. The 
following table indicates which capabilities are supported. 

The table contains information for the following products. See section 3 for more information. 

▪ A --> Windows 2000 

▪ C --> Windows 2000 Server SP3 

▪ D --> Windows Server 2003 

▪ DR2 --> Windows Server 2003 R2 

▪ H --> ADAM RTW 

▪ I --> ADAM SP1 

▪ K --> Windows Server 2008 AD DS 



 

250 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ L --> Windows Server 2008 AD LDS 

▪ N --> Windows Server 2008 R2 AD DS 

▪ P --> Windows Server 2008 R2 AD LDS 

▪ S --> Windows Server 2012 AD DS 

▪ T --> Windows Server 2012 AD LDS 

▪ V --> Windows Server 2012 R2 AD DS 

▪ W --> Windows Server 2012 R2 AD LDS 

▪ Y --> Windows Server 2016 AD DS 

▪ Z --> Windows Server 2016 AD LDS 

▪ B2 --> Windows Server v1709 AD DS 

▪ C2 --> Windows Server v1709 AD LDS 

▪ E2 --> Windows Server v1803 AD DS 

▪ F2 --> Windows Server v1803 AD LDS 

▪ H2 --> Windows Server v1809 AD DS 

▪ I2 --> Windows Server v1809 AD LDS 

▪ K2 --> Windows Server 2019 AD DS 

▪ L2 --> Windows Server 2019 AD LDS 

Capability name A C 

D, 
DR
2 H I K L N P 

S, 
V, 
Y, 
B2
, 
E2, 
H2
, 
K2 

T, 
W, 
Z, 
C2
, 
F2
, 
I2, 
L2 

LDAP_CAP_ACTIVE_DIRECTORY_OID X X X   X  X  X  

LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID  X X X X X X X X X X 

LDAP_CAP_ACTIVE_DIRECTORY_V51_OID   X   X X X X X X 

LDAP_CAP_ACTIVE_DIRECTORY_ADAM_DIGEST_OID     X
* 

 X
* 

 X
* 

 X* 

LDAP_CAP_ACTIVE_DIRECTORY_ADAM_OID    X X  X  X  X 

LDAP_CAP_ACTIVE_DIRECTORY_PARTIAL_SECRETS_
OID 

     X
* 

 X
* 

 X*  

LDAP_CAP_ACTIVE_DIRECTORY_V60_OID      X X X X X X 

LDAP_CAP_ACTIVE_DIRECTORY_V61_R2_OID        X X X X 

LDAP_CAP_ACTIVE_DIRECTORY_W8_OID          X X 



 

251 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

* These capabilities are only exposed by the server in certain conditions. For each of these conditional 
capabilities, the section describing the capability describes the conditions that apply. 

3.1.1.3.4.3.1 LDAP_CAP_ACTIVE_DIRECTORY_OID 

The presence of this capability indicates that the LDAP server is running Active Directory and is 
running as AD DS. 

3.1.1.3.4.3.2 LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID 

The presence of this capability indicates that the LDAP server on the DC is capable of signing and 
sealing on an NTLM authenticated connection, and that the server is capable of performing subsequent 
binds on a signed or sealed connection. 

3.1.1.3.4.3.3 LDAP_CAP_ACTIVE_DIRECTORY_V51_OID 

On an Active Directory DC operating as AD DS, the presence of this capability indicates that the LDAP 

server is running at least the Windows Server 2003 version of Active Directory. 

On an Active Directory DC operating as AD LDS, the presence of this capability indicates that the LDAP 
server is running at least the Windows Server 2008 version of Active Directory. 

3.1.1.3.4.3.4 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_DIGEST_OID 

On a DC operating as AD LDS, the presence of this capability indicates that the DC accepts DIGEST-
MD5 binds for AD LDS security principals (section 5.1.1.5). An AD LDS DC's DIGEST-MD5 bind 
functionality depends upon the value of the ADAMDisableSSI configurable setting as specified in 
section 3.1.1.3.4.7. 

3.1.1.3.4.3.5 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_OID 

The presence of this capability indicates that the LDAP server is running Active Directory as AD LDS. 

3.1.1.3.4.3.6 LDAP_CAP_ACTIVE_DIRECTORY_PARTIAL_SECRETS_OID 

On an Active Directory DC operating as AD DS, the presence of this capability indicates that the DC is 
an RODC. 

3.1.1.3.4.3.7 LDAP_CAP_ACTIVE_DIRECTORY_V60_OID 

The presence of this capability indicates that the LDAP server is running at least the Windows Server 
2008 version of Active Directory. 

3.1.1.3.4.3.8 LDAP_CAP_ACTIVE_DIRECTORY_V61_R2_OID 

The presence of this capability indicates that the LDAP server is running at least the Windows Server 
2008 R2 version of Active Directory. 

3.1.1.3.4.3.9 LDAP_CAP_ACTIVE_DIRECTORY_W8_OID 

The presence of this capability indicates that the LDAP server is running at least the Windows Server 
2012 version of Active Directory. 

3.1.1.3.4.4 LDAP Matching Rules (extensibleMatch) 

The following sections describe the matching rules supported by DCs when performing LDAP search 

requests. Unlike, for example, extended controls and extended operations, there is no attribute 
exposed by the DC that specifies which matching rules it supports. The identifiers for these matching 



 

252 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

rules are used in an extensibleMatch clause in the filter portion of a SearchRequest, as described in 
[RFC2251] section 4.5.1. Matching rules are identified by an OID that corresponds to a human-

readable name, as shown in the following table. 

Capability name  OID  

LDAP_MATCHING_RULE_BIT_AND 1.2.840.113556.1.4.803 

LDAP_MATCHING_RULE_BIT_OR 1.2.840.113556.1.4.804 

LDAP_MATCHING_RULE_TRANSITIVE_EVAL 1.2.840.113556.1.4.1941 

LDAP_MATCHING_RULE_DN_WITH_DATA 1.2.840.113556.1.4.2253 

Windows 2000, Windows Server 2003, Windows Server 2003 R2, and ADAM support the 

LDAP_MATCHING_RULE_BIT_AND and LDAP_MATCHING_RULE_BIT_OR matching rules. Windows 
Server 2008 and later support those two rules and the LDAP_MATCHING_RULE_TRANSITIVE_EVAL 
rule, in both AD DS and AD LDS. Windows Server 2012 R2 and later support those three rules and the 

LDAP_MATCHING_RULE_DN_WITH_DATA rule, in both AD DS and AD LDS. 

3.1.1.3.4.4.1 LDAP_MATCHING_RULE_BIT_AND 

This rule is equivalent to a bitwise "AND" operation. When this matching rule is used as a clause in a 

query filter, the clause is satisfied only if all the bits set to '1' in the value included in the clause 
correspond to bits set to '1' in the value stored in the directory. 

3.1.1.3.4.4.2 LDAP_MATCHING_RULE_BIT_OR 

This rule is equivalent to a bitwise "OR" operation. When this matching rule is used as a clause in a 
query filter, the clause is satisfied only if at least one of the bits set to '1' in the value included in the 
clause corresponds to a bit set to '1' in the value stored in the directory. 

3.1.1.3.4.4.3 (Updated Section) LDAP_MATCHING_RULE_TRANSITIVE_EVAL 

This rule provides recursive search of a link attribute. A filter F of the form "(A: 
1.2.840.113556.1.4.1941:=V)", where A is a link attribute and V is a value, evaluates to TrueTRUE for 
an object whose DN is D if the following method EvalTransitiveFilter(A, V, D) returns trueTRUE, and 
FalseFALSE if the method returns falseFALSE. If A is not a link attribute, the filter F evaluates to 
Undefined. 

EvalTransitiveFilter(A: attribute, V: value, D: DN) 

▪ If A is of Object(DN-String), Object(DN-Binary), Object(OR-Name), or Object(Access-Point) 
syntax, let V' equal the object_DN portion of V. Otherwise, let V' equal V. 

▪ Return the value of EvalTransitiveFilterHelper(A, V', D, {}) 

EvalTransitiveFilterHelper(A: attribute, V': value, ToVisit: DN, Visited: SET OF DN) 

▪ If A is of Object(DN-String), Object(DN-Binary), Object(OR-Name), or Object(Access-Point) 

syntax, let C be the set of the object_DN components of the values of ToVisit.A. Otherwise, let C 
be the set of the values of ToVisit.A. Note that C is a set of DNs. 

▪ If V' is in C, return trueTRUE. 

▪ Let Visited' equal the Visited set plus {ToVisit}. 

▪ For each DN NextToVisit in C 

▪ If NextToVisit is in Visited, do nothing. 



 

253 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Let Result = EvalTransitiveFilterHelper(A, V', NextToVisit, Visited') 

▪ If Result is trueTRUE, return trueTRUE. 

▪ Return falseFALSE. 

3.1.1.3.4.4.4 (Updated Section) LDAP_MATCHING_RULE_DN_WITH_DATA 

This rule provides a way to match on portions of values of syntax Object(DN-String) and Object(DN-
Binary). 

Let F be a filter of the form "(A: 1.2.840.113556.1.4.2253:=V)", where A is a link attribute and V is a 
value of syntax Object(DN-String) (section 3.1.1.2.2.2.1) or Object(DN-Binary) (section 
3.1.1.2.2.2.3). This filter evaluates to TrueTRUE for an object whose DN is D if the method defined 
below, EvalDNWithDataFilter(A,V,D), returns trueTRUE, and FalseFALSE if the method returns 

falseFALSE. If A is not of syntax Object(DN-String) or Object(DN-Binary), the filter F evaluates to 
Undefined. 

EvalDNWithDataFilter(A: attribute, V: value, D: DN) 

▪ For either syntax, let O be the DN portion of the value V and B be the string or binary portion of 
the value V. If the attribute is of syntax Object(DN-String), B is the value of the string considered 
strictly as the sequence of bytes of the string. Note that O can be the rootDSE. Note also that B 

can have 0 length. 

▪ For every V' where V' is a value of attribute A on object D: 

▪ Let O' be the DN portion of value V' and let B' be the string or binary portion of the value V'. 

▪ If O is not equal to O' and O is not equal to the rootDSE, continue processing other values of 
V'. 

▪ If B is not equal to the initial bytes of B', continue processing other values of V'. Note 
especially that only byte values are used in this comparison. No special handling of B as a 

string is performed (for example, no case-insensitivity, locale specific comparisons, etc.). 

▪ Return trueTRUE. 

▪ If this method does not return trueTRUE, it returns falseFALSE. 

3.1.1.3.4.5 LDAP SASL Mechanisms 

The following sections describe the SASL mechanisms that are implemented by DCs. SASL is described 
in [RFC2222], and the usage of SASL and other authentication methods in LDAP is described in 

[RFC2829]. The SASL mechanisms supported by a DC are exposed as strings in the 
supportedSASLMechanisms attribute of the rootDSE. 

Not all applicable Windows Server releases and ADAM versions support all the LDAP SASL 
mechanisms. The following table indicates where the SASL mechanisms are supported. 

Mechanism 
name Windows 2000 Windows Server 2003 and later AD LDS 

GSSAPI  X  X X 

GSS-SPNEGO  X  X X 

EXTERNAL   X X 

DIGEST-MD5   X X 



 

254 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Additional details of LDAP authentication in Active Directory are in section 5.1. 

3.1.1.3.4.5.1 GSSAPI 

The presence of the "GSSAPI" string value in the supportedSASLMechanisms attribute indicates that 

the DC accepts the GSSAPI security mechanism for LDAP bind requests. The GSSAPI mechanism for 
SASL is described in [RFC2222] section 7.2, and GSSAPI is described in more detail in [RFC2078]. 
Active Directory supports Kerberos when using GSSAPI; see [MS-KILE] and [RFC1964] for details of 
Kerberos. 

3.1.1.3.4.5.2 GSS-SPNEGO 

The presence of the "GSS-SPNEGO" string value in the supportedSASLMechanisms attribute indicates 

that the DC accepts the GSS-SPNEGO security mechanism for LDAP bind requests. This mechanism is 
documented in [RFC4178]. Active Directory supports Kerberos (see [MS-KILE]) and NTLM (see [MS-
NLMP]) when using GSS-SPNEGO. 

3.1.1.3.4.5.3 EXTERNAL 

The presence of the "EXTERNAL" string value in the supportedSASLMechanisms attribute indicates 
that the DC accepts external security mechanisms for LDAP bind requests. The EXTERNAL SASL 

mechanism is described in [RFC2222] section 7.4, and [RFC2829]. In the case of DCs, the external 
authentication information that is used to validate the identity of the client making the bind request 
comes from the client certificate presented by the client during the SSL/TLS handshake that occurs in 
response to the client sending an LDAP_SERVER_START_TLS_OID extended operation. When the 
server receives an EXTERNAL SASL bind following a successful LDAP_SERVER_START_TLS_OID 
extended operation in which a valid certificate was presented by the client, the server causes the 

connection to be bound as the identity represented by that certificate. 

3.1.1.3.4.5.4 DIGEST-MD5 

The presence of the "DIGEST-MD5" string value in the supportedSASLMechanisms attribute 

indicates that the DC accepts the digest security mechanism for LDAP bind requests. The usage of 
digest authentication with LDAP is documented in [RFC2829] section 6.1, and in [RFC2831]. 

3.1.1.3.4.6 (Updated Section) LDAP Policies 

The DC's LDAP interface supports various policies that can be configured by an administrator. The 
names of these policies are listed on the supportedLDAPPolicies attribute on the rootDSE. These 
policies are listed in the following table. The table also lists which applicable Windows Server releases 
and ADAM versions support which policies. 

The table contains information for the following products. See section 3 for more information. 

▪ A --> Windows 2000 

▪ D --> Windows Server 2003 

▪ DR2 --> Windows Server 2003 R2 

▪ G --> ADAM 

▪ J --> Windows Server 2008 

▪ M --> Windows Server 2008 R2 

▪ R --> Windows Server 2012 

▪ U --> Windows Server 2012 R2 



 

255 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ X --> Windows Server 2016 

▪ A2 --> Windows Server v1709 

▪ D2 --> Windows Server v1803 

▪ G2 --> Windows Server v1809 

▪ J2 --> Windows Server 2019 

Policy 

name A D, DR2, G, J M R U 

X, A2, D2, G2, 

J2 

MaxActiveQu
eries 

X*      

InitRecvTime
out 

X X X X X X 

MaxConnecti
ons 

X X X X X X 

MaxConnIdle
Time 

X X X X X X 

MaxDatagra
mRecv 

X X X X X X 

MaxNotificati
onPerConn 

X X X X X X 

MaxPoolThre
ads 

X X X X X X 

MaxReceiveB
uffer 

X X X X X X 

MaxPageSize X X X X X X 

MaxQueryDu
ration 

X X X X X X 

MaxResultSe
tSize 

X X X X X X 

MaxTempTa
bleSize 

X X X X X X 

MaxValRang
e 

 X X X X X 

MaxResultSe
tsPerConn 

  X X X X 

MinResultSet
s 

  X X X X 

MaxBatchRet
urnMessages 

   X X X 

MaxPercentD
irSyncReque
st 

    X X 



 

256 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 

* Support for this policy was removed in Windows Server 2003. 

** Support for this policy exists only on Windows 11 v22H2 and later. 

LDAP policies are specified using the lDAPAdminLimits attribute. The lDAPAdminLimits attribute of a 
queryPolicy object is a multivalued string where each string value encodes a name-value pair. In the 
encoding, the name and value are separated by an "=". For example, the encoding of the name 
"MaxActiveQueries" with value "0" is "MaxActiveQueries=0". Each name is the name of an LDAP 

policy, and the value is a value of that policy. 

There can be multiple queryPolicy objects in a forest. A DC determines the queryPolicy object that 
contains its policies according to the following logic: 

▪ If the queryPolicyObject attribute is present on the DC's nTDSDSA object, the DC uses the 

queryPolicy object referenced by it. 

▪ Otherwise, if the queryPolicyObject attribute is present on the nTDSSiteSettings object for the site 
to which the DC belongs, the DC uses the queryPolicy object referenced by it. 

▪ Otherwise, the DC uses the queryPolicy object whose DN is "CN=Default Query Policy,CN=Query-
Policies" relative to the nTDSService object (for example, "CN=Default Query Policy, CN=Query-
Policies, CN=Directory Service, CN=Windows NT, CN=Services" relative to the root of the config 
NC). 

The effect of setting an LDAP policy is outside the state model. The effect of each policy, as well as the 
default value used if the policy's value is not specified in an lDAPAdminLimits attribute, is shown in the 
following table. 

Policy name 
Default 
value Description 

MaxActiveQueries 20 The maximum number of concurrent LDAP search operations that 
are permitted to run at the same time on a DC. When this limit is 
reached, the DC returns a busy / 
ERROR_DS_ADMIN_LIMIT_EXCEEDED error. 

InitRecvTimeout  120 The maximum time, in seconds, that a DC waits for the client to 
send the first request after the DC receives a new connection. If the 
client does not send the first request in this amount of time, the 
server disconnects the client. 

Policy 
name A D, DR2, G, J M R U 

X, A2, D2, G2, 
J2 

MaxValRang
eTransitive 

    X X 

ThreadMemo
ryLimit 

    X X 

SystemMem
oryLimitPerc
ent 

    X X 

MaxDirSync
Duration 

     X 

SecurityDesc
riptorWarnin
gSize** 

      



 

257 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Policy name 
Default 
value Description 

MaxConnections 5000 The maximum number of simultaneous LDAP connections that a DC 
will accept. If a connection comes in after the DC reaches this limit, 
the DC will drop another connection. The connection that is selected 
to drop is not constrained by the protocol and is determined based 
on the implementation. 

MaxConnIdleTime 900 The maximum time, in seconds, that the client can be idle before 
the DC closes the connection. If a connection is idle for more than 
this time, the DC disconnects the client. 

MaxDatagramRecv 4096 The maximum size, in bytes, of a UDP datagram request that a DC 
will process. Requests that are larger than this value are ignored by 

the DC. 

MaxNotificationPerConn 5 The maximum number of outstanding notification search requests 
(using the LDAP_SERVER_NOTIFICATION_OID control) that the DC 
permits on a single connection. When this limit is reached, the 
server returns an adminLimitExceeded / 
ERROR_DS_ADMIN_LIMIT_EXCEEDED error  to any new notification 
searches that are requested on that connection. 

MaxPoolThreads 4 The maximum number of threads per processor that a DC dedicates 
to listening for network input or output. This value also determines 
the maximum number of threads per processor that can work on 
LDAP requests at the same time. 

MaxReceiveBuffer 10,485,
760 

The maximum size, in bytes, of a request that the server will 
accept. If the server receives a request that is larger than this, it 
will drop the connection. 

MaxPageSize 1000 The maximum number of objects that are returned in a single 
search result, independent of how large each returned object is. To 
perform a search where the result might exceed this number of 
objects, the client mustMUST specify the paged search control. 

MaxQueryDuration 120 The maximum time, in seconds, that a DC will spend on a single 
search or batched LDAP extended operation (in Windows Server 
2012 and later). When this limit is reached, the DC returns a 
timeLimitExceeded / ERROR_INVALID_PARAMETER error. 

MaxResultSetSize 262,144 The maximum number of bytes that a DC stores to optimize the 
individual searches that make up a paged search. The data that is 
stored is outside the state model and is implementation-specific. 

MaxTempTableSize 10,000 The maximum number of rows that a DC will create in a temporary 
database table to hold intermediate results during query processing. 

MaxValRange 1500 The maximum number of values that can be retrieved from a 
multivalued attribute in a single search request. Windows 2000 DCs 
do not support this policy and instead always use a setting of 1000 
values. 

MaxResultSetsPerConn 10 The maximum number of individual paged searches per LDAP 
connection for which a DC will store optimization data. The data 
that is stored is outside the state model and is implementation-
specific. 

MinResultSets 3 The minimum number of individual paged searches for which a DC 
will store optimization data. The data that is stored is outside the 
state model and is implementation-specific. 



 

258 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Policy name 
Default 
value Description 

MaxBatchReturnMessages 1100 The maximum number of messages that can be returned when 
processing an LDAP_SERVER_BATCH_REQUEST_OID extended 
operation (section 3.1.1.3.4.2.5). 

MaxPercentDirSyncReque
sts 

100 The maximum percentage of LDAP threads that can be performing a 
search using the LDAP_SERVER_DIRSYNC_OID or 
LDAP_SERVER_DIRSYNC_EX_OID at one time. 

MaxValRangeTransitive 4500 The maximum number of values that can be retrieved from one of 
the following multivalued, constructed attributes in a single search 
request: 

 

3.1.1.4.5.19 - tokenGroups, tokenGroupsNoGCAcceptable 

3.1.1.4.5.42 - msds-tokenGroupNames, msds-
tokenGroupNamesNoGCAcceptable 

3.1.1.4.5.43 - msds-tokenGroupNamesGlobalAndUniversal 

3.1.1.4.5.20 - tokenGroupsGlobalAndUniversal 

 

This policy is effective only when the 
fTreatTokenGroupsAsLDAPTransitiveAttribute dsHeuristic is TRUE 
(section 6.1.1.2.4.1.2). 
 
Note: The ability to use LDAP limits to configure the maximum 
number of objects retrievable by the msds-TokenGroup* family 
constructed attributes, is supported in Windows 11 v22H2 and later, 
and in the operating systems specified in [MSKB-5011543], [MSKB-
5011551], [MSKB-5011558], and [MSKB-5011563], each with the 
corresponding KB package installed. 
 
This policy is significant on Windows 10 v1903 operating system 
and later and Windows Server v1903 and later. It otherwise has no 
significance. 

ThreadMemoryLimit none This policy affects implementation-specific memory allocation and 
limits. 

SystemMemoryLimitPerce
nt 

none This policy affects implementation-specific memory allocation and 
limits. 

MaxDirSyncDuration 60 The maximum time, in seconds, that a DC will spend on a single 
search when using the LDAP_SERVER_DIRSYNC_OID or 
LDAP_SERVER_DIRSYNC_EX_OID controls. When this limit is 
reached, the DC returns a timeLimitExceeded / 
ERROR_INVALID_PARAMETER error. 

SecurityDescriptorWarnin

gSize 

61,440 This policy controls when warning events will be logged for 

originating writes to the ntSecurityDescriptor attribute that meet 
or exceed the configured size value. 

 

3.1.1.3.4.7 LDAP Configurable Settings 

A forest supports several administrator-controlled settings that affect LDAP. The name of each setting 
is included in the supportedConfigurableSettings attribute on the rootDSE. These settings are listed in 

the following table. The table also lists which applicable Windows Server releases and ADAM versions 
support which settings. The settings are stored on the msDS-Other-Settings attribute of the directory 
service object, as specified in section 6.1.1.2.4.1.1. For more information, see [ADDLG]. 



 

259 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The table contains information for the following products. See section 3 for more information. 

▪ D --> Windows Server 2003 

▪ E --> Windows Server 2003 with SP1 

▪ DR2 --> Windows Server 2003 R2 

▪ H --> ADAM RTW 

▪ I --> ADAM SP1 

▪ K --> Windows Server 2008 AD DS 

▪ L --> Windows Server 2008 AD LDS 

▪ N --> Windows Server 2008 R2 AD DS 

▪ P --> Windows Server 2008 R2 AD LDS 

▪ S --> Windows Server 2012 AD DS 

▪ T --> Windows Server 2012 AD LDS 

▪ V --> Windows Server 2012 R2 AD DS 

▪ W --> Windows Server 2012 R2 AD LDS 

▪ Y --> Windows Server 2016 AD DS 

▪ Z --> Windows Server 2016 AD LDS 

▪ B2 --> Windows Server v1709 AD DS 

▪ C2 --> Windows Server v1709 AD LDS 

▪ E2 --> Windows Server v1803 AD DS 

▪ F2 --> Windows Server v1803 AD LDS 

▪ H2 --> Windows Server v1809 AD DS 

▪ I2 --> Windows Server v1809 AD LDS 

▪ K2 --> Windows Server 2019 AD DS 

▪ L2 --> Windows Server 2019 AD LDS 

▪ M2 --> Windows Server v1903 AD DS 

▪ N2 --> Windows Server v1903 AD LDS 

Setting name D 
DR2, 
E H I 

K, N, S, 
V, Y, B2, 
E2, H2, 
K2 

L, P, T, 
W, Z, C2, 
F2, I2, 
L2 

E2, F2, 
H2, I2, 
K2, L2, 
M2, N2  

DynamicObjectDefaultTTL X X X X X X X 

DynamicObjectMinTTL X X X X X X X 

DisableVLVSupport  X  X X X X 



 

260 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Setting name D 
DR2, 
E H I 

K, N, S, 
V, Y, B2, 
E2, H2, 
K2 

L, P, T, 
W, Z, C2, 
F2, I2, 
L2 

E2, F2, 
H2, I2, 
K2, L2, 
M2, N2  

ADAMAllowADAMSecurityPrincipalsInConfigPartition    X  X X 

ADAMDisableLogonAuditing   X X  X X 

ADAMDisablePasswordPolicies   X X  X X 

ADAMDisableSPNRegistration    X  X X 

ADAMDisableSSI    X  X X 

ADAMLastLogonTimestampWindow   X X  X X 

MaxReferrals   X X X X X 

ReferralRefreshInterval   X X X X X 

RequireSecureProxyBind   X X  X X 

RequireSecureSimpleBind   X X  X X 

SelfReferralsOnly   X X X X X 

DenyUnauthenticatedBind       X 

The DynamicObjectDefaultTTL is the default entryTTL value for a new dynamic object. The value is in 
seconds and defaults to 86400. The minimum value is 1 and the maximum value is 31557600 (one 
year). 

The DynamicObjectMinTTL is the minimum valid entryTTL value for a new dynamic object. The value is 
in seconds and defaults to 900. The minimum value is 1 and the maximum value is 31557600 (one 

year). 

When the DisableVLVSupport setting is set to 1, the DC excludes the OIDs for the 
LDAP_CONTROL_VLVREQUEST and LDAP_CONTROL_VLVRESPONSE controls from the 
supportedControl attribute of the rootDSE. Additionally, if the LDAP_CONTROL_VLVREQUEST control is 
attached to an incoming LDAP request and is not marked as critical, the DC ignores the control. If the 
control is attached to an incoming LDAP request and is marked critical, the DC fails the request with 
the error unavailableCriticalExtension / ERROR_INVALID_PARAMETER. If the DisableVLVSupport 

setting is not specified, it defaults to 0. 

When ADAMAllowADAMSecurityPrincipalsInConfigPartition equals 1, security principals (that is, objects 
that have an objectSid attribute) can be created in the Config NC. When equal to 0, attempts to create 
a security principal in the Config NC are rejected with the error unwillingToPerform / 
ERROR_DS_CANT_CREATE_IN_NONDOMAIN_NC. If 
ADAMAllowADAMSecurityPrincipalsInConfigPartition is not specified, it defaults to 0. 

The effect of ADAMDisableLogonAuditing is outside the state model. When ADAMDisableLogonAuditing 
equals 1, the DC does not generate audit events when an AD LDS security principal (section 5.1.1.5) 
authenticates to the server. If set to 0, the DC attempts to generate audit events when an AD LDS 
security principal authenticates to the server; policy on the computer running the DC determines 
whether audit events are actually generated. If ADAMDisableLogonAuditing is not specified, it defaults 
to 0.  

When ADAMDisablePasswordPolicies does not equal 1 and an LDAP bind is performed or a password is 

changed on an AD LDS security principal, the DC enforces the current password policy in effect on the 
AD LDS server as reported by SamrValidatePassword ([MS-SAMR] section 3.1.5.13.7). When 



 

261 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

ADAMDisablePasswordPolicies is set to 1, the DC does not enforce any such policies. If 
ADAMDisablePasswordPolicies is not explicitly specified, it defaults to 0. 

When ADAMDisableSPNRegistration equals 1, a DC running as AD LDS does not register its SPNs (2) 
on the servicePrincipalName of the computer object as described in [MS-DRSR] section 2.2.2. When 

ADAMDisableSPNRegistration equals 0, a DC running as AD LDS performs SPN (2) registration as 
described in that document. If ADAMDisableSPNRegistration is not explicitly specified, it defaults to 0. 

When ADAMDisableSSI equals 1, a DC running as AD LDS does not support DIGEST-MD5 
authentication for AD LDS security principals. If ADAMDisableSSI equals 0, a DC running as AD LDS 
supports DIGEST-MD5 for AD LDS security principals. ADAMDisableSSI has no effect on a DC running 
as AD DS. If ADAMDisableSSI is not explicitly specified, it defaults to 0. 

ADAMLastLogonTimestampWindow specifies how frequently, in days, AD LDS updates the 

lastLogonTimestamp attribute when an AD LDS security principal (see section 5.1.1.5) authenticates 
to the server. For an AD LDS security principal O, if a successful LDAP bind as that security principal is 
performed at time T, and the difference between O!lastLogonTimestamp and T is greater than 
ADAMLastLogonTimestampWindow days, then the AD LDS DC sets O!lastLogonTimestamp to T. 

Otherwise, the AD LDS DC leaves O!lastLogonTimestamp unchanged. If 
ADAMLastLogonTimestampWindow is not explicitly specified, it defaults to 7. 

MaxReferrals specifies the maximum number of LDAP URLs that the DC will include in a referral or 
continuation reference. The default value is 3. 

The effect of ReferralRefreshInterval is outside the state model. A Windows DC maintains an in-
memory cache of referral information so that it can return referrals and continuation references 
without consulting the directory state. ReferralRefreshInterval specifies how frequently, in minutes, a 
DC refreshes the in-memory cache from the directory state. The default value is 5. 

When RequireSecureProxyBind is set to 1, AD LDS will reject (with the error confidentialityRequired / 

<unrestricted>) an LDAP simple bind request that requests authentication as an AD LDS bind proxy 
(section 5.1.1.5) if that request is not performed on an SSL/TLS-encrypted or SASL-protected 
connection with a cipher strength of at least 128 bits. If RequireSecureProxyBind is set to 0, no such 
restriction is imposed. If RequireSecureProxyBind is not explicitly specified, it defaults to 1. 

When RequireSecureSimpleBind is set to 1, AD LDS will reject (with the error confidentialityRequired / 
<unrestricted>) an LDAP simple bind request that requests authentication as an AD LDS security 
principal (section 5.1.1.5) if that request is not performed on an SSL/TLS-encrypted or SASL-

protected connection with a cipher strength of at least 128 bits. If RequireSecureSimpleBind is set to 
0, no such restriction is imposed. If RequireSecureSimpleBind is not explicitly specified, it defaults to 
0. 

If SelfReferralsOnly is set to 1, then the DC will only return referrals and continuation references that 
refer to itself. It will not return referrals and continuation references to NCs of which it does not have 
an NC replica. Referrals and continuation references to NCs of which it does have an NC replica will 

name itself as the referred-to server. 

When DenyUnauthenticatedBind is set to 1, AD LDS will reject (with the error unwillingToPerform / 
<unrestricted>) an LDAP simple bind request that specifies a zero-length password. If 

DenyUnauthenticatedBind is set to 0, no such restriction is imposed. If DenyUnauthenticatedBind is 
not explicitly specified, it defaults to 0. 

3.1.1.3.4.8 LDAP IP-Deny List 

The IP Deny list specifies a set of IP addresses from which the DC will reject incoming LDAP 
connection requests. The IP Deny list is stored in the lDAPIPDenyList attribute on the queryPolicy 
object. The DC retrieves the lDAPIPDenyList attribute from the same queryPolicy object that it 
retrieves the lDAPAdminLimits attribute from in section 3.1.1.3.4.6 



 

262 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The lDAPIPDenyList attribute is a multivalued attribute. Each value of the attribute is a string in the 
following form 

X.X.X.X M.M.M.M 

where X.X.X.X is an IP address and M.M.M.M is a network mask. A connection from an IP address 

Y.Y.Y.Y will be rejected if the bitwise AND of Y.Y.Y.Y and M.M.M.M equals X.X.X.X. 

For example, the value "157.59.132.0 255.255.255.0" would cause requests from IP addresses 
157.59.132.0 through 157.59.132.255 to be rejected. The value "157.59.132.245 255.255.255.255" 
would reject only IP address 157.59.132.245. 

The IP Deny list is only supported on IPv4 connections. Active Directory does not support this 
mechanism on IPv6 connections. 

3.1.1.4 Reads 

References: 

▪ [RFC2251] 

▪ Special Objects and Forest Requirements: section 6.1 

▪ [MS-DRSR] 

▪ [XMLSCHEMA2/2] 

▪ Quota Calculation: section 3.1.1.5 

▪ Range Retrieval of Attribute Values: section 3.1.1.3 

▪ Referrals in LDAPv2 and LDAPv3: section 3.1.1.3 

▪ [MS-ADSC] 

▪ [MS-ADA1] 

▪ [MS-ADA2] 

▪ [MS-ADA3] 

▪ Function GetWellknownObject: section 3.1.1.1 

3.1.1.4.1 Introduction 

LDAP reads are specified in [RFC2251] section 4.5. Generally and imprecisely, reads are searches 
starting at some object in Active Directory and restricted by the requester to either the object, the 

object's children, or the tree of objects rooted by object. After applying that restriction, the search is 
then restricted to the objects and the values for attributes on those objects to which the requester has 
access. The search is finally restricted to the objects that match the search filter. The requested 

attributes and their values for those matching objects are then returned to the requester. The RFC 
specifies the details for LDAP reads. This section covers access checks for LDAP reads, extended 
access checks for reading the specified attributes, the attributes used to construct the specified 

constructed attributes, and the effect of defunct attributes and classes on reads. 

This section does not provide details on the classes and attributes mentioned here. For details, see 
[MS-ADSC], [MS-ADA1], [MS-ADA2], and [MS-ADA3]. 

3.1.1.4.2 (Updated Section) Definitions 



 

263 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The following functions are used to specify the behavior of several of the constructed attributes. They 
are collected together here because of the dependencies they have on each other. 

Let SUPCLASSES (top) be the empty set. For other classes O, let SUPCLASSES(O) be the union of 
O!subClassOf and SUPCLASSES(O!subClassOf). 

Let AUXCLASSES(O) be the union of 

O!systemAuxiliaryClass 

and O!auxiliaryClass 

and AUXCLASSES(O!systemAuxiliaryClass) 

and AUXCLASSES(O!auxiliaryClass) 

and AUXCLASSES(C) for all C in SUPCLASSES(O) 

Let SUBCLASSES(O) be the set of all C such that O is in SUPCLASSES(C). 

Let POSSSUP_NOSUBCLASSES(O) be the union of 

O!systemPossSuperiors 

and O!possSuperiors 

and POSSSUP_NOSUBCLASSES(C) for all C in SUPCLASSES(O) 

Let POSSSUPERIORS(O) be the union of 

POSSSUP_NOSUBCLASSES(O) 

and SUBCLASSES(C) for all C in POSSSUP_NOSUBCLASSES(O) 

Let CLASSATTS(O) be the union of 

O!mustContain 

and O!systemMustContain 

and O!mayContain 

and O!systemMayContain 

and CLASSATTS(C) for all C in SUPCLASSES(O) 

and CLASSATTS(C) for all C in AUXCLASSES(O) 

Let SPC(O) be trueTRUE when O or any SUPCLASSES(O) is one of builtinDomain, samServer, 
samDomain, group, or user; and falseFALSE, otherwise. 

3.1.1.4.3 (Updated Section) Access Checks 

An object is not visible to a requester if the requester is not granted the necessary rights. But even if 
an object is visible to a requester, the requester might lack the necessary rights to see individual 

attributes. The values for attributes that are not visible to the requester are treated as "does not 
exist" in the returned attributes and the LDAP filter. For example, if the requester requests the value 
for displayName but that attribute is not visible, then the returned value will be the same as it would 
have been if the attribute displayName did not exist on that Object. Likewise, if displayName were 
part of the LDAP filter, then, similarly, the filter would behave just as if displayName did not exist on 
that Object. 



 

264 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Let O be the Object being considered during search. 

Let ON be the root object of the NC containing O. 

Let OP be O!parent. 

Let OA be the Attribute, or the property set containing the Attribute, that is being considered for O 

during search. 

Generally, the security context of the requester mustMUST be granted rights 
RIGHT_DS_LIST_CONTENTS (defined in section 5.1.3.2) on OP by OP!nTSecurityDescriptor. 

Generally, the security context of the requester mustMUST be granted rights 
RIGHT_DS_READ_PROPERTY on OA by O!nTSecurityDescriptor. Otherwise, the value is treated as 
"does not exist" in the returned attributes and the LDAP filter. This behavior changes for special 
attributes, for attributes with special search flags in their definition, and for some attributes because 

of dSHeuristics (section 6.1.1.2.4.1.2), as specified in section 3.1.1.4.4. 

3.1.1.4.4 (Updated Section) Extended Access Checks 

Some attributes require different access than that specified in the previous section. 

The security context of the requester mustMUST be granted the indicated rights on OA by 
O!nTSecurityDescriptor unless otherwise specified. If not granted, then the value is treated as "does 

not exist" in the returned attributes and the LDAP filter. 

OA Requires right(s) 

nTSecurityDescriptor (ACCESS_SYSTEM_SECURITY) 

and (RIGHT_READ_CONTROL) 

msDS-QuotaEffective (RIGHT_DS_READ_PROPERTY on the Quotas container, described in 
section 6.1.1.4.3) 

or ((the client is querying the quota for the security principal it is 
authenticated as) 

and (DS-Query-Self-Quota control access right on the Quotas 
container)) 

msDS-QuotaUsed (RIGHT_DS_READ_PROPERTY on the Quotas container, described in 
section 6.1.1.4.3) 

or ((the client is querying the quota for the security principal it is 
authenticated as) 

and (DS-Query-Self-Quota control access right on the Quotas 
container)) 

userPassword When the fUserPwdSupport heuristic in the dSHeuristics attribute (see 
section 6.1.1.2.4.1.2) is falseFALSE, the requester mustMUST be 
granted RIGHT_DS_READ_PROPERTY. When fUserPwdSupport is 
trueTRUE, access is never granted. 

pekList Access is never granted 

currentValue Access is never granted 

dBCSPwd Access is never granted 

unicodePwd Access is never granted 

ntPwdHistory Access is never granted 

priorValue Access is never granted 



 

265 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

OA Requires right(s) 

supplementalCredentials Access is never granted 

trustAuthIncoming Access is never granted 

trustAuthOutgoing Access is never granted 

lmPwdHistory Access is never granted 

initialAuthIncoming Access is never granted 

initialAuthOutgoing Access is never granted 

msDS-ExecuteScriptPassword Access is never granted 

Attribute whose attributeSchema 
has CF (fCONFIDENTIAL, 
0x0x00000080) set in 
searchFlags. 

(RIGHT_DS_READ_PROPERTY) 

and (RIGHT_DS_CONTROL_ACCESS) 

sDRightsEffective See section 3.1.1.4.5.4 

allowedChildClassesEffective See section 3.1.1.4.5.5 

allowedAttributesEffective See section 3.1.1.4.5.7 

msDS-Approx-Immed-
Subordinates 

See section 3.1.1.4.5.15 

msDS-QuotaEffective See section 3.1.1.4.5.22 

msDS-ReplAttributeMetaData 

msDS-ReplValueMetaData 

The security context of the requester mustMUST be granted the 
following rights on the replPropertyMetaData attribute: 

(RIGHT_DS_READ_PROPERTY) 

or (DS-Replication-Manage-Topology by ON!nTSecurityDescriptor) 

msDS-NCReplInboundNeighbors The security context of the requester mustMUST be granted the 
following rights on repsFrom: 

(RIGHT_DS_READ_PROPERTY) 

or (DS-Replication-Manage-Topology) 

or (DS-Replication-Monitor-Topology) 

msDS-NCReplOutboundNeighbors The security context of the requester mustMUST be granted the 
following rights on repsTo: 

(RIGHT_DS_READ_PROPERTY) 

or (DS-Replication-Manage-Topology) 

or (DS-Replication-Monitor-Topology) 

msDS-NCReplCursors The security context of the requester mustMUST be granted the 
following rights on replUpToDateVector: 

(RIGHT_DS_READ_PROPERTY) 

or (DS-Replication-Manage-Topology) 

or (DS-Replication-Monitor-Topology) 

msDS-IsUserCachableAtRodc  The security context of the requester mustMUST be granted the Read-
Only-Replication-Secret-Synchronization control access right on the root 
of the default NC. 

msDS-ManagedPassword The security context of the requester mustMUST be granted the 
RIGHT_DS_READ_PROPERTY control access right on the security 



 

266 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

OA Requires right(s) 

descriptor in the msDS-GroupMSAMembership attribute. 

Attribute whose attributeSchema 
has SE (fPARTITIONSECRET, 
0x0x00001000) set in 
searchFlags. 

(RIGHT_DS_READ_PROPERTY) mustMUST be granted on the object, and 
the DS-Read-Partition-Secrets control access right mustMUST be 
granted on the object that is the root of the naming context to which the 
object belongs. 

 

3.1.1.4.5 Constructed Attributes 

Individual constructed attributes, other than rootDSE Attributes (section 3.1.1.3.2), are specified in 
[MS-ADA1], [MS-ADA2], and [MS-ADA3]. But briefly, constructed attributes have the property that 
they are attributes for which the attribute value is computed by using other attributes, sometimes 
from other objects. Regardless of this property, constructed attributes are defined to be those 
attributes that meet one of the following three criteria: 

▪ The attributeSchema object's systemFlags attribute has the ATTR_IS_CONSTRUCTED bit (section 

2.2.10) set to one. 

▪ The attribute is a rootDSE attribute (section 3.1.1.3.2). 

▪ The attribute is a back link attribute. 

The objects and attributes for specified constructed attributes are covered in this section. 

Except as otherwise noted, these constructed attributes are applicable to both AD DS and AD LDS. 

3.1.1.4.5.1 subSchemaSubEntry 

The value is the DN equal to the schema NC's DN appended to "CN=Aggregate,". 

3.1.1.4.5.2 canonicalName 

The value is the canonical name of the object (section 3.1.1.1.7). 

3.1.1.4.5.3 allowedChildClasses 

Let TO be the object from which the allowedChildClasses attribute is being read. 

The value of TO!allowedChildClasses is the set of lDAPDisplayName values read from each Object O 
where: 

▪ (O.distinguishedName is in the schema NC) 

▪ and (O!objectClass is classSchema) 

▪ and (not O!systemOnly) 

▪ and (not O!objectClassCategory is 2) 

▪ and (not O!objectClassCategory is 3) 

▪ and (there exists C in TO!objectClass such that C is in POSSSUPERIORS(O)) 

3.1.1.4.5.4 sDRightsEffective 

Let TO be the object from which the sDRightsEffective attribute is being read. 



 

267 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S 
S 
I 

D 
S 
I 

G 
S 
I 

O 
S 
I 

Note  Bits are presented in big-endian byte order. 

The value of TO!sDRightsEffective is derived as follows from the bits shown in the preceding table: 

▪ OSI (OWNER_SECURITY_INFORMATION, 0x00000001) and GSI 
(GROUP_SECURITY_INFORMATION, 0x00000002) are both set if TO!nTSecurityDescriptor grants 
RIGHT_WRITE_OWNER to the requester. 

▪ DSI (DACL_SECURITY_INFORMATION, 0x00000004) is set if TO!nTSecurityDescriptor grants 
RIGHT_WRITE_DAC to the requester. 

▪ SSI (SACL_SECURITY_INFORMATION, 0x00000008) is set if TO!nTSecurityDescriptor grants 
RIGHT_ACCESS_SYSTEM_SECURITY to the requester. 

3.1.1.4.5.5 (Updated Section) allowedChildClassesEffective 

The allowedChildClassesEffective attribute has different behavior on AD DS and AD LDS. 

If the DC is running as AD LDS, then let fAllowPrincipals equal trueTRUE if the value of the 
ADAMAllowADAMSecurityPrincipalsInConfigPartition configuration setting (section 3.1.1.3.4.7) is 1, 
falseFALSE otherwise. If the ADAMAllowADAMSecurityPrincipalsInConfigPartition configuration setting 
is not supported, then let fAllowPrincipals = falseFALSE. 

Let TO be the object from which the allowedChildClassesEffective attribute is being read. 

TO!allowedChildClassesEffective contains each object class O in TO!allowedChildClasses such that: 

▪ ( 

(TO!nTSecurityDescriptor grants RIGHT_DS_CREATE_CHILD via a simple ACE to the client for 
instantiating an object beneath TO) 

or 

(TO.nTSecurityDescriptor grants RIGHT_DS_CREATE_CHILD via an object-specific ACE to the 
client for instantiating an object of class O beneath TO) 

) 

▪ and (fAllowPrincipals or (not TO!distinguishedName in config NC) or (not SPC(O))) 

▪ and (fAllowPrincipals or (not TO!distinguishedName in schema NC) or (not SPC(O))) 

Simple ACEs and object-specific ACEs are discussed in section 5.1.3. 

3.1.1.4.5.6 allowedAttributes 

Let TO be the object from which the allowedAttributes attribute is being read. 

The value of TO!allowedAttributes is the set of lDAPDisplayName values read from each Object O 
where: 

▪ (O.dn is in the schema NC) 



 

268 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ and (O!objectClass is attributeSchema) 

▪ and (there exists C in TO!objectClass such that O is in CLASSATTS(C)) 

3.1.1.4.5.7 allowedAttributesEffective 

Let TO be the object from which the allowedAttributesEffective attribute is being read. 

The value of TO!allowedAttributesEffective is the subset of values returned by allowedAttributes for 
which values (O) conform to the following: 

▪ TO!nTSecurityDescriptor grants RIGHT_DS_WRITE_PROPERTY on O to the requester 

▪ and (O!linkID is even or O!linkID is not present) 

▪ (and (not bit 0x4 is set in O!systemFlags) or O!lDAPDisplayName is entryTTL) 

3.1.1.4.5.8 (Updated Section) fromEntry 

Let TO be the object from which the fromEntry attribute is being read. 

The value of TO!fromEntry is trueTRUE if TO!instanceType has bit 0x4 set, otherwise falseFALSE. 

3.1.1.4.5.9 createTimeStamp 

Let TO be the object from which the createTimeStamp attribute is being read. 

The value of TO!createTimeStamp is TO!whenCreated. 

3.1.1.4.5.10 modifyTimeStamp 

Let TO be the object from which the modifyTimeStamp attribute is being read. 

The value of TO!modifyTimeStamp is TO!whenChanged. 

3.1.1.4.5.11 primaryGroupToken 

Let TO be the object from which the primaryGroupToken attribute is being read. 

The value of TO!primaryGroupToken is the RID from TO!objectSid when there exists C in 
TO!objectClass such that C is the group class. Otherwise, no value is returned. That is, if TO is a 
group, then the value of this attribute is the RID from the group's SID. If TO is not a group, no value 
is returned when this attribute is read from TO. 

3.1.1.4.5.12 entryTTL 

Let TO be the object from which the entryTTL attribute is being read. 

The value of TO!entryTTL is the number of seconds in TO!msDS-Entry-Time-To-Die minus the current 

system time, and is constrained to the range 0..0xFFFFFFFF by returning 0 if the difference is less 
than 0, and 0xFFFFFFFF if the difference is greater than 0xFFFFFFFF. 

3.1.1.4.5.13 msDS-NCReplInboundNeighbors, msDS-NCReplCursors, msDS-

ReplAttributeMetaData, msDS-ReplValueMetaData 

If the object from which msDS-NCReplInboundNeighbors or msDS-NCReplCursors is being read is not 
the root object of an NC, the result of the read is no value. 



 

269 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Otherwise, reading any of these four attributes on an object returns an alternate representation of the 
structures returned by IDL_DRSGetReplInfo() applied to that object. The result is either a binary data 

structure or XML (IDL_DRSGetReplInfo and its associated structures are documented in [MS-DRSR] 
section 4.1.13). The relationship between these constructed attributes and the IDL_DRSGetReplInfo 

data is shown in the following table. 

Constructed 
attribute 

Equivalent DS_REPL_INFO 
code* XML structure** Binary structure*** 

msDS-
NCReplInboundNe
ighbors 

DS_REPL_INFO_NEIGHBORS DS_REPL_NEIGHBORW DS_REPL_NEIGHBORW_BL
OB 

msDS-
NCReplCursors 

DS_REPL_INFO_CURSORS_3_FOR_
NC 

DS_REPL_CURSORS_3
W 

DS_REPL_CURSOR_BLOB 

msDS-
ReplAttributeMeta
Data 

DS_REPL_INFO_METADATA_2_FOR
_OBJ 

DS_REPL_ATTR_META_
DATA_2 

DS_REPL_ATTR_META_DA
TA_BLOB 

msDS-
ReplValueMetaDat
a 

DS_REPL_INFO_METADATA_2_FOR
_ATTR_VALUE 

DS_REPL_VALUE_META
_DATA_2 

DS_REPL_VALUE_META_D
ATA_BLOB 

* See [MS-DRSR] section 4.1.13.1.4. 

** See [MS-DRSR] section 4.1.13.1. 

*** See section 2.2. 

The information returned is exactly the same information as is returned by a call to 
IDL_DRSGetReplInfo when specifying the value in the second column as the value for 

DRS_MSG_GETREPLINFO_REQ_V1.InfoType or DRS_MSG_GETREPLINFO_REQ_V2.InfoType. 

Without any attribute qualifier, the data is returned as XML. The parent element of the XML is the 

name of the structure contained in the "XML structure" column in the table, and the child element 
names and order in the XML exactly follow the names of the fields in that structure as well. The 
meaning of each child element is the same as the meaning of the corresponding field in the structure. 
Values of integer types are represented as decimal strings. Values of FILETIME type are represented 

as XML dateTime values in UTC, for example, "04-07T18:39:09Z", as specified in [XMLSCHEMA2/2]. 
Values of GUID fields are represented as GUIDStrings. 

If the ";binary" attribute qualifier is specified when the attribute is requested, the value of this 
attribute is returned as binary data; specifically, the structure contained in the "Binary Structure" 
column. In this representation, fields that would contain strings are represented as integer offsets 
(relative to the beginning of the binary data) to a null-terminated UTF-16 encoded string embedded in 
the returned binary data. 

3.1.1.4.5.14 msDS-NCReplOutboundNeighbors 

The msDS-NCReplOutboundNeighbors attribute is equivalent to msDS-NCReplInboundNeighbors, 
except that it retrieves representations of each repsTo value for the requested Object (that is, 
information related to replication notifications for event-driven replication), while msDS-
NCReplInboundNeighbors retrieves representations of each repsFrom value (that is, information 
related to inbound replication). Like msDS-NCReplInboundNeighbors, it can return the data in either 

XML or binary form, depending on the presence of the ";binary" attribute qualifier, and uses the 
DS_REPL_NEIGHBOR and DS_REPL_NEIGHBORW_BLOB structures for its XML and binary 
representations, respectively. 

3.1.1.4.5.15 msDS-Approx-Immed-Subordinates 



 

270 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Let TO be the object from which the msDS-Approx-Immed-Subordinates attribute is being read. 

The value of TO!msDS-Approx-Immed-Subordinates is the approximate number of direct descendants 
of this object if TO!nTSecurityDescriptor grants RIGHT_DS_LIST_CONTENTS to the client. This 
estimate has no guarantee or requirement of accuracy. If the client does not have the 

RIGHT_DS_LIST_CONTENTS access right, the value 0 is returned as the estimate. 

3.1.1.4.5.16 (Updated Section) msDS-KeyVersionNumber 

The msDS-KeyVersionNumber attribute exists on AD DS but not on AD LDS. 

Let TO be the object from which the msDS-KeyVersionNumber attribute is being read. 

If the fKVNOEmuW2k heuristic of the dSHeuristics attribute (see section 6.1.1.2.4.1.2) is trueTRUE, 
TO!msDS-KeyVersionNumber equals 1. Otherwise, TO!msDS-KeyVersionNumber equals the dwVersion 

field of the AttributeStamp associated with TO's unicodePwd attribute. See section 3.1.1.1.9 for more 
information about AttributeStamp and dwVersion. 

3.1.1.4.5.17 (Updated Section) msDS-User-Account-Control-Computed 

The msDS-User-Account-Control-Computed attribute has different behavior on AD DS and AD LDS. 

Let TO be the object from which the msDS-User-Account-Control-Computed attribute is being read. 

For AD DS, the following description applies. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

0 0 0 0 0 0 0 0 P 

E 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L 

O 

0 0 0 0 

Note  Bits are presented in big-endian byte order. 

If the object TO is not in a domain NC, TO!msDS-User-Account-Control-Computed = 0. 

If the object TO is in a domain NC, let D be the root of that NC, and let ST be the current time, read 
from the system clock. Then the value of TO!msDS-User-Account-Control-Computed is the preceding 
bit pattern, where: 

▪ LO (ADS_UF_LOCKOUT, 0x00000010) is set if: 

▪ (none of bits ADS_UF_WORKSTATION_TRUST_ACCOUNT, 

ADS_UF_SERVER_TRUST_ACCOUNT, ADS_UF_INTERDOMAIN_TRUST_ACCOUNT are set in 
TO!userAccountControl) 

▪ and (TO!lockoutTime is nonzero and either (1) Effective-LockoutDuration (regarded as an 
unsigned quantity) < 0x8000000000000000, or (2) ST + Effective-LockoutDuration (regarded 

as a signed quantity) ≤ TO!lockoutTime ), where Effective-LockoutDuration is defined in [MS-
SAMR] section 3.1.1.5. 

▪ PE (ADS_UF_PASSWORD_EXPIRED, 0x00800000) is set if: 

▪ (none of bits ADS_UF_SMARTCARD_REQUIRED, ADS_UF_DONT_EXPIRE_PASSWD, 
ADS_UF_WORKSTATION_TRUST_ACCOUNT, ADS_UF_SERVER_TRUST_ACCOUNT, 
ADS_UF_INTERDOMAIN_TRUST_ACCOUNT are set in TO!userAccountControl) 



 

271 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ and (TO!pwdLastSet = null, or TO!pwdLastSet = 0, or (Effective-MaximumPasswordAge ≠ 
0x8000000000000000 and (ST - TO!pwdLastSet) > Effective-MaximumPasswordAge)), where 

Effective-MaximumPasswordAge is defined in [MS-SAMR] section 3.1.1.5. 

For AD LDS, the following description applies. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

0 0 0 0 0 0 0 0 P 
E 

0 0 0 0 0 0 D 
E 
P 

0 0 0 0 0 0 0 0 0 0 P 
N 
R 

L 
O 

0 0 A 
D 

0 

Note  Bits are presented in big-endian byte order. 

The value of TO!msDS-User-Account-Control-Computed attribute is the preceding bit pattern, where: 

▪ AD (ADS_UF_ACCOUNT_DISABLE, 0x00000002) is set if: 

▪ TO!msDS-UserAccountDisabled is trueTRUE 

▪ LO (ADS_UF_LOCKOUT, 0x00000010) is set if: 

▪ TO!ms-DS-UserAccountAutoLocked is trueTRUE 

▪ PNR (ADS_UF_PASSWD_NOTREQD, 0x00000020) is set if: 

▪ TO!ms-DS-UserPasswordNotRequired is trueTRUE 

▪ DEP (ADS_UF_DONT_EXPIRE_PASSWD, 0x00010000) is set if: 

▪ TO!msDS-UserDontExpirePassword is trueTRUE 

▪ PE (ADS_UF_PASSWORD_EXPIRED, 0x00800000) is set if: 

▪ TO!msDS-UserPasswordExpired is trueTRUE 

3.1.1.4.5.18 msDS-Auxiliary-Classes 

Let TO be the object from which the msDS-Auxiliary-Classes attribute is being read. 

The value of TO!msDS-Auxiliary-Classes is the set of lDAPDisplayName values from each Object O 
such that (O is in TO!objectClass) and (O is not in SUPCLASSES(Most Specific class of TO)). 

3.1.1.4.5.19 tokenGroups, tokenGroupsNoGCAcceptable 

The tokenGroups attribute exists on both AD DS and AD LDS. The tokenGroupsNoGCAcceptable 
attribute exists on AD DS but not on AD LDS. 

These two computed attributes return the set of SIDs from a transitive group membership expansion 
operation on a given object. 

For AD DS, the tokenGroups attribute is not present if no GC server is available to evaluate the 
transitive reverse memberships. The tokenGroupsNoGCAcceptable attribute can always be retrieved, 
but if no GC server is available, the set of SIDs might be incomplete. 

Let U be the object from which the tokenGroups or tokenGroupsNoGCAcceptable attribute is being 

read. 

▪ If U!objectSid does not exist, U!tokenGroups and U!tokenGroupsNoGCAcceptable are not present. 



 

272 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ For AD DS in mixed mode, let OperationType=RevMembGetGroupsForUser ([MS-DRSR] section 
4.1.8.1.3); otherwise, for AD LDS and AD DS not in mixed mode, let 

OperationType=RevMembGetAccountGroups. 

▪ Otherwise, U!tokenGroups and U!tokenGroupsNoGCAcceptable are the result of the algorithm in 

[MS-DRSR] section 4.1.8.3 (IDL_DRSGetMemberships) using 
DRS_MSG_REVMEMB_REQ_V1.OperationType=OperationType, 
DRS_MSG_REVMEMB_REQ_V1.ppDsNames=U, and 
DRS_MSG_REVMEMB_REQ_V1.pLimitingDomain = the domain for which the server is a DC. 

3.1.1.4.5.20 tokenGroupsGlobalAndUniversal 

The tokenGroupsGlobalAndUniversal attribute exists on AD DS but not on AD LDS. 

This computed attribute returns the set of SIDs of global and universal groups resulting from a 
transitive group membership expansion operation on a given object. This attribute is not present if no 
GC server is available to evaluate the transitive reverse memberships. 

Let U be the object from which the tokenGroupsGlobalAndUniversal attribute is being read. 

▪ If U!objectSid does not exist, U!tokenGroupsGlobalAndUniversal is not present. 

▪ Otherwise let S be the set of SIDs returned by invoking the algorithm in [MS-DRSR] section 

4.1.8.3 (IDL_DRSGetMemberships) using 
DRS_MSG_REVMEMB_REQ_V1.OperationType=RevMembGetAccountGroups, 
DRS_MSG_REVMEMB_REQ_V1.ppDsNames=U, and 
DRS_MSG_REVMEMB_REQ_V1.pLimitingDomain = the domain for which the server is a DC. 

▪ Let accumulator set T be the Null set.  

▪ For each SID s in S: 

▪ Let X be the set of SIDs returned by invoking the algorithm in [MS-DRSR] section 4.1.8.3 

(IDL_DRSGetMemberships) using 

DRS_MSG_REVMEMB_REQ_V1.OperationType=RevMembGetUniversalGroups, 
DRS_MSG_REVMEMB_REQ_V1.ppDsNames=s, and 
DRS_MSG_REVMEMB_REQ_V1.pLimitingDomain = NULL. 

▪ T = T union X. 

▪ U!tokenGroupsGlobalAndUniversal is the union of T and S. 

3.1.1.4.5.21 possibleInferiors 

Let TO be the object from which the possibleInferiors attribute is being read. 

Let C be the classSchema object corresponding to TO!governsID. 

The value of TO!possibleInferiors is the set of O!governsID for each Object O where 

▪ (O is in the schema NC) 

▪ and (O!objectClass is classSchema) 

▪ and (not O!systemOnly) 

▪ and (not O!objectClassCategory is 2) 

▪ and (not O!objectClassCategory is 3) 

▪ and ((C is contained in POSSSUPERIORS(O)) 



 

273 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.4.5.22 msDS-QuotaEffective 

Let TO be the object from which the msDS-QuotaEffective attribute is being read. 

Let R be the root object of the NC containing TO. 

Let SID be the sid specified by the LDAP extended control LDAP_SERVER_QUOTA_CONTROL_OID or, if 
none is specified, the requester's SID. 

Let SIDS be the set of SIDs including SID and the set of SIDs returned by tokenGroups. 

The value of TO!msDS-QuotaEffective is the maximum of all O!msDS-QuotaAmount for each object O 
where: 

▪ (TO is the object: 

GetWellknownObject(n: R, guid: GUID_NTDS_QUOTAS_CONTAINER_W)) 

▪ and (O is a child of TO) 

▪ and (the client has access to O as specified in section 3.1.1.4.3) 

▪ and (the client has access to O!msDS-QuotaAmount as specified in section 3.1.1.4.3) 

▪ and (the client has access to O!msDS-QuotaTrustee as specified in section 3.1.1.4.3) 

▪ and (there exists S in SIDS such that S is equal to O!msDS-QuotaTrustee) 

3.1.1.4.5.23 msDS-QuotaUsed 

Let TO be the object from which the msDS-QuotaUsed attribute is being read. 

Let C be the Most Specific Class from TO!objectClass. 

Let R be the root object of the NC containing TO. 

Let SID be the SID specified by the LDAP extended control LDAP_SERVER_QUOTA_CONTROL_OID or, 
if none is specified, the requester's SID. 

The value of TO!msDS-QuotaUsed is: 

▪ (cLive + ((cTombstoned * TO!msDS-TombstoneQuotaFactor)+99)/100) 

where: 

▪ cLive is the number of non-tombstoned objects associated with SID, and cTombstoned is the 
number of tombstoned objects associated with SID, as detailed in section 3.1.1.5.2.5, Quota 
Calculation. 

when: 

▪ (TO is the object: 

GetWellknownObject(n: R, guid: GUID_NTDS_QUOTAS_CONTAINER_W)) 

3.1.1.4.5.24 msDS-TopQuotaUsage 

Let TO be the object from which the msDS-TopQuotaUsage attribute is being read. 

Let R be the root object of the NC containing TO. 



 

274 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

TO!msDS-TopQuotaUsage equals a set of XML-encoded strings sorted by the element quotaUsed 
when: 

▪ TO is the object: 

GetWellknownObject(n: R, guid: GUID_NTDS_QUOTAS_CONTAINER_W) 

Each string represents the quota information for a SID as specified in section 3.1.1.5.2.5, Quota 
Calculation. The format of the XML-encoded string is 

<MS_DS_TOP_QUOTA_USAGE> 

<partitionDN>DN of the NC containing TO </partitionDN> 

<ownerSID>SID of quota user </ownerSID> 

<quotaUsed>rounded up value of quota used (computed) </quotaUsed> 

<tombstoneCount>value in the TombstoneCount column </tombstoneCount> 

<totalCount>value in the TotalCount column </totalCount> 

</MS_DS_TOP_QUOTA_USAGE> 

where quotaUsed is computed as specified in msDS-QuotaUsed with cLive set to (totalCount - 
tombstoneCount). 

The number of values returned can be controlled with the ";range" syntax as detailed in Range 
Retrieval of Attribute Values in section 3.1.1.3.1.3.3. The default range is 10 for this attribute. 

3.1.1.4.5.25 (Updated Section) ms-DS-UserAccountAutoLocked 

The ms-DS-UserAccountAutoLocked attribute exists on AD LDS but not on AD DS. 

Let TO be the object from which the ms-DS-UserAccountAutoLocked attribute is being read. Let ST be 

the current time, read from the system clock. 

If the machine running AD LDS is joined to a domain D, TO!ms-DS-UserAccountAutoLocked is 
trueTRUE if both of the following are trueTRUE: 

▪ The LDAP configurable setting ADAMDisablePasswordPolicies ≠ 1. 

▪ TO!lockoutTime ≠ 0 and either (1) D!lockoutDuration (regarded as an unsigned quantity) < 
0x8000000000000000, or (2) ST + D!lockoutDuration (regarded as a signed quantity) ≤ 
TO!lockoutTime. 

If the machine running AD LDS is not joined to a domain, TO!ms-DS-UserAccountAutoLocked is 
trueTRUE if both of the following are trueTRUE: 

▪ The LDAP configurable setting ADAMDisablePasswordPolicies ≠ 1. 

▪ TO!lockoutTime ≠ 0 and (current time - TO!lockoutTime) ≤ X, where X is determined by the policy 
of the machine on which AD LDS is running. 

3.1.1.4.5.26 (Updated Section) msDS-UserPasswordExpired 

The msDS-UserPasswordExpired attribute exists on AD LDS but not on AD DS. 

Let TO be the object from which the msDS-UserPasswordExpired attribute is being read. Let ST be the 

current time, read from the system clock. 



 

275 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

If the machine running AD LDS is joined to a domain, let D be the root of the domain NC of the joined 
domain. Then TO!msDS-UserPasswordExpired is trueTRUE if all of the following are trueTRUE: 

▪ The LDAP configurable setting ADAMDisablePasswordPolicies ≠ 1. 

▪ None of bits ADS_UF_SMARTCARD_REQUIRED, ADS_UF_DONT_EXPIRE_PASSWD, 

ADS_UF_WORKSTATION_TRUST_ACCOUNT, ADS_UF_SERVER_TRUST_ACCOUNT, 
ADS_UF_INTERDOMAIN_TRUST_ACCOUNT is set in TO!userAccountControl. 

▪ TO!pwdLastSet = null, or TO!pwdLastSet = 0, or (D!maxPwdAge ≠ 0x8000000000000000 and (ST 
- TO!pwdLastSet) > D!maxPwdAge)). 

If the machine running AD LDS is not joined to a domain, then TO!msDS-UserPasswordExpired is 
trueTRUE if all of the following are trueTRUE: 

▪ The LDAP configurable setting ADAMDisablePasswordPolicies ≠ 1. 

▪ None of bits ADS_UF_SMARTCARD_REQUIRED, ADS_UF_DONT_EXPIRE_PASSWD, 

ADS_UF_WORKSTATION_TRUST_ACCOUNT, ADS_UF_SERVER_TRUST_ACCOUNT, 
ADS_UF_INTERDOMAIN_TRUST_ACCOUNT is set in TO!userAccountControl. 

▪ TO!pwdLastSet = null, or TO!pwdLastSet = 0, or (ST - TO!pwdLastSet) > X, where X is 
determined by the policy of the machine on which AD LDS is running. 

3.1.1.4.5.27 msDS-PrincipalName 

The msDS-PrincipalName attribute has different behavior on AD DS and AD LDS. 

Let TO be the object from which the msDS-PrincipalName attribute is being read. 

For AD DS, the value of TO!msDS-PrincipalName is either (1) the NetBIOS domain name, followed by 
a backslash ("\"), followed by TO!sAMAccountName, or (2) the value of TO!objectSid in SDDL SID 
string format ([MS-DTYP] section 2.4.2.1). 

For AD LDS, let OBJSID be the value of TO!objectSid. If OBJSID is the SID of a security principal of 

the computer on which Active Directory is running, then TO!msDS-PrincipalName is the NetBIOS 
computer name, followed by a backslash ("\"), followed by the name of the security principal. If the 
computer on which Active Directory is running is a member of a domain, and OBJSID is a SID for a 
security principal S in that domain, then TO!msDS-PrincipalName is the NetBIOS domain name, 
followed by a backslash ("\"), followed by S!sAMAccountName. Otherwise, the value of TO!msDS-
PrincipalName is the value of TO!objectSid in SDDL SID string format ([MS-DTYP] section 2.4.2.1). 

3.1.1.4.5.28 parentGUID 

This attribute is not present on an object that is the root of an NC. For all other objects, let TO be the 
object from which the parentGUID attribute is being read and let TP be TO!parent. TO!parentGUID is 
equal to TP!objectGUID. 

3.1.1.4.5.29 msDS-SiteName 

The msDS-SiteName attribute exists on AD DS but not on AD LDS. 

Let TO be the object on which msDS-SiteName is being read. If TO is an nTDSDSA object or a server 
object, then TO!msDS-SiteName is equal to the value of the RDN of the site object under which TO is 
located. For example, given a TO that is an nTDSDSA object with the DN "CN=NTDS Settings, 
CN=TESTDC-01, CN=Servers, CN=Default-First-Site-Name, CN=Sites, CN=Configuration, 
DC=fabrikam, DC=com", the value of TO!msDS-SiteName is "Default-First-Site-Name". 

If TO is a computer object, then let TS be the server object named by TO!serverReferenceBL. 

TO!msDS-SiteName equals TS!msDS-SiteName. 



 

276 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

If TO is neither a computer, server, nor nTDSDSA object, then TO!msDS-SiteName is not present. 

3.1.1.4.5.30 (Updated Section) msDS-isRODC 

The msDS-isRODC attribute exists on AD DS but not on AD LDS. 

This attribute indicates whether a specified DC is an RODC. Let TO be the object on which msDS-
isRODC is being read. If TO is not an nTDSDSA, computer, or server object, then TO!msDS-isRODC is 
not present. 

▪ If TO is an nTDSDSA object: 

▪ If TO!objectCategory equals the DN of the classSchema object for the nTDSDSA object class, 
then TO!msDS-isRODC is falseFALSE. Otherwise, TO!msDS-isRODC is trueTRUE. 

▪ If TO is a server object: 

▪ Let TN be the nTDSDSA object whose DN is "CN=NTDS Settings," prepended to the DN of TO. 

Apply the previous rule for the "TO is an nTDSDSA object" case, substituting TN for TO. 

▪ If TO is a computer object: 

▪ Let TS be the server object named by TO!serverReferenceBL. Apply the previous rule for the 
"TO is a server object" case, substituting TS for TO. 

3.1.1.4.5.31 msDS-isGC 

The msDS-isGC attribute exists on AD DS but not on AD LDS. 

This attribute indicates whether a specified DC is a GC server. Let TO be the object on which msDS-
isGC is being read. If TO is not an nTDSDSA, computer, or server object, then TO.msDS-isGC is not 
present. 

▪ If TO is an nTDSDSA object: 

▪ TO!msDS-isGC iff TO!options has the NTDSDSA_OPT_IS_GC bit set (section 

6.1.1.2.2.1.2.1.1). 

▪ If TO is a server object: 

▪ Let TN be the nTDSDSA object whose DN is "CN=NTDS Settings," prepended to the DN of TO. 
Apply the previous rule for the "TO is an nTDSDSA object" case, substituting TN for TO. 

▪ If TO is a computer object: 

▪ Let TS be the server object named by TO!serverReferenceBL. Apply the previous rule for the 
"TO is a server object" case, substituting TS for TO. 

3.1.1.4.5.32 msDS-isUserCachableAtRodc 

The msDS-IsUserCachableAtRodc attribute exists on AD DS but not on AD LDS. 

This attribute indicates whether a specified RODC is permitted by administrator policy to cache the 
secret attributes of a specified security principal. The DN of the security principal is specified using the 
LDAP Control LDAP_SERVER_DN_INPUT_OID. The DN specified is either an RFC 2253–style DN or one 
of the alternate DN formats specified in section 3.1.1.3.1.2.4. 

Let TO be the object on which msDS-IsUserCachableAtRodc is being read. If TO is not an nTDSDSA, 
computer, or server object, then TO!msDS-IsUserCachableAtRodc is not present. 

▪ If TO is a computer object: 



 

277 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If TO!userAccountControl does not have the ADS_UF_PARTIAL_SECRETS_ACCOUNT bit set, 
TO!msDS-IsUserCachableAtRodc is not present. 

▪ If TO!userAccountControl has the ADS_UF_PARTIAL_SECRETS_ACCOUNT bit set, the value of 
TO!msDS-IsUserCachableAtRodc is calculated as follows: 

▪ Let D be the DN of the user principal specified using LDAP Control 
LDAP_SERVER_DN_INPUT_OID. If the DN of a security principal is not explicitly specified, 
D is the DN of the current requester. 

▪ TO!msDS-IsUserCachableAtRodc = GetRevealSecretsPolicyForUser(TO!distinguishedName, 
D) (procedure GetRevealSecretsPolicyForUser is defined in [MS-DRSR] section 
4.1.10.5.14). 

▪ If TO is a server object: 

▪ Let TC be the computer object named by TO!serverReference. Apply the previous rule for the 
"TO is a computer object" case, substituting TC for TO. 

▪ If TO is an nTDSDSA object: 

▪ Let TS be the server object that is the parent of TO. Apply the previous rule for the "TO is a 
server object" case, substituting TS for TO. 

3.1.1.4.5.33 msDS-UserPasswordExpiryTimeComputed 

The msDS-UserPasswordExpiryTimeComputed attribute exists on AD DS but not on AD LDS. 

This attribute indicates the time when the password of the object will expire. Let TO be the object on 
which the attribute msDS-UserPasswordExpiryTimeComputed is read. If TO is not in a domain NC, 
then TO!msDS-UserPasswordExpiryTimeComputed = null. Otherwise let D be the root of the domain 
NC containing TO. The DC applies the following rules, in the order specified below, to determine the 
value of TO!msDS-UserPasswordExpiryTimeComputed: 

▪ If any of the ADS_UF_SMARTCARD_REQUIRED, ADS_UF_DONT_EXPIRE_PASSWD, 
ADS_UF_WORKSTATION_TRUST_ACCOUNT, ADS_UF_SERVER_TRUST_ACCOUNT, 
ADS_UF_INTERDOMAIN_TRUST_ACCOUNT bits is set in TO!userAccountControl, then TO!msDS-
UserPasswordExpiryTimeComputed = 0x7FFFFFFFFFFFFFFF. 

▪ Else, if TO!pwdLastSet = null, or TO!pwdLastSet = 0, then TO!msDS-
UserPasswordExpiryTimeComputed = 0. 

▪ Else, if Effective-MaximumPasswordAge = 0x8000000000000000, then TO!msDS-

UserPasswordExpiryTimeComputed = 0x7FFFFFFFFFFFFFFF (where Effective-
MaximumPasswordAge is defined in [MS-SAMR] section 3.1.1.5). 

▪ Else, TO!msDS-UserPasswordExpiryTimeComputed = TO!pwdLastSet + Effective-
MaximumPasswordAge (where Effective-MaximumPasswordAge is defined in [MS-SAMR] section 
3.1.1.5). 

3.1.1.4.5.34 msDS-RevealedList 

The msDS-RevealedList attribute exists on AD DS (starting with Windows Server 2008) but not on AD 
LDS. 

The msDS-RevealedList attribute exists only on the computer object of an RODC. The value of msDS-
RevealedList is a multivalued DN-String. The string portion of each value is the lDAPDisplayName of a 
secret attribute, and the DN portion of each value names an object. Each value represents the 
presence of a value for the named attribute on the named object on the RODC; in other words, the 

value has been "revealed" to the RODC. 



 

278 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The msDS-RevealedList attribute is constructed from the msDS-RevealedUsers attribute as follows. 

Let O be the object from which the msDS-RevealedList attribute is being read. 

Let RESULT be a set of DN-String, initially empty. 

For each V (a DN-Binary) in O!msDS-RevealedUsers do the following: 

▪ Let USER be the object with DN V.object_DN. 

▪ Let P (a PROPERTY_META_DATA, see [MS-DRSR] section 4.1.10.2.23) equal V.binary_value. 

▪ Let SCH equal SchemaObj(P.attrType) ([MS-DRSR] section 5.183). 

▪ Let RV be a DN-String with RV.string_value equal SCH!lDAPDisplayName and RV.object_DN equal 
V.object_DN. 

▪ Let A be SCH!lDAPDisplayName. 

▪ If AttributeStampCompare(P.propMetadataExt, AttrStamp(USER, P.attrType)) = 0, set RESULT = 

RESULT + {RV }. (See [MS-DRSR] section 4.1.10.3.5 for procedure AttributeStampCompare, and 
[MS-DRSR] section 5.13 for procedure AttrStamp.) 

Return the set RESULT (if empty, the msDS-RevealedList attribute is not present). 

3.1.1.4.5.35 msDS-RevealedListBL 

The msDS-RevealedListBL attribute exists on AD DS (starting with Windows Server 2008) but not on 

AD LDS. 

This attribute behaves precisely like a back link attribute for the msDS-RevealedList constructed 
attributes described in the previous section. 

Therefore, the msDS-RevealedList attribute exists only on a user object, one or more of whose secret 
attributes have been "revealed" to an RODC. The value is the set of RODCs (represented by their 

computer objects) to which one or more of the given user object's secret attributes have been 
revealed. 

3.1.1.4.5.36 msDS-ResultantPSO 

The msDS-ResultantPSO attribute exists on AD DS on Windows Server 2008 and later. This attribute 
does not exist on AD LDS. This attribute specifies the effective password policy applied on this object. 

The value of msDS-ResultantPSO is a single value of Object (DS-DN) syntax. This attribute is 
constructed as follows: 

Let RESULTSET be a set of DS-DN, initially empty. 

Let U be the object from which the msDS-ResultantPSO attribute is being read. 

▪ If the domain functional level is less than DS_BEHAVIOR_WIN2008, then there is no value in this 

attribute. 

▪ If U!objectClass does not contain the value "user", then there is no value in this attribute. 

▪ If the bit for ADS_UF_NORMAL_ACCOUNT (see section 2.2.16) is not set in U!userAccountControl, 
then there is no value in this attribute. 

▪ If the RID in U!objectSid is equal to DOMAIN_USER_RID_KRBTGT, then there is no value in this 
attribute. 



 

279 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Note: Windows Server 2016 and earlier and Windows Server v1803 and earlier do not enforce 
this check. 

▪ If the U!msDS-SecondaryKrbTgtNumber attribute has a value, then there is no value in this 
attribute. 

▪ Let RESULTSET be the values of U!msDS-PSOApplied that are of object class msDS-
PasswordSettings and are under the Password Settings container (see section 6.1.1.4.11.1) 

▪ If RESULTSET is empty: 

▪ Let S be the set of objects returned by invoking the algorithm in [MS-DRSR] section 4.1.8.3 
(IDL_DRSGetMemberships) using 
DRS_MSG_REVMEMB_REQ_V1.OperationType=RevMembGetAccountGroups, 
DRS_MSG_REVMEMB_REQ_V1.ppDsNames=U, and 

DRS_MSG_REVMEMB_REQ_V1.pLimitingDomain = the domain for which the server is a DC. 

▪ For each O (an object) in S do the following: 

▪ RESULTSET = RESULTSET union O!msDS-PSOApplied 

▪ Sort objects in set RESULTSET according to msDS-PasswordSettingsPrecedence values, breaking 
ties with objectGUID values, with smaller values coming first. 

▪ Return the first element in the sorted RESULTSET (if empty, the msDS-ResultantPSO attribute is 

not present).  

3.1.1.4.5.37 msDS-LocalEffectiveDeletionTime 

The msDS-LocalEffectiveDeletionTime attribute exists on AD DS and AD LDS on Windows Server 2008 
R2 and later. 

This attribute contains the value that a replica maintains as the time when the object was transformed 
into a tombstone or deleted-object. 

Each DC is permitted to modify this value locally for implementation-specific reasons outside the state 
model. Therefore, this value does not necessarily accurately reflect when the object was actually 
transformed. However, no replica is permitted to modify this value to be earlier than the actual time 
that the object was transformed. This value is not replicated. Therefore, for a specific object, each DC 
can have a different value for this attribute. 

When the Recycle Bin optional feature is enabled, each replica will transform the deleted-object into a 
recycled-object some time after the difference that exists between the current time and the value of 

msDS-LocalEffectiveDeletionTime is greater than the value of the deleted-object lifetime. 

When the Recycle Bin optional feature is not enabled, the DC makes no use of this value. When this 
attribute exists on a tombstone, it is not used by the replica. 

3.1.1.4.5.38 msDS-LocalEffectiveRecycleTime 

The msDS-LocalEffectiveRecycleTime attribute exists on AD DS and AD LDS on Windows Server 2008 

R2 and later. 

This attribute contains the value that a replica maintains as the time when the object was transformed 
into a tombstone or recycled-object. 

Each DC is permitted to modify this value locally for implementation-specific reasons outside the state 
model. Therefore, this value does not necessarily accurately reflect when the object was actually 
transformed. However, no replica is permitted to modify this value to be earlier than the actual time 



 

280 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

that the object was transformed. This value is not replicated. Therefore, for a specific object, each 
replica can have a different value for this attribute. 

Each replica will remove the tombstone or recycled-object some time after the difference that exists 
between the current time and the value of msDS-LocalEffectiveRecycleTime is greater than the value 

of the tombstone lifetime. 

3.1.1.4.5.39 (Updated Section) msDS-ManagedPassword 

The msDS-ManagedPassword attribute exists in AD DS on Windows Server 2012 and later. This 
attribute contains a BLOB with password information for group-managed service accounts. 

Let TO be the object on which msDS-ManagedPassword is being read. If TO is not an msDS-
GroupManagedServiceAccount object, then TO!msDS-ManagedPassword is not present. If the DC is 

not writable, then TO!msDS-ManagedPassword cannot be constructed and the request is forwarded to 
a writable DC by the RODC. 

The value of TO!msDS-ManagedPassword is obtained by calling GetgMSAPasswordBlob(TO) (defined 

later in this section), which uses the functions defined next. 

Define function PostProcessPasswordBuffer(Password: OCTET STRING), which returns an octet string 
[ITUX680] as follows: 

1. Let RESULT be set to Password, which is a BLOB. 

2. Take RESULT and convert each wide (2-byte) NULL character into a wide value of 1 (0x00 0x01) 
to guarantee that the resulting string is a Unicode string with no intervening NULL characters that 
would limit its length. 

3. Set the last wide character in RESULT to NULL to terminate the string. 

4. Return RESULT. 

Define function MaxClockSkew(), which returns the integer 3,000,000,000. This is a quantity of 10^(-

7) second units of time; that is, five minutes in 100ns units. 

Define function GmsaSD(), which returns the security descriptor corresponding to the policy on all 
msDS-GroupManagedServiceAccount object keys: 

 static const BYTE gmsaSecurityDescriptor[] = {/* O:SYD:(A;;FRFW;;;S-1-5-9) */ 
     0x01, 0x00, 0x04, 0x80, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
     0x00, 0x14, 0x00, 0x00, 0x00, 0x02, 0x00, 0x1c, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 
     0x14, 0x00, 0x9f, 0x01, 0x12, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x09, 
     0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x12, 0x00, 0x00, 0x00 
     }; 

Define function GenerateGmsaPassword(Key: L1 or L2 key ([MS-GKDI] section 2.2.4), HashAlg: null-
terminated Unicode string, AccountSID: SID), which returns a password and a key identifier, KeyID, 
as follows: 

1. Use the same processing rules as defined for KDF ([MS-GKDI] section 3.1.4.1.2) where: 

▪ HashAlg (for KDF) contains HashAlg. 

▪ KI contains Key. 

▪ Label contains the Unicode (wide-character) NULL-terminated string "GMSA PASSWORD" 
(without the quotes). 

▪ Context contains the binary representation of the AccountSID parameter. 



 

281 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ L contains the password length, in bytes, including the terminating NULL. 

2. Return KeyID and the password to the caller. 

Define function MarshalPassword(Current_Password: OCTET STRING, Previous_Password: OCTET 
STRING (optional), QueryPasswordInterval: FILETIME, UnchangedPasswordInterval: FILETIME). This 

function returns an msDS-ManagedPassword BLOB using the MSDS-MANAGEDPASSWORD_BLOB 
structure from section 2.2.19, which is constructed as follows: 

▪ The Version field is set to 0x0001. 

▪ The Reserved field is set to 0x0000. 

▪ The Length field is set to the length, in bytes, of the msDS-ManagedPassword BLOB. 

▪ The CurrentPasswordOffset field is set to the offset, in bytes, from the beginning of this 
structure to the CurrentPassword field. 

▪ The PreviousPasswordOffset field is set to the offset, in bytes, from the beginning of this 
structure to the PreviousPassword field. If the Previous_Password parameter is not included, 
this field is set to 0x0000. 

▪ The QueryPasswordIntervalOffset field is set to the offset, in bytes, from the beginning of this 
structure to the QueryPasswordInterval field. 

▪ The UnchangedPasswordIntervalOffset field is set to the offset, in bytes, from the beginning 

of this structure to the UnchangedPasswordInterval field. 

▪ The CurrentPassword field is set to Current_Password. 

▪ The PreviousPassword field is set to Previous_Password. If the Previous_Password parameter is 
not included, then this field MUST be absent. 

▪ The AlignmentPadding field is constructed with enough bytes of padding to align the 
QueryPasswordInterval field to a 64-bit boundary. 

▪ The QueryPasswordInterval field is set to QueryPasswordInterval. 

▪ The UnchangedPasswordInterval field is set to UnchangedPasswordInterval. 

Define function GetIntervalId(TimeStamp: FILETIME), which returns L0KeyID: INTEGER, L1KeyID: 
INTEGER, and L2KeyID: INTEGER as follows: 

1. Let KeyCycleDuration be the integer 360,000,000,000. This is a quantity of 10^(-7) second units 
of time; that is, 10 hours in 100ns units. 

2. Let TimeStamp be the number of 100ns intervals since January 1,1601, UTC. 

3. Let L1_KEY_ITERATION be 32. 

4. Let L2_KEY_ITERATION be 32. 

5. L0KeyID = (ULONG)(TimeStamp / KeyCycleDuration / L2_KEY_ITERATION / L1_KEY_ITERATION) 

6. L1KeyID = (TimeStamp / KeyCycleDuration / L2_KEY_ITERATION) & (L1_KEY_ITERATION - 1) 

7. L2KeyID = (TimeStamp / KeyCycleDuration) & (L2_KEY_ITERATION - 1) 

8. Return L0KeyID, L1KeyID, and L2KeyID. 

Define function GKDIGetKeyStartTime(KeyID: GUID), which returns a FILETIME structure as follows: 



 

282 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

1. Extract the variables L0, L1, and L2 from the Group Key Envelope structure ([MS-GKDI] section 
2.2.4) identified by KeyID. The Group Key Envelope fields of relevance are L0 index, L1 index, 

and L2 index, respectively. 

2. Let KeyCycleDuration be the integer 360,000,000,000. This is a quantity of 10^(-7) second units 

of time; that is, 10 hours in 100ns units. 

3. Let L1_KEY_ITERATION be 32. 

4. Let L2_KEY_ITERATION be 32. 

5. Return ((L0 * L1_KEY_ITERATION * L2_KEY_ITERATION) + (L1 * L2_KEY_ITERATION) + L2) * 
KeyCycleDuration 

Define function GetPasswordBasedOnTimeStamp(TimeStamp: FILETIME, AccountSID: SID), which 
returns an msDS-ManagedPassword BLOB (section 2.2.19) and KeyID: GUID as follows: 

1. Call GetIntervalID() with the supplied TimeStamp to compute variables L0, L1, and L2. 

2. Call GetKey() ([MS-GKDI] section 3.1.4.1) to compute the output key where: 

▪ hBinding contains an RPC binding handle ([C706] and [MS-RPCE]) to a GKDI server. 

▪ cbTargetSD contains the length, in bytes, of the security descriptor supplied in pbTargetSD. 

▪ pbTargetSD contains a pointer to the security descriptor returned by GmsaSD(). 

▪ pRootKeyID is set to NULL. 

▪ L0KeyID contains L0 returned in step 1. 

▪ L1KeyID contains L1 returned in step 1. 

▪ L2KeyID contains L2 returned in step 1. 

3. Compute the group key using the output key from step 2 and the same processing rules as 
defined in step 2 of [MS-GKDI] section 3.2.4.3. 

4. Call GenerateGmsaPassword() to obtain the password BLOB and KeyID where: 

▪ Key contains the group key from step 3. 

▪ HashAlg contains Hash algorithm name from the KDF parameters ([MS-GKDI] section 2.2.1) 
of the output key from step 2. 

▪ AccountSID contains the AccountSID parameter passed to this function. 

5. Call PostProcessPasswordBuffer() with the returned password BLOB to make it into a properly 
NULL-terminated Unicode string. 

6. Return the password BLOB and KeyID to the caller. 

Define function GetPasswordBasedOnKeyID(Key-ID: GUID, Account-SID: SID), which returns an 

msDS-ManagedPassword BLOB (section 2.2.19) as follows: 

1. Extract the variables L0, L1, and L2 and the root key ID from the Group Key Envelope data 
structure ([MS-GKDI] section 2.2.4) identified by Key-ID. The Group Key Envelope fields of 
relevance are L0 index, L1 index, L2 index, and Root key identifier, respectively. 

2. Call GetKey() ([MS-GKDI] section 3.1.4.1) to compute the output key where: 

▪ hBinding contains an RPC binding handle ([C706] and [MS-RPCE]) to a GKDI server. 



 

283 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ cbTargetSD contains the length, in bytes, of the security descriptor supplied in pbTargetSD. 

▪ pbTargetSD contains a pointer to the security descriptor returned by GmsaSD(). 

▪ pRootKeyID is set to the root key ID returned in step 1. 

▪ L0KeyID contains L0 returned in step 1. 

▪ L1KeyID contains L1 returned in step 1. 

▪ L2KeyID contains L2 returned in step 1. 

3. Compute the group key using the output key from step 2 and the same processing rules as 
defined in step 3 of [MS-GKDI] section 3.2.4.3. 

4. Call GenerateGmsaPassword() where: 

▪ Key contains the group key from step 3. 

▪ HashAlg contains Hash algorithm name from the KDF parameters ([MS-GKDI] section 2.2.1) 

of the output key from step 2. 

▪ AccountSID contains the Account-SID parameter passed to this function. 

5. Call PostProcessPasswordBuffer() to convert the returned BLOB into a properly NULL-terminated 
Unicode string. 

6. Return the password BLOB to the caller. 

Define function GetgMSAPasswordBlob(TO: OBJECT), which returns an msDS-ManagedPassword BLOB 

structure (section 2.2.19) as follows using integer arithmetic where divisions are rounded down 
without a remainder. 

1. If the connection is not encrypted, ERROR_DS_CONFIDENTIALITY_REQUIRED is returned. 

2. If the caller does not have the RIGHT_DS_READ_PROPERTY control access right on the security 
descriptor in the TO!msDS-GroupMSAMembership attribute ([MS-ADA2] section 2.329), the error 
operationsError / ERROR_DS_CANT_RETRIEVE_ATTRS is returned. This access check is also 
specified in section 3.1.1.4.4. 

3. Convert the TO!msDS-ManagedPasswordInterval attribute ([MS-ADA2] section 2.376) into the 
rollover interval as follows: 

1. Let KeyCycleDuration be the integer value 360,000,000,000. This is a quantity of 10^(-7) 
second units of time; that is, 10 hours in 100ns units.  

2. Let KeyCycleDurationInHours be the integer value 10. 

2.3.Let GKDIRolloverInterval = (TO!msDS-ManagedPasswordInterval * 24 / 
KeyCycleDurationKeyCycleDurationInHours) * KeyCycleDuration. 

4. Let a variable called CurrentKeyExpirationTime be computed as follows: 

1. If the TO!msDS-ManagedPasswordId  attribute ([MS-ADA2] section 2.375) exists, call 
GKDIGetKeyStartTime() where: 

▪ KeyID contains TO!msDS-ManagedPasswordId. 

Set CurrentKeyExpirationTime = the time returned by GKDIGetKeyStartTime() + 
GKDIRolloverInterval. 



 

284 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

2. Otherwise, set CurrentKeyExpirationTime = the TO!creationTimewhenCreated attribute ([MS-
ADA1ADA3] section 2.371). 

5. If TO!msDS-ManagedPasswordId does not exist or CurrentKeyExpirationTime is less than the 
current time, then: 

1. Let StaleCount be zero. 

2. Let NewKeyStartTime = CurrentKeyExpirationTime. 

3. Let NewKeyStartTime = NewKeyStartTime + GDKIRolloverInterval and StaleCount = 
StaleCount +1 until NewKeyStartTime is greater than the current time. 

4. Call GetPasswordBasedOnTimestamp() where: 

▪ Timestamp contains NewKeyStartTime. 

▪ AccountSID contains the TO!objectSid attribute ([MS-ADA3] section 2.45). 

Let NewKeyID be the returned KeyID. Set TO!msDS-ManagedPasswordId to the value of 
NewKeyID. Let NewPassword be the returned password. 

5. Let a variable called OldKeyID be computed as follows: 

1. If StaleCount is zero AND TO!msDS-ManagedPasswordId exists and is not NULL: 

1. Call GetPasswordBasedOnKeyID() where: 

▪ Key-ID contains TO!msDS-ManagedPasswordId. 

▪ Account-SID contains TO!objectSid ([MS-ADA3] section 2.45). 

2. Let OldPassword be the returned password and set OldKeyID to the value of 
TO!msDS-ManagedPasswordId.  

2. Otherwise, if the current time - TO!creationTimewhenCreated >= GDKIRolloverInterval, 
the current key cannot be reused as the previous key. Call 
GetPasswordBasedOnTimeStamp() where: 

▪ Timestamp contains NewKeyStartTime – GDKIRolloverInterval. 

▪ AccountSID contains TO!objectSid. 

Set OldKeyID to the returned KeyID. Let OldPassword be the returned password. 

3. Otherwise, the account is not old enough to have a previous password and neither the 
OldKeyID nor the OldPassword will be returned. 

6. Let variables called QueryPasswordInterval and UnchangedPasswordInterval be computed as 
follows: 

1. Let NewKeyExpirationTime = NewKeyStartTime + GKDIRolloverInterval. 

2. Call MaxClockSkew() and let MaxClockSkew be the returned value. 

3. If NewKeyExpirationTime - the current time <= MaxClockSkew: 

▪ Let QueryPasswordInterval be NewKeyExpirationTime - the current time. 

▪ Let UnchangedPasswordInterval be 0. 

4. Otherwise: 



 

285 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Let QueryPasswordInterval be NewKeyExpirationTime - the current time. 

▪ Let UnchangedPasswordInterval be NewKeyExpirationTime - the current time - 
MaxClockSkew. 

7. Call MarshalPassword() where: 

▪ Current_Password contains NewPassword. 

▪ Previous_Password contains OldPassword. 

▪ QueryPasswordInterval contains QueryPasswordInterval. 

▪ UnchangedPasswordInterval contains UnchangedPasswordInterval. 

Return the resulting msDS-ManagedPassword BLOB. 

6. If CurrentKeyExpirationTime - the current time <= MaxClockSkew(), create a new key that will be 
valid in the next epoch: 

1. Call GetPasswordBasedOnTimeStamp() where: 

▪ Timestamp contains CurrentKeyExpirationTime. 

▪ AccountSID contains TO!objectSid. 

Let NewKeyID be the returned KeyID. Let NewPassword be the returned password. 

2. Call GetPasswordBasedOnKeyID() where: 

▪ Key-ID contains TO!msDS-ManagedPasswordId. 

▪ Account-SID contains TO!objectSid. 

Let OldPassword be the returned password and do not return OldKeyID. 

3. Let QueryPasswordInterval = CurrentKeyExpirationTime - the current time. 

4. Let UnchangedPasswordInterval = CurrentKeyExpirationTime + GKDIRolloverInterval - 
MaxClockSkew - the current time. 

5. Call MarshalPassword() where: 

▪ Current_Password contains NewPassword. 

▪ Previous_Password contains OldPassword. 

▪ QueryPasswordInterval contains QueryPasswordInterval. 

▪ UnchangedPasswordInterval contains UnchangedPasswordInterval. 

Return the resulting msDS-ManagedPassword BLOB. 

7. Otherwise, create a current key: 

1. Call GetPasswordBasedOnKeyID() where: 

▪ Key-ID contains TO!msDS-ManagedPasswordId. 

▪ Account-SID contains TO!objectSid. 

Let NewPassword be the returned password. 



 

286 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

2. If the TO!msDS-ManagedPasswordPreviousId attribute ([MS-ADA2] section 2.377) exists, call 
GetPasswordBasedOnKeyID() where: 

▪ Key-ID contains TO!msDS-ManagedPasswordPreviousId. 

▪ Account-SID contains TO!objectSid. 

Let OldPassword be the returned password. 

3. Let QueryPasswordInterval = CurrentKeyExpirationTime - the current time. 

4. Let UnchangedPasswordInterval = CurrentKeyExpirationTime - MaxClockSkew - the current 
time. 

5. Call MarshalPassword() where: 

▪ Current_Password contains NewPassword. 

▪ Previous_Password contains OldPassword. 

▪ QueryPasswordInterval contains QueryPasswordInterval. 

▪ UnchangedPasswordInterval contains UnchangedPasswordInterval. 

Return the resulting msDS-ManagedPassword BLOB. 

3.1.1.4.5.40 (Updated Section) msds-memberOfTransitive 

The msds-memberOfTransitive attribute exists on AD DS and AD LDS on Windows Server 2012 R2 

and later. 

This computed attribute returns the set of DNs from a transitive group membership expansion 
operation on a given object. 

Let TO be the object from which the msds-memberOfTransitive attribute is being read. 

The value of TO!msds-memberOfTransitive is the set of DNs of each object O, where one of the 
following is trueTRUE: 

▪ O is a value of the attribute TO!memberOf 

▪ or O is a value of the attribute (O'!memberOf), where O' is a value of TO!msds-
memberOfTransitive. 

3.1.1.4.5.41 (Updated Section) msds-memberTransitive 

The msds-memberTransitive attribute exists on AD DS and AD LDS on Windows Server 2012 R2 
and later. 

This computed attribute returns the set of DNs from a transitive group member expansion operation 

on a given object. 

Let TO be the object from which the msds-memberTransitive attribute is being read. 

The value of TO!msds-memberTransitive is the set of DNs of each object O, where one of the following 
is trueTRUE: 

▪ O is a value of the attribute TO!member 

▪ or O is a value of the attribute (O'!member), where O' is a value of TO!msds-memberTransitive. 



 

287 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.4.5.42 msds-tokenGroupNames, msds-tokenGroupNamesNoGCAcceptable 

The msds-tokenGroupNames and msds-tokenGroupNamesNoGCAcceptable attributes exist on 
AD DS but not on AD LDS, on Windows Server 2016 and later. 

The msds-tokenGroupNames attribute contains the DN values corresponding to the SID values 
returned by the constructed attribute tokenGroups (section 3.1.1.4.5.19). 

The msds-tokenGroupNamesNoGCAcceptable attribute contains the DN values corresponding to 
the SID values returned by the constructed attribute tokenGroupsNoGCAcceptable (section 
3.1.1.4.5.19). 

3.1.1.4.5.43 msds-tokenGroupNamesGlobalAndUniversal 

The msds-tokenGroupNamesGlobalAndUniversal attribute exists on AD DS but not on AD LDS, on 
Windows Server 2016 and later. 

The msds-tokenGroupNamesGlobalAndUniversal attribute contains the DN values corresponding 

to the SID values returned by the constructed attribute tokenGroupsGlobalAndUniversal (section 
3.1.1.4.5.20). 

3.1.1.4.5.44 (Updated Section) structuralObjectClass 

The structuralObjectClass attribute exists on AD DS and AD LDS on Windows Server 2003 and 
later. 

This computed attribute returns the inheritance chain of the structural class of a given object. 

Let TO be the object from which the structuralObjectClass attribute is being read. 

The value of TO!structuralObjectClass is the set of lDAPDisplayName values read from each Object O, 
where one of the following is trueTRUE: 

▪ O is the most specific structural object class of TO 

▪ or (O is O'!subClassOf for some O' in TO!structuralObjectClass). 

Note that this value is computed from the schema based only on the most specific structural object 
class of an object. It differs from the attribute objectClass in that it contains no auxiliary classes 
(section 3.1.1.3.1.1.5). Further, if the schema has changed since the object was created, it is possible 
that the calculated value of structuralObjectClass will not match the stored value of objectClass. 

3.1.1.4.6 (Updated Section) Referrals 

When the server returns a referral as documented in section 3.1.1.3.1.4, it mustMUST determine 
which server(s) to refer the client to. The set of servers to which the client will be referred is the set of 
values returned by the following algorithm. 

Let N be the DSNAME of the base of the LDAP search. 

Let NSID be the sid portion of N. 

Let NGUID be the guid portion of N. 

Let NSTR be the dn portion of N. 

The value is: 

▪ (the values of O!dnsRoot for the object O where: 

▪ (NSTR is not present) 



 

288 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ and (NGUID is not present) 

▪ and (NSID is present) 

▪ and ((O!nCName)!objectSid matches the domain sid from NSID) 

▪ and (O!parent is the Partitions container) 

▪ and (O!objectClass's most specific class is crossRef) 

▪ and (O!Enabled is trueTRUE)) 

▪ and (the value for Root-Domain-NC!dnsRoot after prepending "gc._msdcs." and either replacing 
the first matching ":*" with ":3268" or, if there are no matches of ":*", then by appending ":3268" 
when: 

▪ (NSTR is not present) 

▪ and (NGUID is present)) 

▪ and (the values of O!dnsRoot for the object O where: 

▪ (NSTR is present) 

▪ and (O!nCName is a prefix for NSTR and is the longest prefix among all O satisfying these 
conditions) 

▪ and (O!parent is the Partitions container) 

▪ and (O!objectClass's most specific object class is crossRef) 

▪ and (O!Enabled is trueTRUE)) 

▪ and (the value is Root-Domain-NC!superiorDNSRoot when: 

▪  (NSTR is present) 

▪ and (Root-Domain-NC!superiorDNSRoot is present) 

▪ and (there exists no object O such that  

▪ ((O!nCName is a prefix for NSTR) 

▪ and (O!parent is the Partitions container) 

▪ and (O!objectClass's most specific class is crossRef) 

▪ and (O!Enabled is trueTRUE))) 

▪ and (the value is the transform of TO.dn into a dotted string by concatenating the value for the 
first dc component with values for subsequent components separated by "." (for example, 
CN=bob,DC=One,DC=Two is transformed into One.Two) when: 

▪ ((NSTR is present) 

▪ and (Root-Domain-NC!superiorDNSRoot is not present) 

▪ and (there exists no object O such that 

▪ ((O!nCName is a prefix for NSTR) 

▪ and (O!parent is the Partitions container) 



 

289 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ and (O!objectClass's most specific class is crossRef) 

▪ and (O!Enabled is trueTRUE))))) 

3.1.1.4.7 (Updated Section) Continuations 

When the server returns a continuation reference as documented in section 3.1.1.3.1.4, it mustMUST 
determine which server(s) to refer the client to. The set of servers to which the client will be referred 
is the set of values returned by the following algorithm. 

Let TO be the base object of an LDAP Search. 

Let NC be the NC replica containing TO. 

The values are made up of: 

▪ The values from O!dnsRoot for all objects O where 

▪ (O.dn is listed in NC!subRefs) 

▪ and (O!Enabled is trueTRUE) 

▪ and (O!objectClass's most specific class is crossRef) 

▪ and 

▪ (((O!nCName is a prefix of TO.dn for all but the first component) 

and (the scope of the search is LDAP_SCOPE_ONELEVEL)) 

or 

▪ ((O!nCName is a prefix of TO.dn) 

and (the scope of the search is LDAP_SCOPE_SUBTREE))) 

▪ and the value for Root-Domain-NC!dnsRoot after prepending "gc._msdcs." and either replacing the 
first matching ":*" with ":3268" or, if there are no matches of ":*", then by appending ":3268" if 
and only if: 

▪ (TO!objectClass's most specific object class is addressBookContainer) 

and (the scope of the search is LDAP_SCOPE_ONELEVEL) 

3.1.1.4.8 Effects of Defunct Attributes and Classes 

If the forest functional level is less than DS_BEHAVIOR_WIN2003, a search that mentions a defunct 
class or attribute succeeds just as if the class or attribute were not defunct. 

If the forest functional level is DS_BEHAVIOR_WIN2003 or greater: 

▪ Instances of a defunct attribute cannot be read. 

▪ Instances of a defunct class can be read using the filter term (objectClass=*). 

▪ When reading any OID-valued attribute that contains identifiers for schema objects, if the 
attribute identifies a defunct schema object, the read returns an OID (the attributeID if an 
attribute, the governsID if a class) not a name (the lDAPDisplayName of an attribute or class). 
This behavior applies to the mustContain, systemMustContain, mayContain, systemMayContain, 
subClassOf, auxiliaryClass, and possSuperiors attributes of schema objects (that is, 



 

290 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

attributeSchema or classSchema objects that are located in the schema NC). This behavior also 
applies to the objectClass attribute of all other objects. 

3.1.1.5 Updates 

3.1.1.5.1 General 

References 

▪ LDAP attributes: fSMORoleOwner, invocationId, objectGUID. 

▪ State model attributes: rdnType. 

▪ LDAP classes: classSchema, crossRef, nTDSDSA, rIDManager. 

▪ Glossary terms: config NC, default NC, dsname, NC replica, replicated attribute, schema NC. 

▪ Abstract attribute repsTo: see [MS-DRSR] section 5.173. 

▪ IDL_DRSReplicaSync method: see [MS-DRSR] section 4.1.23. 

▪ DRS_MSG_REPSYNC message: see [MS-DRSR] section 4.1.23.1.1. 

▪ DRS_MSG_REPSYNC_V1 message: see [MS-DRSR] section 4.1.23.1.2. 

▪ Urgent replication specified by SAM: see [MS-SAMR] section 3.1.1.8. 

This section specifies operations that are common for all originating update and replicated update 
operations. An update could be an Add, Modify, Modify DN, or Delete operation. 

3.1.1.5.1.1 (Updated Section) Enforce Schema Constraints 

The originating update is validated for schema constraints as explained in Restrictions on Schema 
Extensions in section 3.1.1.2. Schema constraints are not enforced for replicated updates. 

During an originating update of the Add and Modify operations, the server validates that the object 
being added or modified is consistent with the schema definition of the object of the objectClass 
values that are assigned to the object (see section 3.1.1.2 for more information): 

▪ The mayContain/mustContain constraints that are applicable based on the selected objectClass 
values are enforced. The computation of the mayContain/mustContain set takes into consideration 
the complete inheritance chain of the structural objectClass and the 88 object class as well as any 
auxiliary classes supplied. If any attributes in the mustContain set are not provided, the Add fails 

with objectClassViolation / <unrestricted>. If any attributes provided are not present in either the 
mayContain or mustContain sets, the Add fails with objectClassViolation / <unrestricted>. 
Exception: In AD LDS, the objectSid attribute is present on all application NC roots, even if this 
violates the schema mayContain/mustContain constraints. 

▪ All attribute values are formed correctly according to the attribute syntax and satisfy schema 

constraints, such as single-valuedness, rangeLower/rangeUpper, and so on. See sections 3.1.1.2.3 

through 3.1.1.2.5 for more information. 

▪ All attribute values mustMUST be compliant with the rangeUpper and rangeLower constraints of 
the schema (see section 3.1.1.2.3). If a supplied value violates a rangeUpper or rangeLower 
constraint, then the Add fails with constraintViolation / <unrestricted>. 

▪ All attribute values mustMUST be compliant with the isSingleValued constraint of the schema (see 
section 3.1.1.2.3). If multiple values are provided for an attribute that is single-valued, then the 
Add fails with constraintViolation / <unrestricted>. 



 

291 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ The attributeType of the first label of the object DN matches the rDNAttID of the structural object 
class or the 88 object class. Otherwise, namingViolation / 

ERROR_DS_RDN_DOESNT_MATCH_SCHEMA is returned. For example, it is not allowed to create 
an organizationalUnit with CN=test RDN; the correct RDN for an organizationalUnit object is 

OU=test. If there is no class C for which the attributeType is equal to C!rDNAttID, namingViolation 
/ <unrestricted> is returned. 

3.1.1.5.1.2 (Updated Section) Naming Constraints 

During an originating update of the Add, Modify, and Modify DN operations, the server validates the 
following naming constraints. Unless otherwise specified, the server returns the error namingViolation 
/ <unrestricted> if a naming constraint is not met. 

▪ The RDN mustMUST not contain a character with value 0xA. 

▪ The RDN mustMUST not contain a character with value 0x0; otherwise, the server SHOULD return 
the error invalidDNSyntax / <unrestricted>. However, if the DC functional level is 
DS_BEHAVIOR_WIN2000, the server will not return an error. 

▪ The DN mustMUST be compliant with [RFC2253]. 

▪ The RDN size mustMUST be less than 255 characters. 

Naming constraints are not enforced for replicated updates. 

3.1.1.5.1.3 (Updated Section) Uniqueness Constraints 

During an originating update of the Add, Modify, and Undelete operations on a DC with functional level 
DS_BEHAVIOR_WIN2012R2 or greater, the server enforces the following constraint for the 
servicePrincipalName and userPrincipalName attributes if present on the object. 

▪ In AD DS, if the DC functional level is DS_BEHAVIOR_WIN2012R2 or greater, then the new 

attribute value mustMUST be unique within the entire forest. If the DC is not a GC, then the DC 
mustMUST issue an LDAP search against a GC to determine uniqueness. The following additional 

considerations for uniqueness checking are relevant: 

▪ userPrincipalName (UPN) uniqueness is checked only if bit 0 of the 
DoNotVerifyUPNAndOrSPNUniqueness dsHeuristic attribute (section 6.1.1.2.4.1.2) is set to 1. 

▪ servicePrincipalName (SPN (2)) uniqueness is checked only if bit 1 of the 
DoNotVerifyUPNAndOrSPNUniqueness dsHeuristic attribute value (section 6.1.1.2.4.1.2) is set 

to 1. 

▪ servicePrincipalName alias uniqueness is checked only if bit 2 of the 
DoNotVerifyUPNAndOrSPNUniqueness dsHeuristic attribute value (section 6.1.1.2.4.1.2) is set 
to 1 and if the current user is not admin or local system. 

Note: sPNMappings are defined in [MS-ADA3] section 2.276. 

The format of an entry is x=a,b,c. In this context, a, b, and c are all aliases of x. 

The first part of a servicePrincipalName is the SERVICE, for example SERVICE/foo. When the 
servicePrincipalName alias uniqueness feature is on the new value SERVICE, the name 
mustMUST be unique, including its aliases. For example if CIFS is an alias of HOST, then 
setting the servicePrincipalName to CIFS/foo will actually check uniqueness for both CIFS/foo 
and HOST/foo. 

Note: The uniqueness checking additions for userPrincipalName and servicePrincipalName 
described earlier are relevant to Windows Server 2012 R2 with [MSKB-3070083] installed and 



 

292 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

to the operating systems specified in [MSFT-CVE-2021-42282], each with its related MSKB 
article download installed. These features are also supported in Windows 11 v22H2 and later. 

▪ In AD LDS, if the DC functional level is DS_BEHAVIOR_WIN2012R2 or greater, then the new 
attribute value mustMUST be unique within its own partition. 

If another object exists with a duplicate userPrincipalName value, the operation fails with an extended 
error of ERROR_DS_UPN_VALUE_NOT_UNIQUE_IN_FOREST. If another object exists with a duplicate 
servicePrincipalName value, the operation fails with an extended error of 
ERROR_DS_SPN_VALUE_NOT_UNIQUE_IN_FOREST. 

Uniqueness constraints are not enforced for replicated updates. 

3.1.1.5.1.4 Transactional Semantics 

The effects of an originating update are captured in the state model by committing a transaction. 
When the originating update is initiated by a protocol request, such as an LDAP Modify, the transaction 
is committed before sending the appropriate protocol response. The transaction has the ACID 

properties [GRAY] and provides at least degree 2 isolation of concurrent read and update requests 
[GRAY]. 

Transactions that are used to implement Active Directory provide degree 2 isolation of concurrent read 

and update requests. 

Each Search request or Update request is performed as a transaction. When multiple Search requests 
are used to retrieve a large set of results, each request is its own transaction. An originating update is 
processed as one or more transactions. In some cases a request will cause transactions to occur after 
the response has been sent. Section 3.1.1.1.16 and the remainder of section 3.1.1.5 specify the 
transaction boundaries used for all originating updates and describes all cases where processing 
continues after the response. 

3.1.1.5.1.5 Stamp Construction 

Stamps for replicated attributes and link values will be updated for each originating update as defined 
in section 3.1.1.1. When applying replicated updates, stamps are constructed as described in [MS-
DRSR] section 4.1.10.6. 

3.1.1.5.1.6 Replication Notification 

Each NC replica on the server has an associated abstract attribute repsTo. When an originating or 
replicated update occurs in the NC replica on the server, the server notifies each destination DC that 
has an entry in repsTo. The server notifies the destination DC by calling method IDL_DRSReplicaSync. 
The destination DC contacts the server and requests it to provide updates—this is event-driven 
replication as described in section 3.1.1.1.14. 

The server sends replication notifications as follows: 

Let N be the NC replica where the originating or replicated update has occurred on the server.  

For each i in [0 .. (N!repsTo).length-1] do the following: 

▪ Let E be N!repsTo[i]. 

▪ Let C be the crossRef object corresponding to N. 

▪ Let pmsgIn be a reference to a structure of type DRS_MSG_REPSYNC. 

▪ Set pmsgIn->V1.pNC to dsname of N. 

▪ Let O be the nTDSDSA object of the server. 



 

293 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Set pmsgIn->V1.uuidDsaSrc to O!objectGUID. 

▪ Set pmsgIn->V1.ulOptions to (DRS_ASYNC_OP | DRS_UPDATE_NOTIFICATION). 

▪ If (E.replicaFlags & DRS_WRITE_REP ≠ 0) then set pmsgIn->V1.ulOptions to (pmsgIn-
>V1.ulOptions | DRS_WRIT_REP). 

▪ If the originating/replicated update satisfies the condition for urgent replication then set pmsgIn-
>V1.ulOptions to (pmsgIn->V1.ulOptions | DRS_SYNC_URGENT). 

▪ Let H be the handle obtained by calling IDL_DRSBind against E.uuidDsa. If (E.replicaFlags & 
DRS_REF_GCSPN ≠ 0), then, for mutual authentication of the IDL_DRSBind client, use the service 
principal name (2) associated with E.uuidDsa that begins with "GC" ([MS-DRSR] section 2.2.3.2). 

▪ If (pmsgIn->V1.ulOptions & DRS_SYNC_URGENT = 0), then wait for an implementation-specific 
time T. If i = 0 the default time T is 15 seconds; if i > 0 the default time T is 3 seconds. 

▪ Let R be the result of calling IDL_DRSReplicaSync(H, 1, pmsgIn). 

▪ Let Z be the current time.  

▪ If E.timeLastAttempt > Z or Z.timeLastAttempt - Z > an implementation-specific duration U, 
update N!repsTo[i] as follows: 

▪ Set E.timeLastAttempt to Z. 

▪ Set E.ulResultLastAttempt to R. 

▪ If R = 0, set E.timeLastSuccess to Z and set E.cConsecutiveFailures to 0. 

▪ If R ≠ 0, increment E.cConsecutiveFailures by 1. 

▪ Set N!repsTo[i] to E. 

The default duration U is one hour. 

3.1.1.5.1.7 Urgent Replication 

Let N be the NC replica on the server. There are few originating/replicated updates in N that need to 

be replicated immediately to each destination DC that has an entry in N!repsTo. Updates that need to 
be replicated immediately are listed below:  

▪ Creation of nTDSDSA object. 

▪ Creation of crossRef object. 

▪ Updates to schema object (attributeSchema or classSchema). 

▪ Deletion of nTDSDSA object. 

▪ Deletion of crossRef object. 

▪ Update to secret object. 

▪ Update to rIDManager object. 

▪ Update to pwdLastSet and userAccountControl attributes as specified in [MS-SAMR] section 
3.1.1.8. 

▪ Unless the DC is running as ADAM or AD LDS, update to lockoutTime attribute as specified in [MS-
SAMR] section 3.1.1.8. 



 

294 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The server behavior for urgent replication is specified in section 3.1.1.5.1.6. 

3.1.1.5.1.8 (Updated Section) Updates Performed Only on FSMOs 

Certain originating update operations in Active Directory mustMUST be performed on a single master. 

For example, all schema updates mustMUST happen on the schema master FSMO DC; creation and 
deletion of crossRef objects representing naming contexts mustMUST happen on the domain naming 
FSMO DC. If the operation is attempted on a DC that does not hold the FSMO role, then it issues a 
referral to the current FSMO role owner. The following section describes how such updates are 
handled. The processing is not performed when applying replicated updates. 

The following types and functions are used in specifying the FSMO-related processing of originating 
update. 

The function IsEffectiveRoleOwner(roleObject:object) verifies that the current DC is the valid owner of 
the given FSMO role. The FSMO ownership is considered valid if a successful replication of the 
corresponding NC occurred with some replication partner. This function is defined later in this section. 

For a given FSMO role, the function RoleUpdateScope(roleObject:Object) returns the set of objects 
and their attributes that can only be updated on the FSMO role owner DC. For example, for Schema 
Master FSMO Role (section 6.1.5.1), the set contains all objects residing within schema NC, with all of 

their attributes. The function is defined later in this section. 

Define variable timeLastReboot equal to the time when the server last rebooted. 

Define function IsEffectiveRoleOwner(roleObject: object), which returns a Boolean as follows: 

▪ Let S be the nTDSDSA object of the server. 

▪ If S ≠ roleObject!fSMORoleOwner, then return falseFALSE. 

▪ Let N be the NC containing roleObject. 

▪ If there exists at least one entry E in N!repsFrom such that E.timeLastSuccess > timeLastReboot, 

then return trueTRUE. 

▪ Otherwise return falseFALSE. 

Let RoleType be the enumeration (SchemaMasterRole, DomainNamingMasterRole, 
InfrastructureMasterRole, RidAllocationMasterRole, PdcEmulationMasterRole). 

Define function RoleObject(n: NC, roleType: RoleType), which returns an object as follows: 

▪ If roleType = SchemaMasterRole, 

▪ if n = Schema NC, return n, otherwise return null. 

▪ If roleType = DomainNamingMasterRole, 

▪  if n = Config NC, return Partition container of n, otherwise return null. 

▪ If roleType = InfrastructureMasterRole, 

▪ if n = Default NC (AD DS), return Infrastructure container of n, otherwise return null. 

▪ If roleType = RidAllocationMasterRole, 

▪ if n = Default NC (AD DS), return RID Manager container of n, otherwise return null. 

▪ If roleType = PdcEmulationMasterRole, 

▪ if n = Default NC (AD DS), return n, otherwise return null. 



 

295 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Otherwise return null. 

Define function RoleUpdateScope(roleObject: object), which returns the set S as follows. S is a set 
such that each element is an object and a list of attributes associated with the object. 

▪ Let n be the NC containing roleObject. 

▪ Let roleType be the role corresponding to the roleObject; that is, RoleObject(n, roleType) = 
roleObject. 

▪ If roleType = SchemaMasterRole, the union of: 

▪ The set of all objects and all attributes in the roleObject's NC. 

▪ The RoleObject(Config NC, DomainNamingMasterRoll) with the msDS-Behavior-Version 
attribute. 

▪ If roleType = DomainNamingMasterRole, the union of 

▪ roleObject and all attributes except msDS-Behavior-Version. 

▪ The objects that are children of roleObject and all attributes. 

▪ If roleType = InfrastructureMasterRole, the union of 

▪ roleObject and all attributes. 

▪ The Updates container u of roleObject's NC and all attributes. 

▪ The objects that are children u and all attributes. 

▪ If roleType = RidAllocationMasterRole, the union of 

▪ roleObject and all attributes. 

▪ Let I = GetWellKnownObject(n, GUID_INFRASTRUCTURE_CONTAINER). 

▪ All children C of I and all attributes, such that C!objectClass contains infrastructureUpdate and 
C!proxiedObjectName is present. 

▪  If C is the computer object for the DC requesting the FSMO operation, C and all attributes. 

▪ The DC's rIDSet object. 

▪ If roleType = PdcEmulationMasterRole,  

▪ roleObject and all attributes. 

▪ n with attributes wellKnownObjects and msDS-Behavior-Version. 

▪ Otherwise return NULL. 

Given those preliminaries, the following processing is performed on each object O on which an 
originating update is being made. 

Let O.A be the attribute that is being updated. 

Let N be the NC containing O. 

For each RoleType T do the following: 

▪ Let R = RoleObject(N, T) 



 

296 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If R exists, then 

▪ Let S = RoleUpdateScope(R). 

▪ If O is not an element of {S} or O.A is not an element of {S}, then proceed with the 
originating update operation. 

▪ If R!fSMORoleOwner ≠ distinguished name of the nTDSDSA object of the server, then let K = 
(R!fSMORoleOwner)!parent. Return the error referral / <unrestricted> to K!dNSHostName. 

▪ If IsEffectiveRoleOwner(R) = trueTRUE, proceed with the originating update operation. 

▪ Otherwise, return the error busy / <unrestricted>. 

3.1.1.5.1.9 Allow Updates Only When They Are Enabled 

Originating and replicated updates are only allowed when dc.fEnableUpdates is TRUE. When 

dc.fEnableUpdates is FALSE, the server returns the error unavailable / ERROR_DS_SHUTTING_DOWN. 

3.1.1.5.1.10 Originating Updates Attempted on an RODC 

In addition to the constraints described in section 3.1.1.5.1.9, an RODC does not perform originating 
updates. When an originating update is requested on an RODC, the RODC generates an LDAP referral 
([RFC2251] sections 3.2 and 4.1.11) to a DC holding a writable NC replica, as specified in this section. 

By following the referral, the client can perform the desired update. 

Define O as follows: 

▪ If the originating update is an add, let O be the parent of the object to be added. 

▪ If the originating update is a modify, modify DN, or delete, let O be the object to be updated. 

If O does not exist, return the error noSuchObject / ERROR_DS_OBJ_NOT_FOUND. Otherwise, let N 
be the NC containing O. Using techniques described in section 6.3.6, find a DC D that has a writable 

NC replica for N. Generate an LDAP referral to D as specified in [RFC2251] section 4.1.11. 

3.1.1.5.1.11 Constraints and Processing Specifics Defined Elsewhere 

In addition to the constraints and processing specifics defined in the remainder of section 3.1.1.5, 
update operations MUST conform to the constraints and processing details defined in [MS-SAMR] and 
[MS-DRSR]. The constraints specified in [MS-SAMR] are enforced only for originating updates. 

3.1.1.5.2 Add Operation 

References 

LDAP attributes: objectClass, nTSecurityDescriptor, instanceType, distinguishedName, objectGUID, 
objectSid, entryTTL, msDS-Entry-Time-To-Die, systemFlags, msDS-AllowedToDelegateTo, 
objectCategory, defaultObjectCategory, defaultHidingValue, showInAdvancedViewOnly, msDS-

DefaultQuota, msDS-QuotaTrustee, msDS-TombstoneQuotaFactor, subRefs, nCName, Enabled, 
uSNLastObjRem, uSNDSALastObjRemoved, whenCreated, uSNCreated, replPropertyMetaData, 
isDeleted, instanceType, proxiedObjectName, msDS-LockoutObservationWindow, msDS-

LockoutDuration, msDS-MaximumPasswordAge, msDS-MinimumPasswordAge, msDS-
MinimumPasswordLength, msDS-PasswordHistoryLength. 

LDAP classes: dynamicObject, crossRef, trustedDomain, secret, classSchema, attributeSchema, 
msDS-QuotaControl, foreignSecurityPrincipal. 

Constants 



 

297 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Win32/status error codes: ERROR_DS_OBJ_CLASS_NOT_DEFINED, 
ERROR_DS_ILLEGAL_MOD_OPERATION, ERROR_DS_OBJECT_CLASS_REQUIRED, 

ERROR_DS_OBJ_CLASS_NOT_SUBCLASS, ERROR_DS_BAD_INSTANCE_TYPE, 
ERROR_DS_ADD_REPLICA_INHIBITED, ERROR_DS_CANT_ADD_SYSTEM_ONLY, 

ERROR_DS_CLASS_MUST_BE_CONCRETE, ERROR_DS_BAD_NAME_SYNTAX, 
ERROR_DS_ATT_NOT_DEF_IN_SCHEMA, ERROR_DS_NOT_SUPPORTED, 
ERROR_DS_RDN_DOESNT_MATCH_SCHEMA, STATUS_QUOTA_EXCEEDED, 
ERROR_DS_REFERRAL, ERROR_DS_CROSS_REF_EXISTS, ERROR_DS_RANGE_CONSTRAINT, 
ERROR_DS_ROLE_NOT_VERIFIED, ERROR_DS_NO_CROSSREF_FOR_NC, 
ERROR_DS_SPN_VALUE_NOT_UNIQUE_IN_FOREST, 
ERROR_DS_UPN_VALUE_NOT_UNIQUE_IN_FOREST 

▪ Access mask bits, control access rights: RIGHT_DS_CREATE_CHILD, Add-GUID 

▪ Security privileges: SE_ENABLE_DELEGATION_PRIVILEGE 

▪ instanceType flags: IT_NC_HEAD, IT_WRITE, IT_NC_ABOVE 

▪ Generic systemFlags bits: FLAG_CONFIG_ALLOW_RENAME, FLAG_CONFIG_ALLOW_MOVE, 
FLAG_CONFIG_ALLOW_LIMITED_MOVE 

▪ Schema systemFlags bits: FLAG_ATTR_IS_RDN 

▪ crossRef systemFlags bits: FLAG_CR_NTDS_NC, FLAG_CR_NTDS_DOMAIN, 
FLAG_CR_NTDS_NOT_GC_REPLICATED 

The add operation results in addition of a new object to the directory tree. The requester supplies the 
following data: 

▪ The DN of the new object. 

▪ The set of attributes defining the new object. 

3.1.1.5.2.1 (Updated Section) Security Considerations 

For regular object creation, the requester mustMUST have RIGHT_DS_CREATE_CHILD on the parent 
object for the objectClass of the object being added, and mustMUST also satisfy the constraints 
specified in section 3.1.1.5.2.2.4 

In the case of Windows Server 2008 R2 and later, in the absence of RIGHT_DS_CREATE_CHILD, 
computer object creation requires that the security constraints and state changes specified in step 13 
of [MS-SAMR] section 3.1.5.4.4 be followed. 

For application NC creation (see section 3.1.1.5.2.6), the requester mustMUST have sufficient 
permissions to create the crossRef object in the Partitions container on the domain naming FSMO, or 
to take over an existing crossRef object (in case of pre-created crossRef). See section 3.1.1.5.2.6 for 
more details. 

If the msDS-AllowedToDelegateTo attribute is specified as a part of the add operation, then the 
requester mustMUST possess SE_ENABLE_DELEGATION_PRIVILEGE. 

If any attributes being added are marked in the schema as partition secrets (see the SE flag in section 
2.2.9), the requester mustMUST have the control access right DS-Write-Partition-Secrets on the root 
object of the naming context to which the modified object belongs. 

Access checks are not performed for replicated updates. 

4 Specified additional constraints to apply to regular object creation, as supported by the operating 
systems specified in [MSFT-CVE-2021-42291], each with its related MSKB article download installed. 



 

298 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.5.2.1.1 (Updated Section) Per Attribute Authorization for Add Operation 

If AttributeAuthorizationOnLDAPAdd equals 0 or 2, this check succeeds with no further processing. 

If AttributeAuthorizationOnLDAPAdd equals 1, processing proceeds as follows: 

1. If the requester is a member of either Domain Administrators (section 6.1.1.6.5) or Enterprise 
Administrators (section 6.1.1.6.10), this check succeeds with no further processing. 

2. If the objectClass being added is neither of type computer or a class derived from type computer, 
this check succeeds with no further processing, otherwise proceed.5 

3. Let DefaultSD be a security descriptor created per the algorithm specified in sections 6.1.3 and 
6.1.3.3. If the requester submitted an nTSecurityDescriptor attribute as part of the Add request, 
that attribute MUST be excluded for the purpose of creating DefaultSD.  

4. Check if the requester is granted explicit WRITE_DAC permission on DefaultSD. Explicit means 
that WRITE_DAC mustMUST be granted due to the presence of least one access-allowed ACE in 

the SD, and not due to the requester being an Owner in the DefaultSD. 

5. If the requester is granted explicit WRITE_DAC permission on DefaultSD, this check succeeds with 
no further processing. 

6. If the requester is not granted explicit WRITE_DAC permission on DefaultSD, and the requester 

submitted an nTSecurityDescriptor attribute as part of the Add request, and implicit Owner rights 
are blocked, as specified in section 6.1.3.5, and the server returns an error. 

7. Let A be the set of attributes included in the requester’s Add request. Remove from A any 
attributes that are configured in the schema as either systemMustContain or mustContain 
attributes for the object class being created. 

8. Remove from A the unicodePwd or userPassword attributes if present. 

9. If A is empty, this check succeeds with no further processing. 

10. If A is non-empty, perform an access check operation against DefaultSD as if the requester was 
trying to modify the attributes contained in A, using the steps specified in section 3.1.1.5.3.1. If 
this access check fails, the server returns an error. 

11. If processing reaches this point where the server returns no error, the check succeeds. 

5 This new process for authorizing attributes for the Add operation is supported by the operating 
systems specified in [MSFT-CVE-2021-42291], each with its related MSKB article download installed. 

3.1.1.5.2.2 (Updated Section) Constraints 

The following constraints are enforced for originating update Add operations. If any of these 
constraints are not satisfied, the server returns an error. 

These constraints are not enforced for replicated updates. 

▪ The object DN value is a syntactically valid DN (see LDAP, section 3.1.1.3). If it is not, Add returns 
namingViolation / ERROR_DS_NAME_UNPARSEABLE. 

▪ If instanceType attribute value is specified, then the following constraints MUST be satisfied: 

▪ If the DC functional level is DS_BEHAVIOR_WIN2000, then multiple integer values are 
permitted. However, if the DC functional level is DS_BEHAVIOR_WIN2003 or greater, then 
there mustMUST be exactly one integer value; otherwise Add returns unwillingToPerform / 
ERROR_DS_BAD_INSTANCE_TYPE. 



 

299 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If the instanceType value has IT_NC_HEAD bit set, then IT_WRITE MUST be set. If this is the 
case, then this operation is considered to be an NC-Add operation, and additional constraints 

and processing specifics apply (see NC-Add Operation (section 3.1.1.5.2.8) for details). 

▪ If IT_NC_HEAD is set, but IT_WRITE is not set, Add returns unwillingToPerform / 

ERROR_DS_ADD_REPLICA_INHIBITED. 

▪ If IT_NC_HEAD is not set in the value, and the DC functional level is DS_BEHAVIOR_WIN2003 
or greater, then the only allowed values are zero and IT_WRITE; otherwise Add returns 
unwillingToPerform / ERROR_DS_BAD_INSTANCE_TYPE. 

▪ If the operation is not NC-Add, then the parent object MUST be in an NC whose full replica is 
hosted at this DC; otherwise referral / ERROR_DS_REFERRAL is returned. 

▪ If the operation is not NC-Add, then the parent object MUST be present in the directory. The 

parent DN is computed from the passed-in DN value by removing the first RDN label. If the parent 
object is not found in the directory, then noSuchObject / ERROR_DS_OBJ_NOT_FOUND is 
returned. 

▪ At least one objectClass value MUST be specified. Otherwise, Add returns objectClassViolation / 
ERROR_DS_OBJECT_CLASS_REQUIRED. 

▪ The objectClass attribute MUST be specified only once in the input attribute list. Otherwise, Add 

returns attributeOrValueExists / ERROR_DS_ATT_ALREADY_EXISTS if the DC functional level is 
DS_BEHAVIOR_WIN2000, and objectClassViolation / ERROR_DS_ILLEGAL_MOD_OPERATION if the 
DC functional level is DS_BEHAVIOR_2003 or greater. 

▪ All objectClass values correspond to classes that are defined and active in the schema.  

▪ If a defunct class is referenced, then Add returns objectClassViolation / 
ERROR_DS_OBJ_CLASS_NOT_DEFINED if the DC functional level is DS_BEHAVIOR_2003 or 
lower, and noSuchAttribute / ERROR_INVALID_PARAMETER if the DC functional level is 

DS_BEHAVIOR_WIN2008 or greater. 

▪ If the objectClass does not exist in the schema, Add returns noSuchAttribute / 
ERROR_INVALID_PARAMETER. 

▪ The set of non-auxiliary objectClass values defines a (possibly incomplete) inheritance chain with a 
single, most specific structural objectClass or a single 88 object class. If this is not trueTRUE, Add 
returns objectClassViolation / ERROR_DS_OBJ_CLASS_NOT_SUBCLASS. 

▪ If the forest functional level is DS_BEHAVIOR_WIN2003 or higher, then auxiliary classes can be 

included while setting the value for the objectClass attribute. If the forest functional level is lower 
than DS_BEHAVIOR_WIN2003, then including auxiliary classes while setting the value of the 
objectClass attribute results in unwillingToPerform / ERROR_DS_NOT_SUPPORTED being returned 
by the server. 

▪ If the fschemaUpgradeInProgress field is falseFALSE on the LDAPConnection instance in 
dc.ldapConnections ([MS-DRSR] section 5.116) corresponding to the LDAP connection on which 

the operation is being performed and the structural objectClass or the 88 object class is not 

marked as systemOnly, then Add returns unwillingToPerform / 
ERROR_DS_CANT_ADD_SYSTEM_ONLY. 

▪ The objectClass’s objectClassCategory is either 0 (88 object class) or 1 (structural object class). If 
it is not, Add returns unwillingToPerform / ERROR_DS_CLASS_MUST_BE_CONCRETE. 

▪ The structural objectClass is not a Local Security Authority (LSA)–specific object class (section 
3.1.1.5.2.3). If it is, Add returns unwillingToPerform / ERROR_DS_CANT_ADD_SYSTEM_ONLY. 



 

300 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If the structural objectClass is crossRef, then crossRef requirements (section 3.1.1.5.2.7), as well 
as NC naming requirements (section 3.1.1.5.2.6), are enforced. 

▪ It is disallowed to create objects with duplicate RDN values under the same parent container. See 
section 3.1.1.3.1.2.1 for more information.  

▪ All attribute names/OIDs refer to attributes that are defined and active in the schema. If an 
unknown or defunct attribute is referenced, Add returns noSuchAttribute / 
ERROR_INVALID_PARAMETER. 

▪ Object quota requirements are satisfied for the requester in the NC where the object is being 
added (see section 3.1.1.5.2.5). 

▪ The objectClass being created satisfies the possSuperiors schema constraint (section 3.1.1.2) for 
the objectClass of the parent object. Otherwise, objectClassViolation / 

ERROR_DS_ILLEGAL_SUPERIOR is returned if the DC functional level is DS_BEHAVIOR_WIN2000, 
and namingViolation / ERROR_DS_ILLEGAL_SUPERIOR is returned if the DC functional level is 
DS_BEHAVIOR_WIN2003 or greater. 

▪ The set of attributes provided for object creation is consistent with the schema as described in 
section 3.1.1.5.1.1. 

▪ If the requester has supplied a value for the RDN attribute, then it matches the first label of the 

supplied DN value in both attribute type and attribute value, according to the LDAP Unicode string 
comparison rules in section 3.1.1.3. 

▪ The RDN value satisfies schema constraints (rangeLower/rangeUpper, single-valuedness, syntax, 
and so on).  

▪ If a site object is being created, then the RDN value is a valid DNS name label (according to the 
DNS RFC [RFC1035]). Otherwise, invalidDNSyntax / ERROR_DS_BAD_NAME_SYNTAX is returned. 

▪ If a subnet object is being created, then the RDN value MUST be a valid subnet object name, 

according to the algorithm described in section 6.1.1.2.2.2.1. Otherwise, invalidDNSyntax / 

ERROR_DS_BAD_NAME_SYNTAX is returned. 

▪ In the following two cases, the requester specifies the objectGUID or the objectSid during Add: 

▪ The requester is allowed to specify the objectGUID if the following five conditions are all 
satisfied: 

▪ The fSpecifyGUIDOnAdd heuristic is trueTRUE in the dSHeuristics attribute (see section 
6.1.1.2.4.1.2). 

▪ The requester has the Add-GUID control access right (section 5.1.3.2.1) on the NC root of 
the NC where the object is being added. 

▪ The requester-specified objectGUID is not currently in use in the forest. 

▪ Active Directory is operating as AD DS. 

▪ The requester-specified objectGUID is not the NULL GUID. 

▪ The requester is required to specify the objectSid when creating a bind proxy object (section 

3.1.1.8.2) in an AD LDS NC. The objectSid value specified for a bind proxy object mustMUST 
be resolvable by the machine running the AD LDS DC to an active Windows user. If the SID 
cannot be resolved to an active Windows user, Add returns unwillingToPerform / 
ERROR_DS_SECURITY_ILLEGAL_MODIFY. If the requester-specified objectSid value is present 
on an existing object in the same NC, Add returns unwillingToPerform / 
ERROR_DS_SECURITY_ILLEGAL_MODIFY. 



 

301 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

In all other cases, it is an error (unwillingToPerform / ERROR_DS_SECURITY_ILLEGAL_MODIFY) 
for the requester to specify the objectGUID or objectSid during Add; these values are 

automatically generated (as specified in section 3.1.1.5.2.4, “Processing Specifics”) by the system 
as required. 

▪ If the requester has specified an owner using the LDAP_SERVER_SET_OWNER_OID LDAP control 
and has specified a value for the nTSecurityDescriptor, the owner in the security descriptor is set 
to the owner supplied by the control. Any other portions of the security descriptor are unchanged. 
The resultant value is a valid security descriptor value in self-relative format, and it satisfies the 
security descriptor constraints (see “Security Descriptor Requirements” in section 6.1.3). 

▪ If the requester has specified an owner using the LDAP_SERVER_SET_OWNER_OID LDAP control 
but has not specified a value for nTSecurityDescriptor, a new value for nTSecurityDescriptor is 

created: a security descriptor with the owner set to the owner supplied by the control. No other 
portions of the security descriptor are valid. The resultant value is a valid security descriptor value 
in self-relative format, and it satisfies the security descriptor constraints (see “Security Descriptor 
Requirements” in section 6.1.3). 

▪ If the requester has not specified an owner using the LDAP_SERVER_SET_OWNER_OID LDAP 
control but has specified a value for nTSecurityDescriptor, the value is a valid security descriptor 

value in self-relative format, and it satisfies the security descriptor constraints (see “Security 
Descriptor Requirements” in section 6.1.3). 

▪ If the requester has specified a value for the objectCategory attribute, then it points to an existing 
classSchema object in the schema container. 

▪ If the requester has specified a value for the servicePrincipalName attribute, then it is a 
syntactically valid SPN (2) value (see section 5.1.1.4, “Mutual Authentication”). 

▪ If the requester has specified values for the servicePrincipalName or userPrincipalName attributes, 

those values mustMUST meet the constraints specified in section 3.1.1.5.1.3. 

▪ If the DC functional level is DS_BEHAVIOR_WIN2003 or greater and the msDS-Entry-Time-To-Die 
attribute is set, then the objectClass value includes the dynamicObject auxiliary class. 

▪ If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, then it is disallowed for a non-
dynamicObject child to be created under a dynamicObject parent (see section 6.1.7). If this 
constraint is violated, then unwillingToPerform / ERROR_DS_UNWILLING_TO_PERFORM is 
returned. 

▪ If the DC functional level is DS_BEHAVIOR_WIN2008 or greater, the following constraints are 
enforced on objects of class msDS-PasswordSettings: 

▪ The msDS-PasswordHistoryLength attribute is less than or equal to 1024. 

▪ The msDS-MinimumPasswordAge attribute is less than or equal to 0. 

▪ The msDS-MaximumPasswordAge attribute is less than or equal to 0. 

▪ The msDS-MaximumPasswordAge attribute is less than the value of the msDS-

MinimumPasswordAge attribute on the same object after the Add would have completed. 

▪ The msDS-MinimumPasswordLength attribute is less than or equal to 256. 

▪ The msDS-LockoutDuration attribute is less than or equal to 0. 

▪ The msDS-LockoutObservationWindow attribute is less than or equal to 0. 

▪ The msDS-LockoutDuration attribute is less than or equal to the value of the msDS-
LockoutObservationWindow attribute on the same object after the Add would have completed. 



 

302 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Otherwise, unwillingToPerform / ERROR_DS_SECURITY_ILLEGAL_MODIFY is returned. 

▪ An AD LDS security principal object (section 5.1.1.5) can be created in an application NC. In 
addition, if the ADAMAllowADAMSecurityPrincipalsInConfigPartition configurable setting (section 
3.1.1.3.4.7) is supported and equals 1, an AD LDS security principal object can also be created in 

the config NC. An AD LDS security principal object can never be created in the schema NC. 

▪ In AD LDS, if the LDAP policy ADAMDisablePasswordPolicies does not equal 1, and a password 
value (either unicodePwd or userPassword) is specified in an Add, the password mustMUST satisfy 
the current password policy in effect on the AD LDS server as reported by SamrValidatePassword 
([MS-SAMR] section 3.1.5.13.7). If the provided password value does not satisfy the password 
policy, the Add returns constraintViolation / ERROR_PASSWORD_RESTRICTION. 

▪ In AD LDS, if the fAllowPasswordOperationsOverNonSecureConnection heuristic of the 

dSHeuristics attribute (see section 6.1.1.2.4.1.2) is not trueTRUE, and a password value (either 
unicodePwd or userPassword) is specified in an Add, the LDAP connection mustMUST be encrypted 
with cipher strength of at least 128 bits. If the connection does not pass the test, the Add returns 
operationsError / ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ In AD LDS, if the userPrincipalName value is specified in an Add, then the value mustMUST be 
unique within all NCs on this DC. If another object exists with the same userPrincipalName value, 

the Add returns attributeOrValueExists / ERROR_DS_NAME_NOT_UNIQUE. 

▪ In AD LDS, the following attributes are disallowed in an Add: badPwdCount, badPasswordTime, 
lastLogonTimestamp, pwdLastSet. If one of these attributes is specified in an add, the Add returns 
constraintViolation / ERROR_DS_ATTRIBUTE_OWNED_BY_SAM. 

▪ In AD DS, the following attributes are disallowed in an Add for objects of class user: 
badPasswordTime, badPwdCount, dBCSPwd, isCriticalSystemObject, lastLogoff, lastLogon, 
lastLogonTimestamp, lmPwdHistory, logonCount, memberOf, msDS-User-Account-Control-

Computed, ntPwdHistory, objectSid, rid, sAMAccountType, and supplementalCredentials. If one of 
these attributes is specified in an Add, the Add returns unwillingToPerform / 
ERROR_DS_ATTRIBUTE_OWNED_BY_SAM. 

▪ In AD DS, the following attributes are disallowed in an Add for objects of class group: 
isCriticalSystemObject, memberOf, objectSid, rid, sAMAccountType, and userPassword. If one of 
these attributes is specified in an Add, the Add returns unwillingToPerform / 
ERROR_DS_ATTRIBUTE_OWNED_BY_SAM. 

▪ In AD DS, the following attributes are disallowed in an Add for an object whose class is not a SAM-
specific object class (see 3.1.1.5.2.3): isCriticalSystemObject, lmPwdHistory, ntPwdHistory, 
objectSid, samAccountName, sAMAccountType, supplementalCredentials, and unicodePwd. If one 
of these attributes is specified in an Add, the Add returns unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ Additional constraints are enforced if the object being created is a SAM-specific object (section 

3.1.1.5.2.3); [MS-SAMR] section 3.1.1.6 specifies these constraints. 

▪ Additional constraints are enforced if the object being created is a schema object (section 
3.1.1.5.2.3). See section 3.1.1.2, “Active Directory Schema”, for more details. 

▪ In the case of Windows Server 2008 R2 and later, if the object being created is a computer object 
and all of the following conditions hold trueTRUE: 

▪ The requester does not have RIGHT_DS_CREATE_CHILD access on the Container-Object 
object. 

▪ The RpcImpersonationAccessToken.Privileges[] field has the 
SE_MACHINE_ACCOUNT_NAME privilege (defined in [MS-LSAD] section 3.1.1.2.1). 



 

303 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Then these constraints apply: 

▪ Following is the list of allowed and required attributes that mustMUST be specified: 

▪ dNSHostName 

▪ servicePrincipalName 

▪ userAccountControl 

▪ unicodePwd* 

▪ objectClass 

▪ sAMAccountName 

*If the account is created with UF_ACCOUNTDISABLE set in userAccountControl, unicodePwd is 
not required. 

▪ Iterate over the list of attributes specified in the request: 

▪ If the attribute is not in the preceding list of required attributes, the Add returns 
ERROR_DS_MISSING_REQUIRED_ATT. 

▪ If the attribute is userAccountControl and the UF_WORKSTATION_TRUST_ACCOUNT bit is 
not set or any bit other than UF_WORKSTATION_TRUST_ACCOUNT | 
UF_ACCOUNTDISABLE is set, Add returns ERROR_DS_SECURITY_ILLEGAL_MODIFY. 

▪ If the attribute is unicodePwd and the value is of zero length and userAccountControl is 

either not in the list of attributes in the request or is present but the bit 
UF_ACCOUNTDISABLE is not set, Add returns ERROR_DS_SECURITY_ILLEGAL_MODIFY. 

▪ If the attribute unicodePwd is not found in the request and the UF_ACCOUNTDISABLE bit 
is not set in userAccountControl, the Add returns ERROR_DS_MISSING_REQUIRED_ATT. 

▪ If the attribute is dNSHostName and its value does not conform to the requirements stated 
in section 3.1.1.5.3.1.1.2, the Add returns ERROR_DS_INVALID_ATTRIBUTE_SYNTAX. 

▪ If the attribute is servicePrincipalName and its value does not conform to the requirements 

stated in section 3.1.1.5.3.1.1.4, the Add operation returns 
ERROR_DS_INVALID_ATTRIBUTE_SYNTAX. 

▪ If the object being created is a computer object and the requester has RIGHT_DS_CREATE_CHILD 
access, the following constraints apply:  

▪ If the userAccountControl attribute is not specified, then the default bit will be set to 
UF_WORKSTATION_TRUST_ACCOUNT. 

▪ If the userAccountControl attribute is specified and does not contain 

UF_USER_NORMAL_ACCOUNT, UF_USER_INTERDOMAIN_TRUST_ACCOUNT,  
UF_WORKSTATION_TRUST_ACCOUNT, or UF_SERVER_TRUST_ACCOUNT, then the default bit 

will be set to UF_WORKSTATION_TRUST_ACCOUNT. 

▪ If the userAccountControl attribute is specified and does not contain 
UF_WORKSTATION_TRUST_ACCOUNT or UF_SERVER_TRUST_ACCOUNT, the Add operation 
returns ERROR_DS_SECURITY_ILLEGAL_MODIFY. 

Note: When a computer object is being created and the requester has RIGHT_DS_CREATE_CHILD 
access, the constraints that apply are supported by the operating systems specified in [MSFT-CVE-
2021-42278], each with its related MSKB article download installed. This feature is also supported 
in Windows 11 v22H2 and later. 



 

304 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.5.2.3 Special Classes and Attributes 

This section defines three sets of object classes: LSA-specific object classes, SAM-specific object 
classes, and schema object classes. These sets are mentioned elsewhere in the specification, because 

special processing is applied to instances of these classes. 

Each set includes both the specific object classes mentioned here and any subclasses of these object 
classes. 

▪ LSA-specific object classes: secret, trustedDomain (originating updates only, in AD DS only). 

▪ SAM-specific object classes: group, samDomain, samServer, user (originating updates only, in AD 
DS only). 

▪ Schema object classes: attributeSchema, classSchema (originating and replicated updates). 

This section also defines one set of attributes: foreign principal object (FPO)-enabled attributes. This 
set is mentioned elsewhere in the specification, because special processing is applied to instances of 

these attributes. 

▪ FPO-enabled attributes: member, msDS-MembersForAzRole, msDS-NeverRevealGroup, msDS-
NonMembers, msDS-RevealOnDemandGroup, msDS-ServiceAccount.  

3.1.1.5.2.4 (Updated Section) Processing Specifics 

▪ For originating updates, a new objectGUID value is generated and set on the object. This value 
MUST NOT be the NULL GUID. For replicated updates, the received objectGUID is set on the 
object. 

▪ In AD DS, if the object is a security principal (according to its objectClass values), then for 
originating updates the objectSid value is generated and set on the object (see [MS-SAMR] 
sections 3.1.1.6 and 3.1.1.9). For replicated updates, the received objectSid is set on the object. 

▪ In AD LDS, if the object being added is an NC root and not the schema NC root, then it is given an 

objectSid value, ignoring schema constraints. The objectSid value ([MS-DTYP] section 2.4.2), with 
one SubAuthority value, is generated using the following algorithm: 

▪ The IdentifierAuthority value (6 bytes) is generated as follows: the first 2 bytes are zero, the 
high 4 bits of the third byte are 0001, and the remaining 3.5 bytes (the lower 4 bits of the 
third byte, and bytes 4, 5 and 6) are randomly generated. 

▪ The first SubAuthority value (DWORD) is randomly generated. 

▪ In AD LDS, if the object being added is an AD LDS security principal object (an object that is not 
an NC root and contains the objectSid attribute), then the objectSid value is generated using the 
following algorithm, which produces a SID with 5 SubAuthority values: 

▪ The Revision byte is 1. 

▪ The SubAuthorityCount is 5. 

▪ The IdentifierAuthority is set to the same value as the IdentifierAuthority of the SID of the NC 

root. 

▪ The first SubAuthority is set to the same value as the first SubAuthority of the SID of the NC 
root. 

▪ A randomly generated GUID value (16 bytes or 4 DWORDs) is taken as second, third, fourth, 
and fifth SubAuthority values of the new SID value. This GUID value is unrelated to the 
objectGUID value that is also generated randomly for the object being added. This GUID MUST 
NOT be the NULL GUID. 



 

305 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ In AD LDS, if a group object is being created (that is, an object containing the value group in its 
objectClass), and the groupType attribute is not specified, then the following value is assigned to 

groupType: GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED. 

▪ In AD LDS, if an AD LDS user is being created, and the password value (either unicodePwd or 

userPassword) was not supplied, then the password value is defaulted to an empty string. 

▪ In AD LDS, if an AD LDS user is being created, and the password value is defaulted and does not 
satisfy the password policy in effect on the AD LDS server (as reported by SamrValidatePassword, 
[MS-SAMR] section 3.1.5.13.7), then the user is created in the disabled state; that is, msDS-
UserAccountDisabled = trueTRUE. However, if the Add operation specifies the msDS-
UserAccountDisabled attribute with the value of falseFALSE, the add returns constraintViolation / 
ERROR_PASSWORD_RESTRICTION. This processing rule is not effective if the LDAP policy 

ADAMDisablePasswordPolicies is equal to 1. 

▪ In AD LDS, if an AD LDS user is being created, then badPwdCount and badPasswordTime values 
are set to zero. 

▪ The nTSecurityDescriptor value is computed and set on the object (see section 6.1.3 for more 
details).  

▪ Any values specified for attributes that are marked as constructed in the schema are ignored, with 

one exception: the entryTTL attribute.  

▪ If the value of the entryTTL attribute is specified in the Add request, it is processed as follows: 

▪ If the value of the entryTTL attribute is less than the DynamicObjectMinTTL LDAP setting, then 
the entryTTL attribute is set to the value of the DynamicObjectMinTTL setting. 

▪ The current system time, plus the entryTTL attribute interpreted as seconds, is written into the 
msDS-Entry-Time-To-Die attribute. 

▪ If dynamicObject is present among objectClass values, but neither entryTTL nor msDS-Entry-

Time-To-Die were specified in an originating update, then Add proceeds as if the value of the 

DynamicObjectDefaultTTL LDAP policy had been specified as the value of the entryTTL attribute. 

▪ Any values specified by the requester for the following attributes are ignored: distinguishedName, 
subRefs, uSNLastObjRem, uSNDSALastObjRemoved, uSNCreated, replPropertyMetaData, 
isDeleted, proxiedObjectName. 

▪ For an originating update, any value specified for the whenCreated attribute is ignored and its 
value is set to the current time according to the system clock on this DC. 

▪ If a value of the systemFlags attribute is specified by the requester, the DC removes any flags not 
listed below from the systemFlags value before storing it on the new object: 

▪ FLAG_CONFIG_ALLOW_RENAME  

▪ FLAG_CONFIG_ALLOW_MOVE  

▪ FLAG_CONFIG_ALLOW_LIMITED_MOVE  

▪ FLAG_ATTR_IS_RDN (removed unless the object is an attributeSchema object)  

▪ For the following scenarios, the DC sets additional bits in the systemFlags value of the object 
created: 

▪ server objects: FLAG_DISALLOW_MOVE_ON_DELETE, FLAG_CONFIG_ALLOW_RENAME, and 
FLAG_CONFIG_ALLOW_LIMITED_MOVE.  

▪ serversContainer and nTDSDSA objects: FLAG_DISALLOW_MOVE_ON_DELETE. 



 

306 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ site object: FLAG_DISALLOW_MOVE_ON_DELETE and FLAG_CONFIG_ALLOW_RENAME. 

▪ siteLink, siteLinkBridge, and nTDSConnection objects: FLAG_CONFIG_ALLOW_RENAME. 

▪ Any object that is not mentioned above and whose parent is the Subnets Container (section 
6.1.1.2.2.2): FLAG_CONFIG_ALLOW_RENAME. 

▪ Any object that is not mentioned above and whose parent is the Sites Container (section 
6.1.1.2.2) except the Subnets Container (section 6.1.1.2.2.2) and the Inter-Site-Transports 
Container (section 6.1.1.2.2.3): FLAG_CONFIG_ALLOW_RENAME. 

▪ If a value for the objectCategory attribute was not specified by the requester, then it is defaulted 
to the current value of the defaultObjectCategory attribute on the classSchema object 
corresponding to the 88 object class or the most specific structural object class of the object being 
added. 

▪ The complete inheritance chain of object classes (starting from the most specific structural object 
class or 88 object class as well as from all dynamic auxiliary classes specified by the user) is 

computed and set. The correct ordering of objectClass values is performed (see section 
3.1.1.2.4.3 for more details). 

▪ The value of instanceType attribute is written. For originating updates of regular objects, it is 
IT_WRITE. For NC root object specifics, see NC-Add Operation (section 3.1.1.5.2.8). For replicated 

updates, the instanceType value computed by the IDL_DRSGetNCChanges client is written. 

▪ distinguishedName attribute is written, matching the DN value of the supplied object. 

▪ The RDN attribute of the correct attribute type is written, as computed from the DN value of the 
supplied object. 

▪ If the showInAdvancedViewOnly value was not provided by the requester and the 
defaultHidingValue of the objectClass is trueTRUE, then the showInAdvancedViewOnly attribute 
value is set to trueTRUE. 

▪ If the Add assigns a value to an FPO-enabled attribute (section 3.1.1.5.2.3) of the new object, and 
the DN value in the add request has <SID=stringizedSid> format (section 3.1.1.3.1.2.4), then the 
DC creates a corresponding foreignSecurityPrincipal object in the ForeignSecurityPrincipals 
container (section 6.1.1.4.10) and assigns a reference to the new foreignSecurityPrincipal object 
as the FPO-enabled attribute value. [MS-SAMR] section 3.1.1.8.9 specifies the creation of the 
foreignSecurityPrincipal object. 

▪ If attributeSchema or classSchema object is created in schema NC, then apply special processing 

as described in section 3.1.1.2.5. 

▪ If an infrastructureUpdate object is created, then let O be the object that is created. If 
(O!dNReferenceUpdate has a value), then for each object P in each NC replica on the server, do 
the following: 

▪ Let S be the set of all attributes of P with attribute syntax Object(DS-DN), Object(DN-String), 
Object(DN-Binary), Object(OR-Name), or Object(Access-Point). 

▪ For each attribute A in set S and for each value V of A, do the following: 

▪ If the attribute syntax of A is Object(DS-DN), then let G be P.A.guid_value. 

▪ Otherwise, let G be P.A.V.object_DN.guid_value. 

▪ Let RG be O!dNReferenceUpdate.guid_value. 

▪ Let RD be O!dNReferenceUpdate.dn. 



 

307 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If (RG = G), then delete V from P.A. 

▪ If (RG = G) and A is not a link value attribute, then add attribute value of 
O!dNReferenceUpdate to P.A  

▪ If (RG = G) and A is a link value attribute and RDN of RD is not a delete-mangled RDN 

(see section 3.1.1.5.5), then add value of O!dNReferenceUpdate to P.A. 

▪ If (RG = G) and A is a link value attribute and RDN of RD is a delete-mangled RDN (see 
section 3.1.1.5.5) and the Recycle Bin optional feature is enabled (see section 3.1.1.9.1), 
then add the value of O!dNReferenceUpdate to P.A. However, this value is to be treated as 
a linked value to or from a deleted-object. That is, the value is not generally visible to 
LDAP clients unless the LDAP_SHOW_DEACTIVATED_LINK_OID control is used. 

▪ If a crossRef object is being created, the server MUST return ERROR_DS_ROLE_NOT_VERIFIED if 

the IsEffectiveRoleOwner(RoleObject(Config NC, DomainNamingMasterRole)) function specified in 
section 3.1.1.5.1.8 returns FALSE. 

3.1.1.5.2.5 Quota Calculation 

Quotas control the number of objects (including tombstones, deleted-objects, and recycled-objects) 
that a security principal can own within an NC. A security principal is considered the "owner" of an 

object if the OWNER field in the object's nTSecurityDescriptor value equals the SID of the security 
principal. In the event the object owner changes, the quota (USAGE) for the existing and potential 
new owner is recalculated. 

The quota is not enforced in two cases: 

▪ When the requester of an operation is not the same as the potential owner. 

▪ When the requester has specified the LDAP_SERVER_BYPASS_QUOTA_OID control and has been 
granted the control access right DS-Bypass-Quota on the object that is the root of the NC in which 

the operation is to be performed. 

When a quota is enforced, the USAGE value for the requester is computed. When the USAGE value 
computed for a requester exceeds their MAX-USAGE value (see below), add, undelete (reanimation), 
delete, and change-of-owner operations are prevented for the requester and the server returns the 
adminLimitExceeded / STATUS_QUOTA_EXCEEDED error. 

The USAGE value is computed as follows: 

USAGE = owned_existing_objects + ceil(tombstone-factor/100 * owned_deleted_objects) 

In the preceding formula, owned_existing_objects is the total number of existing-objects that the 
requester owns. owned_deleted_objects is the total number of tombstones, deleted-objects, or 
recycled-objects (see the Delete operation in section 3.1.1.5.5) that the requester owns. tombstone-
factor is the integer value stored in the msDS-TombstoneQuotaFactor attribute on the Quotas 
container in the NC. Ceil() is the "ceiling" mathematical function. 

The MAX-USAGE value is computed as follows: 

1. A set of applicable msDS-QuotaControl objects in the Quotas container is obtained. An msDS-
QuotaControl object is applicable for the requester if its msDS-QuotaTrustee attribute contains a 
SID that is present in the requester's authorization information. 

2. If the set of applicable msDS-QuotaControl objects is non-empty, then the maximum value of the 
msDS-QuotaAmount attribute is chosen as the MAX-USAGE value. 

3. If the set of applicable msDS-QuotaControl objects is empty, then the value of the msDS-
DefaultQuota attribute on the Quotas container is chosen as the MAX-USAGE value.  



 

308 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.5.2.6 (Updated Section) NC Requirements 

The following requirements apply to DNs of AD DS NCs (the set of NCs that are parts of the Active 
Directory forest) other than the config NC and schema NC: 

▪ Each RDN label within the DN has the DC= type. 

▪ Each RDN label within the DN has a value, which is a valid DNS name label. 

The following requirements apply to DNs of all Active Directory NCs: 

▪ The full DN of the NC does not match the DN of another existing object in an Active Directory NC. 

▪ If the immediate parent of the NC is not an Active Directory NC, then none of the ancestors 
(grandparent, grand-grandparent, and so on) are an Active Directory NC. In other words, the set 
of Active Directory NCs is a set of nonintersecting trees, and each tree does not have "holes". 

The following requirements apply to the data stored in NC roots: 

▪ IT_NC_HEAD bit is set in the instanceType attribute. 

▪ If the NC has an immediate parent (which mustMUST be an NC root per the preceding rules), then 
IT_NC_ABOVE bit is be set in its instanceType attribute. 

▪ If the NC has child NCs, then their DNs are listed in its subRefs attribute. 

If any server has a replica of the NC and of an NC C, which is a child of the NC, then the NC root of C 

is the subordinate reference object of C. If the server does not have a replica of C, then an object o is 
present in the server and satisfies the following requirements, and o is the subordinate reference 
object of C. 

▪ The IT_NC_HEAD bit is set in the instanceType attribute. 

▪ The IT_NC_ABOVE bit is set in the instanceType attribute. 

▪ The IT_UNINSTANT bit is set in the instanceType attribute. 

▪ Object o has the same distinguishedName and objectGUID as the child NC root object. 

Object o is not exposed through the LDAP protocol. For information about the replication of 
subordinate reference objects, see [MS-DRSR] sections 4.1.1.2.2, 4.1.20.2, 5.6, and 5.32. 

The default structure of data in NCs is covered in Naming Contexts in section 6.1.1.1. 

3.1.1.5.2.7 (Updated Section) crossRef Requirements 

crossRef objects represent NCs within the Active Directory forest, as well as "external" (foreign) NCs. 
The relationship between the crossRef and the NC is represented by the nCName attribute on the 

crossRef. The value of this attribute is the DN of the corresponding NC. Each Active Directory NC has a 
corresponding crossRef object. A crossRef object can also represent an intention to create a new 
Active Directory NC with the specified DN. 

The following requirements apply to crossRef objects: 

▪ The FLAG_CR_NTDS_NC bit is set in systemFlags if and only if the nCName represents an Active 
Directory NC. 

▪ The FLAG_CR_NTDS_DOMAIN bit is set in systemFlags if and only if the nCName represents a 
domain Active Directory NC. 



 

309 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ The FLAG_CR_NTDS_NOT_GC_REPLICATED bit is set in systemFlags if and only if the nCName 
represents an Application Active Directory NC. 

▪ If the FLAG_CR_NTDS_NC bit is set in systemFlags and the Enabled attribute value is falseFALSE, 
then the crossRef represents an intention to create an Active Directory NC. Otherwise, it 

represents an Active Directory NC that is actually present. 

3.1.1.5.2.8 NC-Add Operation 

For originating updates, the NC-Add operation is distinguished by the presence of instanceType 
attribute with (IT_NC_HEAD | IT_WRITE) value in the input attribute set. For replicated updates, the 
NC-Add operation is distinguished by the presence of instanceType attribute with IT_NC_HEAD value 
in the input attribute set. The DN of the object represents the new NC DN, and the DC enforces the 

constraints on NC naming described previously. 

For originating updates, the NC-Add operation is only supported for application NCs. If a new domain 
NC needs to be created, then IDL_DRSAddEntry RPC MUST be used to create the crossRef (see [MS-
DRSR] section 4.1.1). 

3.1.1.5.2.8.1 (Updated Section) Constraints 

Regular Add operation constraints apply to the NC-Add operation (as defined in previous sections), 
with the exception of constraints pertaining to the parent object (for example, the possSuperiors 
schema constraint). 

There are two distinct NC-Add scenarios that are supported with regard to maintaining crossRef 
requirements: 

1. The crossRef corresponding to the new NC does not exist. In this case, a new crossRef object is 
created. If the DC is the domain naming FSMO, then the crossRef is created locally. Otherwise, the 

crossRef is created on the domain naming FSMO DC using the IDL_DRSAddEntry call with 
appropriate parameters (see [MS-DRSR] section 4.1.1 for details). 

2. The crossRef corresponding to the new NC has been pre-created (that is, it was created 
previously). The crossRef object is located finding the object where the value of nCName matches 
the DN of the NC being created. Once located, the following constraints on the crossRef are 
validated: 

1. If Enabled is trueTRUE, the server MUST return ERROR_DS_CROSS_REF_EXISTS. 

2. If the dnsRoot attribute value does not match the dnsName of the DC processing the NC-Add 
operation, the server MUST return ERROR_DS_MASTERDSA_REQUIRED. 

3.1.1.5.2.8.2 (Updated Section) Security Considerations 

Regular Add access checks do not apply to the NC-Add operation, because the parent object might not 
even exist in the directory. Instead, the requester mustMUST have sufficient permissions to either 
create a new crossRef or modify the pre-created crossRef object. Regular Add and modify permission 

checks apply for these operations. 

No access check is performed for replicated updates. 

3.1.1.5.2.8.3 (Updated Section) Processing Specifics 

The following operations are performed during an NC-Add operation performed as an originating 
update: 

▪ The matching crossRef object is obtained (see details in section 3.1.1.5.2.8.1). 



 

310 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ The NC root object is created per the Add request. Regular Add processing applies (as defined in 
sections 3.1.1.5.2.1 through 3.1.1.5.2.3). 

▪ The default NC tree structure is generated (see Naming Contexts in section 6.1.1.1), and the 
appropriate wellKnownObjects references are written on the NC root. 

▪ The matching crossRef object is updated as follows: the Enabled attribute is removed, and the 
dnsRoot is updated to contain the full DNS name of the NC, as computed from the NC DN. 

▪ If the NC being created is child of an NC P, and the server in which the NC is being created has a 
replica of P, then the new NC root will be the subordinate reference object to the new NC and 
mustMUST be listed in the subRefs attribute of P's NC root. For more information about 
subordinate reference objects, see section 3.1.1.5.2.6. 

These steps are not performed for replicated updates. 

3.1.1.5.3 Modify Operation 

References 

LDAP attributes: objectClass, nTSecurityDescriptor, instanceType, distinguishedName, objectGUID, 
objectSid, entryTTL, msDS-Entry-Time-To-Die, systemFlags, objectCategory, msDS-
AllowedToDelegateTo, member, sAMAccountName, msDS-AdditionalSamAccountName, dNSHostName, 

msDS-AdditionalDnsHostName, servicePrincipalName, uSNCreated, subRefs, uSNLastObjRem, 
uSNDSALastObjRemoved, name, isDeleted, isRecycled, hasMasterNCs, msDS-hasMasterNCs, 
hasPartialReplicaNCs, msDS-hasFullReplicaNCs, whenCreated, managedBy, msDS-
LockoutObservationWindow, msDS-LockoutDuration, msDS-MaximumPasswordAge, msDS-
MinimumPasswordAge, msDS-MinimumPasswordLength, msDS-PasswordHistoryLength. 

LDAP classes: dynamicObject, crossRef, server, computer, foreignSecurityPrincipal. 

Well-known object GUIDs: GUID_USERS_CONTAINER_W, GUID_COMPUTERS_CONTAINER_W. 

Constants 

▪ Win32/status error codes: ERROR_DS_REFERRAL, 
ERROR_DS_WKO_CONTAINER_CANNOT_BE_SPECIAL, ERROR_DS_CONFIDENTIALITY_REQUIRED, 
ERROR_DS_ILLEGAL_MOD_OPERATION, ERROR_DS_RANGE_CONSTRAINT, 
ERROR_DS_HIGH_DSA_VERSION, ERROR_DS_SPN_VALUE_NOT_UNIQUE_IN_FOREST, 
ERROR_DS_UPN_VALUE_NOT_UNIQUE_IN_FOREST. 

▪ Access mask bits, control access rights: RIGHT_DS_WRITE_PROPERTY, 

RIGHT_DS_WRITE_PROPERTY_EXTENDED, Change-Infrastructure-Master, Change-Schema-
Master, Change-Rid-Master, Change-PDC, Change-Domain-Master, Reanimate-Tombstones. 

▪ Security privileges: SE_ENABLE_DELEGATION_PRIVILEGE 

▪ systemFlags bits: FLAG_DISALLOW_DELETE, FLAG_DOMAIN_DISALLOW_RENAME, 
FLAG_DOMAIN_DISALLOW_MOVE, FLAG_ATTR_IS_RDN. 

▪ LDAP: LDAP_SERVER_PERMISSIVE_MODIFY_OID 

The modify operation results in modification of a single existing object in the directory tree. The 
requester supplies the following data: 

▪ The DN of the object. 

▪ The set of attributes defining the modifications that are to be performed. 

3.1.1.5.3.1 (Updated Section) Security Considerations 



 

311 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

For originating updates, the following access checks are performed. No access checks are performed 
for replicated updates. 

The requester needs to have RIGHT_DS_WRITE_PROPERTY access to all attributes being directly 
affected by the modify operation. Note that some attributes can be modified indirectly as a result of 

triggers and processing rules. The requester is not required to have write access to those attributes. 

If any attributes being directly modified are marked in the schema as partition secrets (see the SE flag 
in section 2.2.9), the requester mustMUST have the control access right DS-Write-Partition-Secrets on 
the root object of the naming context to which the modified object belongs. 

▪ Additional access checks might apply if the nTSecurityDescriptor value is being modified. See 
"Security Descriptor Requirements", section 6.1.3, for more details. 

If the modify operation represents an Undelete operation, then additional security checks apply (see 

the Undelete operation in section 3.1.1.5.3.7). 

If the msDS-AllowedToDelegateTo attribute is modified, then the requester mustMUST possess 

SE_ENABLE_DELEGATION_PRIVILEGE. 

In AD LDS, if a password value is being modified as a password change operation, then the requester 
needs to have the User-Change-Password control access right on the object being modified. A 
password change operation is defined as removing the old password value and adding the new 

password value, where the old password value matches the current password on the object. 

In AD LDS, if a password value is being modified as a password reset operation, then the requester 
needs to have the User-Force-Change-Password control access right on the object being modified. A 
password reset operation is defined as a replace operation on the password attribute. 

In AD LDS, if a password unexpire operation is being performed, then the requester needs to have the 
Unexpire-Password control access right on the object being modified. A password unexpire operation 
is defined as setting the pwdLastSet attribute to the value -1. 

3.1.1.5.3.1.1 Validated Writes 

In some cases, when the requester does not have RIGHT_DS_WRITE_PROPERTY access on an 
attribute, but has RIGHT_DS_WRITE_PROPERTY_EXTENDED access (also called "validated write"), 
then the write is allowed, subject to additional constraints for the attribute value. The following 
subsections specify the additional checks that are performed for validated writes of the specified 
attributes. 

See section 5.1.3.2.2 for the validated write rights GUIDs. 

3.1.1.5.3.1.1.1 (Updated Section) Member 

The operation is either add value or remove value, and the value is the DN of the user object 
representing the requester. In other words, it is allowed that one can add/remove oneself to and from 
a group. 

The requester mustMUST have the Self-Membership validated write right. 

3.1.1.5.3.1.1.2 (Updated Section) dNSHostName 

The object has class computer or server (or a subclass of computer or server). 

In AD DS, the value of the dNSHostName attribute being written is in the following format: 
computerName.fullDomainDnsName, where computerName is the current sAMAccountName of the 
object (without the final "$" character), and the fullDomainDnsName is the DNS name of the domain 

NC or one of the values of msDS-AllowedDNSSuffixes on the domain NC (if any) where the object that 
is being modified is located. 



 

312 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The requester mustMUST have the Validated-DNS-Host-Name validated write right. 

3.1.1.5.3.1.1.3 (Updated Section) msDS-AdditionalDnsHostName 

The functional level of the DC on which the modification is taking place is at least 

DS_BEHAVIOR_WIN2012. 

The object has class computer or server (or a subclass of computer or server). 

In AD DS, the value of the msDS-AdditionalDnsHostName attribute being written is in the following 
format: anyDnsLabel.suffix, where anyDnsLabel is a valid DNS name label, and suffix matches one of 
the values of msDS-AllowedDNSSuffixes on the domain NC root (if any). 

The requester mustMUST have the Validated-MS-DS-Additional-DNS-Host-Name validated write right. 

3.1.1.5.3.1.1.4 (Updated Section) servicePrincipalName 

The object has class computer (or a subclass of computer). 

In AD DS, the servicePrincipalName value satisfies the following constraints: 

▪ The SPN (2) is a syntactically correct two-part SPN (2), or it is a syntactically correct three-part 
SPN (2) and the object is a DC's domain controller object (see sections 6.1.1.3.1 and 6.1.1.3.2). 
See section 2.2.21 for the syntax of an SPN (2). 

▪ The SPN (2) MUST NOT contain an ":instancename" component. 

▪ One of the following constraints: 

▪ The hostname matches one of the following: the dNSHostName of the machine, the 
sAMAccountName of the machine (without the terminating "$"), one of the msDS-
AdditionalDnsHostName, or one of the msDS-AdditionalSamAccountName (without the 
terminating "$"). 

▪ The object has class msDS-ManagedServiceAccount (or a subclass of msDS-

ManagedServiceAccount), the domain behavior version is at least DS_BEHAVIOR_WIN2008R2, 
and the hostname matches one of the following: the dNSHostName, the sAMAccountName 
(without the terminating "$"), one of the msDS-AdditionalDnsHostName, or one of the msDS-
AdditionalSamAccountName (without the terminating "$"), of an object that is referenced by 
the msDS-HostServiceAccountBL attribute on the object. 

▪ The SPN (2) is a two-part SPN (2), and the service name is of the form 
<guid>._msdcs.<fqdn>, where <guid> is the objectGUID of the domain controller, and 

<fqdn> matches the msDS-DnsRootAlias of a crossRef object representing the forest. 

▪ The SPN (2) is a three-part SPN (2) and the service name matches one of the following 
constraints: 

▪ The service class is "GC" and the service name matches one of the following: the dnsRoot, or 
the msDS-DnsRootAlias of the crossRef object representing the forest root domain NC. 

▪ The service class is "ldap" and the service name matches one of the following: the 

NetBIOSName, the dnsRoot, or the msDS-DnsRootAlias of a crossRef object representing the 
domain NC or one of the application NCs hosted by the DC. 

The requester mustMUST have the Validated-SPN validated write right. 

3.1.1.5.3.1.1.5 (Updated Section) msDS-Behavior-Version 



 

313 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The functional level of the DC on which the modification is taking place is at least 
DS_BEHAVIOR_WIN2012. 

The object is an nTDSDSA object. 

The DC that the object represents is an RODC. 

The object's parent is a server object. 

The computer object specified by the serverReference attribute of the server object that is the parent 
of the object being modified represents the requester. In other words, it is allowed that an RODC itself 
can update the msDS-Behavior-Version attribute of its nTDSDSA object on a writable DC. 

The requester mustMUST have the Validated-MS-DS-Behavior-Version validated write right. 

3.1.1.5.3.1.1.6 (Updated Section) msDS-KeyCredentialLink 

The object has class computer (or a subclass of computer). 

The msDS-KeyCredentialLink value satisfies the following constraints: 

For adding a value, the following constraints mustMUST be met 

▪ The Binary portion of this attribute is a well formed KEYCREDENTIALLINK_BLOB value. (See 
section 2.2.20 and sub-sections.) 

▪ The KeyUsage entry is KEY_USAGE_NGC. 

▪ The KeySource entry is KEY_SOURCE_AD. 

▪ The CustomKeyInformation entry is not present. 

▪ The KeyApproximateLastLogonTimeStamp entry is not present. 

▪ There is no existing value. 

▪ The requestor mustMUST be SELF. 

▪ For deleting a value: 

▪ No attribute level constraints are required. 

The requestor mustMUST have the DS-Validated-Write-Computer validated write right. 

3.1.1.5.3.1.2 FSMO Changes 

If a write to the fSMORoleOwner attribute is performed, and the objectClass of the object being 
modified is one of the following classes, then the requester is required to have an additional control 
access right on the object. The following control access rights are checked, depending on the 
objectClass of the object being modified: 

▪ infrastructureUpdate (domain infrastructure master FSMO, in AD DS only): Change-Infrastructure-
Master 

▪ dMD (schema FSMO): Change-Schema-Master 

▪ rIDManager (domain RID FSMO, in AD DS only): Change-Rid-Master 

▪ domainDNS (PDC emulator FSMO, in AD DS only): Change-PDC 

▪ crossRefContainer (domain naming FSMO): Change-Domain-Master 



 

314 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.5.3.2 (Updated Section) Constraints 

The following constraints are enforced for a modify operation performed as an originating update. 
These constraints are not enforced for replicated updates. 

▪ The object resides in a writable NC replica; otherwise the modify returns referral / 
ERROR_DS_REFERRAL. 

▪ In AD DS, if the object being modified is in the config NC or schema NC, and the RM control ([MS-
DTYP] section 2.4.6) of the SD is present and contains the SECURITY_PRIVATE_OBJECT bit 
(section 6.1.3), the DC requires one of the following two conditions to be trueTRUE: 

▪ The DC is a member of the root domain in the forest. 

▪ The DC is a member of the same domain to which the current object owner belongs. 

If neither condition is trueTRUE, the modify returns referral / ERROR_DS_REFERRAL. 

▪ If a LostAndFound container is being modified, the modify returns unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ If the fschemaUpgradeInProgress field is falseFALSE on the LDAPConnection instance in 
dc.ldapConnections ([MS-DRSR] section 5.116) corresponding to the LDAP connection on which 
the operation is being performed and the object being modified has class subSchema, then only 

nTSecurityDescriptor modifications are allowed; otherwise, unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION is returned. 

▪ Modifying an object with isDeleted = trueTRUE is allowed only if one of the following conditions is 
trueTRUE: 

▪ The Recycle Bin optional feature is not enabled and the operation is an undelete operation. 
Note that the undelete operation is a special case of the modify operation. See section 
3.1.1.9.1 for more details on the Recycle Bin optional feature. See section 3.1.1.5.3.7 for 

more details on the undelete operation. 

▪ The Recycle Bin optional feature is enabled, the object does not have isRecycled = trueTRUE, 
and the operation is an undelete operation. Note that the undelete operation is a special case 
of the modify operation. See section 3.1.1.9.1 for more details on the Recycle Bin optional 
feature. See section 3.1.1.5.3.7 for more details on the undelete operation. 

▪ The object being modified is the Deleted Objects container (section 6.1.1.4.2). 

▪ The DC functional level is DS_BEHAVIOR_WIN2008R2 or higher, the modification only affects 

the nTSecurityDescriptor attribute, and the requester has the Reanimate-Tombstones control 
access right on the NC root of the object's NC. 

Any other modifications of these objects fail with unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ In AD DS, modifications to objects of LSA-specific object classes (section 3.1.1.5.2.3) fail with 

unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ It is disallowed to modify constructed attributes, with the exception of the entryTTL attribute. 
Such modifications fail with undefinedAttributeType / ERROR_DS_ATT_NOT_DEF_IN_SCHEMA if 
the DC functional level is DS_BEHAVIOR_WIN2000, and constraintViolation / 
ERROR_DS_CONSTRUCTED_ATT_MOD if the DC functional level is DS_BEHAVIOR_WIN2003 or 
greater. 

▪ Updates to the name attribute, as well as updates to the object's naming attribute (the attribute 
named by the rdnType attribute), are disallowed and modification will return notAllowedOnRDN / 

ERROR_DS_CANT_MOD_SYSTEM_ONLY. Modify DN performs these updates. 



 

315 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ A modify of an object whose objectClass is defunct fails with objectClassViolation / 
ERROR_DS_OBJECT_CLASS_REQUIRED. 

▪ If the forest functional level is less than DS_BEHAVIOR_WIN2003, a modify is allowed to remove 
all values of a defunct attribute. Any other modification that references a defunct attribute fails 

with undefinedAttributeType / ERROR_DS_ATT_NOT_DEF_IN_SCHEMA. 

▪ If the forest functional level is greater than or equal to DS_BEHAVIOR_WIN2003, a modify that 
references a defunct attribute fails with noSuchAttribute / ERROR_INVALID_PARAMETER. 

▪ If the fschemaUpgradeInProgress field is falseFALSE on the LDAPConnection instance in 
dc.ldapConnections ([MS-DRSR] section 5.116) corresponding to the LDAP connection on which 
the operation is being performed, objectCategory modifications on classSchema objects that have 
FLAG_SCHEMA_BASE_OBJECT present in systemFlags fail with unwillingToPerform / 

ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ If the domain functional level is less than DS_BEHAVIOR_WIN2003, then modifications of msDS-
AdditionalDnsHostName fail with unwillingToPerform / ERROR_DS_NOT_SUPPORTED. 

▪ If the DC functional level is DS_BEHAVIOR_WIN2003 or greater and the msDS-UpdateScript 
attribute is being modified: 

▪ IsEffectiveRoleOwner(RoleObject(default NC, RidAllocationMaster)) = trueTRUE. Otherwise, 

the server returns error unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ The connection is encrypted with at least 128-bit cipher. If the connection is not encrypted 
with at least 128-bit cipher, then unwillingToPerform / 
ERROR_DS_CONFIDENTIALITY_REQUIRED is returned. 

The msDS-UpdateScript attribute is for server-to-server replication implementation only; the client 
does not interpret it. This attribute MAY have meaning to applicable Windows Server releases, but 
the meaning is not significant to Windows clients. 

▪ If the dSHeuristics attribute is being modified, the new value mustMUST satisfy the following 

constraints:  

▪ If the length of the value is 10 or more characters, then the tenth character mustMUST be "1"; 

▪ If the length of the value is 20 or more characters, then the twentieth character mustMUST be 
"2"; 

▪ If the length of the value is 30 or more characters, then the thirtieth character mustMUST be 
"3"; 

▪ The same for "4" through "9". 

When this constraint is violated, the error returned depends on the DC functional level. If the DC 
functional level is DS_BEHAVIOR_WIN2000, no error is returned. If the DC functional level is 
DS_BEHAVIOR_WIN2003 or greater, then constraintViolation / 
ERROR_DS_CONSTRAINT_VIOLATION is returned. 

▪ If the DC functional level is DS_BEHAVIOR_WIN2003 or greater and the nTMixedDomain attribute 

is modified, then the object being modified is the domain NC root. Modification of nTMixedDomain 
on any other object fails with unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ If the servicePrincipalName attribute is modified, then the values mustMUST be syntactically valid 
SPN (2) values (note that additional constraints might apply if the requester did not have 
WRITE_PROPERTY access to the attribute; see the preceding Validated Writes section 
3.1.1.5.3.1.1). Otherwise, constraintViolation / ERROR_DS_NAME_REFERENCE_INVALID is 
returned. See section 5.1.1.4, Mutual Authentication, for SPN (2) syntax. 



 

316 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If the servicePrincipalName or userPrincipalName attribute is modified, the values mustMUST meet 
the constraints specified in section 3.1.1.5.1.3. 

▪ If the fSMORoleOwner attribute is modified, then the only allowed attribute value is the DN of the 
DSA object of the current DC; for all other values, unwillingToPerform / 

ERROR_DS_INVALID_ROLE_OWNER is returned. In other words, the FSMO role can only be 
"taken" or transferred to the current DC. It cannot be given away. 

▪ System-only attribute modifications (including the case of adding an auxiliary class with a must-
have system-only attribute) are disallowed, as well as modifications of all back link attributes; with 
the following exceptions: 

▪ If the fschemaUpgradeInProgress field is trueTRUE on the LDAPConnection instance in 
dc.ldapConnections ([MS-DRSR] section 5.116) corresponding to the LDAP connection on 

which the operation is being performed. 

▪ If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, then modifications of the 
objectClass attribute are permitted, subject to additional constraints (section 3.1.1.5.3.5). 

▪ If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, then modifications of msDS-
Behavior-Version are permitted, subject to additional constraints (section 3.1.1.5.3.4). 

▪ Modifications of msDS-AdditionalDnsHostName are permitted. 

▪ Modifications of systemFlags are permitted only in the following case: the modify is on an 
attributeSchema object in the schema container, and the change is to set (but not reset) the 
FLAG_ATTR_IS_RDN bit. 

▪ Modifications of wellKnownObjects are permitted, subject to additional constraints. See section 
3.1.1.5.3.6, wellKnownObjects Updates, for more details. 

▪ Modifications of isDeleted and distinguishedName are permitted only when the modify 
operation is Undelete (section 3.1.1.5.3.7). 

▪ Modifications of mAPIID are permitted, subject to the constraints described in section 
3.1.1.2.3. 

Otherwise constraintViolation / ERROR_DS_CANT_MOD_SYSTEM_ONLY is returned. 

▪ The following constraints are enforced if the DC functional level is DS_BEHAVIOR_WIN2003 or 
greater and the requester is not passing the LDAP_SERVER_PERMISSIVE_MODIFY_OID control: 

▪ Inserting duplicate values into an attribute fails with attributeOrValueExists / 
ERROR_DS_ATT_VAL_ALREADY_EXISTS. 

▪ A modification that removes values that are not present from an attribute fails with 
noSuchAttribute / ERROR_DS_CANT_REM_MISSING_ATT_VAL. 

▪ Removing an attribute that is not currently present on the object by virtue of the attribute not 
having any value set on it fails with noSuchAttribute / ERROR_DS_ATT_IS_NOT_ON_OBJ. 

▪ If the DC functional level is DS_BEHAVIOR_WIN2008 or greater, the following constraints are 
enforced on objects of class msDS-PasswordSettings: 

▪ The msDS-PasswordHistoryLength attribute is less than or equal to 1024. 

▪ The msDS-MinimumPasswordAge attribute is less than or equal to 0. 

▪ The msDS-MaximumPasswordAge attribute is less than or equal to 0. 



 

317 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ The msDS-MaximumPasswordAge attribute is less than the value of the msDS-
MinimumPasswordAge attribute on the same object after the modify would have completed. 

▪ The msDS-MinimumPasswordLength attribute is less than or equal to 256. 

▪ The msDS-LockoutDuration attribute is less than or equal to 0. 

▪ The msDS-LockoutObservationWindow attribute is less than or equal to 0. 

▪ The msDS-LockoutDuration attribute is less than or equal to the value of the msDS-
LockoutObservationWindow attribute on the same object after the modify would have 
completed. 

Otherwise, unwillingToPerform / ERROR_DS_SECURITY_ILLEGAL_MODIFY is returned. 

▪ In AD LDS, if the LDAP policy ADAMDisablePasswordPolicies does not equal 1, and a password 
value (either unicodePwd or userPassword) is specified in a modify, the password mustMUST 

satisfy the current password policy in effect on the AD LDS server as reported by 

SamrValidatePassword ([MS-SAMR] section 3.1.5.13.7). If the provided password value does not 
satisfy the password policy, the modify returns constraintViolation / 
ERROR_PASSWORD_RESTRICTION. 

▪ In AD LDS, if the fAllowPasswordOperationsOverNonSecureConnection heuristic of the 
dSHeuristics attribute (see section 6.1.1.2.4.1.2) is not trueTRUE, and a password value (either 

unicodePwd or userPassword) is specified in a modify, the LDAP connection mustMUST be 
encrypted with cipher strength of at least 128 bits. If the connection does not pass the test, the 
modify returns operationsError / ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ In AD LDS, if the userPrincipalName value is modified, then the new value mustMUST be unique 
within all NCs on this DC. If another object exists with the same userPrincipalName value, the 
modify returns constraintViolation / ERROR_DS_NAME_NOT_UNIQUE. 

▪ In AD LDS, if the pwdLastSet attribute is modified, then the operation MUST replace the existing 

value with a new value of 0 or -1. Otherwise, constraintViolation / ERROR_INVALID_PARAMETER is 

returned. 

▪ In AD LDS, if the lockoutTime attribute is modified, then the operation MUST replace the existing 
value with a new value of 0. Otherwise, constraintViolation / ERROR_INVALID_PARAMETER is 
returned. 

▪ In AD LDS, if the msDS-UserAccountDisabled attribute is being set to falseFALSE, then the 
operation succeeds if one of the following is trueTRUE: 

▪ The LDAP policy ADAMDisablePasswordPolicies equals 1. 

▪ The ms-DS-UserPasswordNotRequired attribute equals trueTRUE. 

▪ The current password value on the object satisfies the current password policy, as reported by 
SamrValidatePassword ([MS-SAMR] section 3.1.5.13.7). 

If this check fails, the modify returns constraintViolation / ERROR_PASSWORD_RESTRICTION. 

▪ After the modify operation, the object mustMUST remain compliant with the schema as described 

in section 3.1.1.5.1.1.  

▪ If the object being modified is a SAM-specific object (section 3.1.1.5.2.3), then additional 
constraints apply (specified in [MS-SAMR] section 3.1.1.6). 

▪ If the modify operation affects the nTSecurityDescriptor attribute, then additional constraints 
apply (see section 6.1.3, "Security Descriptor Requirements", for more details). 



 

318 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If the modify operation would require delayed link processing (section 3.1.1.1.16), and such 
processing is already underway for the object being modified due to a previous update, then the 

modify returns busy / ERROR_DS_DATABASE_ERROR. 

▪ If the modify operation adds or replaces values of the description attribute on a SAM-specific 

object (section 3.1.1.5.2.3), and results in more than one value in the attribute, then the 
modification fails with attributeOrValueExists / ERROR_DS_SINGLE_VALUE_CONSTRAINT. 

▪ In AD DS, the following attributes are disallowed in a Modify for an object of class user: 
badPasswordTime, badPwdCount, dBCSPwd, isCriticalSystemObject, lastLogoff, lastLogon, 
lastLogonTimestamp, lmPwdHistory, logonCount, memberOf, msDS-User-Account-Control-
Computed, ntPwdHistory, objectSid, rid, sAMAccountType, and supplementalCredentials. If one of 
these attributes is specified in a Modify, the Modify returns unwillingToPerform / 

ERROR_DS_ATTRIBUTE_OWNED_BY_SAM. 

▪ In AD DS, the following attributes are disallowed in a Modify for an object of class group: 
isCriticalSystemObject, memberOf, objectSid, rid, sAMAccountType, and userPassword. If one of 
these attributes is specified in a Modify, the Modify returns unwillingToPerform / 

ERROR_DS_ATTRIBUTE_OWNED_BY_SAM. 

▪ In AD DS, the following attributes are disallowed in a Modify for an object whose class is not a 

SAM-specific object class (see 3.1.1.5.2.3): isCriticalSystemObject, lmPwdHistory, ntPwdHistory, 
objectSid, samAccountName, sAMAccountType, supplementalCredentials, and unicodePwd. If one 
of these attributes is specified in a Modify, the Modify returns unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION. 

3.1.1.5.3.3 Processing Specifics 

The following processing rules apply to the modify operation: 

▪ If a value of the entryTTL attribute is specified in the modify request, it is processed as follows: 

▪ If the value of the entryTTL attribute is less than the DynamicObjectMinTTL LDAP setting, then 
the entryTTL attribute is set to the value of the DynamicObjectMinTTL setting. 

▪ The current system time, plus the entryTTL attribute interpreted as seconds, is written into the 
msDS-Entry-Time-To-Die attribute. 

▪ If the modify assigns a value to an FPO-enabled attribute (section 3.1.1.5.2.3) of the existing 
object, and the DN value in the modify request has <SID=stringizedSid> format (section 

3.1.1.3.1.2.4), then the DC creates a corresponding foreignSecurityPrincipal object in the Foreign 
Security Principals Container (section 6.1.1.4.10) and assigns a reference to the new 
foreignSecurityPrincipal object as the FPO-enabled attribute value. [MS-SAMR] section 3.1.1.8.9 
specifies the creation of the foreignSecurityPrincipal object. 

▪ If the msDS-UpdateScript attribute is changed in an originating update of the Partitions container, 
then the msDS-ExecuteScriptPassword value is removed from the Partitions container. The msDS-

UpdateScript and msDS-ExecuteScriptPassword attributes are for server-to-server replication 
implementation only; the client does not interpret them. These attributes MAY have meaning to 

applicable Windows Server releases, but the meaning is not significant to Windows clients. 

▪ If the objectClass value is updated, then additional operations are performed (see ObjectClass 
Updates (section 3.1.1.5.3.5) for more details). 

▪ In AD DS, if the wellKnownObjects value is updated, then additional operations are performed 
(see wellKnownObjects Updates (section 3.1.1.5.3.6) for more details). 

▪ In AD LDS, if a password value (unicodePwd or userPassword) is modified on a bind proxy, then 
the password operation is "forwarded" to Windows as follows: 



 

319 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ The objectSid on the bind proxy object is resolved to a Windows user object. 

▪ A DC hosting the Windows user's domain is discovered. 

▪ The currently bound user is impersonated. 

▪ For a change password operation, the NetUserChangePassword API is invoked with the new 

and old password values. 

▪ For a reset password operation, then NetUserSetInfo(level=1003) API is invoked with the new 
password value. 

▪ The currently bound user is unimpersonated. 

If any of the operations above fail, then the modify returns unwillingToPerform. This processing 
rule is not supported by ADAM RTW DCs. 

▪ In AD DS, if the msDS-AdditionalDnsHostName attribute is modified, additional operations are 

performed as follows. These steps assume the value(s) added or deleted are in the form 
anyDnsLabel.suffix: 

▪ For each msDS-AdditionalDnsHostName attribute value that is being added, the server 
MUST add a value to the msDS-AdditionalSamAccountName attribute in the format 
‘anyDnsLabel$’. 

▪ Windows Server 2016, Windows Server 2019 and later, and Windows Server v1903 

without [MSKB-4505903] installed, will add the ‘anyDnsLabel$’ value to the msDS-
AdditionalDnsHostName attribute. 

▪ For each msDS-AdditionalDnsHostName value that is being removed, the server MUST 
check for a corresponding ‘anyDnsLabel$’ value in the msDS-AdditionalSamAccountName 
attribute, and if found, remove it. 

▪ In AD LDS, if the pwdLastSet attribute is set to -1 (that is, an unexpire-password operation is 

performed), then the current time is written as the value of the pwdLastSet attribute. 

▪ For originating updates, additional operations might be performed if the object being modified is a 
SAM-specific object (section 3.1.1.5.2.3); [MS-SAMR] section 3.1.1.8 specifies these additional 
operations. 

▪ Additional operations might be performed if the object being modified is a schema object (section 
3.1.1.5.2.3); the additional operations are specified in section 3.1.1.2.5. 

▪ If link attribute values that refer to deleted-objects are not visible to the update operation (section 
3.1.1.3.4.1.25), and the update operation is a complete removal of a link attribute, all existing 

values of the attribute are removed, including values that refer to deleted-objects. Note that if the 
update operation is an explicit list of attributes to be removed rather than a directive to 
completely remove the attribute, then no values that refer to deleted-objects are removed. 

▪ If link attribute values that refer to deleted-objects are not visible to the update operation (section 

3.1.1.3.4.1.25), and the update operation is a complete replacement of a link attribute, all 
existing values of the attribute including values that refer to deleted-objects are removed before 

any new values specified by the replacement are added. 

▪ If link attribute values that refer to deleted-objects are not visible to the update operation (section 
3.1.1.3.4.1.25), and the update operation is the addition of a value to a single-valued attribute, 
and all existing values of the attribute refer to deleted-objects, then all existing values of the 
attribute (including values that refer to deleted-objects) are removed before the new value is 
added. 



 

320 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ In AD LDS, if an originating update is made to the unicodePwd or userPassword attribute on a bind 
proxy (section 3.1.1.8.2): 

▪ Let V be the value of the objectSid attribute from the bind proxy. 

▪ If the modify request specified a password reset (section 3.1.1.3.1.5), pass the password 

update operation to the host operating system as a request to update the password of a 
principal whose SID is V with the new password supplied in the modify request. 

▪ If the modify request specified a password change (section 3.1.1.3.1.5), pass the password 
update request operation to the host operating system as a request to update the password of 
a principal whose SID is V and whose current password is the old password specified in the 
modify request. That principal's password is to be changed to the new password specified in 
the modify request. 

3.1.1.5.3.4 BehaviorVersion Updates 

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater and less than 

DS_BEHAVIOR_WIN2008R2, then originating updates of the msDS-Behavior-Version attribute are 
permitted, subject to the following additional constraints: 

▪ The object being modified is the NC root of the domain NC (domain functional level) or the 

CN=Partitions child of the config NC (forest functional level); otherwise, unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION is returned. 

▪ The new value is greater than the current value; otherwise, unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION is returned. 

▪ The operation is performed on the FSMO (PDC for domain functional level updates, Schema Master 
FSMO for forest functional level updates); otherwise referral / ERROR_DS_REFERRAL is returned. 

▪ If the domain functional level is being raised, then the domain MUST NOT contain a DC whose 

functional level is lower than the new value. This is determined by searching the config NC for 
objects with objectCategory nTDSDSA whose msDS-Behavior-Version attribute value is below the 

new value and whose hasMasterNCs attribute contains the DN of the domain NC root. If the search 
returns one or more results, then unwillingToPerform / ERROR_DS_LOW_DSA_VERSION is 
returned. 

▪ If the forest functional level is being raised, then the forest MUST NOT contain a DC whose 
functional level is lower than the new value. This is determined by searching the config NC for 

objects with objectCategory nTDSDSA whose msDS-Behavior-Version attribute value is below the 
new value. If the search returns one or more results, then unwillingToPerform / 
ERROR_DS_LOW_DSA_VERSION is returned. 

▪ If the domain functional level is being raised from a value below DS_BEHAVIOR_WIN2003 to a 
value of DS_BEHAVIOR_WIN2003 or greater, then the domain is not a mixed-mode domain. If the 
domain is a mixed-mode domain, then unwillingToPerform / 

ERROR_DS_ILLEGAL_MOD_OPERATION is returned. 

▪ If the forest functional level is raised from a value below DS_BEHAVIOR_WIN2003 to a value of 

DS_BEHAVIOR_WIN2003 or greater, then the forest does not contain mixed-mode domains. If the 
forest does contain mixed-mode domains, then unwillingToPerform / 
ERROR_DS_NO_BEHAVIOR_VERSION_IN_MIXED_DOMAIN is returned. 

If the DC functional level is DS_BEHAVIOR_WIN2008R2 or greater, then originating updates of the 
msDS-Behavior-Version attribute are permitted, subject to the following additional constraints: 

▪ The object being modified is the nTDSDSA object of an RODC (DC functional level of an RODC), or 
NC root of the domain NC (domain functional level) or the CN=Partitions child of the config NC 



 

321 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

(forest functional level); otherwise, unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION 
is returned. 

▪ If the DC functional level of an RODC is being modified, the operation is performed on a writable 
DC that is a member of the same domain the RODC is a member of; otherwise, 

unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION is returned. 

▪ If the DC functional level of an RODC is being modified, the new value is greater than or equal to 
the domain functional level of the domain the RODC is a member of; otherwise, 
unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION is returned. 

▪ If the domain functional level is being modified, the operation is performed on the PDC FSMO; 
otherwise referral / ERROR_DS_REFERRAL is returned. 

▪ If the domain functional level is being modified, the new value is greater than the current value or 

is greater than the forest functional level; otherwise, unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION is returned. 

▪ If the domain functional level is being modified, then the domain MUST NOT contain a DC whose 
functional level is lower than the new value. This is determined by searching the config NC for 
objects with objectCategory nTDSDSA or nTDSDSARO, whose msDS-Behavior-Version attribute 
value is below the new value and whose hasMasterNCs attribute contains the DN of the domain NC 

root. If the search returns one or more results, then unwillingToPerform / 
ERROR_DS_LOW_DSA_VERSION is returned. 

▪ If the domain functional level is being raised from a value below DS_BEHAVIOR_WIN2003 to a 
value of DS_BEHAVIOR_WIN2003 or greater, then the domain is not a mixed-mode domain. If the 
domain is a mixed-mode domain, then unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION is returned. 

▪ If the forest functional level is being modified, the operation is performed on the Schema Master 

FSMO; otherwise referral / ERROR_DS_REFERRAL is returned. 

▪ If the forest functional level is being modified, then the forest MUST NOT contain a DC whose 

functional level is lower than the new value. This is determined by searching the config NC for 
objects with objectCategory nTDSDSA or nTDSDSARO and whose msDS-Behavior-Version 
attribute value is below the new value. If the search returns one or more results, then 
unwillingToPerform / ERROR_DS_LOW_DSA_VERSION is returned. 

▪ If the forest functional level is raised from a value below DS_BEHAVIOR_WIN2003 to a value of 

DS_BEHAVIOR_WIN2003 or greater, then the forest does not contain mixed-mode domains. If the 
forest does contain mixed-mode domains, then unwillingToPerform / 
ERROR_DS_NO_BEHAVIOR_VERSION_IN_MIXED_DOMAIN is returned. 

▪ If the new value is less than or equal to the existing value, the new value is greater than or equal 
to DS_BEHAVIOR_WIN2008; otherwise, unwillingToPerform / ERROR_DS_HIGH_DSA_VERSION is 
returned. 

Note  In applicable Windows Server releases prior to Windows Server 2012, unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION is returned. 

3.1.1.5.3.5 ObjectClass Updates 

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, then originating updates of the 
objectClass attribute are permitted, subject to the following additional constraints: 

▪ If the forest functional level is less than DS_BEHAVIOR_WIN2003, objectClass updates can be 

performed only on objects in application NCs; otherwise unwillingToPerform / 
ERROR_DS_NOT_SUPPORTED is returned. 



 

322 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ The specified objectClass value(s) contains a single most specific structural object class; otherwise 
objectClassViolation / ERROR_DS_OBJ_CLASS_NOT_SUBCLASS is returned. If the set of object 

classes specified by an update contains "holes" (that is, classes are missing on the inheritance 
chain from the most specific structural object class to the distinguished class top), the server fills 

the "holes" during the update. 

▪ The structural object class is not modified, with two exceptions: 

▪ It is permitted to convert a user object to an inetOrgPerson by the addition of inetOrgPerson 
to the objectClass attribute. 

▪ It is permitted to convert an inetOrgPerson object to a user by the removal of inetOrgPerson 
from the objectClass attribute. 

Otherwise, the error returned depends on the DC functional level. If the DC functional level is 

DS_BEHAVIOR_WIN2000, constraintViolation / ERROR_DS_CONSTRAINT_VIOLATION is returned. 
If the DC functional level is DS_BEHAVIOR_WIN2003, unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION is returned. If the DC functional level is 

DS_BEHAVIOR_WIN2008 or greater, objectClassViolation / 
ERROR_DS_ILLEGAL_MOD_OPERATION is returned. 

Processing specifics: 

▪ The set of values is updated to include the full inheritance chains of the structural object class as 
well as all auxiliary classes present in the value. 

▪ The set of values is sorted according to the objectClass requirements (see section 3.1.1.2.4.3 for 
more information). 

▪ A new value of nTSecurityDescriptor is computed and written based on the new objectClass 
values, according to the security descriptor requirements (see section 6.1.3). 

3.1.1.5.3.6 (Updated Section) wellKnownObjects Updates 

In AD DS, when a wellKnownObjects value is modified by an originating update, the following 
additional constraints apply. These constraints are not enforced for replicated updates. 

▪ The update is performed on the PDC FSMO; otherwise referral / ERROR_DS_REFERRAL is 
returned. 

▪ The update is on the domain NC root object; otherwise, unwillingToPerform / 
ERROR_DS_UNWILLING_TO_PERFORM is returned. 

▪ The domain functional level is at least DS_BEHAVIOR_WIN2003; otherwise unwillingToPerform / 
ERROR_DS_NOT_SUPPORTED is returned. 

▪ Only the Users and Computers container wellKnownObjects references can be updated. This 
corresponds to the GUID_USERS_CONTAINER_W and GUID_COMPUTERS_CONTAINER_W well-
known object (WKO) GUIDs, respectively; otherwise, unwillingToPerform / 
ERROR_DS_UNWILLING_TO_PERFORM is returned. 

▪ Only add-value and remove-value LDAP verbs are supported; otherwise, unwillingToPerform / 
ERROR_DS_UNWILLING_TO_PERFORM is returned. 

▪ If the DC functional level is DS_BEHAVIOR_WIN2008 or greater, then the object named by the 
new value mustMUST satisfy the possSuperiors schema constraint for the objectClass 
corresponding to the WKO reference being updated. For example, if the wellKnownObjects 
reference corresponding to the GUID_USERS_CONTAINER_W WKO GUID is updated, then it 
mustMUST be possible to create user objects as children of the object named by the new value. If 



 

323 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

this constraint is not satisfied, the server returns unwillingToPerform / 
ERROR_DS_ILLEGAL_SUPERIOR. 

▪ The added value does not reside in the container identified by the DN of "CN=System,<domain NC 
DN>"; otherwise, unwillingToPerform / ERROR_DS_DISALLOWED_IN_SYSTEM_CONTAINER is 

returned. 

▪ The object named by the new value MUST NOT have the following bits set in its systemFlags 
value: FLAG_DISALLOW_DELETE, FLAG_DOMAIN_DISALLOW_RENAME or 
FLAG_DOMAIN_DISALLOW_MOVE; otherwise unwillingToPerform / 
ERROR_DS_WKO_CONTAINER_CANNOT_BE_SPECIAL mustMUST be returned. 

▪ The removed value matches the corresponding existing value of the WKO reference. If not, then 
unwillingToPerform / ERROR_DS_UNWILLING_TO_PERFORM is returned. 

Processing specifics: 

▪ The following bits MUST be set in the systemFlags of the new container: 

FLAG_DISALLOW_DELETE, FLAG_DOMAIN_DISALLOW_RENAME and 
FLAG_DOMAIN_DISALLOW_MOVE. 

▪ The following bits MUST be reset in the systemFlags of the old container: 
FLAG_DISALLOW_DELETE, FLAG_DOMAIN_DISALLOW_RENAME and 

FLAG_DOMAIN_DISALLOW_MOVE. 

▪ isCriticalSystemObject MUST be set to trueTRUE on the new container. 

▪ isCriticalSystemObject MUST be set to falseFALSE on the old container. 

3.1.1.5.3.7 Undelete Operation 

The undelete operation is used to revert the effects of a delete operation; that is, to turn a tombstone 
or deleted-object into a regular object (see section 3.1.1.5.5 for more details). The undelete operation 

is represented by a regular LDAP modify operation, which contains special instructions that are used to 

distinguish it from a modify operation. These instructions (attribute modifications) are disallowed for 
regular modify operations. 

The undelete operation is identified by the presence of the following attribute LDAPMods (both MUST 
be present): 

▪ REMOVE isDeleted attribute 

▪ REPLACE distinguishedName attribute with a new value 

The undelete operation combines characteristics of both Modify and Modify DN operations. It modifies 
the object's attributes and moves it in the same transaction. 

3.1.1.5.3.7.1 (Updated Section) Undelete Security Considerations 

In order to be able to perform the undelete operation as an originating update, the requester 

mustMUST have the following permissions. No permissions are required for replicated updates. 

▪ The Reanimate-Tombstones control access right on the NC root of the NC where the operation is 
being performed. 

▪ All the permissions required to rename an object (section 3.1.1.5.4). 

▪ CREATE_CHILD on the new parent container for the objectClass of the object being undeleted. 

Note  Unlike with the Modify DN operation, the Delete/DeleteChild permission is not required. 



 

324 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.5.3.7.2 (Updated Section) Undelete Constraints 

For originating updates, the following constraints are enforced for the Undelete operation; otherwise 
unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION is returned (unless specified otherwise). 

These constraints do not apply to replicated updates. 

▪ All the modify constraints as they apply to the attributes being modified within the undelete 
processing (described in previous sections). 

▪ All the Modify DN constraints as they apply to the "move" portion of the undelete operation, with 
the exception of the "disallowed to move in or out of the System container" constraint. 

▪ If the Recycle Bin optional feature is not enabled, the target object is a tombstone; that is, the 
isDeleted attribute mustMUST be trueTRUE. If the DC functional level is 

DS_BEHAVIOR_WIN2008R2 or higher, the error returned is noSuchAttribute / 
ERROR_DS_ATT_IS_NOT_ON_OBJ. 

▪ If the Recycle Bin optional feature is enabled, the target object is a deleted-object; that is, the 

isDeleted attribute is trueTRUE and the isRecycled attribute is not present on the object. If the DC 
functional level is DS_BEHAVIOR_WIN2008R2 or higher, the error returned is noSuchAttribute / 
ERROR_DS_ATT_IS_NOT_ON_OBJ. 

▪ The target object is not the Deleted Objects container in its NC. 

▪ The target object is not the user object of the currently connected user (that is, the user cannot 
undelete his own object). 

▪ After the modify attribute updates are applied, the object is checked for full schema compliance 
with regard to both mayContain and mustContain constraints. 

▪ The new object DN is specified in string format (as opposed to <GUID=stringized-guid> or 
<SID=stringized-sid> format). 

▪ The new parent container is in the same NC as the target tombstone object (that is, cross-NC 

undelete is not allowed). 

▪ If the undelete operation would require delayed link processing (section 3.1.1.1.16), and such 
processing is already underway for the object being undeleted due to a previous update, then the 
undelete returns busy / ERROR_DS_DATABASE_ERROR. 

▪ If the target object contains userPrincipalName or servicePrincipalName attribute values, those 
values mustMUST meet the uniqueness constraints specified in section 3.1.1.5.1.3. 

▪ If the object class of the target object is part of the base schema, the objectCategory attribute 
of the target object cannot be specified as part of the undelete operation. 

3.1.1.5.3.7.3 Undelete Processing Specifics 

The undelete operation comprises two suboperations: modifying the object and moving it to a new 
location. The destination of the move operation is obtained from the DN specified in the request.  

▪ All the Modify operation processing specifics apply. 

▪ All the Modify DN operation processing specifics apply. 

▪ If the user did not specify the value for objectCategory attribute, and the target object did not 
have this value retained at the time of deletion, then the default objectCategory attribute is 
written, as obtained from the objectClass's defaultObjectCategory value (section 3.1.1.2.4.8). 

▪ On originating updates, additional processing might apply if the object being reanimated is a SAM-
related object (see [MS-SAMR] section 3.1.1.8). 



 

325 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.5.4 (Updated Section) Modify DN 

References 

▪ LDAP control LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID: see section 3.1.1.3. 

▪ LDAP Modify DN operation: see [RFC2251] section 4.9. 

▪ Concrete structure DRS_MSG_MOVEREQ: see [MS-DRSR] section 4.1.15.1.1. 

▪ Concrete structure DRS_MSG_MOVEREQ_V2: see [MS-DRSR] section 4.1.15.1.3. 

▪ Concrete structure DRS_SecBufferDesc: see [MS-DRSR] section 5.44. 

▪ Concrete structure DRS_MSG_MOVEREPLY: see [MS-DRSR] section 4.1.15.1.4. 

▪ Concrete structure DRS_MSG_MOVEREPLY_V2: see [MS-DRSR] section 4.1.15.1.6. 

▪ Concrete method IDL_DRSInterDomainMove: see [MS-DRSR] section 4.1.15. 

▪ Concrete method IDL_DRSBind: see [MS-DRSR] section 4.1.3. 

▪ Function RoleObject: section 3.1.1.5.1. 

▪ Function GetWellknownObject: section 3.1.1.1.6. 

▪ Kerberos delegation: [MS-KILE]. 

▪ Glossary terms: global group, config NC, default NC, dsname, NC replica, prefix table, primary 
group, RID, schema NC, SID, structural class. 

▪ Access control rights RIGHT_DELETE, RIGHT_DS_DELETE_CHILD. 

▪ LDAP attributes: distinguishedName, groupType, instanceType, isCriticalSystemObject, isDeleted, 
lDAPDisplayName, member, msDS-NonMembers, name, nCName, objectSid, proxiedObjectName, 

systemFlags, systemOnly, userAccountControl, wellKnownObjects. 

▪ State model attributes: parent, rdnType. 

▪ LDAP classes: classSchema, crossRef, infrastructureUpdate.  

Constants 

▪ Access mask bits: RIGHT_DELETE, RIGHT_DS_DELETE_CHILD: see section 5.1. 

▪ GROUP_TYPE_BUILTIN_LOCAL_GROUP, GROUP_TYPE_ACCOUNT_GROUP, 
GROUP_TYPE_RESOURCE_GROUP, GROUP_TYPE_SECURITY_ENABLED: see section 2.2.12. 

▪ ADS_UF_WORKSTATION_TRUST_ACCOUNT, ADS_UF_INTERDOMAIN_TRUST_ACCOUNT: see [MS-
DRSR] section 5.206, userAccountControl Bits. 

▪ GUID_INFRASTRUCTURE_CONTAINER_W, GUID_SYSTEMS_CONTAINER_W: see section 6.1.1.4. 

The Modify DN originating update operation modifies the DN of the object. 

The requester supplies the following data: 

▪ OldDN: DN of the object that is being modified by the Modify DN operation. 

▪ NewRDN: RDN that will form the leftmost component of the new name of the object. 

▪ NewParentDN: DN of the object that becomes the immediate superior of the object. 



 

326 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ DeleteOldRDN: Boolean value that determines whether the old RDN value is to be retained. True 
means that the old RDN value mustMUST NOT be retained. 

Let NewDN be the DN of the renamed object. The value NewDN is NewParentDN preceded by 
NewRDN.  

Definitions 

Let O be the object such that O!distinguishedName = OldDN. 

Let P be O!parent. 

If NewParentDN = NULL then NP is O!parent. 

Otherwise, let NP be an object such that NP!distinguishedName = NewParentDN. 

The originating update is a rename operation if O!name ≠ NewRDN. 

The originating update is a move operation if P ≠ NP. 

3.1.1.5.4.1 (Updated Section) Intra Domain Modify DN 

For originating updates, if the requester does not specify 
LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID LDAP control in the Modify DN request, then the 
server interprets the update as an intradomain Modify DN operation. Replicated updates are always 
interpreted as intradomain Modify DN operations. The request mustMUST have the 

LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID control (see section 3.1.1.3.4.1.2) if the requester 
intends to perform a cross-domain move operation. Cross-domain move is not supported by AD LDS. 

3.1.1.5.4.1.1 (Updated Section) Security Considerations 

For originating updates, the requester mustMUST have all the following permissions to perform a 
Modify DN operation. If the security check does not succeed, the server returns the error 
insufficientAccessRights / ERROR_DS_INSUFF_ACCESS_RIGHTS. 

The security context of the requester mustMUST be granted rights RIGHT_DS_WRITE_PROPERTY 
permission on O!name to perform move or rename operation. 

For a move operation, the requester mustMUST be granted right RIGHT_DS_CREATE_CHILD on NP for 
the objectClass of the object being added. 

For a move operation, the requester mustMUST be granted rights RIGHT_DELETE on O, or mustMUST 
be granted right RIGHT_DS_DELETE_CHILD on P. 

In AD DS, if O is within the config NC or schema NC and the RM control field of the security descriptor 

of the object has the SECURITY_PRIVATE_OBJECT bit set, the requester mustMUST be the owner of 
the object to perform this operation. 

No access check is performed for replicated updates. 

3.1.1.5.4.1.2 (Updated Section) Constraints 

For originating updates, the following constraints mustMUST be satisfied for the Modify DN operation. 
These constraints are not enforced for replicated updates. 

▪ DeleteOldRDN = trueTRUE. Otherwise, the server returns the error unwillingToPerform / 
ERROR_INVALID_PARAMETER. 

▪ OldDN ≠ NULL. Otherwise, the server returns the error noSuchObject / 
ERROR_DS_OBJ_NOT_FOUND. 



 

327 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ NewRDN ≠ NULL. Otherwise, the server returns the error protocolError / 
ERROR_INVALID_PARAMETER. 

▪ All naming constraints on NewRDN mustMUST be satisfied. This is explained in section 3.1.1.3.1.2. 

▪ O is present. Otherwise, the server returns the error noSuchObject / 

ERROR_DS_OBJ_NOT_FOUND. 

▪ NP is present. Otherwise, the server returns the error other / ERROR_DS_NO_PARENT_OBJECT. 

▪ Both O and NP mustMUST be within the same NC Replica. Otherwise, the server returns the error 
unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ NP is not equal to O or a descendant of O. If it is, then the server returns unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ (O is in the System container) if and only if (NP is the System container or an object inside the 

System container). Otherwise, the server returns the error other / 

ERROR_DS_UNWILLING_TO_PERFORM if the DC functional level is DS_BEHAVIOR_WIN2000, and 
the error other / ERROR_DS_DISALLOWED_IN_SYSTEM_CONTAINER if the DC functional level is 
DS_BEHAVIOR_WIN2003 or greater. 

▪ O is not an LSA-specific object (section 3.1.1.5.2.3). Otherwise, the server returns the error 
unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ O!isDeleted ≠ trueTRUE. Otherwise, the server returns the error unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ O mustMUST not be NC root. Otherwise, the server returns the error unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION if the DC functional level is DS_BEHAVIOR_WIN2000, and 
unwillingToPerform / ERROR_DS_MODIFYDN_DISALLOWED_BY_INSTANCE_TYPE if the DC 
functional level is DS_BEHAVIOR_WIN2003 or greater. 

▪ If (O is in config NC) and (operation is rename), then (O!systemFlags & 

FLAG_CONFIG_ALLOW_RENAME ≠ 0). Otherwise, the server returns the error unwillingToPerform 
/ ERROR_DS_ILLEGAL_MOD_OPERATION if the DC functional level is DS_BEHAVIOR_WIN2000, 
and unwillingToPerform / ERROR_DS_MODIFYDN_DISALLOWED_BY_FLAG if the DC functional 
level is DS_BEHAVIOR_WIN2003 or greater. 

▪ If (O is in config NC) and (operation is move), then either (O!systemFlags & 
FLAG_CONFIG_ALLOW_MOVE ≠ 0) or ((((O!parent)!parent)!parent before and after move is the 
same) and (O!systemFlags & FLAG_CONFIG_ALLOW_LIMITED_MOVE ≠ 0)). Otherwise, the server 

returns the error unwillingToPerform / ERROR_DS_MODIFYDN_DISALLOWED_BY_FLAG. The 
FLAG_CONFIG_ALLOW_LIMITED_MOVE flag is used to move server objects between site 
containers. 

▪ If (operation is move) and (O is in schema NC), then the server returns the error 
unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION if the DC functional level is 
DS_BEHAVIOR_WIN2000, and unwillingToPerform / 

ERROR_DS_NO_OBJECT_MOVE_IN_SCHEMA_NC if the DC functional level is 

DS_BEHAVIOR_WIN2003 or greater. 

▪ If (O is a classSchema object) or (O is an attributeSchema object), then (O!systemFlags & 
FLAG_SCHEMA_BASE_OBJECT = 0). Otherwise, if the fschemaUpgradeInProgress field is 
falseFALSE on the LDAPConnection instance in dc.ldapConnections ([MS-DRSR] section 5.116) 
corresponding to the LDAP connection on which the operation is being performed then the server 
returns the error unwillingToPerform / ERROR_DS_ILLEGAL_BASE_SCHEMA_MOD. 



 

328 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If (O is in domain or schema NCs) and (operation is rename) and (attribute O!systemFlags is 
present), then (O!systemFlags & FLAG_DOMAIN_DISALLOW_RENAME = 0). Otherwise, the server 

returns the error unwillingToPerform / ERROR_DS_MODIFYDN_DISALLOWED_BY_FLAG. 

▪ If (O is in domain NC) and (operation is move) and (attribute O!systemFlags is present), then 

(O!systemFlags & FLAG_DOMAIN_DISALLOW_MOVE = 0). Otherwise, the server returns the error 
unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION if the DC functional level is 
DS_BEHAVIOR_WIN2000, and unwillingToPerform / 
ERROR_DS_MODIFYDN_DISALLOWED_BY_FLAG if the DC functional level is 
DS_BEHAVIOR_WIN2003 or greater. 

▪ The object class of O mustMUST satisfy the possSuperiors schema constraint for the objectClass of 
NP. Schema constraints are explained in Restrictions on schema extensions in section 3.1.1.2. 

▪ There exists no object CC such that CC!parent = NP, CC!name = O!name, and CC ≠ O. Otherwise, 
the server returns the error entryAlreadyExists / ERROR_DS_OBJ_STRING_NAME_EXISTS. 

3.1.1.5.4.1.3 Processing Specifics 

▪ If the operation is move, set O!parent to the objectGUID of the new parent object NP. 

▪ Let A be the attribute on O equal to O!rdnType. Set O!A to newRDN. 

▪ Set O!name to newRDN. 

3.1.1.5.4.2 (Updated Section) Cross Domain Move 

The Modify DN LDAP request mustMUST have LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID control 
to indicate that the requester intends to perform a cross-domain move operation. Cross-domain move 
is not supported by AD LDS. 

The controlValue field of LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID control has the DNS 

hostname of the target DC that mustMUST be used as a helper to perform cross-domain move. If the 
DNS hostname is not specified in the controlValue field of the LDAP control, then the server will only 

perform constraint check as explained in section 3.1.1.3. 

3.1.1.5.4.2.1 (Updated Section) Security Considerations 

The requester mustMUST have all the following permissions to perform a cross-domain move 
operation. If the security check does not succeed, the server returns the error insufficientAccessRights 

/ ERROR_DS_INSUFF_ACCESS_RIGHTS. 

For a move operation, the requester mustMUST be granted right RIGHT_DELETE on O or mustMUST 
be granted right RIGHT_DS_DELETE_CHILD on P. 

The requester mustMUST have performed a Kerberos LDAP bind with delegation enabled (see 
[RFC4120] section 2.8). Delegation mustMUST be enabled because the server impersonates the 
requester when it contacts the target DC to perform cross-domain move. If Kerberos delegation is not 
enabled on the LDAP connection, the server returns the error inappropriateAuthentication / 

ERROR_DS_INAPPROPRIATE_AUTH. 

3.1.1.5.4.2.2 (Updated Section) Constraints 

The following constraints mustMUST be satisfied for the Modify DN operation. 

▪ DeleteOldRDN = trueTRUE. Otherwise, the server returns error unwillingToPerform / 
ERROR_INVALID_PARAMETER. 



 

329 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ OldDN ≠ NULL and NewParentDN ≠ NULL. Otherwise, the server returns error unwillingToPerform 
/ ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION. 

▪ NewRDN ≠ NULL. Otherwise, the server returns error protocolError / 
ERROR_INVALID_PARAMETER. 

▪ (O!systemFlags & FLAG_DISALLOW_DELETE = 0). Otherwise, the server returns error 
unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION if the DC functional level is 
DS_BEHAVIOR_WIN2000, and unwillingToPerform / ERROR_DS_CANT_DELETE if the DC functional 
level is DS_BEHAVIOR_WIN2003 or greater. 

▪ IsEffectiveRoleOwner(RoleObject(default NC, RidAllocationMaster)) = trueTRUE. Otherwise, the 
server returns error unwillingToPerform / ERROR_DS_INCORRECT_ROLE_OWNER. This constraint 
is enforced to avoid conflicting cross-domain move operations. 

▪ Let C be the classSchema object of the most-specific structural class of O. C!systemOnly = 
falseFALSE. Otherwise, the server returns error unwillingToPerform / 
ERROR_DS_CANT_MOD_SYSTEM_ONLY. 

▪ C!lDAPDisplayName mustMUST not be any of the following. Otherwise, the server returns error 
unwillingToPerform / ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION. 

▪ addressBookContainer 

▪ attributeSchema 

▪ builtinDomain 

▪ certificationAuthority 

▪ classSchema 

▪ configuration 

▪ cRLDistributionPoint 

▪ crossRef 

▪ crossRefContainer 

▪ dMD 

▪ domain 

▪ dSA 

▪ foreignSecurityPrincipal 

▪ infrastructureUpdate 

▪ linkTrackObjectMoveTable 

▪ linkTrackOMTEntry 

▪ linkTrackVolEntry 

▪ linkTrackVolumeTable 

▪ lostAndFound 

▪ nTDSConnection 



 

330 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ nTDSDSA 

▪ nTDSSiteSettings 

▪ rIDManager 

▪ rIDSet 

▪ samDomain 

▪ samDomainBase 

▪ samServer 

▪ site 

▪ siteLink 

▪ siteLinkBridge 

▪ sitesContainer 

▪ subnet 

▪ subnetContainer 

▪ trustedDomain 

▪ (O!systemFlags & FLAG_DOMAIN_DISALLOW_MOVE = 0). Otherwise, the server returns error 
unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ (O!isCriticalSystemObject ≠ trueTRUE). Otherwise, the server returns error unwillingToPerform / 

ERROR_DS_ILLEGAL_MOD_OPERATION. 

▪ (O!userAccountControl & ADS_UF_SERVER_TRUST_ACCOUNT = 0) and (O!userAccountControl & 

ADS_UF_INTERDOMAIN_TRUST_ACCOUNT = 0). Otherwise, the server returns error 
unwillingToPerform / ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION. 

▪ Let K be the RID of SID O!objectSid. (K > 1000). Otherwise, the server returns error 
unwillingToPerform / ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION. 

▪ (O!instanceType & IT_WRITE ≠ 0). Otherwise, the server returns error unwillingToPerform / 

ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION. 

▪ (O!instanceType & IT_NC_HEAD = 0). Otherwise, the server returns error unwillingToPerform / 
ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION. 

▪  (O!isDeleted ≠ trueTRUE). Otherwise, the server returns error unwillingToPerform / 
ERROR_DS_CANT_MOVE_DELETED_OBJECT. 

▪ If (O is a group object), then (O!groupType & GROUP_TYPE_BUILTIN_LOCAL_GROUP = 0). 
Otherwise, the server returns error unwillingToPerform / 

ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION. 

▪ If (O is a group object) and ((attribute O!member is present) or (attribute O!msDS-NonMembers 
is present)), then (O!groupType & GROUP_TYPE_ACCOUNT_GROUP = 0). Otherwise, the server 
returns error unwillingToPerform / ERROR_DS_CANT_MOVE_ACCOUNT_GROUP. 

▪ If (O is a group object) and ((attribute O!member is present) or (attribute O!msDS-NonMembers 
is present)), then (O!groupType & GROUP_TYPE_RESOURCE_GROUP = 0). Otherwise, the server 

returns error unwillingToPerform / ERROR_DS_CANT_MOVE_RESOURCE_GROUP. 



 

331 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If (O is a group object) and ((attribute O!member is present) or (attribute O!msDS-NonMembers 
is present)), then (O!groupType & GROUP_TYPE_APP_BASIC_GROUP = 0). Otherwise, the server 

returns error unwillingToPerform / ERROR_DS_CANT_MOVE_APP_BASIC_GROUP. This constraint is 
enforced only if the DC functional level is DS_BEHAVIOR_WIN2003 or greater. 

▪ If (O is a group object) and ((attribute O!member is present) or (attribute O!msDS-NonMembers 
is present)), then (O!groupType = 0). Otherwise, the server returns error unwillingToPerform / 
ERROR_DS_CANT_MOVE_APP_QUERY_GROUP. This constraint is enforced only if the DC functional 
level is DS_BEHAVIOR_WIN2003 or greater. 

▪ If ((O is a user object) or (O is a group object)) and (O is a member of any global group), then (O 
is a member of only one global group and that group is its primary group). Otherwise, the server 
returns error unwillingToPerform / ERROR_DS_CANT_WITH_ACCT_GROUP_MEMBERSHPS. 

▪ Let N be the root of NC replica where OldDN exists. Let R be a crossRef object such that 
R!nCName = N. R mustMUST exist and (R!systemFlags & FLAG_CR_NTDS_NC ≠ 0) and 
(R!systemFlags & FLAG_CR_NTDS_DOMAIN ≠ 0). Otherwise, the server returns error 
noSuchObject / ERROR_DS_CANT_FIND_EXPECTED_NC. 

▪ Let NN be the root of NC replica where NP exists. Let NR be a crossRef object such that 
NR!nCName = NN!distinguishedName. NR mustMUST exist and (NR!systemFlags & 

FLAG_CR_NTDS_NC ≠ 0) and (NR!systemFlags & FLAG_CR_NTDS_DOMAIN ≠ 0). Otherwise, the 
server returns error noSuchObject / ERROR_DS_CANT_FIND_EXPECTED_NC. 

▪ R ≠ NR. Otherwise, the server returns error invalidDNSyntax / 
ERROR_DS_SRC_AND_DST_NC_IDENTICAL. 

▪ Let WKS be a set of all attribute values for N!wellKnownObjects. There is no attribute value V in 
WKS such that V.object_DN = O!distinguishedName. Otherwise, the server returns error 
unwillingToPerform / ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION. 

▪ O has no child objects. Otherwise, the server returns error notAllowedOnNonLeaf / 
ERROR_DS_CHILDREN_EXIST. 

3.1.1.5.4.2.3 Processing Specifics 

Once the previously described constraint checking is done, the server performs the move operation on 
the target DC as specified below. The server then performs the cleanup operation as specified below. 
Constraint checking and cleanup operation are performed in two separate local transactions. 

The caller specifies the DNS hostname of the target DC in the controlValue field of 
LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID LDAP control.  

If the controlValue field is empty, then the server performs only constraints checking as mentioned 
previously. It returns success if it passes all the constraints. 

Invoke move operation on target DC: 

Let S be the nTDSDSA object of the server.  

Let NN be the root of NC replica where NP exists. 

Let pmsgIn be a reference to a structure of type DRS_MSG_MOVEREQ. 

Set pmsgIn->V2.pSrcDSA to dsname of S. 

pmsgIn->V2.pSrcObject is a reference to a structure of type ENTINF. Define ENTINF for O as 
described later in this section. 

Set pmsgIn->V2.pDstName to dsname of NewDN. 



 

332 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Set pmsgIn->V2.pExpectedTargetNC to dsname of NN. 

pmsgIn->V2.pClientCreds is a reference to DRS_SecBuffer structure. It is set to the GSS Kerberos 
authentication token (see [RFC1964]) derived from the security context of the caller.  

Set pmsgIn->V2.PrefixTable to dc.prefixTable, as specified in section 3.1.1.1.9. 

Set pmsgIn->V2.ulFlags to 0. 

Let H be the bind handle derived by calling IDL_DRSBind method against target DC. 

Let pdwOutVersion be a reference to dwOutversion of type integer. 

Let pmsgOut be a reference to DRS_MSG_MOVEREPLY structure. 

Call IDL_DRSInterDomainMove(H, 2, pmsgIn, pdwOutVersion, pmsgOut). If the method returns an 
error, then the server returns LDAP error unavailable. 

If (dwOutVersion ≠ 2), then the server returns LDAP error operationsError. 

If (pmsgOut->v2.win32Error ≠ 0), then the server returns LDAP error unwillingToPerform. 

Create proxy object and perform cleanup 

The proxiedObjectName attribute is present on the infrastructureUpdate object that is used to 
communicate the cross-domain move from the originating NC replica to other replicas of the NC. The 
proxiedObjectName attribute is also present on an object that has been moved across domain, as 
specified in [MS-DRSR] section 4.1.15.3. 

The proxiedObjectName attribute has syntax Object(DN-Binary); see section 3.1.1.2.2.2.3 for the 
specification of this syntax, which contains the fields char_count, binary_value, and object_DN. The 
binary_value part of a proxiedObjectName value is 16 characters. Bytes 0 to 7 contain the character 
string "00000001" for a cross-domain move. Bytes 8 to 15 contain the hexadecimal representation of 
a number called the cross-domain move epoch. 

The cross-domain move epoch E of the proxiedObjectName attribute on an infrastructureUpdate 
object is determined as follows: 

▪ If O!proxiedObjectName is present, then let B be the binary_value of O!proxiedObjectName. Let E 
be value given by the least significant 32 bits of B. 

▪ Otherwise, let E be 0. 

Create an attribute value K of type Object (DN-Binary). Set K.char_count to 16. Let J be a string of 
eight characters that is the hexadecimal representation of value E. Set K.binary_value to the 
concatenation of the strings "00000001" and J. Set object_DN part of K to NewDN. 

Expunge object O from NC replica.  

Let I = GetWellknownObject(default NC, GUID_INFRASTRUCTURE_CONTAINER_W). 

Create an infrastructureUpdate object L such that L!parent = I and L!name is any name unique among 
the children of I and L!proxiedObjectName = K and L!systemFlags = 
(FLAG_DOMAIN_DISALLOW_RENAME | FLAG_DISALLOW_MOVE_ON_DELETE | 
FLAG_DOMAIN_DISALLOW_MOVE). 

Delete L and turn it into a tombstone object. 

Defining ENTINF structure for object O 

Let t be the prefix table dc.prefixTable specified in section 3.1.1.1.9. 



 

333 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Let AttsSet be the set of all attributes (represented as ATTRTYP) of object O.  

Let Atts be a sequence of ATTRTYP whose elements are elements of AttsSet. 

Let EntInf be a structure of type ENTINF. 

Set EntInf.pName to the dsname of O. 

Set EntInf.ulFlags to 0. 

Let AttrBlock be a structure of type ATTRBLOCK of length Atts.length. 

Give AttrBlock.pAttr[i] a value determined by Atts[i] as follows, for all i in [0...Atts.length) (in any 
order) 

▪ Let K be the attributeSchema object SchemaObj(Atts[i]). SchemaObj is specified in [MS-DRSR] 
section 5.183. 

▪ Let syntax be K!attributeSyntax. 

▪ Let AttrBlock.pAttr[i].AttribTyp be the value returned by MakeAttid(t, oid). 

▪ Let Vals be the sequence of values O.Atts[i]. 

▪ Let AttrBlock.pAttr[i].AttrVal be a structure of type ATTRVALBLOCK of length Vals.length. 

▪ Set AttrBlock.pAttr[i].AttrVal.valCount = Vals.length. 

▪ Give AttrBlock.pAttr[i].AttrVal.pAVal[j] a value determined by Vals[j] as follows, for all j in 
[0..Vals.length) (in any order). 

▪ Set AttrBlock.pAttr[i].AttrVal.pAVal[j] = ATTRVALFromValue(Vals[j], syntax, t) 

3.1.1.5.5 (Updated Section) Delete Operation 

References 

LDAP attributes: distinguishedName, isDeleted, isRecycled, entryTTL, msDS-Entry-Time-To-Die, 
nTSecurityDescriptor, attributeID, attributeSyntax, dNReferenceUpdate, dNSHostName, flatName, 
governsID, groupType, instanceType, lDAPDisplayName, legacyExchangeDN, mS-DS-CreatorSID, 

msDS-LastKnownRDN, mSMQOwnerID, nCName, objectClass, objectGUID, objectSid, oMSyntax, 
proxiedObjectName, name, replPropertyMetaData, sAMAccountName, securityIdentifier, sIDHistory, 
subClassOf, systemFlags, trustPartner, trustDirection, trustType, trustAttributes, userAccountControl, 
uSNChanged, uSNCreated, whenCreated, searchFlags, isCriticalSystemObject, objectCategory, 
sAMAccountType, isDeleted, lastKnownParent. 

State model attributes: rdnType 

LDAP classes: dynamicObject, crossRef. 

Constants 

▪ Win32/status error codes: ERROR_DS_REFERRAL, ERROR_DS_ILLEGAL_MOD_OPERATION, 
ERROR_DS_CHILDREN_EXIST, ERROR_DS_TREE_DELETE_NOT_FINISHED 

▪ Access mask bits, control access rights: SECURITY_PRIVATE_OBJECT, RIGHT_DELETE, 
RIGHT_DS_DELETE_CHILD, RIGHT_DS_DELETE_TREE 

▪ systemFlags bits: FLAG_DISALLOW_DELETE, FLAG_DISALLOW_MOVE_ON_DELETE 

▪ Schema bits: fPRESERVEONDELETE 



 

334 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The delete operation results in the transformation of an existing-object in the directory tree into some 
form of deleted object. There are several modes of transformation, depending on whether the Recycle 

Bin optional feature is enabled or not. In all modes of transformation, the requester supplies the DN of 
the object to be transformed. 

If the Recycle Bin optional feature is not enabled, the delete operation results in the transformation of 
an existing-object in the directory tree into a tombstone. If the Recycle Bin optional feature is enabled 
and the requester has specified an existing-object as the object to be transformed, the deletion 
operation results in transformation of the existing-object in the directory tree into a deleted-object. 

If the Recycle Bin optional feature is enabled and the requester has specified a deleted-object as the 
object to be transformed, the operation results in transformation of a deleted-object in the directory 
tree into a recycled-object. Recycled-objects are created only by the transformation of a deleted-

object, never directly from a normal object. 

Tombstones, deleted-objects, and recycled-objects (collectively referred to in this section as deleted 
objects) are special placeholder objects that replicate around, signaling replica partners that the 
original object was deleted. Tombstones, deleted-objects, and recycled-objects are invisible to LDAP 

searches by default, so for an LDAP application, it appears that the object was physically removed 
from the directory after a delete operation has taken place. 

Tombstones are a type of deleted object distinguished from existing-objects by the presence of the 
isDeleted attribute with the value trueTRUE. The value of the isRecycled attribute can be trueTRUE, or 
the isRecycled attribute can be absent. Tombstones exist only when the Recycle Bin optional feature is 
not enabled. After a time period at least as large as a tombstone lifetime, the tombstone is removed 
from the directory. 

Deleted-objects are a type of deleted object distinguished from existing-objects by the presence of the 
isDeleted attribute with the value trueTRUE and the absence of the isRecycled attribute. Deleted-

objects exist only when the Recycle Bin optional feature is enabled. After a time period at least as 
large as a deleted-object lifetime, the deleted-object is transformed into a recycled-object. 

Recycled-objects are a type of deleted object distinguished from existing-objects by the presence of 
the isRecycled attribute with the value trueTRUE. Recycled-objects exist only when the Recycle Bin 

optional feature is enabled. After a time period at least as large as a tombstone lifetime, the recycled-
object is removed from the directory. 

Normally, only leaf objects (objects without descendants in the directory tree) can be deleted. There is 

also a special tree-delete operation, with which whole trees of objects are removed (see Tree-delete 
operation in section 3.1.1.5.5.7). 

In most cases, upon deletion, a tombstone, deleted-object, or recycled-object is moved into the 
Deleted Objects container of its NC; for exceptions see section 3.1.1.5.5.6. The RDN of the object is 
changed to a "delete-mangled RDN"-an RDN that is guaranteed to be unique within the Deleted 
Objects container. If O is the object that is deleted, the delete-mangled RDN is the concatenation of 

O!name, the character with value 0x0A, the string "DEL:", and the dashed string representation 
([RFC4122] section 3) of O!objectGUID. During this concatenation, if required, the O!name part is 
truncated to ensure that the length of the delete-mangled RDN does not violate the RDN size 
constraint in section 3.1.1.5.1.2. The RDN attribute of this object is also set to this delete-mangled 

RDN value. The illegal character constraint regarding a character with the value 0xA, as specified in 
section 3.1.1.5.1.2, is not enforced for this delete-mangled RDN. Also, the rangeUpper constraint for 
the RDN attribute of this object is not enforced. A "delete-mangled DN" is a DN such that the leaf RDN 

is a delete-mangled RDN. 

An object whose class is defunct, or whose class is active but some of whose attributes are defunct, 
can still be deleted. 

Linked attributes store references to other objects in the forest (see referential integrity in section 
3.1.1.1.6). They are pairs of attributes for which the system calculates the values of one attribute (the 
back link) based on the values set on the other attribute (the forward link) throughout the forest. A 



 

335 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

back-link value on any object instance consists of the DNs of all the objects that have that object's DN 
set in the corresponding forward link. In addition to storing object references using linked attributes, 

objects can also store references to other objects in attributes that have an object reference syntax 
(see referential integrity in section 3.1.1.1.6). Such attributes are not considered to be linked 

attributes. 

The direction of a linked attribute is determined by the directional flow of a forward link and the object 
from which this link is viewed. If this object has a forward link attribute containing a reference to 
another object, then its linked attribute is called an outgoing linked attribute. The link, as viewed from 
the referenced object, is called an incoming link. For example, if Object A has a forward link storing a 
reference to Object B (this implies that Object B has a backward link storing a reference to Object A), 
then the linked attribute on Object A is an outgoing linked attribute and accordingly, an incoming 

linked attribute on Object B. 

3.1.1.5.5.1 Resultant Object Requirements 

3.1.1.5.5.1.1 (Updated Section) Tombstone Requirements 

The following requirements apply to all tombstones except the Deleted Objects container (which is 

considered a tombstone and never an existing-object if the Recycle Bin optional feature is not 
enabled): 

▪ The isDeleted attribute is set to trueTRUE on tombstones. 

▪ The tombstone does not have descendant objects. 

▪ The tombstone remains in the database and is available for outbound replication for at least the 
tombstone lifetime time interval (see section 6.1.1) after its transformation into a tombstone. 

▪ A tombstone does not retain the attribute values of the original existing-object for any attributes 

except for the following: 

▪ The attribute that is the RDN, plus the objectGUID and objectSid attributes. 

▪ Attributes marked as being preserved on deletion (see section 2.2.9). 

▪ Attributes on the following list: 

▪ attributeID, attributeSyntax, dNReferenceUpdate, dNSHostName, flatName, governsID, 
groupType, instanceType, lDAPDisplayName, legacyExchangeDN, isDeleted, isRecycled, 
lastKnownParent, msDS-LastKnownRDN, mS-DS-CreatorSID, mSMQOwnerID, nCName, 

objectClass, distinguishedName, objectGUID, objectSid, oMSyntax, proxiedObjectName, 
name, nTSecurityDescriptor, replPropertyMetaData, sAMAccountName, securityIdentifier, 
sIDHistory, subClassOf, systemFlags, trustPartner, trustDirection, trustType, 
trustAttributes, userAccountControl, uSNChanged, uSNCreated, whenCreated, msDS-
PortLDAP 

▪ A tombstone does not retain the attribute values of the original object for the attributes 

objectCategory and sAMAccountType or for any linked attributes even if these attributes would 

otherwise be retained according to the preceding bullet point. In other words, when an object is 
deleted and transformed into a tombstone, objectCategory values, sAMAccountType values, and 
any linked attribute values on it are always removed. 

▪ NC replicas do not contain objects with linked attribute values referencing tombstones. In other 
words, when an object is deleted and transformed into a tombstone, any linked attribute values on 
other objects referencing it are also removed. 

▪ If any NC replicas contain other objects with nonlinked attribute values referencing a tombstone, 
then those attribute values on those objects are retained.  In other words, when an object is 



 

336 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

deleted and transformed into a tombstone, any nonlinked attribute values on other objects 
referencing it are not removed. 

▪ Except as described in section 3.1.1.5.5.6, tombstones exist only in the Deleted Objects container 
of an NC. 

▪ Except as described in section 3.1.1.5.5.6, tombstones have "delete-mangled RDNs". 

▪ A protected object cannot be deleted and transformed into a tombstone (see Protected 
Objects (section 3.1.1.5.5.3)). 

The following requirements apply to the Deleted Objects container when it is a tombstone: 

▪ The isDeleted attribute is set to trueTRUE. 

▪ The Deleted Objects container always remains in the database and is available for outbound 
replication. 

▪ The Deleted Objects container does not have a "delete-mangled RDN". 

Note especially that many of the restrictions specified in this section on other tombstones pertaining to 
attribute values do not apply to the Deleted Objects container. 

3.1.1.5.5.1.2 (Updated Section) Deleted-Object Requirements 

The following requirements apply to deleted-objects except the Deleted Objects container (which is 

considered a deleted-object and never an existing-object or a recycled-object if the Recycle Bin 
optional feature is enabled): 

▪ The isDeleted attribute is set to trueTRUE on deleted-objects. 

▪ The isRecycled attribute is not present. 

▪ The deleted-object retains all of the attributes of the original object except for the attributes 

objectCategory and sAMAccountType. 

▪ The deleted-object does not have descendant objects. 

▪ The deleted-object remains in the database and is available for outbound replication for at least 
the deleted-object lifetime interval (see section 6.1.1) after its deletion. 

▪ If a deleted-object has linked attribute values, then those attribute values are retained. For 
details, see LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID (section 3.1.1.3.4.1.25).  

▪ If any NC replicas contain other objects with linked attribute values referencing deleted-objects, 
then those attribute values on those objects are retained. In other words, when an object is 
deleted and transformed into a deleted-object, any linked attribute values on other objects 

referencing it are not removed. For details, see 
LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID (section 3.1.1.3.4.1.25).  

▪ If any NC replicas contain other objects with nonlinked attribute values referencing a deleted-

object, then those attribute values on those objects are retained. In other words, when an object 
is deleted and transformed into a deleted-object, any nonlinked attribute values on other objects 
referencing it are not removed.  

▪ Except as described in section 3.1.1.5.5.6, deleted-objects exist only in the Deleted Objects 
container of an NC. 

▪ Except as described in section 3.1.1.5.5.6, deleted-objects have "delete-mangled RDNs". 



 

337 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ A protected object cannot be deleted and transformed into a deleted-object (see Protected Objects 
in section 3.1.1.5.5.3). 

The following requirements apply to the Deleted Objects container when it is a deleted-object: 

▪ The isDeleted attribute is set to trueTRUE. 

▪ The isRecycled attribute is not present. 

▪ The Deleted Objects container always remains in the database and is available for outbound 
replication. 

▪ The Deleted Objects container does not have a "delete-mangled RDN". 

Note especially that many of the restrictions specified in this section on other deleted-objects 
pertaining to attribute values do not apply to the Deleted Objects container. 

3.1.1.5.5.1.3 (Updated Section) Recycled-Object Requirements 

The following requirements apply to recycled-objects: 

▪ The Deleted Objects container is never a recycled-object. It cannot be transformed into a 
recycled-object. 

▪ The isDeleted attribute is set to trueTRUE on recycled-objects. 

▪ The isRecycled attribute is set to trueTRUE on recycled-objects. 

▪ The recycled-object does not have descendant objects. 

▪ The recycled-object remains in the database and is available for outbound replication for at least 
the tombstone lifetime time interval (see section 6.1.1) after its transformation into a recycled-
object. 

▪ A recycled-object does not retain the attribute values of the deleted object for any attributes 

except for the following: 

▪ The attribute that is the RDN, plus the objectGUID and objectSid attributes 

▪ Attributes marked as being preserved on deletion (see section 2.2.9) 

▪ Attributes on the following list: 

▪ nTSecurityDescriptor, attributeID, attributeSyntax, dNReferenceUpdate, dNSHostName, 
flatName, governsID, groupType, instanceType, lDAPDisplayName, legacyExchangeDN, 
isDeleted, isRecycled, lastKnownParent, msDS-LastKnownRDN, mS-DS-CreatorSID, 
mSMQOwnerID, nCName, objectClass, distinguishedName, objectGUID, objectSid, 
oMSyntax, proxiedObjectName, name, replPropertyMetaData, sAMAccountName, 

securityIdentifier, sIDHistory, subClassOf, systemFlags, trustPartner, trustDirection, 
trustType, trustAttributes, userAccountControl, uSNChanged, uSNCreated, whenCreated, 
msDS-PortLDAP 

▪ A recycled-object does not retain the attribute values of the original object for the attributes 
objectCategory, sAMAccountType, or for any linked attributes even if these attribute would 
otherwise be retained according to the preceding bullet point. In other words, when a deleted-

object is transformed into a recycled-object, objectCategory values, sAMAccountType values, and 
any linked attribute values on it are always removed. 

▪ NC replicas do not contain objects with linked attribute values referencing recycled-objects. In 
other words, when a deleted-object is transformed into a recycled-object, any linked attribute 
values on other objects referencing it are also removed. 



 

338 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If any NC replicas contain other objects with nonlinked attribute values referencing a recycled-
object, then those attribute values on those objects are retained. In other words, when a deleted-

object is transformed into a recycled-object, any non-linked attribute values on other objects 
referencing it are not removed. 

▪ Except as described in section 3.1.1.5.5.6, recycled-objects exist only in the Deleted Objects 
container of an NC. 

▪ Except as described in section 3.1.1.5.5.6, recycled-objects have "delete-mangled RDNs".  

3.1.1.5.5.2 dynamicObject Requirements 

See section 6.1.7. 

3.1.1.5.5.3 Protected Objects 

The following objects are considered protected and cannot be deleted: 

▪ The DC's nTDSDSA object and all of its ancestors. 

▪ The DC's rIDSet object and all of its ancestors. A DC's rIDSet object is the referent of the 
rIDSetReferences attribute of the DC's Domain Controller object (section 6.1.1.3.1). 

▪ The crossRef objects corresponding to the DC's config, schema, and default domain NCs. 

3.1.1.5.5.4 (Updated Section) Security Considerations 

No permissions are required for replicated updates. 

For originating updates, the requester mustMUST have the following permissions. 

To delete a regular object, at least one of the following permissions mustMUST be granted to the 
requester: 

▪ RIGHT_DELETE on the object being deleted, or 

▪ RIGHT_DS_DELETE_CHILD on the parent of the object being deleted, when the object is not an 
NC root. 

For originating updates of transformations of deleted-objects to recycled-objects, all the same security 
requirements as those listed for a normal deletion mustMUST be met. In addition, the requester 
mustMUST have the permission RIGHT_DS_REANIMATE_TOMBSTONES on the NC root of the NC 
where the operation is being performed. 

3.1.1.5.5.5 (Updated Section) Constraints 

For originating updates, the following constraints are enforced for the delete operation.  These 
constraints are not enforced for replicated updates. 

▪ The object being deleted resides in a writable NC replica; otherwise, the delete returns referral / 

ERROR_DS_REFERRAL. 

▪ If the object being deleted is in the config NC or schema NC, and the RM control ([MS-DTYP] 
section 2.4.6) of the SD is present and contains the SECURITY_PRIVATE_OBJECT bit (section 

6.1.3), additional requirements on the DC performing the operation are enforced (if neither is 
trueTRUE, referral / ERROR_DS_REFERRAL mustMUST be returned): 

▪ The DC mustMUST be a member of the root domain in the forest, or 

▪ The DC mustMUST be a member of the same domain where the current object owner belongs. 



 

339 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If the FLAG_DISALLOW_DELETE bit is set in the systemFlags attribute, unwillingToPerform / 
ERROR_DS_CANT_DELETE is returned. 

▪ Deletions of tombstone objects fail with unwillingToPerform / 
ERROR_DS_ILLEGAL_MOD_OPERATION if the DC functional level is DS_BEHAVIOR_WIN2008 or 

lower, and with unwillingToPerform / ERROR_DS_CANT_DELETE if the DC functional level is 
DS_BEHAVIOR_WIN2008R2 or higher. However, if the object being deleted is a tombstone of a 
SAM-specific object (section 3.1.1.5.2.3), noSuchObject / ERROR_DS_OBJ_NOT_FOUND is 
returned instead. 

▪ If the object being deleted is a recycled-object, unwillingToPerform / ERROR_DS_CANT_DELETE is 
returned.  

▪ If the object being deleted has descendants, the delete operation fails with notAllowedOnNonleaf / 

ERROR_DS_CHILDREN_EXIST. This constraint is not effective if the requester is passing the 
LDAP_SERVER_TREE_DELETE_OID control (see section 3.1.1.5.5.7). 

▪ If the fschemaUpgradeInProgress field is falseFALSE on the LDAPConnection instance in 

dc.ldapConnections ([MS-DRSR] section 5.116) corresponding to the LDAP connection on which 
the operation is being performed and the object being deleted is in the schema NC, 
unwillingToPerform / ERROR_DS_CANT_DELETE is returned. 

▪ If the object being deleted is a SAM-specific object (section 3.1.1.5.2.3), additional constraints 
apply (see [MS-SAMR] section 3.1.5.7). 

▪ If the delete operation would require delayed link processing (section 3.1.1.1.16), and such 
processing is already underway for the object being deleted due to a previous update, then the 
delete returns busy / ERROR_DS_DATABASE_ERROR. 

▪ If the object being deleted is the DC's nTDSDSA object or any of its ancestors, unwillingToPerform 
/ ERROR_DS_CANT_DELETE_DSA_OBJ is returned. 

▪ If the object being deleted is a crossRef object corresponding to the DC's config NC, schema NC, 
or default domain NC, the returned error code depends on the following conditions: 

▪ If the crossRef object is a child of the CN=Partitions child of the config NC and the nCName 
attribute of the crossRef object is set to the value DN1 and there exists another crossRef 
object with the same parent where the nCName attribute of the second crossRef object is set 
to the value DN2, and the object referred to by DN1 is an ancestor of the object referred to by 
DN2, then notAllowedOnNonLeaf / ERROR_DS_CANT_ON_NON_LEAF is returned. 

▪ Else if the crossRef object is a child of the CN=Partitions child of the config NC, and the 
crossRef object's NC is hosted by some domain controller, unwillingToPerform / 
ERROR_DS_NC_STILL_HAS_DSAS is returned. 

▪ Otherwise, unwillingToPerform / ERROR_DS_CANT_DEL_MASTER_CROSSREF is returned. 

▪ If the object being deleted is protected (see section 3.1.1.5.5.3) and does not fall into the two 
categories above, unwillingToPerform / ERROR_DS_CANT_DELETE is returned. 

3.1.1.5.5.6 Processing Specifics 

3.1.1.5.5.6.1 (Updated Section) Transformation into a Tombstone 

When the delete operation results in the transformation of an object into a tombstone, the following 
processing rules apply to the delete operation: 

▪ For originating updates: 



 

340 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ The RDN for the tombstone is the object's delete-mangled RDN, as specified in Delete 
Operation in section 3.1.1.5. For replicated updates, the received RDN for the tombstone is set 

on the object. 

▪ The lastKnownParent attribute value is set to the DN of the current parent object. 

▪ Additional operations might be performed if the object being modified is a SAM-specific object 
(section 3.1.1.5.2.3); see [MS-SAMR] section 3.1.1.8). 

▪ All attribute values are removed from the object, with the following exceptions: 

▪ nTSecurityDescriptor, attributeID, attributeSyntax, dNReferenceUpdate, dNSHostName, 
flatName, governsID, groupType, instanceType, lDAPDisplayName, legacyExchangeDN, mS-
DS-CreatorSID, mSMQOwnerID, nCName, objectClass, distinguishedName, objectGUID, 
objectSid, oMSyntax, proxiedObjectName, name, replPropertyMetaData, sAMAccountName, 

securityIdentifier, sIDHistory, subClassOf, systemFlags, trustPartner, trustDirection, trustType, 
trustAttributes, userAccountControl, uSNChanged, uSNCreated, whenCreated attribute values 
are retained. 

▪ In AD LDS, the msDS-PortLDAP attribute is also retained. 

▪ The attribute that equals the rdnType of the object (for example, cn for a user object) is 
retained. 

▪ Any attribute that has fPRESERVEONDELETE flag set in its searchFlags is retained, except 
objectCategory and sAMAccountType, which are always removed, regardless of the value of 
their searchFlags. 

▪ All outgoing linked attribute values are removed, but not as an originating update. These values 
are simply removed from the directory. 

▪ All incoming linked attribute values are removed, but not as an originating update. These values 
are simply removed from the directory. 

▪  The isDeleted attribute is set to trueTRUE. 

▪ The object is moved into the Deleted Objects container in its NC, except in the following scenarios, 
when it mustMUST remain in its current place: 

▪ The object is an NC root. 

▪ The object's systemFlags value has FLAG_DISALLOW_MOVE_ON_DELETE bit set. 

3.1.1.5.5.6.2 (Updated Section) Transformation into a Deleted-Object 

When the delete operation results in the transformation of an object into a deleted-object, the 
following processing rules apply to the delete operation: 

▪ For originating updates: 

▪ The RDN for the deleted-object is the object's delete-mangled RDN, as specified in Delete 
Operation in section 3.1.1.5. For replicated updates, the received RDN for the deleted-object is 
set on the object. 

▪ The lastKnownParent attribute value is set to the DN of the object's parent at the time of its 
deletion. 

▪ The msDS-LastKnownRDN attribute value is set to the RDN of the object before the deletion 
transformation. 



 

341 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Additional operations might be performed if the object being modified is a SAM-specific object 
(section 3.1.1.5.2.3); see [MS-SAMR] section 3.1.1.8). 

▪ The attributes objectCategory and sAMAccountType are removed. 

▪ The isDeleted attribute is set to trueTRUE. 

▪ The object is moved into the Deleted Objects container in its NC, except in the following scenarios, 
when it MUST remain in its current place: 

▪ The object is an NC root. 

▪ The object's systemFlags value has FLAG_DISALLOW_MOVE_ON_DELETE bit set.  

3.1.1.5.5.6.3 (Updated Section) Transformation into a Recycled-Object 

When the delete operation results in the transformation of an object into a recycled-object, the 

following processing rules apply to the delete operation: 

▪ For originating updates: 

▪ Additional operations might be performed if the object being modified is a SAM-specific object 
(section 3.1.1.5.2.3); see [MS-SAMR] section 3.1.1.8). 

▪ All attribute values are removed from the object, with the following exceptions: 

▪ nTSecurityDescriptor, attributeID, attributeSyntax, dNReferenceUpdate, dNSHostName, 

flatName, governsID, groupType, instanceType, lDAPDisplayName, lastKnownParent, ms-DS-
lastKnownRDN, legacyExchangeDN, mS-DS-CreatorSID, mSMQOwnerID, nCName, 
objectClass, distinguishedName, objectGUID, objectSid, oMSyntax, proxiedObjectName, 
name, replPropertyMetaData, sAMAccountName, securityIdentifier, sIDHistory, subClassOf, 
systemFlags, trustPartner, trustDirection, trustType, trustAttributes, userAccountControl, 
uSNChanged, uSNCreated, whenCreated attribute values are retained. 

▪ In AD LDS, the msDS-PortLDAP attribute is also retained. 

▪ The attribute that equals the rdnType of the object (for example, cn for a user object) is 
retained. 

▪ Any attribute that has the fPRESERVEONDELETE flag set in its searchFlags is retained, except 
objectCategory and sAMAccountType, which are always removed, regardless of the value of 
their searchFlags. 

▪ All outgoing linked attribute values are removed, but not as an originating update. These values 
are simply removed. 

▪ All incoming linked attribute values are removed, but not as an originating update. These values 
are simply removed. 

▪ The isDeleted attribute is set to trueTRUE. 

▪ The isRecycled attribute is set to trueTRUE. 

▪ The object is moved into the Deleted Objects container in its NC, except in the following scenarios, 
when it MUST remain in its current place: 

▪ The object is an NC root. 

▪ The object's systemFlags value has the FLAG_DISALLOW_MOVE_ON_DELETE bit set. 

3.1.1.5.5.7 Tree-delete Operation 



 

342 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The tree-delete operation is a special mode of delete operation that simplifies the deletion of trees of 
objects. The regular delete operation can only delete leaf objects. The tree-delete operation processes 

a tree of objects one-by-one, deleting objects starting from the leaf objects and continuing up until 
the root can be deleted. The tree-delete operation is represented by a regular LDAP delete operation 

with the requester passing the LDAP_SERVER_TREE_DELETE_OID control. 

A tree-delete operation is never performed as a replicated update. 

3.1.1.5.5.7.1 (Updated Section) Tree-delete Security Considerations 

The requester mustMUST have the RIGHT_DS_DELETE_TREE on the object being deleted. Note that 
no additional permissions are required on the descendants of the object. 

3.1.1.5.5.7.2 (Updated Section) Tree-delete Constraints 

▪ All regular delete operation constraints apply on each object being deleted. 

▪ The tree-delete operation cannot be applied to an NC root. 

▪ Objects with the isCriticalSystemObject attribute equal to trueTRUE and which are not SAM-
specific objects (as defined by section 3.1.1.5.2.3) cannot be deleted by the tree-delete operation. 
This constraint is checked object-by-object, and deletion stops at the first deletion attempt that 

violates the constraint. If deletion stops, the resultant tree might not be the same as the original 
tree because some objects might have been deleted prior to the failure. 

3.1.1.5.5.7.3 Tree-delete Processing Specifics 

▪ The tree-delete operation proceeds by removing the tree, starting from the leaf objects and 
making its way to the root of the tree. The order of processing is not important, as long as each 
node is only deleted after all of its descendants have been deleted and moved into a Deleted 

Objects Container (section 6.1.1.4.2). 

▪ Regular delete processing specifics apply to each object being deleted. 

▪ The tree-delete operation is implemented using multiple transactions. 

▪ It is allowed for the tree-delete operation not to delete the complete subtree. If the server failed 
to complete the tree-delete operation and the error is recoverable (that is, no user intervention is 
required), it returns a special error code adminLimitExceeded / 
ERROR_DS_TREE_DELETE_NOT_FINISHED to the user. However, it is required that at least one 

object in the subtree was deleted (that is, some progress was made). The clients continue 
repeating the tree-delete request until they either receive a success (indicating that the tree was 
successfully removed) or receive an error code other than 
ERROR_DS_TREE_DELETE_NOT_FINISHED (as specified in section 3.1.1.5.5.5). 

3.1.1.6 Background Tasks 

In AD DS, the server runs background tasks periodically to: 

▪ Protect security principals that have elevated administrative privilege. 

▪ Maintain referential integrity (see Referential integrity in section 3.1.1.1) on object references. 

▪ Maintain security descriptor requirements (see Security Descriptor Requirements in section 6.1.3). 

▪ Query and persist domain information about trusting forests (see section 3.1.1.6.4). 



 

343 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Note: Features and tasks related to querying and persisting domain information about trusting 
forests described in this section are also supported in Windows 11 v22H2 and later operating 

systems. 

These periodic tasks are specified in the following sections. 

3.1.1.6.1 AdminSDHolder 

References 

▪ Special Objects in section 6.1: Windows NT operating system 

Glossary terms: Active Directory, security principal, privileges, PDC, FSMO, SD, transitive 
membership, RID 

LDAP attributes: nTSecurityDescriptor, groupType, objectClass, member, objectSid, dSHeuristics 

LDAP classes: container, user, group 

Constants 

▪ Access mask bits, CARs: 

▪ groupType bits: GROUP_TYPE_SECURITY_ENABLED 

▪ Constant RIDs: DOMAIN_ALIAS_RID_ADMINS, DOMAIN_ALIAS_RID_ACCOUNT_OPS, 
DOMAIN_ALIAS_RID_SYSTEM_OPS, DOMAIN_ALIAS_RID_PRINT_OPS, 

DOMAIN_ALIAS_RID_BACKUP_OPS, DOMAIN_ALIAS_RID_REPLICATOR, 
DOMAIN_GROUP_RID_SCHEMA_ADMINS, DOMAIN_GROUP_RID_ADMINS, 
DOMAIN_GROUP_RID_CONTROLLERS, DOMAIN_USER_RID_KRBTGT, DOMAIN_USER_RID_ADMIN 

If a security principal object with elevated administrative privileges in Active Directory has a weak SD, 
Active Directory is vulnerable to straightforward attack. Therefore, Active Directory protects the SDs of 
such objects from updates that might give them weak SDs. 

Each security principal is represented as an object o in Active Directory. For every o there is an 

attribute o!nTSecurityDescriptor. The value is the SD that defines ownership, permissions, and audited 
operations for o. 

Active Directory protects the SD on certain objects by periodically overwriting any changes. This 
mechanism loosely establishes an upper bound on the length of time that a protected object can have 
a weak SD. 

3.1.1.6.1.1 Authoritative Security Descriptor 

The security descriptor that is written to protected objects is stored in the nTSecurityDescriptor 
attribute on the AdminSDHolder object in Active Directory. The AdminSDHolder object is of class 
container and has a DN of "CN=AdminSDHolder,CN=System,<Domain NC DN>". 

3.1.1.6.1.2 Protected Objects 

In domain d, the set S of all security principal objects o that are protected is defined as follows: 

▪ (o!objectClass = group AND attribute o!groupType & GROUP_TYPE_SECURITY_ENABLED ≠ 0) OR 

(o!objectClass = user) 

▪ AND (o!objectSid = d!objectSid + RID) 

▪ AND either 



 

344 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ o is a member, directly or transitively, of any group in the set: 

▪ built-in well-known group with RID = DOMAIN_ALIAS_RID_ADMINS 

▪ built-in well-known group with RID = DOMAIN_ALIAS_RID_ACCOUNT_OPS 

▪ built-in well-known group with RID = DOMAIN_ALIAS_RID_SYSTEM_OPS 

▪ built-in well-known group with RID = DOMAIN_ALIAS_RID_PRINT_OPS 

▪ built-in well-known group with RID = DOMAIN_ALIAS_RID_BACKUP_OPS 

▪ built-in well-known group with RID = DOMAIN_ALIAS_RID_REPLICATOR 

▪ account domain well-known group with RID = DOMAIN_GROUP_RID_ADMINS 

▪ account domain well-known group with RID = DOMAIN_GROUP_RID_SCHEMA_ADMINS 

▪ account domain well-known group with RID = 

DOMAIN_GROUP_RID_ENTERPRISE_ADMINS 

▪ OR, is one of the following well-known security principals: 

▪ of class user with RID = DOMAIN_USER_RID_ADMIN 

▪ of class user with RID = DOMAIN_USER_RID_KRBTGT 

▪ of class group with RID = DOMAIN_GROUP_RID_CONTROLLERS 

▪ of class group with RID = DOMAIN_GROUP_RID_READONLY_CONTROLLERS 

3.1.1.6.1.3 Protection Operation 

Every object in the protected set is examined at least once every 120 minutes, every 60 minutes by 
default, at domain d's PDC FSMO role owner. For any object o where o!nTSecurityDescriptor ≠ 

AdminSDHolder!nTSecurityDescriptor an originating update is performed replacing 
o!nTSecurityDescriptor with the value of AdminSDHolder!nTSecurityDescriptor. Other replicas of 
domain d see the effects of this operation after a delay due to replication. 

3.1.1.6.1.4 Configurable State 

Let C be the object in the config NC identified by the DN of "CN=Windows 
NT,CN=Services,CN=Configuration,<forest root DN>". C!dSHeuristics (section 6.1.1.2.4.1.2) is a 
Unicode string attribute, in which the 16th character, dwAdminSDExMask, can optionally be set to 
cause the protection operation to exclude one or more protected objects. 

The valid values of dwAdminSDExMask are the characters "0"–"9" and "a"–"f". The value is 
interpreted as a hex digit, of which each bit represents a specific set of security principals that is to be 

excluded from the AdminSDHolder protection operation. 

The set of security principal objects that are excluded are a member, directly or transitively, of any 

group in the set defined by bits set in the list below: 

▪ C!dSHeuristics[15] & 0x1 ≠ 0 then DOMAIN_ALIAS_RID_ACCOUNT_OPS 

▪ C!dSHeuristics[15] & 0x2 ≠ 0 then DOMAIN_ALIAS_RID_SYSTEM_OPS 

▪ C!dSHeuristics[15] & 0x4 ≠ 0 then DOMAIN_ALIAS_RID_PRINT_OPS 

▪ C!dSHeuristics[15] & 0x8 ≠ 0 then DOMAIN_ALIAS_RID_BACKUP_OPS 



 

345 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.6.2 (Updated Section) Reference Update 

References 

▪ Variable: dsname 

▪ LDAP attributes: dNReferenceUpdate. 

▪ LDAP classes: infrastructureUpdate. 

▪ Glossary terms: dsname, Infrastructure FSMO master, NC replica, tombstone, GC. 

▪ IDL_DRSVerifyNames method: see [MS-DRSR] section 4.1.27. 

▪ Well-known Objects 

In AD DS, attributes of attribute syntax Object (DS-DN), Object(DN-String), Object(DN-Binary), 
Object(Access-Point) and Object(OR-Name) can have attribute values that reference objects in an NC 

for which no NC replica is present on the server. The server does not get a replicated update when an 

object in the NC replica not present on the server is modified or deleted. In such a case, references to 
such objects will remain to an old dsname on the server. In order to update these kinds of references, 
a background task called reference update is run at regular intervals. By default, each reference is 
examined every two days. 

The reference update task is not run on a Global Catalog. 

If the Recycle Bin optional feature is not enabled and the Infrastructure FSMO master is not a global 
catalog, then the reference update task is run only on the Infrastructure FSMO master. 

If the Recycle Bin optional feature is enabled, every DC that is not also a global catalog runs the 
reference update task. 

The reference update task does processing as follows:  

For each object P in each NC replica on the server do the following: 

▪ Let S be the set of all attributes of P with attribute syntax Object(DS-DN), Object(DN-String), 

Object(DN-Binary), Object(OR-Name) and Object(Access-Point). 

▪ For each attribute A in set S and for each value V of A do the following: 

▪ If there exists an object with dsname V in any NC replica on this DC, then skip this value V. 

▪ If attribute syntax of A is Object(DS-DN) then let G be P.A.V.guid_value. Let D be P.A.V.dn. 

▪ Otherwise, let G be P.A.V.object_DN.guid_value. Let D be P.A.object_DN.dn. 

▪ If the Recycle Bin optional feature is not enabled: 

▪ Retrieve the dsname N of object with objectGUID G from a GC by calling method 

IDL_DRSVerifyNames. IDL_DRSVerifyNames is explained in [MS-DRSR] section 4.1.27. 

▪ If N!name ≠ D then create an infrastructureUpdate object I in the well-known 
infrastructure update container (see section 6.1.1.4). Set I!dNReferenceUpdate to N. 
Delete I immediately to turn it to a tombstone. 

Creation of an infrastructureUpdate object K with attribute dNReferenceUpdate will trigger 
an update of all references to dsnames corresponding to K!dNReferenceUpdate, as 

explained in section 3.1.1.5.2.4. 

▪ If the Recycle Bin optional feature is enabled: 



 

346 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Retrieve the dsname N and the value Vgc of the isRecycled attribute of object with 
objectGUID G from a GC by calling method IDL_DRSVerifyNames. IDL_DRSVerifyNames is 

explained in [MS-DRSR] section 4.1.27. 

▪ If Vgc is trueTRUE and attribute A is a linked attribute, remove value V from attribute A. 

This removal is not replicated to any other DCs. 

▪ If N!name ≠ D then replace value V of attribute A with N!name. This replacement is not 
replicated to any other DCs. 

▪ If attribute A is a link value and the RDN of N!name is a delete-mangled RDN (see section 
3.1.1.5.5), the value V is to be treated as a linked value to or from a deleted-object. That 
is, the value is not generally visible to LDAP clients unless the 
LDAP_SHOW_DEACTIVATED_LINK_OID control is used. 

▪ If attribute A is a link value and the RDN of N!name is not a delete-mangled RDN (see 
section 3.1.1.5.5), the value V is to be treated as a normal linked value. That is, the value 
is generally visible to LDAP clients. 

3.1.1.6.3 (Updated Section) Security Descriptor Propagator Update 

References 

▪ LDAP attributes: nTSecurityDescriptor 

▪ Glossary terms: ACE, naming context (NC), security descriptor (SD) 

In Active Directory, SDs can contain ACEs that are inheritable. Thus, modifying the SD on an object 
can imply a change in the SDs of descendant objects (either by adding or by removing such an 
inheritable ACE). In order to propagate the changes of inheritable ACEs to descendant objects, each 
DC runs a background task called the Security Descriptor Propagator Update task. By default, this task 
is triggered by the following conditions: 

▪ Any modification (originating or replicated) of the nTSecurityDescriptor attribute of any object, 

except for those modifications done by the Security Descriptor Propagator Update task. Such an 
object is said to have caused a propagation event. 

▪ Any modification of the DN of an object that results in the object having a different parent, except 
for those cases where the new parent is a Deleted Objects container. Such an object is said to 
have caused a propagation event. 

The Security Descriptor Propagator Update task performs the following processing. 

For each object P that has caused a propagation event, the server does the following: 

▪ Initialize a set S with the single element P. 

▪ While the set S is not empty, do the following: 

▪ Let T be an element of set S. 

▪ Enforce all SD requirements from section 6.1.3 on the SD of the object T. This might require 
that a new SD be written to the nTSecurityDescriptor attribute of object T. If this is the case, 

such a modification is not replicated to any other instances of Active Directory. Note that this 
modification of nTSecurityDescriptor is not a new propagation event; it is considered to be 
part of the original event that was triggered by the modification of the nTSecurityDescriptor 
attribute of object P. 

▪ If T is not a Deleted Objects container, as described in section 6.1.1.4.2, let U be the set of all 
children of T that are in the same naming context as T. Add all elements of U to the set S. The 



 

347 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

set U is said to contain qualifying children of object T. All objects that are ever elements of set 
S are said to be qualifying descendants of object P. 

▪ Remove T from set S. 

The replication metadata values (see AttributeStamp and LinkValueStamp in section 3.1.1.1.9) MUST 

NOT be modified for any attributes that are updated during the processing shown in the preceding list. 

There is no constraint on the number of transactions that the Security Descriptor Propagator Update 
task uses during processing. Therefore, there is no requirement that at any given time all of the 
objects that are qualifying descendants of an object whose SD has an inheritable ACE actually have 
the inheritable ACE. It is possible that there is a period of time during which an object that 
shouldSHOULD contain an inheritable ACE from one of its ancestors will not have that inheritable ACE, 
pending completion of the Security Descriptor Propagator Update task. Likewise, it is possible there is 

a period of time during which an inheritable ACE that was removed from one of the object's ancestors 
is still present on the object. Although the protocol places no boundary or requirements on the length 
of this period of time, it is recommended that implementations minimize the length of this period of 
time to improve usability of the directory for clients. 

The server MUST guarantee that all inheritable ACEs are eventually propagated to all qualifying 
descendants of an object that causes a propagation event. 

3.1.1.6.4 PDC Forest Trust Update 

3.1.1.6.4.1 (Updated Section) Informative Overview 

In the operating systems specified by [MSFT-CVE-2022-21857], with the related KB article download 
installed, the PDC mustMUST run a periodic task that queries and stores information about all domains 
in all inbound trusting forests. This information is persisted in ForestTrustScannerInfo records in the 

msdsForestTrustInfo attribute of the trust object for each respective forest trust. 

3.1.1.6.4.2 (Updated Section) Logical Processing 

The periodic task mustMUST do the following: 

1. Let TOs be the set of trust objects whose trustDirection attribute has the 
TRUST_DIRECTION_INBOUND flag set, and whose trustAttributes attribute has the 
TRUST_ATTRIBUTE_FOREST_TRANSITIVE flag set. 

2. For each trust object TO in TOs, the PDC mustMUST issue an LDAP search against the 
configuration naming context of the trusting forest, retrieving all crossRef objects that have 
both the FLAG_CR_NTDS_NC and FLAG_CR_NTDS_DOMAIN flags set in the systemFlags 
attribute. The search mustMUST request that the dnsRoot and nETBIOSName attributes be 
returned. Let CRs be the returned set of crossRef objects. 

3. For each trust object TO in TOs: 

1. Let SRs be the set of ForestTrustScannerInfo records that are currently persisted in the 

msdsForestTrustInfo attribute of TO. 

2. For each CR in CRs, if there is not already a matching ForestTrustScannerInfo record in 
SRs, add a new ForestTrustScannerInfo record SR to SRs, where: 

SR!Flags = 0 

SR!ForestTrustType = ForestTrustScannerInfo 

SR!DnsName = CR!dnsRoot 

SR!NetbiosName = CR!nETBIOSName 



 

348 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

SR!Sid = NULL 

3. For each CR in CRs, if there is a matching ForestTrustScannerInfo record in SRs, leave it 
as is. 

4. For each existing SR in SRs that does not have a matching CR in CRs, remove SR from 

SRs. 

5. If SRs has changed from its original state in step 1, write SRs back to the 
msdsForestTrustForestInfo attribute of TO as an originating update. 

3.1.1.7 NT4 Replication Support 

AD DS supports the NT4 replication protocol as specified in [MS-NRPC] section 3.6 by maintaining two 
variables: nt4ReplicationState and pdcChangeLog. These variables are referenced by [MS-DRSR] 
section 4.1.11.3 in order to specify the IDL_DRSGetNT4ChangeLog method. This section normatively 
specifies the format of these variables and how they are maintained during state changes in AD DS. 

This section also normatively specifies the format of the referent of the pmsgOut.V1.pLog field of the 
DRS_MSG_NT4_CHGLOG_REPLY_V1 response message of the IDL_DRSGetNT4ChangeLog method 

[MS-DRSR] section 4.1.11.3. 

3.1.1.7.1 Format of nt4ReplicationState and pdcChangeLog 

3.1.1.7.1.1 nt4ReplicationState 

nt4ReplicationState is a tuple containing the following fields: 

SamNT4ReplicationUSN: this field, a signed 64-bit value, is an update sequence number for 

updates that occur in AD DS that are relevant to the NT4 replication protocol. Relevant updates are 
described in section 3.1.1.7.2.2. 

SamCreationTime: this field, a FILETIME, records the timestamp when SamNT4ReplicationUSN is set 

to one. 

BuiltinNT4ReplicationUSN: this field, a signed 64-bit value, is an update sequence number for 
updates that occur in AD DS that are relevant to the NT4 replication protocol. It is different from 
SamNT4ReplicationUSN in that this value is used only to identify changes to objects whose objectSid 

has the domain prefix of the built-in domain SID. 

BuiltinCreationTime: this field, a FILETIME, is used to record the timestamp when 
BuiltinNT4ReplicationUSN is set to one. 

3.1.1.7.1.2 pdcChangeLog 

The variable pdcChangeLog maintains a sequence of elements, each representing a unique update to 
Active Directory that is exposed through the NT4 replication protocol ([MS-NRPC] section 3.5). 

Though pdcChangeLog is an internal variable, its contents are sent over the network. 

The pdcChangeLog variable is a sequence of CHANGELOG_ENTRY elements. These 
CHANGELOG_ENTRY elements are defined in [MS-NRPC] section 3.5.4.6.4. 

3.1.1.7.2 State Changes 

This section describes state changes in AD DS that cause the nt4ReplicationState and pdcChangeLog 

variables to change values. 

3.1.1.7.2.1 Initialization 



 

349 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

nt4ReplicationState and pdcChangeLog are reset on Active Domain domain creation (for example, 
when the first DC in an AD DS domain is installed). See section 3.1.1.7.2.4 for information on 

resetting the pdcChangeLog for the specific values of the variables in this condition. 

3.1.1.7.2.2 (Updated Section) Directory Updates 

Entries are added to the pdcChangeLog on select directory updates, specified here. The pdcChangeLog 
is maintained as a circular buffer—once an implementation-specific size limit (64K bytes) is exceeded, 
the least-recently-added entries are removed to make room for new entries. 

If the following condition is trueTRUE during a directory update, then the following action occurs: 

1. Condition 

1. The update, create, or delete occurs within the domain NC (both for an originating and 

replicated update). 

2. The AD DS domain is in mixed mode. 

3. A condition listed in the Trigger Condition Tables (below) matches the update. 

2. Action 

▪ An entry is added to pdcChangeLog with the associated fields in the Trigger Condition Tables 
that satisfied condition (1.3). The remaining fields in the pdcChangeLog entry are as follows: 

1. If the objectSid attribute value of the object being updated has a domain prefix of the 
built-in domain SID, then DbIndex is 0x1; otherwise, DbIndex is 0x0. 

2. The SerialNumber field is set as follows: 

1. If DbIndex is 0x0, SamNT4ReplicationUSN is incremented by one and the resulting 
value is used for the SerialNumber field. 

2. If DbIndex is 0x1, BuiltinNT4ReplicationUSN is incremented by one and the resulting 
value is used for the SerialNumber field. 

3. The SID field is not specified. 

Trigger Condition Tables: Database triggers for pdcChangeLog update. 

▪ Trigger Condition: An update occurs to one or more of the attributes specified in Table A on a 
domain object or built-in domain object. 

pdcChangeLog entry 

Field Value 

RelativeId 0x0 

Flags CHANGELOG_SID 

DeltaType AddOrChangeDomain 

▪ Trigger Condition: A group object creation or update to one or more of the attributes specified in 
Table B occurs when the groupType attribute is GROUP_TYPE_ACCOUNT_GROUP. 

pdcChangeLog entry 

Field Value 



 

350 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

pdcChangeLog entry 

RelativeId RelativeId of the objectSid attribute value 

Flags CHANGELOG_SID 

DeltaType AddOrChangeGroup 

Name sAMAccountName attribute value 

▪ Trigger Condition: A group object creation or update to one or more of the attributes specified in 
Table B occurs when the groupType attribute is GROUP_TYPE_RESOURCE_GROUP. 

pdcChangeLog entry 

Field Value 

RelativeId RelativeId of the objectSid attribute value 

Flags CHANGELOG_SID 

DeltaType AddOrChangeAlias 

Name sAMAccountName attribute value 

▪ Trigger Condition: A user object creation or update to one of more of the attribute specified in 
Table C occurs. 

pdcChangeLog entry 

Field Value 

RelativeId RelativeId of the objectSid attribute value 

Flags CHANGELOG_SID 

DeltaType AddOrChangeUser 

Name sAMAccountName attribute value 

▪ Trigger Condition: A group object deletion whose groupType attribute value is 
GROUP_TYPE_ACCOUNT_GROUP occurs. 

pdcChangeLog entry 

Field Value 

RelativeId RelativeId of the objectSid attribute value 

Flags 0x8 

DbType DeleteGroup 

Name sAMAccountName attribute value 

▪ Trigger Condition: A group object deletion whose groupType attribute value is 
GROUP_TYPE_RESOURCE_GROUP occurs. 



 

351 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

pdcChangeLog entry 

Field Value 

RelativeId RelativeId of the objectSid attribute value 

Flags CHANGELOG_SID 

DeltaType DeleteAlias 

Name sAMAccountName attribute value 

▪ Trigger Condition: A user object deletion occurs. 

pdcChangeLog entry 

Field Value 

RelativeId RelativeId of the objectSid attribute value 

Flags CHANGELOG_SID 

DeltaType DeleteUser 

Name sAMAccountName attribute value 

Table A: Domain Attributes for NT4 Replication 

Attributes  

nTSecurityDescriptor 

oEMInformation 

minPwdLength 

pwdHistoryLength 

pwdProperties 

maxPwdAge 

minPwdAge 

lockoutDuration 

lockOutObservationWindow 

lockoutThreshold 

Table B: Group Attributes for NT4 Replication 

Attributes  

nTSecurityDescriptor 

sAMAccountName 

description 

member 



 

352 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Table C: User Attributes for NT4 Replication 

Attributes  

sAMAccountName 

displayName 

primaryGroupID 

description 

comment 

homeDirectory 

homeDrive 

scriptPath 

profilePath 

userWorkstations 

logonHours 

accountExpires 

userAccountControl 

userParameters 

countryCode 

codePage 

pwdLastSet 

unicodePwd 

dBCSPwd 

nTSecurityDescriptor 

groupType 

 

3.1.1.7.2.3 (Updated Section) Acquiring the PDC Role 

When the PDC role is acquired through a FSMO role transfer, one of the following two predicates is 
trueTRUE following the transfer: 

1. The new PDC's pdcChangeLog is in the reset state described in section 3.1.1.7.2.4 

2. All of the following are trueTRUE: 

1. The new PDC's pdcChangeLog has the same ordering of entries for all entries that existed in 
the pdcChangeLog on the old PDC during the PDC role transfer. 

2. All updates to the state of objects in the domain NC replica of the old PDC are reflected in the 

state of objects in the domain NC replica of the new PDC when the transfer is complete. 



 

353 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3. All updates to the state of objects in domain NC replica on the new PDC that are not present 
on the old PDC have a corresponding entry in the pdcChangeLog on the new PDC, as described 

in section 3.1.1.7.2.2. 

4. The SamNT4ReplicationUSN and BuiltNT4ReplicationUSN variables were increased by adding 

0x1000000000 during the transfer. 

When predicate (2) above is satisfied after a transfer, the transfer does not cause NT4 BDCs to 
perform a full synchronization (described in [MS-NRPC] section 3.6). The implementation satisfies 
predicate (2) above when possible. 

Once the PDC role is acquired, the following two entries are added to the pdcChangeLog. This notifies 
NT4 BDCs that the PDC has changed. SamNT4ReplicationUSN and BuiltinNT4ReplicationUSN are 
updated prior to use in creating these entries. 

pdcChangeLog entry  Field  Value  

Entry 1 RelativeId 

Flags 

DbDelta 

DbIndex 

SerialNumber 

0x0 

CHANGELOG_SID 

AddOrChangeDomain 

0x0 

SamNT4ReplicationUSN 

Entry 2 RelativeId 

Flags 

DbDelta 

DbIndex 

SerialNumber 

0x0 

CHANGELOG_SID 

AddOrChangeDomain 

0x1 

BuiltinNT4ReplicationUSN 

 

3.1.1.7.2.4 Resetting the pdcChangeLog 

To reset the pdcChangeLog, set the array to have 0 elements, set SamCreationTime and 

BuiltinCreationTime to the current time and SamNT4ReplicationUSN and BuiltinNT4ReplicationUSN to 
one. 

Resetting the pdcChangeLog has the effect of causing NT4 BDCs to perform a full sync.  

3.1.1.7.3 Format of the Referent of pmsgOut.V1.pLog 

The DRS_MSG_NT4_CHGLOG_REPLY_V1 ([MS-DRSR] section 4.1.11.1.4) response message to an 

IDL_DRSGetNT4ChangeLog request ([MS-DRSR] section 4.1.11) contains a BYTE *pLog field. The 
format of the referent of this field is not specified in [MS-DRSR] section 4.1.11; it is specified here. 

The referent of this field is a CHANGE_LOG_ENTRIES structure: 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Size 

Version 

SequenceNumber 



 

354 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Flags 

ChangeLogEntries (variable) 

... 

Size (4 bytes): The size, in bytes, of the part of the buffer preceding the ChangeLogEntries field. 
Equals 0x00000010. 

Version (4 bytes): The version of the message. Equals 0x00000001. 

SequenceNumber (4 bytes): The sequence number for the buffer. Is set to 0x00000001 in a 
response to an IDL_DRSGetNT4ChangeLog request with pmsgIn.V1.pRestart = NULL. The value of 
pmsgOut.V1.pRestart in any IDL_DRSGetNT4ChangeLog response encapsulates SequenceNumber. 
In a response to an IDL_DRSGetNT4ChangeLog request with pmsgIn.V1.pRestart ≠ NULL, 
SequenceNumber is the value encapsulated in pmsgIn.V1.pRestart, plus one. 

Flags (4 bytes): Equals 0x00000000. Ignored upon receipt. 

ChangeLogEntries (variable): A sequence of CHANGELOG_ENTRY structures. Each 
CHANGELOG_ENTRY is followed by padding bytes with value zero such that the number of bytes in 
the CHANGELOG_ENTRY plus the padding is congruent to zero mod 8. 

The server stores the total number of bytes in the fixed-length and variable-length portions of the 
CHANGE_LOG_ENTRIES structure in the DWORD cbLog field of the 
DRS_MSG_NT4_CHGLOG_REPLY_V1 response message. This field allows the client to determine the 
number of CHANGELOG_ENTRY structures contained in the CHANGE_LOG_ENTRIES structure. 

3.1.1.8 AD LDS Special Objects 

AD LDS NCs can contain the following special types of objects: AD LDS users and AD LDS bind 

proxies. Special processing applies to these types of objects. 

3.1.1.8.1 AD LDS Users 

An AD LDS user object is a security principal object in AD LDS that contains a password. 

If at least one of the following statements applies to an object class within an AD LDS schema, then 
each instance of that object class functions as an AD LDS user: 

1. The object class contains msDS-BindableObject as a static auxiliary class. 

2. The object class contains a static auxiliary class that is a subclass of msDS-BindableObject. 

3. The object class is a subclass of another object class that satisfies statement 1 or 2. 

An AD LDS user object has these special properties and behavior: 

▪ Its objectSid is assigned during Add as specified in section 3.1.1.5.2.4. 

▪ It can be a member of group objects in its AD LDS forest, subject to the limitations on inter-NC 
references specified in section 3.1.1.2.2.3, Referential Integrity. 

▪ It can be named in an LDAP bind; section 5.1.1.5 specifies the supported authentication 
mechanisms and protocols. If the bind succeeds, it creates a security context for the LDAP 

connection as specified in section 5.1.3.4. 



 

355 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Its password can both be assigned an initial value and updated. Special processing is performed 
on both the initial assignment and on update. Sections 3.1.1.5.2.2, 3.1.1.5.2.4, 3.1.1.5.3.1, 

3.1.1.5.3.2, and 3.1.1.5.3.3 specify this processing. 

▪ Its objectSid can be written into an AD LDS security descriptor, subject to restrictions specified in 

section 6.1.3.3. 

3.1.1.8.2 Bind Proxies 

An AD LDS bind proxy is an object that represents a security principal of the underlying operating 
system; it is not a security principal itself. A bind proxy object does not contain a password. 

If at least one of the following statements applies to an object class within an AD LDS schema, then 
each instance of that object class functions as an AD LDS bind proxy:  

1. The object class contains msDS-BindProxy as a static auxiliary class. 

2. The object class contains a static auxiliary class that is a subclass of msDS-BindProxy. 

3. The object class is a subclass of another object class that satisfies statement 1 or 2. 

An AD LDS bind proxy object has these special properties and behavior: 

▪ Its objectSid is assigned during Add and is the SID of some Windows user in a security realm 
trusted by the machine running the AD LDS DC that performed the Add. For instance, if an AD 

LDS DC is running on a machine that is joined to an Active Directory domain D, then the objectSid 
of a bind proxy created by that DC can be a user within D or within the forest that contains D, or 
within any domain or forest trusted by D or the forest that contains D. 

▪ It can be a member of group objects in its AD LDS forest, subject to the limitations on inter-NC 
references specified in section 3.1.1.2.2.3, Referential Integrity. 

▪ It can be named in an LDAP bind; section 5.1.1.5 specifies the supported authentication 
mechanisms and protocols. If the bind succeeds, it creates a security context for the LDAP 

connection as specified in section 5.1.3.4. 

▪ It does not contain a password. Special processing is performed on update to its password 
attribute, as specified in section 3.1.1.5.3.3, except on ADAM RTW DCs. 

3.1.1.9 Optional Features 

On Windows Server 2008 R2 and later, Active Directory supports a set of optional features. An 
optional feature is a set of modifications to the Active Directory state model and the Directory 
Replication Service (DRS) Remote Protocol [MS-DRSR]. 

Optional features are enabled in some scope. A scope defines the set of DCs participating in the state-
model changes that make up the optional feature. Optional features can be forest-wide, domain-wide, 
or server-wide in scope. A forest-wide optional feature affects the state model of all DCs in the forest 

when the optional feature is enabled. A domain-wide optional feature affects the state model of all 

DCs in the domain in which the optional feature is enabled. A server-wide optional feature affects the 
state model of the DCs in which the optional feature is enabled. AD LDS supports forest-wide and 
server-wide optional features. In AD LDS, a forest-wide optional feature affects the state model of all 
AD LDS instances in a configuration set. Domain-wide optional features are not supported in AD LDS. 

Scopes are represented by objects in the directory information tree (DIT). The object that represents 
the forest-wide scope is the Cross-Ref-Container container (see section 6.1.1.2.1). The object that 

represents a domain-wide scope is the NC root object of the domain. The object that represents a 
server-wide scope is the nTDSDSA object. 



 

356 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Optional features are represented by instances of the object class msDS-OptionalFeature. Objects 
representing optional features are stored in the Optional Features container in the Config NC (see 

section 6.1.1.2.4.1.3). 

Optional features are disabled in a scope via the disableOptionalFeature rootDSE modify operation 

(see section 3.1.1.3.3.27). 

Optional features are enabled in a scope via the enableOptionalFeature rootDSE modify operation (see 
section 3.1.1.3.3.28). 

The list of optional features enabled for a scope is stored in the msDS-EnabledFeature attribute on the 
object representing the scope. The value stored is a reference to the specific enabled optional feature. 

The list of scopes in which an optional feature is enabled is stored in the msDS-EnabledFeatureBL 
attribute on the object representing the optional feature. The values stored are references to the 

objects representing the scopes where the feature is enabled. 

If an optional feature is enabled in some scope, then, depending on the feature, it might be 

automatically enabled in another scope; for example, the Recycle Bin optional feature (section 
3.1.1.9.1). 

Optional features are uniquely identified by a GUID. The GUID is stored in the msDS-
OptionalFeatureGUID attribute of the object representing the optional feature. 

The following procedure determines whether an optional feature is enabled in a scope by using the 
msDS-EnabledFeature attribute: 

 procedure IsOptionalFeatureEnabled ( 
     scope: DSNAME, featureGuid: GUID): boolean 
  
   Returns true if scope!msDS-EnabledFeature contains the DN of a 
     msDS-optionalFeature object o such that o!msDS-optionalFeatureGUID 
     equals featureGuid. 
  
   Returns false otherwise. 

Permissible scopes for optional features are specified in the msDS-OptionalFeatureFlags attribute on 
the object representing the optional feature. If an optional feature is permissible for a forest-wide 
scope, the attribute contains the bit flag FOREST_OPTIONAL_FEATURE (see section 2.2.17). If an 
optional feature is permissible for a domain-wide scope, the attribute contains the bit flag 

DOMAIN_OPTIONAL_FEATURE (see section 2.2.17). If an optional feature is permissible for a server-
wide scope, the attribute contains the bit flag SERVER_OPTIONAL_FEATURE (see section 2.2.17). 
More than one flag can be specified, meaning that the optional feature can be enabled in more than 
one scope. If none of these flags is specified, an optional feature does not have a scope and, 
therefore, will not be enabled anywhere. 

Whether an optional feature can be disabled is specified in the msDS-OptionalFeatureFlags attribute 

on the object representing the optional feature. If the feature can be disabled, the attribute contains 
the bit flag DISABLABLE_OPTIONAL_FEATURE. Absence of this flag means that the feature cannot be 

disabled once it has been enabled. 

Optional features might require Active Directory to be at specific functional levels in order to be 
enabled. 

If an optional feature requires a specific forest functional level before it can be enabled, the forest 
functional level required is stored in the msDS-RequiredForestBehaviorVersion attribute of the object 

representing the optional feature. 



 

357 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

If an optional feature requires a specific domain functional level before it can be enabled in a domain-
wide scope, the domain functional level required is stored in the msDS-

RequiredDomainBehaviorVersion attribute of the object representing the optional feature. 

The following table shows the optional features that are available in applicable Windows Server 

releases. 

The table contains information for the following products. See section 3 for more information. 

▪ M --> Windows Server 2008 R2 

▪ R --> Windows Server 2012 

▪ U --> Windows Server 2012 R2 

▪ X --> Windows Server 2016 

▪ A2 --> Windows Server v1709 

▪ D2 --> Windows Server v1803 

▪ G2 --> Windows Server v1809 

▪ J2 --> Windows Server 2019 

Optional feature name M, R, U X, A2, D2, G2, J2 

Recycle Bin X X 

Privileged Access Management  X 

 

3.1.1.9.1 Recycle Bin Optional Feature 

The Recycle Bin optional feature is represented by the Recycle Bin Feature Object (see section 
6.1.1.2.4.1.3.1). 

The Recycle Bin optional feature modifies the DRS Remote Protocol and modifies the way Active 
Directory processes object deletion, object undeletion, and referential integrity. When the Recycle Bin 
optional feature is enabled, deleted-objects maintain virtually all of their state, and therefore can be 

undeleted without loss of information. When the Recycle Bin optional feature is enabled, link valued 
attributes are maintained both to and from deleted-objects. This is not possible in the unmodified 
state model. When the Recycle Bin optional feature is enabled, all tombstones are transformed to be 
recycled-objects, and all the requirements for recycled-objects in section 3.1.1.5.5.1.3 are 
maintained. 

The state model modifications that implement the Recycle Bin optional feature are specified 
throughout this document, with specific details in sections 3.1.1.1.6, 3.1.1.4.5.37, 3.1.1.4.5.38, 

3.1.1.5.3 (especially 3.1.1.5.3.7), 3.1.1.5.5, 3.1.1.6.2, and 6.1.5.5. 

The Recycle Bin optional feature is identified by the feature GUID {766ddcd8-acd0-445e-f3b9-
a7f9b6744f2a}. 

The Recycle Bin optional feature requires a Forest Functional Level of DS_BEHAVIOR_WIN2008R2 or 
greater. 

The Recycle Bin optional feature is forest-wide in scope; it cannot be enabled in only a domain-wide 
scope or server-wide scope. When the rootDSE modify operation enableOptionalFeature (section 

3.1.1.3.3.28) is executed on a given DC to enable the Recycle Bin optional feature, in addition to 



 

358 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

being added to the list of forest-wide enabled features, the optional feature is also added to the list of 
server-wide enabled features (see section 3.1.1.9). 

The Recycle Bin optional feature cannot be disabled once it is enabled. 

Any DC with a behavior version of DS_BEHAVIOR_WIN2008R2 or greater MUST be capable of 

supporting the Recycle Bin optional feature. 

3.1.1.9.2 Privileged Access Management Optional Feature 

The Privileged Access Management optional feature is represented by the Privileged Access 
Management Feature Object (see section 6.1.1.2.4.1.3.2). 

The Privileged Access Management optional feature modifies the way in which link values are 
maintained in the state model of a DC replica. It allows a link value to have an expiry time associated 

with it. This expiry time is replicated to all DC replicas. When the expiry time has passed, the link 
value is no longer returned to LDAP clients. After an additional time period at least as large as a 
tombstone lifetime, the link value is removed from the state model of the DC. 

The Privileged Access Management optional feature is identified by the feature GUID {ec43e873-cce8-
4640-b4ab-07ffe4ab5bcd}. 

The Privileged Access Management optional feature requires a Forest Functional Level of 

DS_BEHAVIOR_WIN2016 or greater. 

The Privileged Access Management optional feature is forest-wide in scope; it cannot be enabled in 
only a domain-wide scope or server-wide scope. When the rootDSE modify operation 
enableOptionalFeature (section 3.1.1.3.3.28) is executed on a given DC to enable the Privileged 
Access Management optional feature, in addition to being added to the list of forest-wide enabled 
features, the optional feature is also added to the list of server-wide enabled features (see section 
3.1.1.9). 

The Privileged Access Management optional feature cannot be disabled once it is enabled. 

Any DC with a behavior version of DS_BEHAVIOR_WIN2016 or greater MUST be capable of supporting 
the Privileged Access Management optional feature. 

Note  The Privileged Access Management optional feature also enables shadow-principal expansion, 
which is defined in the ExpandShadowPrincipal procedure (section 3.1.1.13.5). 

3.1.1.10 Revisions 

Sections 3.1.1.10.1, 3.1.1.10.2, and 3.1.1.10.3 apply only to AD DS, not to AD LDS. 

3.1.1.10.1 (Updated Section) Forest Revision 

The forest revision represents the default state of the set of objects that are stored in the directory 

and required for the forest functionality. 

The contents of a forest revision are established when the forest is created. Updates to the forest 
revision, if necessary (see below), are performed by an implementation-specific upgrade process. 

The version of the forest revision consists of two integer parts that are separated by a period: 
major.minor. Assuming that a forest revision X has the version a.b, and forest revision Y has the 
version c.d, X has a higher or equal version compared to Y if a>c, or if a=c and b>=d. 

See section 6.1.1.2.8 for the way in which the version of the forest revision is stored. 



 

359 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Introducing DCs into a forest is possible only if the version of the forest revision is higher than or 
equal to the minimum version of forest revision that is required for that DC functional level, as shown 

in the following table. 

DC functional level Minimum required forest revision 

DS_BEHAVIOR_WIN2000 0.0 

DS_BEHAVIOR_WIN2003 0.9 

DS_BEHAVIOR_WIN2008 2.10 

DS_BEHAVIOR_WIN2008R2 5.10 

DS_BEHAVIOR_WIN2012 11.10 

DS_BEHAVIOR_WIN2012R2 15.10 

DS_BEHAVIOR_WIN2016 15.10 

If the version of the forest revision is lower than the minimum version of forest revision for that DC, 

the forest revision mustMUST be upgraded to a newer version by an implementation-specific forest 
revision upgrade process before the DC can be added. The upgrade process updates the contents and 
the version of the forest revision. 

Note  The preceding table specifies the minimum required forest revisions for the case of a freshly-
installed DC. In the case of a DC that has been upgraded from an older version of Windows, some of 
the minimum required forest revisions are different, depending on the DC functional level. These 

differences are shown in the following table. 

DC functional level Minimum required forest revision 

DS_BEHAVIOR_WIN2008 2.9 

DS_BEHAVIOR_WIN2008R2 5.9 

DS_BEHAVIOR_WIN2012 11.9 

DS_BEHAVIOR_WIN2012R2 15.9 

 

3.1.1.10.2 (Updated Section) RODC Revision 

The RODC revision represents the default state of the set of objects that are stored in the directory 
and required for RODC functionality. 

The contents of the RODC revision are established when the forest is created. Updates to the RODC 
revision, if necessary (see below), are performed by an implementation-specific upgrade process. 

The version of the RODC revision is an integer. See section 6.1.1.2.8 for the way in which the version 
of the RODC revision is stored. 

Introducing an RODC into a forest is possible only if the version of the RODC revision is higher than or 
equal to the minimum version of RODC revision that is required for the DC functional level of the 
RODC, as shown in the following table. 

DC functional level of the RODC Minimum required RODC revision 

DS_BEHAVIOR_WIN2008 2 



 

360 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

DC functional level of the RODC Minimum required RODC revision 

DS_BEHAVIOR_WIN2008R2 2 

DS_BEHAVIOR_WIN2012 2 

DS_BEHAVIOR_WIN2012R2 2 

DS_BEHAVIOR_WIN2016 2 

If the version of the RODC revision is lower than the minimum version of RODC revision for that 
RODC, the RODC revision mustMUST be upgraded to a newer version by an RODC revision upgrade 
process before the RODC can be added. The upgrade process updates the contents and version of the 
RODC revision. 

3.1.1.10.3 (Updated Section) Domain Revision 

The domain revision represents the default state of the set of objects that are stored in the domain 

and required for its functionality. 

The contents of a domain revision are established when the domain is created. Updates to the domain 
revision, if necessary (see below), are performed by an implementation-specific upgrade process. 

The version of the domain revision consists of two integer parts that are separated by a period: 

major.minor. Assuming that a domain revision X has the version a.b, and a domain revision Y has the 
version c.d, X is said to have a higher or equal version compared to Y if a>c, or if a=c and b>=d. 

See section 6.1.1.5.4 for the way in which the version of the domain revision is stored. 

Introducing DCs into a domain is possible only if the version of the domain revision is higher than or 
equal to the minimum version of domain revision that is required for that DC functional level, as 
shown in the following table. 

DC functional level Minimum required domain revision 

DS_BEHAVIOR_WIN2000 0.0 

DS_BEHAVIOR_WIN2003 0.8 

DS_BEHAVIOR_WIN2008 3.9 

DS_BEHAVIOR_WIN2008R2 5.9 

DS_BEHAVIOR_WIN2012 9.9 

DS_BEHAVIOR_WIN2012R2 10.9 

DS_BEHAVIOR_WIN2016 15.9 

If the version of the domain revision is lower than the minimum version of domain revision for that 

DC, the domain revision mustMUST be upgraded to a newer version by a domain revision upgrade 
process before the DC can be added. The upgrade process updates the contents and the version of the 
domain revision. 

Note  The preceding table specifies the minimum required domain revisions for the case of a freshly-
installed DC. In the case of a DC that has been upgraded from an older version of Windows, some of 
the minimum required domain revisions are different, depending on the DC functional level. These 

differences are shown in the following table. 



 

361 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

DC functional level Minimum required domain revision 

DS_BEHAVIOR_WIN2008 3.8 

DS_BEHAVIOR_WIN2008R2 5.8 

DS_BEHAVIOR_WIN2012 9.8 

DS_BEHAVIOR_WIN2012R2 10.8 

 

3.1.1.11 Claims 

3.1.1.11.1 Informative Overview 

This section contains an informative overview of claims issuance and claims transformation in Active 

Directory. Refer to Claims Procedures (section 3.1.1.11.2) for the normative specification of claims 
issuance and claims transformation. 

Note  Claims issuance and claims transformation in Active Directory were introduced in Windows 

Server 2012. Constructed claims were introduced in Windows Server 2012 R2. 

3.1.1.11.1.1 Claim 

A claim is an assertion about a user's identity and is represented as the following n-tuple. 

 {Type, ValueType, m Values of type ValueType} 

3.1.1.11.1.2 Claims Dictionary 

The Claims Dictionary is a list of objects of type msDS-ClaimType placed in the "CN=Claim Types, 
CN=Claims Configuration, CN=Services" container in the config NC of Active Directory. The Claims 
Dictionary is configured by administrators in order to enable claims issuance. 

3.1.1.11.1.3 Claim Source 

Claims have two sources of values: 

▪ AD: Active Directory is the default claim source. 

▪ Certificate: Certificate sourced claims originate from the strings provided to the 
GetClaimsForPrincipal procedure (section 3.1.1.11.2.1) and are single-valued Boolean claims. 

Constructed claims are generated dynamically according to a claim-specific algorithm, but are still 
considered to have AD as their source. 

3.1.1.11.1.4 (Updated Section) Claims Issuance 

Active Directory generates claims for a principal using a configuration called the Claims Dictionary. The 
following is a high-level overview of claims issuance in Active Directory: 

1. The claim Type of the claim is the value of the name attribute of the msDS-ClaimType object. 

2. The claim Value or Values are retrieved from the source specified in the msDS-ClaimSourceType 
attribute of the msDS-ClaimType object (or computed dynamically in the case of constructed 

claims). At least one value mustMUST be present for this claim to be issued. 



 

362 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3. The claim ValueType is generated based on the claim Values. 

Refer to the GetClaimsForPrincipal claims procedure (section 3.1.1.11.2.1) for a normative description 
of claims issuance. 

3.1.1.11.1.5 Claims Transformation Rules 

Claims transformation rules are stored in the msDS-TransformationRules attribute in the msDS-
ClaimsTransformationPolicyType object. Refer to the GetTransformationRulesText claims procedure 
(section 3.1.1.11.2.13) for the processing details that describe how to obtain the transformation rules 
from the msDS-TransformationRules attribute. 

For an msDS-ClaimsTransformationPolicyType object to be valid, it MUST be stored in the "CN=Claims 
Transformation Policies, CN=Claims Configuration, CN=Services" container in the config NC of Active 

Directory. 

An msDS-ClaimsTransformationPolicyType object MUST be associated with a TDO for a given claims-
traversal direction in order to apply the claims transformation rules in the msDS-

ClaimsTransformationPolicyType object to sets of claims that traverse the TDO in the specified 
direction. 

Claims transformation rules are configured by administrators. 

3.1.1.11.1.6 Claims Transformation 

Claims need to be examined, filtered, possibly modified, and reissued when traversing trusts. This 
process is known as claims transformation. Claims transformation is invoked only on certain types of 
trusts. Refer to [MS-PAC] section 4.1.2.2 for details about when claims transformation is invoked. 

Claims transformation uses the trust name and the direction of the traversal of the trust to look up the 
corresponding msDS-ClaimsTransformationPolicyType object and obtain claims transformation rules 

from it. 

The claims to be transformed and the transformation rules are passed to the Claims Transformation 

Algorithm [MS-CTA]. 

The output of the Claims Transformation Algorithm is further processed using the Claims Dictionary to 
produce claims that are relevant to the new forest in which they are used. 

Refer to the TransformClaimsOnTrustTraversal claims procedure (section 3.1.1.11.2.11) for a 
normative description of claims transformation. 

3.1.1.11.2 Claims Procedures 

This section defines the logical processing for claim-related operations. The procedure definitions use 
the pseudocode language defined in [MS-DRSR] section 3.4. This section uses the data structures and 
types defined in section 2.2.18. 

3.1.1.11.2.1 GetClaimsForPrincipal 

 procedure GetClaimsForPrincipal( 
     pADPrincipal : ADDRESS OF DSNAME, 
     pCertificateStringsArray : set of unicodestring, 
     pClaimsBlob : ADDRESS OF CLAIMS_BLOB) 

This procedure defines the process of generating claims for a principal in Active Directory and 
returning these claims as a BLOB in the wire format. 

pADPrincipal: The Active Directory principal whose claims need to be generated. 



 

363 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

pCertificateStringsArray: A set of Unicode strings. 

pClaimsBlob: The output CLAIMS_BLOB structure that is filled with encoded claims. 

Return Values: This procedure does not return a value. 

Logical Processing: 

 principalClass: ObjectClass; 
 adSourcedClaims: CLAIMS_ARRAY; 
 certificateSourcedClaims: CLAIMS_ARRAY; 
 constructedClaims: CLAIMS_ARRAY 
 adSourcedAndConstructedClaims: CLAIMS_ARRAY 
 claimsSet : CLAIMS_SET; 
  
 principalClass := pADPrincipal^!ObjectClass.ClassId; 
 adSourcedClaims := null; 
 certificateSourcedClaims := null; 
 constructedClaims := null; 
 claimsSet := null; 
  
 GetADSourcedClaims (pADPrincipal, principalClass, 
                     ADDRESS OF adSourcedClaims); 
 GetCertificateSourcedClaims( 
     principalClass, 
     pCertificateStringsArray, 
     ADDRESS OF certificateSourcedClaims); 
 GetConstructedClaims (pADPrincipal, ADDRESS OF constructedClaims); 
  
 /* 
   Merge AD-sourced claims and constructed claims into one CLAIMS_ARRAY 
 */ 
 adSourcedAndConstructedClaims.usClaimsSourceType := CLAIMS_SOURCE_TYPE_AD; 
 if (adSourcedClaims.ulClaimsCount > 0) 
     adSourcedAndConstructedClaims.ClaimsEntry :=  
         adSourcedClaims.ClaimsEntry 
     adSourcedAndConstructedClaims.ulClaimsCount :=  
         adSourcedClaims.ulClaimsCount; 
 endif 
  
 if (constructedClaims.ulClaimsCount > 0) 
     adSourcedAndConstructedClaims.ClaimsEntry[adSourcedAndConstructedClaims.ulClaimsCount] 
         := constructedClaims.ClaimsEntry; 
     adSourcedAndConstructedClaims.ulClaimsCount :=  
         adSourcedAndConstructedClaims.ulClaimsCount + constructedClaims.ulClaimsCount; 
 endif 
  
 if (adSourcedAndConstructedClaims.ulClaimsCount > 0) 
     claimsSet.ulClaimsArrayCount := claimsSet.ulClaimsArrayCount + 1; 
     claimsSet.ClaimsArrays.add (adSourcedAndConstructedClaims); 
 endif 
  
 if (certificateSourcedClaims.ulClaimsCount > 0) 
     claimsSet.ulClaimsArrayCount := claimsSet.ulClaimsArrayCount + 1; 
     claimsSet.ClaimsArrays.add (certificateSourcedClaims); 
 endif 
  
 if (claimsSet.ulClaimsArrayCount = 0) 
     pClaimsBlob^ := NULL; 
     return; 
 endif 
  
 EncodeClaimsSet(ADDRESS OF claimsSet, pClaimsblob); 
  
 return; 

3.1.1.11.2.2 GetADSourcedClaims 



 

364 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 procedure GetADSourcedClaims ( 
     pADPrincipal : ADDRESS OF DSNAME, 
     principalClass : ObjectClass, 
     pAdSourcedClaims : ADDRESS OF CLAIMS_ARRAY) 

This procedure is a helper routine that retrieves Active Directory-sourced claims (section 3.1.1.11.1.3) 
for a given principal from Active Directory using the Claims Dictionary (section 3.1.1.11.1.2). 

pADPrincipal: The principal whose Active Directory claims are to be retrieved. 

principalClass: The object class of the principal. 

pAdSourcedClaims: The address of a CLAIMS_ARRAY structure used for the output Active Directory-
sourced claims. 

Return Values: This procedure does not return a value. 

Logical Processing: 

 bIssueClaim : boolean; 
 claim: CLAIM_ENTRY; 
 claimConfigContainer : DSName; 
 bIssueClaim := FALSE; 
 claim := null; 
 pAdSourcedClaims^ := null; 
 claimConfigContainer := DescendantObject( ConfigNC(), 
     "CN=Claim Types, CN=Claims Configuration, CN=Services"); 
  
 pAdSourcedClaims^.usClaimsSourceType := CLAIMS_SOURCE_TYPE_AD; 
 for (x in children claimConfigContainer) 
     if (x!msDS-ClaimSourceType = "AD" && 
        x!msDS-ClaimTypeAppliesToClass in principalClass && 
        ValidateClaimDefinition(x)) 
          bIssueClaim := TRUE; 
     endif 
  
     if (bIssueClaim && pADPrincipal^!(x!msDS-ClaimAttributeSource) ≠ null) 
          claim.Id := x!name; 
          claim.Type := x!msDS-ClaimValueType; 
          claim.ValueCount := 
            pADPrincipal^!(x!msDS-ClaimAttributeSource).count(); 
  
          if (x!msDs-ClaimAttributeSource.Syntax = 2.5.5.1) 
             claim.Values := 
               pADPrincipal^!(x!msDS-ClaimAttributeSource)[].DN; 
          else 
             claim.Values := pADPrincipal^!(x!msDS-ClaimAttributeSource)[]; 
          endif 
  
          pAdSourcedClaims^.ClaimEntries.Add(claim); 
          pAdSourcedClaims^. ulClaimsCount := 
            pAdSourcedClaims^. ulClaimsCount + 1; 
     endif 
  
     claim := null; 
     bIssueClaim := FALSE; 
 endfor 
 return; 

3.1.1.11.2.3 GetCertificateSourcedClaims 

 procedure GetCertificateSourcedClaims ( 
     principalClass : ObjectClass, 
     pCertificateStringsArray : set of unicodestring, 



 

365 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     pCertificateSourcedClaims : ADDRESS of CLAIMS_ARRAY) 

This procedure is a helper routine that generates certificate-sourced claims (section 3.1.1.11.1.3) 
from given strings for a given principal type. 

principalClass: The object class of the principal for whom the claims are being generated. 

pCertificateStringsArray: A set of Unicode strings. 

pCertificateSourcedClaims: The address of a CLAIMS_ARRAY structure used for the output 
certificate-sourced claims. 

Return Values: This procedure does not return a value. 

Logical Processing: 

 bIssueClaim : boolean; 
 claim : CLAIM_ENTRY; 
 claimConfigContainer : DSName; 
  
 bIssueClaim := FALSE; 
 claim := null; 
 pCertificateSourcedClaims^ := null; 
 claimConfigContainer := DescendantObject( ConfigNC(), 
     "CN=Claim Types, CN=Claims Configuration, CN=Services"); 
  
 pCertificateSourcedClaims^.usClaimsSourceType := 
     CLAIMS_SOURCE_TYPE_CERTIFICATE; 
  
 for (x in children claimConfigContainer) 
     if (x!msDS-ClaimSourceType = "Certificate" && 
        x!msDS-ClaimTypeAppliesToClass in principalClass && 
        ValidateClaimDefinition(x)) 
       bIssueClaim := TRUE; 
     endif 
  
     if (bIssueClaim && x!msDS-ClaimSource in pCertificateStringsArray) 
       claim.Id := x!msDS-ClaimSource; 
       claim.Type := x!msDS-ClaimValueType; 
       claim.ValueCount := 1; 
       claim.Values := TRUE; 
       pCertificateSourcedClaims^.ClaimEntries.Add(claim); 
       pCertificateSourcedClaims^.ulClaimsCount := 
           pCertificateSourcedClaims^.ulClaimsCount + 1; 
     endif 
  
     claim := null; 
     bIssueClaim := FALSE; 
 endfor 
  
 return; 

3.1.1.11.2.4 GetConstructedClaims 

 procedure GetConstructedClaims ( 
     pADPrincipal : ADDRESS OF DSNAME, 
     principalClass : ObjectClass, 
     pConstructedClaims : ADDRESS OF CLAIMS_ARRAY) 

This procedure is a helper routine that computes constructed claims (section 3.1.1.11.1.3) for a given 
principal from Active Directory by using the Claims Dictionary (section 3.1.1.11.1.2). 

pADPrincipal: The principal whose Active Directory claims are to be retrieved. 



 

366 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

principalClass: The object class of the principal. 

pConstructedClaims: The address of a CLAIMS_ARRAY (section 2.2.18.6) structure that is used for 
the output constructed claims. 

Return Values: This procedure does not return a value. 

Logical Processing: 

 bIssueClaim : boolean; 
 claim: CLAIM_ENTRY; 
 claimConfigContainer : DSName; 
  
 bIssueClaim := FALSE; 
 claim := null; 
 pConstructedClaims^ := null; 
  
 claimConfigContainer := DescendantObject( ConfigNC(), 
     "CN=Claim Types, CN=Claims Configuration, CN=Services"); 
  
 /* 
   Constructed claims use the CLAIMS_SOURCE_TYPE_AD source type. 
 */ 
 pConstructedClaims^.usClaimsSourceType := CLAIMS_SOURCE_TYPE_AD; 
 for (each x in children claimConfigContainer) 
     if (x!msDS-ClaimSourceType = "Constructed" && 
        x!msDS-ClaimTypeAppliesToClass in principalClass && 
        ValidateClaimDefinition(x)) 
          bIssueClaim := TRUE; 
     endif 
  
     if (bIssueClaim) 
         /* 
           Currently only the AuthenticationSilo claim is supported 
         */ 
         if (x.Name = "ad://ext/AuthenticationSilo") 
             claim := GetAuthSiloClaim(pADPrincipal) 
             if (claim != null) 
                 pConstructedClaims^.ClaimEntries.Add(claim); 
                 pConstructedClaims^.ulClaimsCount := 
                     pConstructedClaims^.ulClaimsCount + 1; 
              endif            
         endif         
     endif 
 endfor 
  
 return; 

3.1.1.11.2.5 EncodeClaimsSet 

 procedure EncodeClaimsSet ( 
     pClaimsSet : ADDRESS OF CLAIMS_SET, 
     pClaimsBlob : ADDRESS OF CLAIMS_BLOB) 

This procedure is a helper routine that encodes a given claims set into a claims BLOB. 

pClaimsSet: The address of the input CLAIMS_SET structure that is to be encoded. 

pClaimsBlob: The address of the output CLAIMS_BLOB structure that receives the encoded claims 
set. 

Return Values: This procedure does not return a value. 

Logical Processing: 



 

367 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 encodedClaimsSet: BYTE[]; 
 encodedClaimsSetSize: ULONG; 
 claimsSetMetadata: CLAIMS_SET_METADATA; 
 encodedClaimsSet := null; 
 encodedClaimsSetSize := 0; 
 claimsSetMetadata := null; 
 pClaimsBlob^ := null; 
  
 NdrEncode (pClaimsSet, ADDRESS OF encodedClaimsSet, 
            ADDRESS OF encodedClaimsSetSize); 
  
 FillClaimsSetMetadata( 
     ADDRESS OF encodedClaimsSet, 
     ADDRESS OF encodedClaimsSetSize, 
     ADDRESS OF claimsSetMetadata); 
  
 NdrEncode ( 
     claimsSetMetadata, 
     ADDRESS OF pClaimsBlob^.EncodedBlob, 
     ADDRESS OF pClaimsBlob^.ulBlobSizeinBytes); 
  
 return; 

3.1.1.11.2.6 FillClaimsSetMetadata 

 Procedure FillClaimsSetMetadata ( 
     pByteArray : BYTE ARRAY, 
     ulBufferSizeinBytes : ULONG, 
     pClaimsSetMetadata : ADDRESS OF CLAIMS_SET_METADATA) 

This procedure is a helper routine that fills a CLAIMS_SET_METADATA structure using a given byte 
buffer after compressing the buffer based on its size. 

pByteArray: A byte array of size ulBufferSizeinBytes that is used to fill in the 
CLAIMS_SET_METADATA structure. 

ulBufferSizeinBytes: The size of the byte array. 

pClaimsSetMetadata: The address of a CLAIMS_SET_METADATA structure, whose data is generated 
from the pByteArray parameter. 

Return Values: This procedure does not return a value. 

Logical Processing: 

 CompressionFormat : CLAIMS_COMPRESSION_FORMAT; 
 CompressionFormat := COMPRESSION_FORMAT_XPRESS_HUFF; 
 pClaimsSetMetadata^ := null; 
  
 if (ulBufferSizeinBytes = 0) 
     return; 
 endif 
  
 pClaimsSetMetadata^.ulUncompressedClaimsSetSize := ulBufferSizeinBytes; 
  
 if (ulBufferSizeinBytes < 0x100) 
     pClaimsSetMetadata^.ulClaimsSetSize := ulBufferSizeinBytes; 
     pClaimsSetMetadata^.ClaimsSet :=  pByteArray; 
     return; 
 endif 
  
 pClaimsSetMetadata^.usCompressionFormat := CompressionFormat; 
  
 RunCompressionAlgorithm( 



 

368 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     TRUE, 
     CompressionFormat, 
     pByteArray, 
     ulBufferSizeinBytes, 
     ADDRESS OF pClaimsSetMetadata^.ClaimsSet, 
     ADDRESS OF pClaimsSetMetadata^.ulClaimsSetSize) 
  
 return; 

3.1.1.11.2.7 RunCompressionAlgorithm 

 procedure RunCompressionAlgorithm ( 
     compressData : boolean, 
     compressionFormat : CLAIMS_COMPRESSION_FORMAT, 
     pInByteArray : BYTE ARRAY, 
     ulBufferSizeinBytes : ULONG, 
     pOutByteArray : ADDRESS OF BYTE ARRAY, 
     pOutByteArraySizeinBytes : ADDRESS OF ULONG) 

This is a helper method that implements the compression and decompression algorithms listed in 
section 2.2.18.4. This method compresses or decompresses the given input data using the algorithm 
identified by the input compressionFormat parameter. If the compression algorithm encounters an 
error during its operation, the output byte array is cleared. 

compressData: Specifies the compression direction. If set to TRUE, this method compresses the 

input data; otherwise, the method decompresses the input data. 

compressionFormat: Specifies the compression or decompression algorithm. 

pInByteArray: The input byte array of size ulBufferSizeinBytes that is to be compressed or 
decompressed. 

ulBufferSizeinBytes: The size of the input byte array. 

pOutByteArray: The address of the output byte array. 

pOutByteArraySizeinBytes: The address of a ULONG that will contain the size of the output byte 

array. 

Return Values: This procedure does not return a value. 

Logical Processing: 

 pOutByteArray^ := null; 
 pOutByteArraySizeinBytes^ := null; 
  
 if (compressionFormat = COMPRESSION_FORMAT_LZNT1) 
     if compressData 
          pOutByteArray^ := CompressUsing_LZNT1; 
     else 
          pOutByteArray^ := UncompressUsing_LZNT1; 
     endif  
 else if (compressionFormat = COMPRESSION_FORMAT_XPRESS) 
     if compressData 
          pOutByteArray^ := CompressUsing_XPRESS; 
     else 
          pOutByteArray^ := UncompressUsing_XPRESS; 
     endif 
 else if (compressionFormat = COMPRESSION_FORMAT_XPRESS_HUFF) 
     if compressData 
          pOutByteArray^ := CompressUsing_XPRESS_HUFF; 
     else 
          pOutByteArray^ := UncompressUsing_XPRESS_HUFF; 



 

369 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     endif 
 else 
     pOutByteArray^ := ADDRESS OF pInByteArray; 
     pOutByteArraySizeinBytes^ := ulBufferSizeinBytes; 
 endif 
  
 return; 

3.1.1.11.2.8 NdrEncode 

 procedure NdrEncode ( 
     pStructX : ADDRESS of struct X, 
     pSerializedData : BYTE ARRAY, 
     pDataLengthInBytes : ADDRESS OF ULONG) 

This is a per-structure helper function that serializes a structure into an array of bytes using the NDR 
Type Serialization engine, as specified in [MS-RPCE] section 2.2.6. This function returns a null output 

buffer in case of errors. 

pStructX: The address of a structure of some type (represented by "X") that needs to be serialized. 

pSerializedData: A byte array of length pDataLengthInBytes that contains the output serialized data. 

pDataLengthInBytes: The address of a ULONG that will contain the size of the output byte array. 

Return Values: This procedure does not return a value. 

3.1.1.11.2.9 NdrDecode 

 procedure NdrDecode ( 
     pSerializedData : BYTE ARRAY, 
     dataLengthInBytes : ULONG, 
     pStructX : ADDRESS of struct X) 

This is a per-structure helper function that deserializes a byte array into a structure using the NDR 
type deserialization engine, as specified in [MS-RPCE] section 2.2.6. This function returns a null 
structure as output in case of errors. 

pSerializedData: A byte array of length dataLengthInBytes that contains the input serialized data. 

dataLengthInBytes: The length of the pSerializedData byte array. 

pStructX: The address of a structure of some type (represented by "X") that receives the deserialized 
data. 

Return Values: This procedure does not return a value. 

3.1.1.11.2.10 DecodeClaimsSet 

 procedure DecodeClaimsSet ( 
     pClaimsBlob : ADDRESS OF CLAIMS_BLOB, 
     pClaimsSet : ADDRESS OF CLAIMS_SET) 

This method decodes the given CLAIMS_BLOB structure into a CLAIMS_SET structure and performs 
various validations on it. Upon successful validation, the output CLAIMS_SET structure is filled. In the 
case of errors, an empty output CLAIMS_SET structure is returned. 

pClaimsBlob: The address of a CLAIMS_BLOB structure that is to be decoded. 



 

370 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

pClaimsSet: The address of a CLAIMS_SET structure that receives the decoded output. 

Return Values: This procedure does not return a value. 

Logical Processing: 

 claimsSetMetaData : CLAIMS_SET_METADATA; 
 pByteArray : BYTE[]; 
 ulBufferSizeinBytes: ULONG; 
  
 claimsSetMetaData := null; 
 pByteArray := null; 
 ulBufferSizeinBytes := 0; 
 pClaimsSet^ := null; 
  
 if (pClaimsBlob^.ulBlobSizeinBytes = 0) 
     return; 
 endif 
 NdrDecode ( 
     pClaimsBlob^.EncodedBlob, 
     pClaimsBlob^.ulBlobSizeinBytes, 
     ADDRESS OF claimsSetMetadata); 
  
 if (claimsSetMetadata.ulClaimsSetSize = 0) 
    return; 
 endif 
  
 RunCompressionAlgorithm( 
               FALSE, 
               claimsSetMetadata.usCompressionFormat, 
               claimsSetMetadata.ClaimsSet, 
               claimsSetMetadata.ulClaimsSetSize, 
               ADDRESS OF pByteArray, 
               ADDRESS OF ulBufferSizeinBytes); 
  
 if (ulBufferSizeinBytes = 0 || 
     ulBufferSizeinBytes ≠ claimsSetMetadata.ulUncompressedClaimsSetSize) 
     return; 
 endif 
  
 NdrDecode (pByteArray, ulBufferSizeinBytes, pClaimsSet); 
  
 return; 

3.1.1.11.2.11 TransformClaimsOnTrustTraversal 

 procedure TransformClaimsOnTrustTraversal ( 
     pInputClaimsBlob : ADDRESS OF CLAIMS_BLOB, 
     trustName : unicodestring, 
     fIncomingDirection : boolean, 
     pOutputClaimsBlob : ADDRESS OF CLAIMS_BLOB) : ULONG 

This procedure defines the logical processing for transforming a set of claims on trust traversal. This 

procedure uses the Claim data structure defined in [MS-CTA] section 2.1.2 and invokes the Claims 
Transformation Algorithm ([MS-CTA] section 2.1) for intermediate processing. 

pInputClaimsBlob: The address of the CLAIMS_BLOB structure that contains the set of claims that 
are to be transformed. 

trustName: The name of the trust that is being traversed. 

fIncomingDirection: The direction of traversal. This parameter MUST be set to TRUE if the claims 
originated outside the trust boundary and are entering the trust boundary; otherwise, this parameter 
MUST be set to FALSE. 



 

371 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

pOutputClaimsBlob: The address of a CLAIMS_BLOB structure that receives the transformed claims 
output. 

Return Values: This procedure returns zero upon success or a nonzero result upon failure. 

Logical Processing: 

 trustDsName : DSName; 
 claimsTransformRulesXml : string; 
 claimsTransformRulesText : string; 
 status : ULONG; 
 CTAInputClaims : Claim[]; 
 CTAOutputClaims : Claim[]; 
 outputClaimsUnfiltered : CLAIMS_ARRAY; 
 systemContainer : DSName; 
 trustDsName := null; 
 claimsTransformRulesXml := null; 
 claimsTransformRulesText := null; 
 status := 0; 
 CTAInputClaims := null; 
 CTAOutputClaims := null; 
 outputClaimsUnfiltered := null; 
 systemContainer := DescendantObject( DefaultNC(), "CN=System"); 
  
 for (x in children systemContainer ) 
     if (x!name = trustName) 
         trustDsName := x 
         break; 
     endif 
 endfor 
  
 if (trustDsName = null) 
     return ERROR_INVALID_PARAMETER; 
 endif 
  
 status := GetClaimsTransformationRulesXml(trustDsName, fIncomingDirection, 
                                           ADDRESS OF claimsTransformRulesXml) 
 if (status ≠ 0 and 
      status ≠ ERROR_DS_OBJ_NOT_FOUND) 
     pOutputClaimsBlob^ := 0; 
     return 0; 
 endif 
  
 if (status = ERROR_DS_OBJ_NOT_FOUND) 
      if (fIncomingDirection = FALSE) 
            pOutputClaimsBlob^ := pInputClaimsBlob^; 
      else 
            pOutputClaimsBlob^ := 0; 
      endif 
 endif 
  
 if (claimsTransformRulesXml ≠ null) 
         status := GetTransformationRulesText (claimsTransformRulesXml, 
                                         ADDRESS OF claimsTransformRulesText); 
         if (status ≠ 0) 
             pOutputClaimsBlob^ := 0; 
         endif 
 endif 
  
 GetCTAClaims (pInputClaimsBlob^, ADDRESS OF CTAInputClaims); 
  
 // Invoke the Claims Transformation Algorithm 
 // specified generally in [MS-CTA] section 2 and more specifically 
 // in [MS-CTA] section 2.1.3 with the following parameter mappings: 
 //  CTAInputClaims --> InputClaims 
 //  claimsTransformRulesText --> InputTransformationRulesText 
 //  ADDRESS OF CTAOutputClaims --> OutputClaims 
 //  status --> ReturnValue 



 

372 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

  
 if (status ≠ 0) 
       pOutputClaimsBlob^ := 0; 
       return 0; 
 endif 
  
 CollapseMultiValuedClaims (CTAOutputClaims, ADDRESS OF outputClaimsUnfiltered); 
  
 FilterAndPackOutputClaims(outputClaimsUnfiltered, 
                           fIncomingDirection, pOutputClaimsBlob); 
  
 return 0; 

3.1.1.11.2.12 GetClaimsTransformationRulesXml 

 procedure GetClaimsTransformationRulesXml ( 
     trustDSName : DSNAME,  
     fIncomingDirection : boolean, 
     pClaimsTransformRulesXml : unicodestring) : ULONG 

This is a helper procedure that retrieves the transformation rules (section 3.1.1.11.1.5) stored in the 
directory for a given trust and claims-traversal direction. 

trustDSName: The DSName of the trust. 

fIncomingDirection: The direction of traversal. This parameter MUST be set to TRUE if the caller 
requires  transformation rules for claims that are entering the trust boundary; otherwise, this 
parameter MUST be set to FALSE. 

pClaimsTransformRulesXML: The XML-encapsulated rules-text that is read directly from the 
directory. 

Return Values: This procedure returns zero when it successfully returns the claims transformation 

rules. It returns ERROR_DS_OBJ_NOT_FOUND when no claims transformation rules are configured for 

the given input. Other errors are returned for all other conditions including invalid input parameters 
and the condition wherein the claims transformation is incorrectly configured. 

Logical Processing: 

 claimsTransformObject : DSNAME; 
 status : ULONG; 
 allowedClaimsTransformPolicies : DSName; 
  
 pClaimsTransformRulesXml^ := NULL; 
 claimsTransformObject := NULL; 
 status := 0; 
 allowedClaimsTransformPolicies := DescendantObject(ConfigNC(), 
   "CN=Claims Transformation Policies, CN=Claims Configuration, CN=Services"); 
  
 if (trustDSName = null) 
     return ERROR_INVALID_PARAMETER; 
 endif 
 if (fIncomingDirection) 
     claimsTransformObject := 
       trustDSName!msDS-IngressClaimsTransformationPolicy; 
 else 
     claimsTransformObject := 
       trustDSName!msDS-EgressClaimsTransformationPolicy; 
 endif 
  
 if (claimsTransformObject = NULL) 
     return ERROR_DS_OBJ_NOT_FOUND; 
 endif 
  



 

373 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 if (claimsTransformObject not in children allowedClaimsTransformPolicies) 
     return ERROR_INVALID_PARAMETER; 
 endif 
  
 pClaimsTransformRulesXml^ := 
   ClaimsTransformObject!msDS-TransformationRules; 
  
 return 0; 

3.1.1.11.2.13 GetTransformationRulesText 

 procedure GetTransformationRulesText ( 
     claimsTransformRulesXML : unicodestring,  
     claimsTransformRulesText : unicodestring) : ULONG 

This procedure validates the given string for the expected XML encapsulation of claims transformation 
rules stored in the directory and retrieves the plain-text claims transformation rules from the XML. For 

explanatory purposes, this procedure uses an XPath 1.0 [XPATH] query to extract the plain-text rules 
from the XML. 

claimsTransformRulesXML: The XML-encapsulated rules text that was read from the directory. 

claimsTransformRulesText: The rules text that is extracted from the given input. 

Return Values: This procedure returns zero upon success along with the claims transformation rules 
text; otherwise, this procedure returns an error. 

Logical Processing: (includes citation for [XMLSCHEMA1]) 

 1.  Set claimsTransformRulesText to NULL 
 2.  If claimsTransformRulesXML is NULL, return zero. 
 3.  If claimsTransformRulesXML is not well-formed XML (see [XMLSCHEMA1]) 
     return an error. 
 4.  Extract the rules from the first Rules node by executing the following 
     XPath query over claimsTransformRulesXML: 
       /ClaimsTransformationPolicy/Rules[@version="1"][1][text()] 
 5.  If the XPATH query in step 4 cannot be executed, return an error. 
 6.  Set claimsTransformRulesText equal to the results of the XPATH query in 
     step 4 and return success. 

3.1.1.11.2.14 GetCTAClaims 

 procedure GetCTAClaims ( 
     inputClaimsBlob : CLAIMS_BLOB, 
     outputCTAClaims : set of Claim) 

This is a helper procedure that converts a CLAIMS_BLOB into a set of Claim structures, which are 
defined in [MS-CTA] section 2.1.2. 

inputClaimsBlob: The input CLAIMS_BLOB structure. 

outputCTAClaims: The set of output CTA Claim structures. 

Return Values: This procedure does not return a value. 

Logical Processing: 

 inputClaimsSet : CLAIMS_SET; 
 valueType : string; 
 inputClaimsSet := null; 



 

374 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 outputCTAClaims := null; 
  
 DecodeClaimsSet(ADDRESS OF inputClaimsBlob, ADDRESS OF inputClaimsSet); 
  
 for each array in inputClaimsSet.ClaimsArrays 
     for each claim in array.ClaimEntries 
         if (claim.Type = CLAIM_TYPE_INT64) 
             valueType := "int64"; 
         else if (claim.Type = CLAIM_TYPE_UINT64) 
             valueType := "uint64"; 
         else if (claim.Type = CLAIM_TYPE_BOOLEAN) 
             valueType := "boolean"; 
         else if (claim.Type = CLAIM_TYPE_STRING) 
             valueType := "string"; 
         endif 
  
         for each value in claim.Values 
           outputCTAClaims.Add(TYPE = claim.Id, VALUE_TYPE = valueType, 
                               VALUE = value); 
         endfor 
     endfor 
 endfor 

3.1.1.11.2.15 CollapseMultiValuedClaims 

 procedure CollapseMultiValuedClaims ( 
     cTAClaims : set of Claim, 
     pOutputClaims : ADDRESS OF CLAIMS_ARRAY) : ULONG 

This is a helper procedure that converts a given set of Claim structures (defined in [MS-CTA] section 
2.1.2) into a CLAIMS_ARRAY structure. This procedure also aggregates more than one single-valued 
claim of the same type, removes any duplicates from each aggregate, and collapses the remaining 
single-valued claims in that aggregate into one multi-valued claim. 

cTAClaims: The input set of Claim structures. 

pOutputClaims: The address of the output CLAIMS_ARRAY structure. 

Return Values: This procedure returns zero upon success or an error otherwise. 

Logical Processing: 

 tempClaim : CLAIM_ENTRY; 
 valueType : USHORT; 
  
 tempClaim := null; 
 valueType := 0; 
  
 for each claim1 in cTAClaims 
         if (claim1.VALUE_TYPE = "int64") 
             valueType := CLAIM_TYPE_INT64; 
         else if (claim1.VALUE_TYPE = "uint64") 
             valueType := CLAIM_TYPE_UINT64; 
         else if (claim1.VALUE_TYPE = "boolean") 
             valueType := CLAIM_TYPE_BOOLEAN; 
         else if (claim1.VALUE_TYPE = "string") 
             valueType := CLAIM_TYPE_STRING; 
         endif 
  
        tempClaim := (Id = claim1.TYPE, Type = valueType, 
            ValueCount = count of claim1.VALUE, Values = claim1.VALUE); 
        for each claim2 in (cTAClaims – claim1) 
          if (claim1.TYPE = claim2.TYPE and 
              claim1.VALUE_TYPE = claim2.VALUE_TYPE and 
              (claim2.VALUE_TYPE NOT in tempClaim.Values)) 



 

375 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

              tempClaim.Values := tempClaim.Values + Claim2.VALUE; 
           endif 
        endfor 
     pOutputClaims^.claims := pOutputClaims^.claims + tempClaim; 
 endfor 
  
 return 0; 

3.1.1.11.2.16 FilterAndPackOutputClaims 

 procedure FilterAndPackOutputClaims ( 
     inputClaims : CLAIMS_ARRAY, 
     fIncomingDirection : boolean, 
     pOutputClaimsBlob : ADDRESS OF CLAIMS_BLOB) : ULONG 

This is a helper procedure that filters and packs the given CLAIMS_ARRAY structure using the Claims 
Dictionary (3.1.1.11.1.2) in the forest. Filtering is done only for claims in the incoming direction as 

indicated by the fIncomingDirection parameter, and involves the removal of any claims whose types 
are not defined in the dictionary. Packing of claims involves sorting them into CLAIMS_ARRAY 
structures based on the claims source type as listed in the Claims Dictionary, and packing them into a 
CLAIMS_BLOB structure. 

inputClaims: The input CLAIMS_ARRAY structure that is to be filtered. 

fIncomingDirection: The direction of traversal. This parameter MUST be set to TRUE if the claims 
originated outside the trust boundary and are entering the trust boundary; otherwise, this 
parameter MUST be set to FALSE. 

pOutputClaimsBlob: The address of a CLAIMS_BLOB structure for the output. 

Return Values: This procedure returns zero upon success or an error otherwise. 

Logical Processing: 

 status : ULONG; 
 claimConfigContainer : DSName 
 outputClaimsSet : CLAIMS_SET; 
 fMatchFound : boolean; 
 claimType : CLAIMS_SOURCE_TYPE; 
 status := 0; 
 claimConfigContainer := DescendantObject( ConfigNC(), 
     "CN=Claim Types, CN=Claims Configuration, CN=Services"); 
  
 fMatchFound := FALSE; 
 claimType := null; 
 pOutputClaimsBlob^ := null; 
 outputClaimsSet := null; 
  
 if (status ≠ 0) 
     return status; 
 endif 
  
 outputClaimsSet.ClaimsArrays[0].ClaimsSourceType := CLAIMS_SOURCE_TYPE_AD; 
 outputClaimsSet.ClaimsArrays[1].ClaimsSourceType := 
   CLAIMS_SOURCE_TYPE_CERTIFICATE; 
  
 for each claim in inputClaims.ClaimEntries 
      fMatchFound := FALSE; 
  
      for (each claimdef in children claimConfigContainer && 
           NOT fMatchFound && ValidateClaimDefinition(claimdef)) 
           if (claimdef!msDS-ClaimSourceType = "Certificate") 
               claimType := CLAIMS_SOURCE_TYPE_CERTIFICATE; 
           else if (claimdef!msDS-ClaimSourceType = "AD") 



 

376 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

               claimType := CLAIMS_SOURCE_TYPE_AD; 
  
           else if (claimdef!msDS-ClaimSourceType = "TransformPolicy") 
               claimType := CLAIMS_SOURCE_TYPE_AD; 
           endif 
  
           if (claimdef!Enabled AND 
               claim.Id = claimdef!name AND 
                  claim.Type = claimdef!msDS-ClaimValueType) 
  
                // Filter and sort claims in the incoming direction 
                if (fIncomingDirection) 
                      if (claimType = CLAIMS_SOURCE_TYPE_CERTIFICATE) 
                          outputClaimsSet.ClaimsArrays[1].ClaimEntries = 
                              outputClaimsSet.ClaimsArrays[1].ClaimEntries + 
                                  claim; 
                      else if (claimType = CLAIMS_SOURCE_TYPE_AD) 
                          outputClaimsSet.ClaimsArrays[0].ClaimEntries = 
                              outputClaimsSet.ClaimsArrays[0].ClaimEntries + 
                                  claim; 
                      endif 
                endif 
                fMatchFound := TRUE; 
           endif 
      endfor 
  
      // Sort claims on the outgoing direction 
      if (!fIncomingDirection) 
           if (claimType = CLAIMS_SOURCE_TYPE_CERTIFICATE) 
               outputClaimsSet.ClaimsArrays[1].ClaimEntries = 
                   outputClaimsSet.ClaimsArrays[1].ClaimEntries + claim; 
            else 
               outputClaimsSet.ClaimsArrays[0].ClaimEntries = 
                   outputClaimsSet.ClaimsArrays[0].ClaimEntries + claim; 
           endif 
      endif 
 endfor 
  
 EncodeClaimsSet(ADDRESS OF outputClaimsSet, pOutputClaimsBlob); 
  
 return 0; 

3.1.1.11.2.17 ValidateClaimDefinition 

 procedure ValidateClaimDefinition ( 
     claimDefinition : DSNAME) : Boolean 

This is a helper procedure that validates a claim definition defined in the Claims 
Dictionary (section 3.1.1.11.1.2) in the forest. The validation ensures that the correct attribute values 

are populated in the claim definition. 

claimDefinition: The DSNAME of the claim definition in the Claims Dictionary that needs to be 
validated. 

Return Values: This procedure returns TRUE if the claim definition is valid and FALSE otherwise. 

Logical Processing: 

 status : Boolean; 
 status := FALSE; 
  
 if (claimDefinition = null ||  
     claimDefinition!name = null ||       
     NOT claimDefinition!Enabled || 
      claimDefinition!msDS-ClaimValueType = null) 



 

377 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     return status; 
 endif 
  
 if (claimDefinition!msDS-ClaimSourceType = "Certificate" && 
     claimDefinition!msDS-ClaimAttributeSource = null && 
     claimDefinition!msDS-ClaimSource ≠ null && 
     claimDefinition!msDS-ClaimValueType = CLAIM_TYPE_BOOLEAN) 
     status := TRUE; 
  
 else if (claimDefinition!msDS-ClaimSourceType = "AD" && 
          claimDefinition!msDS-ClaimAttributeSource ≠ null && 
          claimDefinition!msDs-ClaimAttributeSource.Syntax in 
              {2.5.5.1, 2.5.5.2, 2.2.5.8, 2.5.5.9, 2.5.5.12, 2.5.5.15, 2.5.5.16} && 
          claimDefinition!msDS-ClaimValueType ≠ null) 
  
          if (claimDefinition!msDs-ClaimAttributeSource.Syntax in 
              {2.5.5.1, 2.5.5.12, 2.5.5.15} && 
              claimDefinition!msDS-ClaimValueType = CLAIM_TYPE_STRING) 
               status := TRUE; 
          endif 
  
          if (claimDefinition!msDs-ClaimAttributeSource.Syntax = 2.5.5.2 && 
              claimDefinition!msDS-ClaimValueType = CLAIM_TYPE_UINT64) 
               status := TRUE; 
          endif 
  
          if (claimDefinition!msDs-ClaimAttributeSource.Syntax in {2.5.5.9, 2.5.5.16} && 
              claimDefinition!msDS-ClaimValueType = CLAIM_TYPE_INT64) 
               status := TRUE; 
          endif 
  
          if (claimDefinition!msDs-ClaimAttributeSource.Syntax = 2.5.5.8 && 
              claimDefinition!msDS-ClaimValueType = CLAIM_TYPE_BOOLEAN) 
               status := TRUE; 
          endif 
  
 else if (claimDefinition!msDS-ClaimSourceType = "TransformPolicy" && 
          claimDefinition!msDS-ClaimAttributeSource = null &&  
          claimDefinition!msDS-ClaimSource = null) 
  
     status := TRUE; 
  
 else if (claimDefinition!msDS-ClaimSourceType = "Constructed" && 
          claimDefinition!msDS-ClaimAttributeSource = null &&  
          claimDefinition!msDS-ClaimSource = null) 
  
     status := TRUE; 
  
 endif 
  
 return status; 

3.1.1.11.2.18 GetAuthSiloClaim 

 procedure GetAuthSiloClaim ( 
     pADPrincipal : ADDRESS OF DSNAME) : CLAIM_ENTRY 

This is a helper procedure that computes the value of the ad://ext/AuthenticationSilo constructed 
claim type for the specified principal. 

pADPrincipal: The Active Directory principal to return an AuthenticationSilo claim for, if applicable. 

Return Values: This procedure returns a CLAIM_ENTRY (section 2.2.18.5) if the specified principal is 
a member of an authentication silo; otherwise NULL. 

Logical Processing: 



 

378 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 claim : CLAIM_ENTRY; 
 parentNC : DSName 
 siloMember : DSName 
 memberOfSilo : Boolean; 
 assignedSilo : DSName 
  
 /* 
   AuthSiloClaim is not issued until the domain  
   functional level is at DS_BEHAVIOR_WIN2012R2 
   or higher. 
 */ 
 parentNC := GetObjectNC(pADPrincipal) 
 if (parentNC!msDS-BehaviorVersion < DS_BEHAVIOR_WIN2012R2) 
   return NULL 
 endif 
  
 /* 
   Check if user is assigned to an enforced silo. 
 */ 
 assignedSilo := pADPrincipal!msDS-AssignedAuthNPolicySilo 
 if (assignedSilo = NULL || 
     assignedSilo!msDS-AuthNPolicySiloEnforced = FALSE) 
   return NULL 
 endif 
  
 /* 
   Check if silo is configured with the user as a member. 
 */ 
 memberOfSilo := FALSE 
 foreach (siloMember in assignedSilo!msDS-AuthNPolicySiloMembers) 
   if (siloMember = pADPrincipal) 
       memberOfSilo := TRUE 
       break 
   endif 
 endfor 
  
 if (memberOfSilo = FALSE) 
     return NULL 
 endif 
  
 /* 
    Fill in the claim details and return the claim. 
 */ 
 claim.Id := "ad://ext/AuthenticationSilo"; 
 claim.Type := CLAIM_TYPE_STRING 
 claim.ValueCount := 1 
 claim.Values := assignedSilo.name 
  
 return claim; 

3.1.1.12 NC Rename 

NC Rename is an operation that runs on a single domain controller (DC) and changes the identity and 
identity-related information of NC replicas hosted on the DC. Except where noted, these changes are 

strictly local to the abstract data of the DC (that is, the changes are not replicated). Because of this 

fact, NC Rename can result in multiple DCs wherein each DC hosts an NC replica of the same NC, but 
each DC has different values for the abstract data relating to that NC. If such diverging changes are 
performed, the protocol places no restriction on the behavior of the DCs that hold the divergent 
abstract data. No mechanism in the protocol prevents such diverging changes. It is recommended to 
users of the NC Rename operation that great care be taken to make such possibly diverging changes 
on every DC that is affected by the operation, thereby avoiding such divergence. 

To accomplish an NC Rename, three general classes of change need to be made. First, attributes 

directly associated with the name of the NC need to be modified. These attributes include such things 
as the NetBIOS name and the fully qualified domain name (FQDN) (1) of the NC. Second, objects and 



 

379 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

attributes associated with the interdomain trusts that a domain NC is a part of need to be modified. 
These objects and attributes include such things as trusted domain objects (TDOs) and interdomain 

trust accounts. Third, the crossRef objects associated with the NCs need to be modified. Additionally, 
some changes are made to reflect the fact that the preceding types of changes have been completed. 

NC Rename can be used to rename both domain NCs and application NCs. In the case of application 
NCs, there are no interdomain trusts to update. 

3.1.1.12.1 Abstract Data Types 

An NC Rename operation is specified by an instance of the NCRenameDescription tuple. This section 
describes that tuple, including the tuple types that are included directly or indirectly in the 
NCRenameDescription tuple. 

3.1.1.12.1.1 FlatName 

 type FlatName = A string composed of any alphanumeric characters except the quote character 
(") and characters ',' and '<'. 

Instances of the FlatName type exist as fields of tuples of types 
InterdomainTrustAccountDescription (section 3.1.1.12.1.4), 
TrustedDomainObjectDescription (section 3.1.1.12.1.5), NCDescription (section 3.1.1.12.1.6), 
DomainDescriptionElements (section 3.1.1.12.1.7), and 

NewTrustParentElements (section 3.1.1.12.1.9). 

3.1.1.12.1.2 SPNValue 

 type SPNValue = A string that does not contain the quote character ("). 

Instances of the SPNValue type exist as members of the SPNs field of the 

ServerDescription (section 3.1.1.12.1.3) tuple. 

3.1.1.12.1.3 ServerDescription 

 type ServerDescription = [ 
     serverGuid: GUID, 
     ExistingDN: DN, 
     SPNs: A set containing 1 or more SPNValue elements 
  ] 

An instance of a ServerDescription is a description of a specific object of class computer in the 
directory. Instances of ServerDescription exist as members of the Servers field of a 
DomainDescriptionElements tuple (section 3.1.1.12.1.7). 

serverGuid: Holds the value of the objectGUID attribute on the object. The value of this field is 
unique across all instances of ServerDescription. 

ExistingDN: Holds the DN of the object. The value of this field is unique across all instances of 

ServerDescription. 

SPNs: A set of SPNValue elements (section 3.1.1.12.1.2) to be used in pre-process verification. 
Successful verification requires that values in the SPNs field also exist as values of the attribute 
SPN on the object. For more information, see section 3.1.1.12.1.4. 

3.1.1.12.1.4 InterdomainTrustAccountDescription 

 type InterdomainTrustAccountDescription = [ 



 

380 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     Guid: GUID, 
     ParentDNFromDomainDN: DN, 
     ExistingFlatName: FlatName 
     NewFlatName: FlatName 
  ] 

An InterdomainTrustAccountDescription is a description of a specific interdomain trust account object 
(see section 6.1.6.8) stored in the directory and the changes to be performed as part of the NC 

Rename operation. Instances of InterdomainTrustAccountDescription exist as members of the 
InterdomainTrustAccounts field of the DomainDescription tuple (section 3.1.1.12.1.8). 

GUID: Holds the value of the objectGUID attribute of the object. The value of this field is unique 
across all instances of InterdomainTrustAccountDescription. 

ParentDNFromDomainDN: Holds the DN that, when prepended to the ExistingDN field of the 
instance of the DomainDescription tuple that contains this instance of an 
InterdomainTrustAccountDescription as an element of the InterdomainTrustAccounts field 

(section 3.1.1.12.1.7), results in the DN of the object that is the parent of the interdomain trust 

account object. 

ExistingFlatName: Holds the value of the sAMAccountName attribute of the object. The value of this 
field is unique across all instances of InterdomainTrustAccountDescription. 

NewFlatName: Holds the value to which the sAMAccountName attribute on the object is to be set as 
part of the NC Rename operation. The value of this field is unique across all instances of 

InterdomainTrustAccountDescription. This value is a valid SAM account name. 

3.1.1.12.1.5 TrustedDomainObjectDescription 

 type TrustedDomainObjectDescription = [ 
     Guid: GUID, 
     SID: SecurityIdentifier, 
     ExistingTrustPartnerDNSName: DNSAddress, 
     NewTrustPartnerDNSName: DNSAddress, 
     NewTrustPartnerFlatName: FlatName 
 ] 

A TrustedDomainObjectDescription is a description of a specific interdomain trust account object that 
is stored in the directory and the changes to be performed as part of the NC Rename operation. 
Instances of TrustedDomainObjectDescription exist as members of the TrustedDomainObjects field 
of a DomainDescriptionElements tuple (section 3.1.1.12.1.7). 

Guid: Holds the value of the objectGUID attribute on the object. The value of this field is unique 
across all instances of TrustedDomainObjectDescription. 

SID: Holds the value of the objectSid attribute of the object. The value of this field is unique across all 

instances of TrustedDomainObjectDescription. 

ExistingTrustPartnerDNSName: Holds the value of the trustPartner attribute on the object. The 

value of this field is unique across all instances of TrustedDomainObjectDescription. 

NewTrustPartnerDNSName: Holds the value that the trustPartner attribute of the object is to be set 
to as part of the NC Rename operation. The value of this field is unique across all instances of 
TrustedDomainObjectDescription. 

NewTrustPartnerFlatName: Holds the value that the flatName attribute of the object is to be set to 
as part of the NC Rename operation. The value of this field is unique across all instances of 
TrustedDomainObjectDescription. This value is a valid value for the flatName attribute. 



 

381 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.12.1.6 NCDescription 

 type NCDescription = [ 
     Guid: GUID, 
     ExistingDN: DN, 
     NewDN: DN, 
     CrossRefGuid: GUID, 
     NewDNSName: DNSAddress, 
     ExistingFlatName: FlatName 
  ] 

An NCDescription is a description of a specific NC replica and the changes to be performed as part of 

the NC Rename operation. Instances of NCDescription exist as members of the AppNCs field of an 
NCRenameDescription tuple (section 3.1.1.12.1.11), indirectly as the RootDomain field of an 
NCRenameDescription tuple, and indirectly as members of the TrustTreeRootDomains and 
TrustTreeNonRootDomains fields of an NCRenameDescription tuple. 

Two objects in the directory are referenced by this tuple: the NCRoot and the NCCrossRef, as 

defined below. 

Guid: Holds the value of the objectGUID attribute of the object that is the root of the NC replica. The 

value of this field is unique across all instances of NCDescription. This object is referred to here as 
the "NCRoot object". 

ExistingDN: Holds the DN of the NCRoot object. The value of this field is unique across all instances 
of NCDescription. 

NewDN: Holds the value that the DN of the NCRoot object is to be set to as part of the NC Rename 
operation. The value of this field is unique across all instances of NCDescription. 

CrossRefGuid: Holds the value of the objectGUID attribute on the object of class crossRef in the 
Partitions container whose nCName attribute holds the value of the ExistingDN field. The value of 
this field is unique across all instances of NCDescription. This object is referred to here as the 
"NCCrossRef object". 

NewDNSName: Holds the value that the dnsRoot attribute of the NCCrossRef object is to be set to 
as part of the NC Rename operation. The value of this field is unique across all instances of 
NCDescription. 

ExistingFlatName: Holds the value that the nETBIOSName attribute of the NCCrossRef object is to 
be set to as part of the NC Rename operation. The value of this field is unique across all instances 
of NCDescription. This field is a valid NetBIOS name. 

3.1.1.12.1.7 DomainDescriptionElements 

 type DomainDescriptionElements = [ 
     ExistingDNSName: DNSAddress, 
     NewFlatName: FlatName, 
     TrustedDomainObjects: a set containing 1 or more 
         TrustedDomainObjectDescription tuples, 
     InterdomainTrustAccounts: A set containing 1 or more 
         InterdomainTrustAccountDescription tuples, 
     CountTrusts: A 32-bit integer that contains the number of elements in 
         TrustedDomainObjects, 
     Servers: a set containing 1 or more ServerDescription tuples 
 ] 

A DomainDescriptionElements tuple is a partial description of a specific domain NC and the changes to 
be performed as part of the NC Rename operation. Tuples of this type are never encountered. This 
type exists as a partial definition of the DomainDescription tuple (section 3.1.1.12.1.8). Since a 



 

382 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

DomainDescriptionElements tuple is always part of a DomainDescription tuple, and since a 
DomainDescription tuple implies an NCDescription tuple, an NCRoot and an NCCrossRef object are 

used in the following description. 

ExistingDNSName: Holds the value of the dnsRoot attribute of the crossRef object. The value of this 

field is unique across all instances of DomainDescription. 

NewFlatName: Holds the value to which the nETBIOSName attribute of the NCCrossRef object is to 
be set. The value of this field is unique across all instances of DomainDescription. 

TrustedDomainObjects: Holds a set of TrustedDomainObjectDescription tuples (section 
3.1.1.12.1.5). The value of this field is unique across all instances of DomainDescription. The 
TrustedDomainObjectDescription tuples are also unique across all instances of 
TrustedDomainObjectDescription. Each element of this field is a TrustedDomainObjectDescription 

tuple describing an object that exists in the domain NC replica described by the DomainDescription 
tuple. This field contains one TrustedDomainObjectDescription for each trusted domain object 
(TDO) that is present in the NC replica. 

InterdomainTrustAccounts: Holds a set of InterdomainTrustAccountDescription tuples (section 
3.1.1.12.1.4). The value of this field is unique across all instances of DomainDescription. The 
InterdomainTrustAccountDescription tuples are also unique across all instances of 

InterdomainTrustAccountDescription. Each element of this field is an 
InterdomainTrustAccountDescription tuple describing an object that exists in the domain NC 
replica described by the DomainDescription tuple. This field contains one 
InterdomainTrustAccountDescription for each interdomain trust account object that is present in 
the NC replica. 

CountTrusts: Contains the number of elements in the set for the TrustedDomainObjects field. 

Servers: Holds a set of ServerDescription tuples (section 3.1.1.12.1.3). The value of this field is 

unique across all instances of DomainDescription. The ServerDescription tuples are also unique 
across all instances of ServerDescription. Each element of this field is a ServerDescription tuple 
describing an object that exists in the domain NC replica described by the DomainDescription 
tuple. This field contains one ServerDescription for each DC that holds a full replica of the domain 

NC. 

3.1.1.12.1.8 DomainDescription 

A DomainDescription is a tuple containing the union of all elements of an NCDescription tuple (section 
3.1.1.12.1.6) and a DomainDescriptionElements tuple (section 3.1.1.12.1.7). It describes a domain 
NC in the forest and the changes to be performed as part of the NC Rename operation. Because a 
DomainDescription is a superset of an NCDescription, wherever a tuple of type NCDescription is 
specified in a production rule (see 3.1.1.12.2.1), a tuple of type DomainDescription can be used. A 
similar statement can be made for a tuple of type DomainDescriptionElements. 

When used as an NCDescription, the elements from DomainDescriptionElements are ignored, and vice 
versa. 

3.1.1.12.1.9 NewTrustParentElements 

 type NewTrustParentFlatName = [ 
     NewTrustParentFlatName: FlatName 
 ] 

A NewTrustParentElements tuple is a partial description of a specific domain NC that is to have a new 
trust parent as the result of an NC Rename operation, in addition to the changes to be performed as 
part of the NC Rename operation. Tuples of this type are never encountered. This type exists as a 
partial definition of the DomainWithNewTrustParentDescription tuple (section 3.1.1.12.1.10). 



 

383 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

NewTrustParentFlatName: Holds the value that the trustParent attribute of the crossRef object is to 
be set to as part of the NC Rename operation. 

3.1.1.12.1.10 DomainWithNewTrustParentDescription 

A DomainWithNewTrustParentDescription is a tuple containing the union of all elements of a 
DomainDescription tuple (section 3.1.1.12.1.8) and a NewTrustParentElements tuple (section 
3.1.1.12.1.9). It describes a domain NC replica that is to have a new trust parent as a result of an NC 
Rename operation, in addition to the changes to be performed as part of the NC Rename operation. 
Because a DomainWithNewTrustParentDescription tuple is a superset of a DomainDescription tuple, 
wherever a tuple of type DomainDescription is specified in a production rule, a tuple of type 
DomainWithNewTrustParentDescription can be used. When used as a DomainDescription, the 

elements from NewTrustParentElements are ignored. Similarly, because a 
DomainWithNewTrustParentDescription tuple is a superset of an NCDescription tuple (section 
3.1.1.12.1.6), wherever a tuple of type NCDescription is specified in a production rule, a tuple of type 
DomainWithNewTrustParentDescription can be used. When used as an NCDescription, the elements 
from NewTrustParentElements and DomainDescriptionElements (section 3.1.1.12.1.7) are ignored. 

3.1.1.12.1.11 NCRenameDescription 

 type NCRenameDescription = [ 
     NewReplicationEpoch: 32-bit integer, 
     ConfigurationNCGuid: GUID, 
     AppNCs: A set containing 0 or more NCDescription tuples, 
     RootDomain: DomainDescription, 
     TrustTreeRootDomains: A set containing 0 or more 
         DomainDescription tuples, 
     TrustTreeNonRootDomains: A set containing 0 or more 
         DomainWithNewTrustParentDescription tuples, 
     AllDomains: A set containing references to DomainDescription tuples 
         and DomainWithNewTrustParentDescription tuples. This set has at least 
         one element. 
     DomainsCount: A 32-bit integer that contains the number of elements in 
         the AllDomains field. 
     AllNCs: A set containing references to NCDescription tuples, 
         DomainDescription tuples, and DomainWithNewTrustParentDescription 
         tuples. This set has at least one element. 
 ] 

An NCRenameDescription tuple describes an NC Rename operation. Tuples of this type are provided as 
input to an NC Rename operation. 

NewReplicationEpoch: Holds the value to which the msDS-ReplicationEpoch attribute of the NTDS 
Settings object (section 6.1.1.2.2.1.2.1.1) of the DC performing the NC Rename operation is to be 

set. It is also used in preprocessing verification. 

ConfigurationNCGuid: Holds the value of the objectGUID attribute of the root object of the config 
NC. 

AppNCs: Holds a set of NCDescription tuples (section 3.1.1.12.1.6). This field contains one element 

for each non-domain NC replica in the forest. These elements describe the initial state of all such 
non-domain NC replicas and the changes to be performed as part of the NC Rename operation. 

RootDomain: Holds a DomainDescription tuple (section 3.1.1.12.1.8) describing the root domain of 
the forest. This field describes the initial state of the root domain NC replica and the changes to be 
performed as part of the NC Rename operation. 

TrustTreeRootDomains: A set of DomainDescription tuples. This field contains one element for each 
domain NC replica that is to have no values of the trustParent attribute on the NCCrossRef 
object. These elements describe the initial state of all such domain NC replicas and the changes to 
be performed as part of the NC Rename operation. 



 

384 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

TrustTreeNonRootDomains: A set of DomainWithNewTrustParentDescription tuples. This field 
contains one element for each domain NC replica that is to have a new value for the trustParent 

attribute on the NCCrossRef object. These elements describe the initial state of all such domain 
NC replicas and the changes to be performed as part of the NC Rename operation. 

AllDomains: Holds a set containing references to the elements in the union of the sets in the 
TrustTreeRootDomains field, the TrustTreeNonRootDomains field, and a set containing the 
value of the RootDomain field. This set holds references to both DomainDescription tuples and 
DomainWithNewTrustParentDescription tuples (section 3.1.1.12.1.10). At a minimum, this set 
contains one reference to a DomainDescription tuple, which is the DomainDescription in the 
RootDomain field. This field contains one reference to an object that describes each domain NC 
in the forest. 

Note  This field contains only references to tuples, not instances of the tuple, in order to formally 
preserve the uniqueness constraints of various tuple fields. Although it contains only references, it 
can be used in a production rule exactly as if it contained the instances themselves. 

DomainsCount: Holds the number of elements in the AllDomains field. 

AllNCs: Holds a set containing references to the elements in the union of the sets in the AppNCs 
field, the TrustTreeRootDomains field, the TrustTreeNonRootDomains field, and a set 

containing the value of the RootDomain field. At a minimum, this set contains a reference to one 
DomainDescription tuple, which is the DomainDescription in the RootDomain field. 

Note  This field contains only references to tuples, not instances of the tuple, in order to formally 
preserve the uniqueness constraints of various tuple fields. Although it contains only references, it 
can be used in a production rule exactly as if it contained the instances themselves. 

3.1.1.12.2 Encoding/Decoding Rules 

This section defines a notation for encoding and decoding a tuple to and from a string. An expression 
that describes the specific encoding/decoding for an NCRenameDescription tuple (section 
3.1.1.12.1.11) is defined. 

3.1.1.12.2.1 EBNF-M 

Extended Backus-Naur Form (EBNF) [ISO/IEC-14977] is a notation used for expressing context-free 
grammars, describing all possible legal statements that match an expression. The syntax used to 

describe the encoding and decoding of an NCRenameDescription tuple to and from a string is a 
modified version of EBNF, hereafter called Extended Backus-Naur Form--Modified (EBNF-M). EBNF-M 
is defined here and is used to express an instance (or set of equivalent instances) of a legal statement 
based on an instance of a tuple. The elements defined in the following sections have been added to 
EBNF to produce EBNF-M. 

3.1.1.12.2.1.1 Tuples as Parameters to Production Rules 

An EBNF-M production rule can be defined such that it has access to one or more instances of tuples. 
The syntax for this is as follows. 

 productionRule(parameterList) = __expression__ 

Where productionRule and __expression__ are standard EBNF syntax and parameterList is a comma-

delimited list of one or more tuple types. These parameters are accessible to __expression__, which 
can make use of them as described in the following sections. 

3.1.1.12.2.1.2 Parameter Fields as Terminal Values 



 

385 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

In EBNF, an __expression__ is a substitution rule that is made up of a set of operators and either 
terminal values or non-terminals. In EBNF-M, parameter fields are terminals. When a parameter field 

is used as a terminal, the meaning is to use the value of the field as a terminal value. The following is 
an example of this usage. 

Given: 

 type tuple1 = [ field1: string ] 
 tuple1 Instance1 = [field1= "b"] 
  
 productionRule1(tuple1) = "a" , tuple1.field1, "c"; 

Then: 

 productionRule1(Instance1) == "abc" 

3.1.1.12.2.1.3 Formatting of Non-String Parameter Fields as Terminal Values 

Tuple fields are not limited to strings. In the case where a field is not a string, a specification for how 
to express the value as a string is necessary. The syntax for this is as follows. 

 <type> = Text description of how to format the type as a string 

The following is an example of this usage. 

Given: 

 type tuple2 = [ field1: integer ] 
 tuple2 Instance2 = [ field1 = 2] 
 <integer> = A base 10 integer with no leading zeros 
 productionRule2(tuple2) = "1" , tuple2.field1, "3"; 

Then: 

 productionRule2(Instance2) == "123" 

3.1.1.12.2.1.4 (Updated Section) Parameter Fields as Iterators 

In EBNF, the standard way to define that a production rule results in one or more repetitions of 
another production rule is the following. 

 productionRuleX = productionRuleX | (productionRuleX , productionRuleY) 

When describing how an instance of a tuple results in a legal expression, it is often necessary to 
constrain this basic repetition to invoke a production rule once for every element in a set stored as a 
field in a tuple. EBNF-M uses "foreach", a specialized non-terminal, to describe this. The syntax for 
this keyword is the following. 

 foreach(typeA in typeB.field) productionRule(typeA) 



 

386 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

typeB.field mustMUST be a set of elements of type typeA. This non-terminal is equivalent to the 
following. 

 productionRule(typeB.field.elementX), 
     productionRule(typeB.field.elementY), 
 ... 
     productionRule(typeB.field.elementZ); 

Where the set in typeB.field comprises all typeB.field.element*. No ordering of element* is implied or 

required. Since the elements of a set are not ordered, this non-terminal results in more than one legal 
statement when typeB.field contains more than one element. 

The following is an example of this usage. 

Given: 

 type tuple3 = [ field1: set of integers ] 
 tuple3 Instance3 = [field1 = {1, 2}] 
  
 <integer> = A base 10 integer with no leading zeros 
 productionRule3(tuple1) = 
     foreach(integer in tuple3.field1) productionRule4(string); 
 productionRule4(integer) = "<", integer, ">"; 

Then: 

 productionRule3(Instance3) == "<1><2>" 

Or: 

 productionRule3(Instance3) == "<2><1>" 

3.1.1.12.2.1.5 Reversed Production Rules 

EBNF-M production rules can be reversed. That is, given a production rule with a tuple as a parameter 

and the result of the production rule, the instance of the tuple that produced the result can be 
recovered. The syntax for this is as follows. 

 Reversed::productionRule(result) = tuple 

The following is an example of this usage. 

Given: 

 type tuple4 = [ field1: stringVal; field2: integer ] 
  
 <stringVal> = A string containing no quotation marks. 
 <integer> = A base 10 integer with no leading zeros 
 productionRule5(tuple4) = 
     "The string is \"", tuple4.field1, "\"", 
     " and the integer is ", tuple4.field2, "."; 

Then: 



 

387 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 Reversed::productionRule5("The string is \"a\" and the integer is 1) = 
     [ field1 = "a", field2 = 1 ] 

Note that not all production rules can be deterministically reversed. The following is an example of 
such a production rule. 

Given: 

 type tuple5 = [ field1: string; field2: string ] 
 productionRule6(tuple5) = tuple5.field1, tuple5.field2; 

Then: 

 Reversed::productionRule("a,b") = Error 

The error occurs because any of the following tuples produce the result. 

 [ field1: "a,b"; field2: "" ] 
 [ field1: "a,"; field2: "b" ] 
 [ field1: "a"; field2: ",b" ] 
 [ field1: ""; field2: "a,b" ] 

Note that not all reversible production rules can be reversed in a context-free manner, although they 

can still be reversed. The following is an example of such a production rule. 

Given: 

 type tuple6 = [ field1: alphabetic caracter; 
                 field2:alphabetic character; 
                 field3:alphabetic character] 
 field1 of all instances of tuple6 is unique across all instances of tuple6 
  
 type tuple7 = [ field4: a set of tuple6 ] 
 productionRule7(tuple7) = 
     "[", 
     foreach(tuple6 in tuple7.field4) productionRule8(tuple6), 
     "]", 
     "[", 
     foreach(tuple6 in tuple7.field4) productionRule9(tuple6), 
     "]"; 
 productionRule8(tuple6) = "(", tuple6.field1, "," tuple6.field2, ")"; 
 productionRule9(tuple6) = "(", tuple6.field1, "," tuple6.field3, ")"; 

Then: 

 Reversed::productionRule("[(a,b)(d,e)][(d,f),(a,c)") = 
     [ field4: {(field1:a, field2:b, field3:c),(field1:d,field2:e,field3:f)] 

Reversal is possible in this case because the use of tuple6.field1 is unique across all instances of 
tuple6 and is used in both productionRule8 and productionRule9, allowing field1 to be used as a "key" 
to combine the results from reversing productionRule8 and productionRule9. 

3.1.1.12.2.2 CodedNCRenameDescription 



 

388 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

This section defines an EBNF-M expression that is used to encode an NCRenameDescription tuple into 
a string and to decode strings to NCRenameDescription tuples. The given expression is a reversible 

EBNF-M expression. 

3.1.1.12.2.2.1 Expression 

 CodedNCRenameDescription(NCRenameDescription):=  
     ExpressionPrefix, 
     Tests(NCRenameDescription), 
     Flatten(NCRenameDescription), 
     Rebuild(NCRenameDescription), 
     CrossRefs(NCRenameDescription), 
     Trusts(NCRenameDescription), 
     ReplicationEpoch(NCRenameDescription), 
     ExpressionSuffix; 
  
 ExpressionPrefix =  
     ExpressionPrefixFragment01, 
     WhiteSpace, 
     ExpressionPrefixFragment02, 
     WhiteSpace; 
  
 ExpressionPrefixFragment01 =  
     "<?xml version =\"1.0\"?>"; 
  
 ExpressionPrefixFragment02 =  
     "<NTDSAscript opType=\"renamedomain\">" 
  
 ExpressionSuffix:= 
     "</NTDSAscript>"; 

3.1.1.12.2.2.2 Common 

 <GUID> = Expressed in the form of a dashed-string UUID defined in ([RFC4122] section 3). 
 <SecurityIdentifier> = Expressed in the form of a Security Descriptor 
     Definition Language (SDDL) SID string. The SID structure and the format 
     of SDDL SID strings are defined in [MS-DTYP] sections 2.4.2 and 2.5.1. 
 <DNSAddress> = Expressed in the form defined in [RFC1035] section 2.3.1. 
 <DN> = Expressed in the form defined in [RFC2253] section 3. 
 <32-bit integer> = Expressed as a base 10 integer with no leading zeros. 
  
 ErrorReportNoEnd =  
     ErrorMessage, 
     Space, 
     ReturnValue, 
     ErrorReportNoEndFragment01, 
     WhiteSpace; 
  
 ErrorReportNoEndFragment01 =  
     ">"; 
  
 ErrorReport =  
     ErrorMessage, 
     Space, 
     ReturnValue, 
     ErrorReportFragment01, 
     WhiteSpace; 
  
 ErrorReportFragment01 =  
     "/>"; 
  
 ErrorMessage =  
     Quote, 
     Message, 
     Quote; 
  
 Quote =  



 

389 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     "\""; 
  
 Message =  
     A string composed strictly of spaces and alphanumerics. 
  
 ReturnValue =  
     ReturnValueFragment01, 
     Code; 
  
 ReturnValueFragment01 =  
     "returnCode="; 
  
 Code =  
     Quote, 
     Number, 
     Quote; 
  
 Number =  
     A 32-bit integer. 
  
 Space =  
     " "; 
  
 Comma =  
     ","; 
  
 SystemRDN =  
     ",CN=System,"; 
  
 WhiteSpace =  
     "" | 
     WhiteSpaceChar | 
     (WhiteSpaceChar, WhiteSpace); 
  
 WhiteSpaceChar =  
     A space, a newline, or a tab. 

3.1.1.12.2.2.3 Tests 

 Tests(NCRenameDescription) =  
     TestsBegin, 
     TestConfigurationNC(NCRenameDescription), 
     TestReplicationEpoch(NCRenameDescription), 
     TestAppNCs(NCRenameDescription), 
     TestDomains(NCRenameDescription), 
     TestPartitionCounts(NCRenameDescription), 
     TestsEnd; 
  
 TestsBegin =  
     TestsBeginFragment01, 
     Message, 
     TestsBeginFragment02, 
     Message, 
     TestsBeginFragment03, 
     WhiteSpace; 
  
 TestsBeginFragment01 =  
     "<action name=\""; 
  
 TestsBeginFragment02 =  
     "\" stage=\""; 
  
 TestsBeginFragment03 =  
     "\">"; 
  
 TestsEnd =  
     TestsEndFragment01, 
     WhiteSpace; 



 

390 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

  
 TestsEndFragment01 =  
     "</action>"; 

3.1.1.12.2.2.3.1 TestConfigurationNC 

 TestConfigurationNC(NCRenameDescription) =  
     TestConfigurationNCFragment01, 
     NCRenameDescription.ConfigurationNCGUID, 
     TestConfigurationNCFragment02, 
     ErrorReport; 
  
 TestConfigurationNCFragment01 =  
     "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:"; 
  
 TestConfigurationNCFragment02 =  
     "\" type=\"base\" "; 

3.1.1.12.2.2.3.2 TestReplicationEpoch 

 TestReplicationEpoch(NCRenameDescription) =  
     TestReplicationEpochFragment01, 
     ErrorReportNoEnd, 
     TestReplicationEpochFragment02, 
     TestReplicationEpochFragment03, 
     NCRenameDescription.NewReplicationEpoch, 
     TestReplicationEpochFragment04, 
     ErrorReport, 
     TestReplicationEpochFragment05, 
     WhiteSpace; 
  
 TestReplicationEpochFragment01 =  
     "<predicate test=\"not\" "; 
  
 TestReplicationEpochFragment02 =  
     "<predicate test=\"compare\" path=\"$LocalNTDSSettingsObjectDN$\""; 
  
 TestReplicationEpochFragment03 =  
     " attribute=\"msDS-ReplicationEpoch\" attrval=\""; 
  
 TestReplicationEpochFragment04 =  
     "\" defaultvalue=\"0\" type=\"base\" "; 
  
 TestReplicationEpochFragment05 =  
     "</predicate>"; 

3.1.1.12.2.2.3.3 TestAppNCs 

 TestAppNCs(NCRenameDescription) =  
     foreach(NCDescription in NCRenameDescription.AppNCs) 
         TestAppNCCrossRef(NCDescription); 
  
 TestAppNCCrossRef(NCDescription) =  
     TestAppNCCrossRefExists(NCDescription), 
     TestAppNCCrossRefNCNameUnchanged(NCDescription); 
  
 TestAppNCCrossRefExists(NCDescription) =  
     TestAppNCCrossRefExistsFragment01, 
     NCDescription.CrossRefGuid, 
     TestAppNCCrossRefExistsFragment02, 
     ErrorReport; 
  
 TestAppNCCrossRefExistsFragment01 =  
     "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:"; 
  



 

391 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 TestAppNCCrossRefExistsFragment02 =  
     "\" type=\"base\" "; 
  
 TestAppNCCrossRefNCNameUnchanged(NCDescription) =  
     TestAppNCCrossRefNCNameUnchangedFragment01, 
     NCDescription.CrossRefGuid, 
     TestAppNCCrossRefNCNameUnchangedFragment02, 
     NCDescription.ExistingDN, 
     TestAppNCCrossRefNCNameUnchangedFragment03, 
     ErrorReport; 
  
 TestAppNCCrossRefNCNameUnchangedFragment01 =  
     "<predicate test=\"compare\" path=\"guid:"; 
  
 TestAppNCCrossRefNCNameUnchangedFragment02 =  
     "\" attribute=\"NcName\" attrval=\""; 
  
 TestAppNCCrossRefNCNameUnchangedFragment03 = "\" defaultvalue=\"0\" type=\"base\" "; 

3.1.1.12.2.2.3.4 TestDomains 

 TestDomains(NCRenameDescription) =  
     foreach(DomainDescription in NCRenameDescription.AllDomains) 
         TestDomainDescription(NCRenameDescription, DomainDescription); 
  
 TestDomainDescription(NCRenameDescription, DomainDescription) =  
     TestCrossRef(NCRenameDescription, DomainDescription), 
     TestServersInstantiated(DomainDescription), 
     TestTrustedDomainObjectDescriptions(DomainDescription), 
     TestTrustCount(DomainDescription), 
     TestInterdomainTrustAccountDescriptions(DomainDescription), 
     TestDomainDescriptionFragment01, 
     WhiteSpace, 
     TestDomainDescriptionFragment02, 
     WhiteSpace, 
     TestDomainDescriptionFragment03, 
     WhiteSpace, 
     TestServerDescriptions(DomainDescription); 
  
 TestDomainDescriptionFragment01 =  
     "</action>"; 
  
 TestDomainDescriptionFragment02 =  
     "</then>"; 
  
 TestDomainDescriptionFragment03 =  
     "</condition>"; 

3.1.1.12.2.2.3.4.1 TestCrossRef 

 TestCrossRef(NCRenameDescription, DomainDescription) =  
     TestCrossRefExists(DomainDescription), 
     TestCrossRefNCNameUnchanged(DomainDescription), 
     TestCrossRefNewDNUnused(NCRenameDescription, DomainDescription); 
  
 TestCrossRefExists(DomainDescription) =  
     CrossRefExistsFragment01, 
     DomainDescription.CrossRefGuid, 
     CrossRefExistsFragment02, 
     ErrorReport; 
  
 CrossRefExistsFragment01 =  
     "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:"; 
  
 CrossRefExistsFragment02 =  
     "\" type=\"base\" "; 
  



 

392 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 TestCrossRefNCNameUnchanged(DomainDescription) =  
     TestCrossRefNCNameUnchangedFragment01, 
     DomainDescription.CrossRefGuid, 
     TestCrossRefNCNameUnchangedFragment02, 
     DomainDescription.ExistingDN, 
     TestCrossRefNCNameUnchangedFragment03, 
     ErrorReport; 
  
 TestCrossRefNCNameUnchangedFragment01 =  
     "<predicate test=\"compare\" path=\"guid:"; 
  
 TestCrossRefNCNameUnchangedFragment02 =  
     "\" attribute=\"NcName\" attrval=\""; 
  
 TestCrossRefNCNameUnchangedFragment03 =  
     "\" defaultvalue=\"0\" type=\"base\" "; 
  
 TestCrossRefNewDNUnused(NCRenameDescription, DomainDescription) =  
     TestCrossRefNewDNUnusedFragment01, 
     ErrorReportNoEnd, 
     TestCrossRefNewDNUnusedFragment02, 
     DomainDescription.NewFlatName, 
     TestCrossRefNewDNUnusedFragment03, 
     NCRenameDescription.RootDomain.ExistingDN, 
     TestCrossRefNewDNUnusedFragment04, 
     ErrorReport, 
     TestCrossRefNewDNUnusedFragment05, 
     WhiteSpace; 
  
 TestCrossRefNewDNUnusedFragment01 =  
     "<predicate test=\"not\" "; 
  
 TestCrossRefNewDNUnusedFragment02 =  
     "<predicate test=\"instantiated\" instancetype=\"write\" path=\"CN="; 
  
 TestCrossRefNewDNUnusedFragment03 =  
     ",CN=Partitions,CN=Configuration,"; 
  
 TestCrossRefNewDNUnusedFragment04 =  
     "\" type=\"base\" "; 
  
 TestCrossRefNewDNUnusedFragment05 =  
     "</predicate>"; 

3.1.1.12.2.2.3.4.2 TestServersInstantiated 

 TestServersInstantiated(DomainDescription) =  
     foreach(ServerDescription in DomainDescription.Servers) 
         TestServerInstantiated(ServerDescription); 
  
 TestServerInstantiated(ServerDescription) 
     TestServerInstantiatedFragment01, 
     WhiteSpace, 
     TestServerInstantiatedFragment02, 
     WhiteSpace, 
     TestServerInstantiatedFragment03, 
     ServerDescription.serverGuid, 
     TestServerInstantiatedFragment04, 
     WhiteSpace, 
     TestServerInstantiatedFragment05, 
     WhiteSpace, 
     TestServerInstantiatedFragment06, 
     WhiteSpace, 
     TestServerInstantiatedFragment07, 
     WhiteSpace; 
  
 TestServerInstantiatedFragment01 =  
     "<condition>"; 



 

393 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

  
 TestServerInstantiatedFragment02 =  
     "<if>"; 
  
 TestServerInstantiatedFragment03 =  
     "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:"; 
  
 TestServerInstantiatedFragment04 =  
     "\" type=\"base\"/>"; 
  
 TestServerInstantiatedFragment05 =  
     "</if>"; 
  
 TestServerInstantiatedFragment06 =  
     "<then>"; 
  
 TestServerInstantiatedFragment07 =  
     "<action>"; 

3.1.1.12.2.2.3.4.3 TestTrustCount 

 TestTrustCount(DomainDescription) =  
     TestTrustCountFragment01, 
     DomainDescription.ExistingDN, 
     TestTrustCountFragment02, 
     DomainDescription.CountTrusts, 
     TestTrustCountFragment03, 
     ErrorReport; 
  
 TestTrustCountFragment01 =  
     "<predicate test=\"cardinality\" type=\"subTree\" path=\"CN=System,"; 
  
 TestTrustCountFragment02 =  
     "\" filter=\"COUNT_TRUSTS_FILTER\" cardinality=\""; 
  
 TestTrustCountFragment03 =  
     "\" "; 

3.1.1.12.2.2.3.4.4 TestTrustedDomainObjectDescriptions 

 TestTrustedDomainObjectDescriptions(DomainDescription) =  
     foreach(TrustedDomainObjectDescription in 
       DomainDescription.TrustedDomainObjects)  
         TestTrustedDomainObjectDescription(DomainDescription, 
             TrustedDomainObjectDescription); 
  
 TestTrustedDomainObjectDescription(DomainDescription, TrustedDomainObjectDescription) =  
     TestTrustedDomainObjectDescriptionFragment01, 
     TrustedDomainObjectDescription.Guid, 
     TestTrustedDomainObjectDescriptionFragment02, 
     ErrorReport, 
     TestTrustedDomainObjectDescriptionFragment03, 
     TrustedDomainObjectDescription.Guid, 
     TestTrustedDomainObjectDescriptionFragment04, 
     TrustedDomainObjectDescription.SID, 
     TestTrustedDomainObjectDescriptionFragment05, 
     ErrorReport, 
     TestTrustedDomainObjectDescriptionFragment06, 
     ErrorReportNoEnd, 
     TestTrustedDomainObjectDescriptionFragment07, 
     TrustedDomainObjectDescription.NewTrustPartnerDNSName, 
     SystemRDN, 
     DomainDescription.ExistingDN, 
     TestTrustedDomainObjectDescriptionFragment08, 
     ErrorReport, 
     TestTrustedDomainObjectDescriptionFragment09, 
     WhiteSpace; 



 

394 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

  
 TestTrustedDomainObjectDescriptionFragment01 =  
     "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:"; 
  
 TestTrustedDomainObjectDescriptionFragment02 =  
     "\" type=\"base\" "; 
  
 TestTrustedDomainObjectDescriptionFragment03 =  
     "<predicate test=\"compare\" path=\"guid:"; 
  
 TestTrustedDomainObjectDescriptionFragment04 =  
     "\" attribute=\"securityIdentifier\" attrval=\""; 
  
 TestTrustedDomainObjectDescriptionFragment05 =  
     "\" defaultvalue=\"0\" type=\"base\" "; 
  
 TestTrustedDomainObjectDescriptionFragment06 =  
     "<predicate test=\"not\" "; 
  
 TestTrustedDomainObjectDescriptionFragment07 =  
     "<predicate test=\"instantiated\" instancetype=\"write\" path=\"CN="; 
  
 TestTrustedDomainObjectDescriptionFragment08 =  
     "\" type=\"base\" "; 
  
 TestTrustedDomainObjectDescriptionFragment09 =  
     "</predicate>"; 

3.1.1.12.2.2.3.4.5 TestInterdomainTrustAccountDescriptions 

 TestInterdomainTrustAccountDescriptions(DomainDescription) =  
     foreach(InterdomainTrustAccountDescription in 
       DomainDescription.InterdomainTrustAccounts)  
         TestInterdomainTrustAccountDescription(DomainDescription, 
             InterdomainTrustAccountDescription); 
  
 TestInterdomainTrustAccountDescription(DomainDescription, 
   InterdomainTrustAccountDescription) =  
     TestInterdomainTrustAccountDescriptionFragment01, 
     InterdomainTrustAccountDescription.Guid, 
     TestInterdomainTrustAccountDescriptionFragment02, 
     ErrorReport, 
     TestInterdomainTrustAccountDescriptionFragment03, 
     InterdomainTrustAccountDescription.Guid, 
     TestInterdomainTrustAccountDescriptionFragment04, 
     InterdomainTrustAccountDescription.ExistingFlatName, 
     TestInterdomainTrustAccountDescriptionFragment05, 
     ErrorReport, 
     TestInterdomainTrustAccountDescriptionFragment06, 
     ErrorReportNoEnd, 
     TestInterdomainTrustAccountDescriptionFragment07, 
     InterdomainTrustAccountDescription.NewFlatName, 
     Comma, 
     InterdomainTrustAccountDescription.ParentDNFromDomainDN, 
     Comma, 
     DomainDescription.NewDN, 
     TestInterdomainTrustAccountDescriptionFragment08, 
     ErrorReport, 
     TestInterdomainTrustAccountDescriptionFragment09, 
     WhiteSpace; 
  
 TestInterdomainTrustAccountDescriptionFragment01 =  
     "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:"; 
  
 TestInterdomainTrustAccountDescriptionFragment02 =  
     "\" type=\"base\" "; 
  
 TestInterdomainTrustAccountDescriptionFragment03 =  



 

395 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     "<predicate test=\"compare\" path=\"guid:"; 
  
 TestInterdomainTrustAccountDescriptionFragment04 =  
     "\" attribute=\"samAccountName\" attrval=\""; 
  
 TestInterdomainTrustAccountDescriptionFragment05 =  
     "\" defaultvalue=\"0\" type=\"base\" "; 
  
 TestInterdomainTrustAccountDescriptionFragment06 =  
     "<predicate test=\"not\" "; 
  
 TestInterdomainTrustAccountDescriptionFragment07 =  
     "<predicate test=\"instantiated\" instancetype=\"write\" path=\"CN="; 
  
 TestInterdomainTrustAccountDescriptionFragment08 =  
     "\" type=\"base\" "; 
  
 TestInterdomainTrustAccountDescriptionFragment09 =  
     "</predicate>"; 

3.1.1.12.2.2.3.4.6 TestServerDescriptions 

 TestServerDescriptions(DomainDescription) =  
     foreach (ServerDescription in DomainDescription.Servers) 
         TestServerSPNs(ServerDescription) 
  
 TestServerSPNs(ServerDescription) =  
     TestServerSPNsFragment01, 
     WhiteSpace, 
     TestServerSPNsFragment02, 
     WhiteSpace, 
     TestServerSPNsFragment03, 
     ServerDescription.serverGuid, 
     TestServerSPNsFragment04, 
     WhiteSpace, 
     TestServerSPNsFragment05, 
     WhiteSpace, 
     TestServerSPNsFragment06, 
     WhiteSpace, 
     TestServerSPNsFragment07, 
     WhiteSpace, 
     TestSPNs(ServerDescription), 
     TestServerSPNsFragment08, 
     WhiteSpace, 
     TestServerSPNsFragment09, 
     WhiteSpace, 
     TestServerSPNsFragment10, 
     WhiteSpace; 
  
 TestServerSPNsFragment01 =  
     "<condition>"; 
  
 TestServerSPNsFragment02 =  
     "<if>"; 
  
 TestServerSPNsFragment03 =  
     "<predicate test=\"instantiated\" instancetype=\"read\" path=\"guid:"; 
  
 TestServerSPNsFragment04 =  
     "\" type=\"base\"/>"; 
  
 TestServerSPNsFragment05 =  
     "</if>"; 
  
 TestServerSPNsFragment06 =  
     "<then>"; 
  
 TestServerSPNsFragment07 =  



 

396 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     "<action>"; 
  
 TestServerSPNsFragment08 =  
     "</action>"; 
  
 TestServerSPNsFragment09 =  
     "</then>"; 
  
 TestServerSPNsFragment10 =  
     "</condition>"; 
  
  
 TestSPNs(ServerDescription) =  
     foreach(SPNValue in ServerDescription.SPNs) 
         TestSPN(SPNValue, ServerDescription); 
  
  
 TestSPN(SPNValue, ServerDescription) =  
     TestSPNFragment01, 
     ServerDescription.ExistingDN, 
     TestSPNFragment02, 
     SPNValue, 
     TestSPNFragment03, 
     ErrorReport; 
  
 TestSPNFragment01 =  
     "<predicate test=\"compare\" path=\""; 
  
 TestSPNFragment02 =  
     "\" attribute=\"servicePrincipalName\" attrval=\""; 
  
 TestSPNFragment03 =  
     "\" defaultvalue=\"0\" type=\"base\" "; 

3.1.1.12.2.2.3.5 TestPartitionCounts 

 TestPartitionCounts(NCRenameDescription) =  
     TestPartitionCountsFragment01, 
     NCRenameDescription.RootDomain.ExistingDN, 
     TestPartitionCountsFragment02, 
     NCRenameDescription.DomainsCount, 
     TestPartitionCountsFragment03, 
     ErrorReport; 
  
 TestPartitionCountsFragment01 =  
     "<predicate test=\"cardinality\" type=\"subTree\" path=\"CN=Partitons,CN=Configuration,"; 
  
 TestPartitionCountsFragment02 =  
     "\" filter=\"COUNT_DOMAINS_FILTER\" cardinality=\""; 
  
 TestPartitionCountsFragment03 =  
     "\" "; 

3.1.1.12.2.2.4 Flatten 

 Flatten(NCRenameDescription) =  
     FlattenFragment01, 
     Message, 
     FlattenFragment02, 
     WhiteSpace, 
     FlattenNCs(NCRenameDescription), 
     FlattenFragment03, 
     WhiteSpace; 
  
 FlattenFragment01 =  
     "<action name=\""; 
  



 

397 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 FlattenFragment02 =  
     "\">"; 
  
 FlattenFragment03 =  
     "</action>"; 
  
  
 FlattenNCs(NCRenameDescription) =  
     foreach(NCDescription in NCRenameDescription.AllNCs) 
         FlattenNC(NCDescription); 
  
 FlattenNC(NCDescription) =  
     FlattenNCFragment01, 
     NCDescription.ExistingDN, 
     FlattenNCFragment02, 
     WhiteSpace, 
     FlattenNCFragment03, 
     NCDescription.Guid, 
     FlattenNCFragment04, 
     WhiteSpace, 
     FlattenNCFragment05, 
     WhiteSpace; 
  
 FlattenNCFragment01 =  
     "<move path=\"dn:"; 
  
 FlattenNCFragment02 =  
     "\" metadata=\"0\">"; 
  
 FlattenNCFragment03 =  
     "<to path=\"dn:DC="; 
  
 FlattenNCFragment04 =  
     ",DC=INVALID\"/>"; 
  
 FlattenNCFragment05 =  
     "</move>"; 

3.1.1.12.2.2.5 Rebuild 

 Rebuild(NCRenameDescription) =  
     RebuildFragment01, 
     Message, 
     RebuildFragment02, 
     WhiteSpace, 
     RebuildNCs(NCRenameDescription), 
     RebuildFragment03, 
     WhiteSpace; 
  
 RebuildFragment01 =  
     "<action name=\""; 
  
 RebuildFragment02 =  
     "\">"; 
  
 RebuildFragment03 =  
     "</action>"; 
  
  
 RebuildNCs(NCRenameDescription) =  
     foreach(NCDescription in NCRenameDescription.AllNCs) 
         RebuildNC(NCDescription); 
  
 RebuildNC(NCDescription) =  
     RebuildNCFragment01, 
     NCDescription.Guid, 
     RebuildNCFragment02, 
     WhiteSpace, 



 

398 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     RebuildNCFragment03, 
     NCDescription.NewDN, 
     RebuildNCFragment04, 
     WhiteSpace, 
     RebuildNCFragment05, 
     WhiteSpace; 
  
 RebuildNCFragment01 =  
     "<move path=\"dn:DC="; 
  
 RebuildNCFragment02 =  
     ",DC=INVALID\" metadata=\"0\">"; 
  
 RebuildNCFragment03 =  
     "<to path=\"dn:"; 
  
 RebuildNCFragment04 =  
     "\"/>"; 
  
 RebuildNCFragment05 =  
     "</move>"; 

3.1.1.12.2.2.6 Trusts 

 Trusts(NCRenameDescription) =  
     TrustsFragment01, 
     Message, 
     TrustsFragment02, 
     WhiteSpace, 
     DomainsTrusts(NCRenameDescription), 
     TrustsFragment03, 
     WhiteSpace; 
  
 TrustsFragment01 =  
     "<action name=\""; 
  
 TrustsFragment02 =  
     "\">"; 
  
 TrustsFragment03 =  
     "</action>"; 
  
 DomainsTrusts(NCRenameDescription) =  
     foreach(DomainDescription in NCRenameDescription.AllDomains) 
         DomainTrust(DomainDescription); 
  
 DomainTrust(DomainDescription) 
     DomainTrustFragment01, 
     WhiteSpace, 
     DomainTrustFragment02, 
     WhiteSpace, 
     DomainTrustFragment03, 
     DomainDescription.Guid, 
     DomainTrustFragment04, 
     WhiteSpace, 
     DomainTrustFragment05, 
     WhiteSpace, 
     DomainTrustFragment06, 
     WhiteSpace, 
     DomainTrustFragment07, 
     WhiteSpace, 
     DomainTrustSpecifications(DomainDescription), 
     DomainTrustAccounts(DomainDescription), 
     DomainTrustFragment08, 
     WhiteSpace, 
     DomainTrustFragment09, 
     WhiteSpace, 
     DomainTrustFragment10, 



 

399 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     WhiteSpace; 
  
 DomainTrustFragment01 =  
     "<condition>"; 
  
 DomainTrustFragment02 =  
     "<if>"; 
  
 DomainTrustFragment03 =  
     "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:"; 
  
 DomainTrustFragment04 =  
     "\" type=\"base\"/>"; 
  
 DomainTrustFragment05 =  
     "</if>"; 
  
 DomainTrustFragment06 =  
     "<then>"; 
  
 DomainTrustFragment07 =  
     "<action>"; 
  
 DomainTrustFragment08 =  
     "</action>"; 
  
 DomainTrustFragment09 =  
     "</then>"; 
  
 DomainTrustFragment10 =  
     "</condition>"; 

3.1.1.12.2.2.6.1 DomainTrustSpecifications 

 DomainTrustSpecifications(DomainDescription) =  
     foreach(TrustedDomainObject in DomainDescription.TrustedDomainObjects) 
         DomainTrustSpecification(DomainDescription, TrustedDomainObject); 
  
 DomainTrustSpecification(DomainDescription, TrustedDomainObject) =  
     DomainTrustSpecificationFragment01, 
     TrustedDomainObject.ExistingTrustPartnerDNSName, 
     SystemRDN, 
     DomainDescription.NewDN, 
     DomainTrustSpecificationFragment02, 
     WhiteSpace, 
     DomainTrustSpecificationFragment03, 
     TrustedDomainObject.NewTrustPartnerFlatName, 
     DomainTrustSpecificationFragment04, 
     WhiteSpace, 
     DomainTrustSpecificationFragment05, 
     TrustedDomainObject.NewTrustPartnerDNSName, 
     DomainTrustSpecificationFragment06, 
     WhiteSpace, 
     DomainTrustSpecificationFragment07, 
     WhiteSpace, 
     DomainTrustSpecificationFragment08, 
     TrustedDomainObject.ExistingTrustPartnerDNSName, 
     SystemRDN, 
     DomainDescription.NewDN, 
     DomainTrustSpecificationFragment09, 
     WhiteSpace 
     DomainTrustSpecificationFragment10, 
     TrustedDomainObject.NewTrustPartnerDNSName, 
     SystemRDN, 
     DomainDescription.NewDN, 
     DomainTrustSpecificationFragment11, 
     WhiteSpace, 
     DomainTrustSpecificationFragment12, 



 

400 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     WhiteSpace; 
  
 DomainTrustSpecificationFragment01 =  
     "<update path=\"dn:CN="; 
  
 DomainTrustSpecificationFragment02 =  
     "\" metadata=\"1\">"; 
  
 DomainTrustSpecificationFragment03 =  
     "<flatName op=\"replace\">"; 
  
 DomainTrustSpecificationFragment04 =  
     "</flatName>"; 
  
 DomainTrustSpecificationFragment05 =  
     "<trustPartner op=\"replace\">"; 
  
 DomainTrustSpecificationFragment06 =  
     "</trustPartner>"; 
  
 DomainTrustSpecificationFragment07 =  
     "</update>"; 
  
 DomainTrustSpecificationFragment08 =  
     "<move path=\"dn:CN="; 
  
 DomainTrustSpecificationFragment09 =  
     "\" metadata=\"1\">"; 
  
 DomainTrustSpecificationFragment10 =  
     "<to path=\"dn:CN="; 
  
 DomainTrustSpecificationFragment11 =  
     "\"/>"; 
  
 DomainTrustSpecificationFragment12 =  
     "</move>"; 

3.1.1.12.2.2.6.2 DomainTrustAccounts 

 DomainTrustAccounts(DomainDescription) =  
     foreach (InterdomainTrustAccountDescription in 
       DomainDescription.InterdomainTrustAccounts) 
         InterdomainTrustAccount(DomainDescription, 
             InterdomainTrustAccountDescription); 
  
 InterdomainTrustAccount(DomainDescription, 
   InterdomainTrustAccountDescription) =  
     InterdomainTrustAccountFragment01, 
     InterdomainTrustAccountDescription.ExistingFlatName, 
     Comma, 
     InterdomainTrustAccountDescription.ParentDNFromDomainDN, 
     Comma, 
     DomainDescription.NewDN, 
     InterdomainTrustAccountFragment02, 
     WhiteSpace, 
     InterdomainTrustAccountFragment03, 
     InterdomainTrustAccountDescription.NewFlatName, 
     InterdomainTrustAccountFragment04, 
     WhiteSpace, 
     InterdomainTrustAccountFragment05, 
     WhiteSpace, 
     InterdomainTrustAccountFragment06, 
     InterdomainTrustAccountDescription.ExistingFlatName, 
     Comma, 
     InterdomainTrustAccountDescription.ParentDNFromDomainDN, 
     Comma, 
     DomainDescription.NewDN, 



 

401 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     InterdomainTrustAccountFragment07, 
     WhiteSpace, 
     InterdomainTrustAccountFragment08, 
     InterdomainTrustAccountDescription.NewFlatName, 
     Comma, 
     InterdomainTrustAccountDescription.ParentDNFromDomainDN, 
     Comma, 
     DomainDescription.NewDN, 
     InterdomainTrustAccountFragment09, 
     WhiteSpace, 
     InterdomainTrustAccountFragment10, 
     WhiteSpace; 
  
 InterdomainTrustAccountFragment01 =  
     "<update path=\"dn:CN="; 
  
 InterdomainTrustAccountFragment02 =  
     "\" metadata=\"1\">"; 
  
 InterdomainTrustAccountFragment03 =  
     "<samAccountName op=\"replace\">"; 
  
 InterdomainTrustAccountFragment04 =  
     "</samAccountName>"; 
  
 InterdomainTrustAccountFragment05 =  
     "</update>"; 
  
 InterdomainTrustAccountFragment06 =  
     "<move path=\"dn:CN="; 
  
 InterdomainTrustAccountFragment07 =  
     "\" metadata=\"1\">"; 
  
 InterdomainTrustAccountFragment08 =  
     "<to path=\"dn:CN="; 
  
 InterdomainTrustAccountFragment09 =  
     "\"/>"; 
  
 InterdomainTrustAccountFragment10 =  
     "</move>"; 

3.1.1.12.2.2.7 CrossRefs 

 CrossRefs(NCRenameDescription) = 
     CrossRefsFragment01, 
     Message, 
     CrossRefsFragment02, 
     WhiteSpace, 
     ConfigurationCrossRef(NCRenameDescription), 
     SchemaCrossRef(NCRenameDescription), 
     NCRenameDescriptionRootCrossRef(NCRenameDescription), 
     TrustTreeRootDomainCrossRefs(NCRenameDescription), 
     TrustTreeNonRootDomainCrossRefs(NCRenameDescription), 
     AppNCsCrossRefs(NCRenameDescription), 
     CrossRefsFragment03, 
     WhiteSpace; 
  
 CrossRefsFragment01 =  
     "<action name=\""; 
  
 CrossRefsFragment02 =  
     "\">"; 
  
 CrossRefsFragment03 =  
     "</action>"; 



 

402 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.12.2.2.7.1 ConfigurationCrossRef 

 ConfigurationCrossRef(NCRenameDescription) =  
     ConfigurationCrossRefFragment01, 
     NCRenameDescription.RootDomain.NewDN, 
     ConfigurationCrossRefFragment02, 
     WhiteSpace, 
     ConfigurationCrossRefFragment03, 
     NCRenameDescription.RootDomain.NewDNSName, 
     ConfigurationCrossRefFragment04, 
     WhiteSpace, 
     ConfigurationCrossRefFragment05, 
     WhiteSpace; 
  
 ConfigurationCrossRefFragment01 =  
     "<update path=\"dn:CN=Enterprise Configuration,CN=Partitions,CN=Configuration,"; 
  
 ConfigurationCrossRefFragment02 =  
     "\" metadata=\"1\">"; 
  
 ConfigurationCrossRefFragment03 =  
     "<DnsRoot op=\"replace\">"; 
  
 ConfigurationCrossRefFragment04 =  
     "</DnsRoot>"; 
  
 ConfigurationCrossRefFragment05 =  
     "</update>"; 

3.1.1.12.2.2.7.2 SchemaCrossRef 

 SchemaCrossRef(NCRenameDescription) =  
     SchemaCrossRefFragment01, 
     NCRenameDescription.RootDomain.NewDN, 
     SchemaCrossRefFragment02, 
     WhiteSpace, 
     SchemaCrossRefFragment03, 
     NCRenameDescription.RootDomain.NewDNSName, 
     SchemaCrossRefFragment04, 
     WhiteSpace, 
     SchemaCrossRefFragment05, 
     WhiteSpace; 
  
 SchemaCrossRefFragment01 =  
     "<update path=\"dn:CN=Enterprise Schema,CN=Partitions,CN=Configuration,"; 
  
 SchemaCrossRefFragment02 =  
     "\" metadata=\"1\">"; 
  
 SchemaCrossRefFragment03 =  
     "<DnsRoot op=\"replace\">"; 
  
 SchemaCrossRefFragment04 =  
     "</DnsRoot>"; 
  
 SchemaCrossRefFragment05 =  
     "</update>"; 

3.1.1.12.2.2.7.3 AppNCsCrossRefs 

 AppNCsCrossRefs(NCRenameDescription) =  
     foreach(NCDescription in NCRenameDescription.AppNCs) 
         AppNCCrossRef(NCRenameDescription, NCDescription); 
  
 AppNCCrossRef(NCRenameDescription, NCDescription) = 
     AppNCCrossRefFragment01, 



 

403 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     NCDescription.ExistingFlatname, 
     AppNCCrossRefFragment02, 
     NCRenameDescription.RootDomain.NewDN, 
     AppNCCrossRefFragment03, 
     WhiteSpace, 
     AppNCCrossRefFragment04, 
     NCDescription.NewDNSName, 
     AppNCCrossRefFragment05, 
     WhiteSpace, 
     AppNCCrossRefFragment06, 
     WhiteSpace; 
  
 AppNCCrossRefFragment01 =  
     "<update path=\"dn:CN="; 
  
 AppNCCrossRefFragment02 =  
     ",CN=Partitions,CN=Configuration,"; 
  
 AppNCCrossRefFragment03 =  
     "\" metadata=\"0\">"; 
  
 AppNCCrossRefFragment04 =  
     "<DnsRoot op=\"replace\">"; 
  
 AppNCCrossRefFragment05 =  
     "</DnsRoot>"; 
  
 AppNCCrossRefFragment06 =  
     "</update>"; 

3.1.1.12.2.2.7.4 NCRenameDescriptionRootCrossRef 

 NCRenameDescriptionRootCrossRef(NCRenameDescription) = 
     NCRenameDescriptionRootCrossRefFragment01, 
     NCRenameDescription.RootDomain.ExistingFlatName, 
     NCRenameDescriptionRootCrossRefFragment02, 
     NCRenameDescription.RootDomain.NewDN, 
     NCRenameDescriptionRootCrossRefFragment03, 
     WhiteSpace, 
     NCRenameDescriptionRootCrossRefFragment04, 
     NCRenameDescription.RootDomain.NewDNSName, 
     NCRenameDescriptionRootCrossRefFragment05, 
     WhiteSpace, 
     NCRenameDescriptionRootCrossRefFragment06, 
     NCRenameDescription.RootDomain.ExistingDNSName, 
     NCRenameDescriptionRootCrossRefFragment07, 
     WhiteSpace, 
     NCRenameDescriptionRootCrossRefFragment08, 
     NCRenameDescription.RootDomain.NewFlatName, 
     NCRenameDescriptionRootCrossRefFragment09, 
     WhiteSpace, 
     NCRenameDescriptionRootCrossRefFragment10, 
     WhiteSpace, 
     NCRenameDescriptionRootCrossRefFragment11, 
     NCRenameDescription.RootDomain.ExistingFlatName, 
     NCRenameDescriptionRootCrossRefFragment12, 
     NCRenameDescription.RootDomain.NewDN, 
     NCRenameDescriptionRootCrossRefFragment13, 
     WhiteSpace, 
     NCRenameDescriptionRootCrossRefFragment14, 
     NCRenameDescription.RootDomain.NewFlatName, 
     NCRenameDescriptionRootCrossRefFragment15, 
     NCRenameDescription.RootDomain.NewDN, 
     NCRenameDescriptionRootCrossRefFragment16, 
     WhiteSpace, 
     NCRenameDescriptionRootCrossRefFragment17, 
     WhiteSpace; 
  



 

404 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 NCRenameDescriptionRootCrossRefFragment01 =  
     "<update path=\"dn:CN="; 
  
 NCRenameDescriptionRootCrossRefFragment02 =  
     ",CN=Partitions,CN=Configuration,"; 
  
 NCRenameDescriptionRootCrossRefFragment03 =  
     "\" metadata=\"0\">"; 
  
 NCRenameDescriptionRootCrossRefFragment04 =  
     "<DnsRoot op=\"replace\">"; 
  
 NCRenameDescriptionRootCrossRefFragment05 =  
     "</DnsRoot>"; 
  
 NCRenameDescriptionRootCrossRefFragment06 =  
     "<msDS-DnsRootAlias op=\"replace\">"; 
  
 NCRenameDescriptionRootCrossRefFragment07 =  
     "</msDS-DnsRootAlias>"; 
  
 NCRenameDescriptionRootCrossRefFragment08 =  
     "<NetBiosName op=\"replace\">"; 
  
 NCRenameDescriptionRootCrossRefFragment09 =  
     "</NetBiosName>"; 
  
 NCRenameDescriptionRootCrossRefFragment10 =  
     "</update>"; 
  
 NCRenameDescriptionRootCrossRefFragment11 =  
     "<move path=\"dn:CN="; 
  
 NCRenameDescriptionRootCrossRefFragment12 =  
     ",CN=Partitions,CN=Configuration,"; 
  
 NCRenameDescriptionRootCrossRefFragment13 =  
     "\" metadata=\"0\">"; 
  
 NCRenameDescriptionRootCrossRefFragment14 =  
     "<to path=\"dn:CN="; 
  
 NCRenameDescriptionRootCrossRefFragment15 =  
     ",CN=Partitions,CN=Configuration,"; 
  
 NCRenameDescriptionRootCrossRefFragment16 =  
     "\"/>"; 
  
 NCRenameDescriptionRootCrossRefFragment17 =  
     "</move>"; 

3.1.1.12.2.2.7.5 TrustTreeNonRootDomainCrossRefs 

 TrustTreeNonRootDomainCrossRefs(NCRenameDescription) =  
     foreach(DomainWithNewTrustParentDescription in 
       NCRenameDescription.TrustTreeNonRootDomains) 
         TrustTreeNonRootDomainCrossRef(NCRenameDescription, 
           DomainWithNewTrustParentDescription); 
  
 TrustTreeNonRootDomainCrossRef(NCRenameDescription, 
   DomainWIthNewTrustParentDescription) =  
     TrustTreeNonRootDomainCrossRefFragment01, 
     DomainWithNewTrustParentDescription.ExistingFlatName, 
     TrustTreeNonRootDomainCrossRefFragment02, 
     NCRenameDescription.RootDomain.NewDN, 
     TrustTreeNonRootDomainCrossRefFragment03, 
     WhiteSpace, 
     TrustTreeNonRootDomainCrossRefFragment04, 



 

405 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     DomainWithNewTrustParentDescription.NewDNSName, 
     TrustTreeNonRootDomainCrossRefFragment05, 
     WhiteSpace, 
     TrustTreeNonRootDomainCrossRefFragment06, 
     DomainWithNewTrustParentDescription.NewFlatName, 
     TrustTreeNonRootDomainCrossRefFragment07, 
     WhiteSpace, 
     TrustTreeNonRootDomainCrossRefFragment08, 
     DomainWithNewTrustParentDescription.NewTrustParentFlatName, 
     TrustTreeNonRootDomainCrossRefFragment09, 
     NCRenameDescription.RootDomain.NewDN, 
     TrustTreeNonRootDomainCrossRefFragment10, 
     WhiteSpace, 
     TrustTreeNonRootDomainCrossRefFragment11, 
     WhiteSpace, 
     TrustTreeNonRootDomainCrossRefFragment12, 
     DomainWithNewTrustParentDescription.ExistingDNSName, 
     TrustTreeNonRootDomainCrossRefFragment13, 
     WhiteSpace, 
     TrustTreeNonRootDomainCrossRefFragment14, 
     WhiteSpace, 
     TrustTreeNonRootDomainCrossRefFragment15, 
     DomainWithNewTrustParentDescription.ExistingFlatName, 
     TrustTreeNonRootDomainCrossRefFragment02, 
     NCRenameDescription.RootDomain.NewDN, 
     TrustTreeNonRootDomainCrossRefFragment16, 
     WhiteSpace, 
     TrustTreeNonRootDomainCrossRefFragment17, 
     DomainWithNewTrustParentDescription.NewFlatName, 
     TrustTreeNonRootDomainCrossRefFragment02, 
     NCRenameDescription.RootDomain.NewDN, 
     TrustTreeNonRootDomainCrossRefFragment18, 
     WhiteSpace, 
     TrustTreeNonRootDomainCrossRefFragment19, 
     WhiteSpace; 
  
 TrustTreeNonRootDomainCrossRefFragment01 =  
     "<update path=\"dn:CN="; 
  
 TrustTreeNonRootDomainCrossRefFragment02 =  
     ",CN=Partitions,CN=Configuration,"; 
  
 TrustTreeNonRootDomainCrossRefFragment03 =  
     "\" metadata=\"1\">"; 
  
 TrustTreeNonRootDomainCrossRefFragment04 =  
     "<DnsRoot op=\"replace\">"; 
  
 TrustTreeNonRootDomainCrossRefFragment05 =  
     "</DnsRoot>"; 
  
 TrustTreeNonRootDomainCrossRefFragment06 =  
     "<NetBiosName op=\"replace\">"; 
  
 TrustTreeNonRootDomainCrossRefFragment07 =  
     "</NetBiosName>"; 
  
 TrustTreeNonRootDomainCrossRefFragment08 =  
     "<TrustParent op=\"replace\">CN="; 
  
 TrustTreeNonRootDomainCrossRefFragment09 =  
     ",CN=Partitions,CN=Configuration,"; 
  
 TrustTreeNonRootDomainCrossRefFragment10 =  
     "</TrustParent>"; 
  
 TrustTreeNonRootDomainCrossRefFragment11 =  
     "<RootTrust op=\"delete\"></RootTrust>"; 
  
 TrustTreeNonRootDomainCrossRefFragment12 =  



 

406 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     "<msDS-DnsRootAlias op=\"replace\">"; 
  
 TrustTreeNonRootDomainCrossRefFragment13 =  
     "</msDS-DnsRootAlias>"; 
  
 TrustTreeNonRootDomainCrossRefFragment14 =  
     "</update>"; 
  
 TrustTreeNonRootDomainCrossRefFragment15 =  
     "<move path=\"dn:CN="; 
  
 TrustTreeNonRootDomainCrossRefFragment16 =  
     "\" metadata=\"0\">"; 
  
 TrustTreeNonRootDomainCrossRefFragment17 =  
     "<to path=\"dn:CN="; 
  
 TrustTreeNonRootDomainCrossRefFragment18 =  
     "\"/>"; 
  
 TrustTreeNonRootDomainCrossRefFragment19 =  
     "</move>"; 

3.1.1.12.2.2.7.6 TrustTreeRootDomainCrossRefs 

 TrustTreeRootDomainCrossRefs(NCRenameDescription) =  
     foreach (TrustTreeRootDomainDescription in 
       NCRenameDescription.TrustTreeRootDomains) 
         TrustTreeRootDomainCrossRef(NCRenameDescription, 
           TrustTreeRootDomainDescription); 
  
 TrustTreeRootDomainCrossRef(NCRenameDescription, TrustTreeRootDomainDescription) =  
     TrustTreeRootDomainCrossRefFragment01, 
     TrustTreeRootDomainDescription.ExistingFlatName, 
     TrustTreeRootDomainCrossRefFragment02, 
     NCRenameDescription.RootDomain.NewDN, 
     TrustTreeRootDomainCrossRefFragment03, 
     WhiteSpace, 
     TrustTreeRootDomainCrossRefFragment04, 
     TrustTreeRootDomainDescription.NewDNSName, 
     TrustTreeRootDomainCrossRefFragment05, 
     WhiteSpace, 
     TrustTreeRootDomainCrossRefFragment06, 
     TrustTreeRootDomainDescription.NewFlatName, 
     TrustTreeRootDomainCrossRefFragment07, 
     WhiteSpace, 
     TrustTreeRootDomainCrossRefFragment08, 
     WhiteSpace, 
     TrustTreeRootDomainCrossRefFragment09, 
     NCRenameDescription.RootDomain.NewFlatName, 
     TrustTreeRootDomainCrossRefFragment10, 
     NCRenameDescription.RootDomain.NewDN, 
     TrustTreeRootDomainCrossRefFragment11, 
     WhiteSpace, 
     TrustTreeRootDomainCrossRefFragment12, 
     TrustTreeRootDomainDescription.ExistingDNSName, 
     TrustTreeRootDomainCrossRefFragment13, 
     WhiteSpace, 
     TrustTreeRootDomainCrossRefFragment14, 
     WhiteSpace, 
     TrustTreeRootDomainCrossRefFragment15, 
     TrustTreeRootDomainDescription.ExistingFlatName, 
     TrustTreeRootDomainCrossRefFragment16, 
     NCRenameDescription.RootDomain.NewDN, 
     TrustTreeRootDomainCrossRefFragment17, 
     WhiteSpace, 
     TrustTreeRootDomainCrossRefFragment18, 
     TrustTreeRootDomainDescription.NewFlatName, 



 

407 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     TrustTreeRootDomainCrossRefFragment19, 
     NCRenameDescription.RootDomain.NewDN, 
     TrustTreeRootDomainCrossRefFragment20, 
     WhiteSpace, 
     TrustTreeRootDomainCrossRefFragment21, 
     WhiteSpace; 
  
 TrustTreeRootDomainCrossRefFragment01 =  
     "<update path=\"dn:CN="; 
  
 TrustTreeRootDomainCrossRefFragment02 =  
     ",CN=Partitions,CN=Configuration,"; 
  
 TrustTreeRootDomainCrossRefFragment03 =  
     "\" metadata=\"1\">"; 
  
 TrustTreeRootDomainCrossRefFragment04 =  
     "<DnsRoot op=\"replace\">"; 
  
 TrustTreeRootDomainCrossRefFragment05 =  
     "</DnsRoot>"; 
  
 TrustTreeRootDomainCrossRefFragment06 =  
     "<NetBiosName op=\"replace\">"; 
  
 TrustTreeRootDomainCrossRefFragment07 =  
     "</NetBiosName>"; 
  
 TrustTreeRootDomainCrossRefFragment08 =  
     "<TrustParent op=\"delete\"></TrustParent>"; 
  
 TrustTreeRootDomainCrossRefFragment09 =  
     "<RootTrust op=\"replace\">CN="; 
  
 TrustTreeRootDomainCrossRefFragment10 =  
     ",CN=Partitions,CN=Configuration,"; 
  
 TrustTreeRootDomainCrossRefFragment11 =  
     "</RootTrust>"; 
  
 TrustTreeRootDomainCrossRefFragment12 =  
     "<msDS-DnsRootAlias op=\"replace\">"; 
  
 TrustTreeRootDomainCrossRefFragment13 =  
     "</msDS-DnsRootAlias>"; 
  
 TrustTreeRootDomainCrossRefFragment14 =  
     "</update>"; 
  
 TrustTreeRootDomainCrossRefFragment15 =  
     "<move path=\"dn:CN="; 
  
 TrustTreeRootDomainCrossRefFragment16 =  
     ",CN=Partitions,CN=Configuration,"; 
  
 TrustTreeRootDomainCrossRefFragment17 =  
     "\" metadata=\"0\">"; 
  
 TrustTreeRootDomainCrossRefFragment18 =  
     "<to path=\"dn:CN="; 
  
 TrustTreeRootDomainCrossRefFragment19 =  
     ",CN=Partitions,CN=Configuration,"; 
  
 TrustTreeRootDomainCrossRefFragment20 =  
     "\"/>"; 
  
 TrustTreeRootDomainCrossRefFragment21 =  
     "</move>"; 



 

408 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.12.2.2.8 ReplicationEpoch 

 ReplicationEpoch(NCRenameDescription) =  
     ReplicationEpochFragment01, 
     Message, 
     ReplicationEpochFragment02, 
     WhiteSpace, 
     ReplicationEpochFragment03, 
     WhiteSpace, 
     ReplicationEpochFragment04, 
     NCRenameDescription.NewReplicationEpoch, 
     ReplicationEpochFragment05, 
     WhiteSpace, 
     ReplicationEpochFragment06, 
     WhiteSpace, 
     ReplicationEpochFragment07, 
     WhiteSpace; 
  
 ReplicationEpochFragment01 =  
     "<action name=\""; 
  
 ReplicationEpochFragment02 =  
     "\">"; 
  
 ReplicationEpochFragment03 =  
     "<update path=\"$LocalNTDSSettingsObjectDN$\" metadata=\"0\">"; 
  
 ReplicationEpochFragment04 =  
     "<msDS-ReplicationEpoch op=\"replace\">"; 
  
 ReplicationEpochFragment05 =  
     "</msDS-ReplicationEpoch>"; 
  
 ReplicationEpochFragment06 =  
     "</update>"; 
  
 ReplicationEpochFragment07 =  
     "</action>"; 

3.1.1.12.3 Decode Operation 

To process an NC Rename operation, an instance of the NCRenameDescription tuple (section 
3.1.1.12.1.11) describing the operation is required and is provided by the invoker of the NC Rename 

operation. The following EBNF-M operation is performed on the value. 

 Reversed::CodedNCRenameDescription(value) = NR 

If the reverse operation returns an error (that is, the reversal does not result in a single instance of an 
NCRenameDescription (see section 3.1.1.12.2.1.5)), this protocol does not restrict what changes occur 

in the abstract data of the NC performing the NC Rename operation, nor what the return value from 
the operation is. Such changes can be nondeterministic, and no expectation can be made by the user 
of the NC Rename operation as to what the result of an operation using a malformed value will be. In 

order to improve the usability of this operation, it is suggested to implementers that an error be 
returned in this case. 

3.1.1.12.4 (Updated Section) Verify Conditions 

Before an NC Rename operation is performed, the following conditions mustMUST be trueTRUE for the 
abstract data of the DC performing the rename and the NCRenameDescription tuple (section 
3.1.1.12.1.11) describing the operation, hereafter called NR. 

▪ NR.ConfigurationNCGuid is the GUID of a writable object in an NC replica hosted on this DC. 



 

409 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ The value of the msDS-ReplicationEpoch attribute on the DC's NTDS Settings object (section 
6.1.1.2.2.1.2.1.1) does not equal NR.NewReplicationEpoch. 

▪ The number of crossRef objects that refer to domain NCs in the Partitions container (that is, the 
count of domain crossrefs) equals NR.DomainsCount. 

▪ For every NCDescription AppNC in NR.AppNCs: 

▪ AppNC.CrossRefGuid is the GUID of a writable object in an NC replica hosted on this DC. 

▪ The DN of the object whose GUID is AppNC.CrossRefGuid equals AppNC.ExistingDN. 

▪ For every DomainDescription Domain in the union of NR.AllDomains: 

▪ Domain.CrossRefGuid is the GUID of a writable object in an NC replica hosted on this DC. 

▪ The value of the nCName attribute on the object whose GUID is Domain.CrossRefGuid equals 
Domain.ExistingDN. 

▪ There does not exist an object in an NC replica hosted on this DC whose DN is 
"CN=Domain.NewFlatName,CN=Partitions,CN=Configuration,NR.RootDomain.ExistingDN". 

▪ For every ServerDescription Server in Domain.Servers: 

▪ Server.serverGuid is the GUID of a writable object in an NC replica hosted on this DC. 

▪ Every value in Server.SPNs exists as a value of the servicePrincipalName attribute on the 
object whose DN is Server.ExistingDN. 

▪ For every TrustedDomainObjectDescription TrustedDomainObject in 
Domain.TrustedDomainObjects: 

▪ TrustedDomainObject.Guid refers to a writable object in an NC replica hosted on this DC. 

▪ The value of the securityIdentifier attribute on the object whose GUID is 

TrustedDomainObject.Guid equals TrustedDomainObject.SID. 

▪ There does not exist an object whose DN is 
"CN=TrustedDomainObject.NewTrustPartnerDNSName". 

▪ For every InterdomainTrustAccountDescription InterdomainTrustAccount in 
Domain.InterdomainTrustAccounts: 

▪ InterdomainTrustAccount.Guid refers to a writable object in an NC replica hosted on this 
DC. 

▪ The value of the sAMAccountName attribute on the object whose GUID is 
InterdomainTrustAccount.Guid equals InterdomainTrustAccount.ExistingFlatName. 

▪ There does not exist an object whose DN is 

"CN=InterdomainTrustAccount.NewFlatName,InterdomainTrustAccount.ParentDNFromDom

ainDN,Domain.NewDN". 

▪ The number of objects of class trustedDomain that are children of the object whose DN is 
"CN=System,Domain.ExistingDN" equals Domain.CountTrusts. 

If an NC Rename operation is attempted when any of these conditions are not met, the NC Rename 
operation is not performed and the operation returns an error. This protocol does not prescribe what 

error is to be returned; the value of the error is strictly for implementation debugging purposes, and 
clients cannot rely on consistent or meaningful return codes. 



 

410 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

3.1.1.12.5 Process Changes 

To perform the NC Rename operation, the following changes are completed. No ordering of these 
changes is implied or required. When an object is referred to by DN, the value of the DN is the value 

before any changes have been completed. Except where indicated, the metadata of changed objects is 
not updated to reflect the changes. Where the metadata is not updated, the changes are not 
replicated. 

As in the previous section, NR is the NCRenameDescription tuple (section 3.1.1.12.1.11) describing 
the NC Rename operation. 

▪ For the object referred to by the DN "CN=Enterprise 
Configuration,CN=Partitions,CN=Configuraiton,NR.RootDomain.ExistingDN": 

▪ The dnsRoot attribute is set to NR.RootDomain.NewDNSName. 

▪ The metadata of the object is updated to reflect this change. 

▪ For the object referred to by the DN "CN=Enterprise 
Schema,CN=Partitions,CN=Configuration,NR.RootDomain.ExistingDN": 

▪ The dnsRoot attribute is set to NR.RootDomain.NewDNSName. 

▪ The metadata of the object is updated to reflect this change. 

▪ For every NCDescription AppNC in NR.AppNCs: 

▪ The DN of the object whose GUID is AppNC.Guid is set to AppNC.NewDN. 

▪ For the object referred to by 
"CN=AppNC.ExistingFlatName,CN=Partitions,CN=Configuraiton,NR.RootDomain.ExistingDN": 

▪ The dnsRoot attribute on the object is set to AppNC.NewDNSName. 

▪ For the root domain described by the DomainDescription tuple in NR.RootDomain: 

▪ The DN of the object referred to by NR.RootDomain.GUID is set to NR.RootDomain.NewDN. 

▪ For the object referred to by 
"CN=NR.RootDomain.ExistingFlatName,CN=Partitions,CN=Configuration,NR.RootDomain.Exsti
ngDN": 

▪ The RDN is set to NR.RootDomain.NewFlatName. 

▪ The dnsRoot attribute is set to NR.RootDomain.NewDNSName. 

▪ The msDS-DnsRootAlias attribute is set to NR.RootDomain.ExistingDNSName. 

▪ The nETBIOSName attribute is set to NR.RootDomain.NewFlatName. 

▪ For every DomainDescription Domain in NR.TrustTreeRootDomains: 

▪ The DN of the object referred to by Domain.Guid is set to Domain.NewDN. 

▪ For the object referred to by 
"CN=Domain.ExistingFlatName,CN=Partitions,CN=Configuration,NR.RootDomain.ExstingDN": 

▪ The RDN is set to Domain.NewFlatName. 

▪ The dnsRoot attribute is set to Domain.NewDNSName. 

▪ The nETBIOSName attribute is set to Domain.NewFlatName. 



 

411 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Any values of the trustParent attribute are removed. 

▪ The rootTrust attribute is set to Domain.NewDN. 

▪ The msDS-DnsRootAlias attribute is set to Domain.ExistingDNSName. 

▪ For every DomainWithNewTrustParentDescription Domain in NR.TrustTreeNonRootDomains: 

▪ The DN of the object whose GUID is Domain.Guid is set to Domain.NewDN. 

▪ For the object referred to by 
"CN=Domain.ExistingFlatName,CN=Partitions,CN=Configuration,NR.RootDomain.ExstingDN": 

▪ The RDN is set to Domain.NewFlatName. 

▪ The dnsRoot attribute is set to Domain.NewDNSName. 

▪ The nETBIOSName attribute is set to Domain.NewFlatName. 

▪ The trustParent attribute is set to Domain.NewTrustParentFlatName. 

▪ Any values of the rootTrust attribute are removed. 

▪ The msDS-DnsRootAlias attribute is set to Domain.ExistingDNSName. 

▪ For every DomainDescription Domain in NR.AllDomains, where Domain.Guid refers to a writable 
object in an NC replica hosted on this DC: 

▪ For every TrustedDomainObjectDescription TrustedDomainObject in 
Domain.TrustedDomainObjects: 

▪ For the object referred to by 
"CN=TrustedDomainObject.ExistingTrustPartnerDNSName,CN=System,Domain.ExistingDN
": 

▪ The RDN is set to TrustedDomainObject.NewTrustPartnerDNSName. 

▪ The flatName attribute is set to TrustedDomainObject.NewTrustPartnerFlatName. 

▪ The trustPartner attribute is set to TrustedDomainObject.NewTrustPartnerDNSName. 

▪ The metadata of the object is updated to reflect these changes. 

▪ For every InterdomainTrustAccountDescription InterdomainTrustAccount in 
Domain.InterdomainTrustAccounts: 

▪ For the object referred to by 
"CN=InterdomainTrustAccount.ExistingFlatName,InterdomainTrustAccount.ParentDNFrom
DomainDN,Domain.ExistingDN" 

▪ The RDN is set to InterdomainTrustAccount.NewFlatName. 

▪ The sAMAccountName attribute is set to InterdomainTrustAccount.NewFlatName. 

▪ The metadata of the object is updated to reflect these changes. 

▪ The msDS-ReplicationEpoch attribute on the DC's NTDS Settings object (section 6.1.1.2.2.1.2.1.1) 
is set to NR.NewReplicationEpoch. 

When the changes have been successfully performed, the NC Rename operation returns a value of 
success. If some part of the NC Rename operation is not or cannot be performed, this protocol does 
not restrict what changes do occur in the abstract data of the NC performing the NC Rename 



 

412 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

operation, nor what the return value from the operation is. Such changes can be nondeterministic, 
and no expectation can be made by the user of the NC Rename operation as to what the result of a 

failed NC Rename operation will be. In order to improve the usability of this operation, it is suggested 
to implementers that, in this failure case, no changes be made and an error be returned. 

3.1.1.13 Authentication Information Retrieval 

3.1.1.13.1 Informative Overview 

This section defines abstract procedures that are used for obtaining information about a user principal 

during an authentication procedure. 

Note  Authentication information retrieval is applicable only to AD DS. 

3.1.1.13.2 ExpandMemberships 

 procedure ExpandMemberships( 
     InputSids: ARRAY(SID), 
     OperationType: DWORD, 
     ExpandedSids: ARRAY(SID), 
     MaxValidityTimeHint: LARGE_INTEGER) : NTSTATUS 

InputSids: An array of SIDs to be expanded. 

OperationType: Specifies how the SIDs in InputSids are to be expanded. Must be a value from the 
REVERSE_MEMBERSHIP_OPERATION_TYPE enumeration ([MS-DRSR] section 4.1.8.1.3). 

ExpandedSids: Returns the set of expanded SIDs. 

MaxValidityTimeHint: Returns the smallest expiration timestamp of all memberships returned in 

ExpandedSids, or zero if all memberships are persistent. 

Return Values: This procedure returns STATUS_SUCCESS ([MS-ERREF] section 2.3.1) to indicate 

success; otherwise, an NTSTATUS error code. 

Note  This procedure utilizes the IDL_DRSGetMemberships  method ([MS-DRSR] section 4.1.8). 

Logical Processing: 

 Status: NTSTATUS; 
 OutVersion: DWORD; 
 msgIn: DRS_MSG_REVMEMB_REQ; 
 msgOut: DRS_MSG_REVMEMB_REPLY; 
  
 MaxValidityTimeHint := 0; 
  
 /* Initialize input argument for IDL_DRSGetMemberships */  
 msgIn.dwInVersion := 1; 
 msgIn.cDSNames := ARRAYSIZE(InputSids); 
 msgIn.ppDSNames := InputSids; 
 msgIn.dwFlags := 0; 
 msgIn.OperationType := OperationType;     
 msgIn.pLimitingDomain := NULL; 
  
 /* Invoke IDL_DRSGetMemberships locally */ 
 Status := IDL_DRSGetMemberships(NULL, 1, &msgIn, &OutVersion, &msgOut); 
 if Status != STATUS_SUCCESS return Status; 
  
 /* Merge the returned SIDs and returned SID-history SIDs */ 
 ExpandedSids := msgOut.ppDSNames + msgOut.ppSidHistory; 
 if (minimum TTL of all memberships returned in ExpandedSids > 0) 
     MaxValidityTimeHint := (minimum TTL of all memberships 



 

413 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

                             returned in ExpandedSids); 
  
 endif 
 return STATUS_SUCCESS; 

3.1.1.13.3 GetUserLogonInfo 

 procedure GetUserLogonInfo( 
     UserPrincipal: DSNAME, 
     ExpandedSids: ARRAY(SID), 
     MaxValidityTimeHint: LARGE_INTEGER) : NTSTATUS 

UserPrincipal: The principal whose logon information needs to be retrieved. 

ExpandedSids: Returns the set of expanded SIDs. 

MaxValidityTimeHint: Returns a future timestamp that specifies when the returned results are no 

longer considered valid; a value of zero signifies that no hint is being returned. 

Return Values: This procedure returns STATUS_SUCCESS ([MS-ERREF] section 2.3.1) to indicate 
success; otherwise, an NTSTATUS error code. 

Logical Processing: 

 Status: NTSTATUS; 
 ShadowPrincipalSids: ARRAY(SID); 
 MaxShadowPrincipalValidityTimeHint: LARGE_INTEGER; 
  
 /* Invoke ExpandMemberships locally */ 
 Status := ExpandMemberships( 
     UserPrincipal, 
     RevMembGetUniversalGroups, 
     ExpandedSids,  
     MaxValidityTimeHint); 
  
 if (STATUS_SUCCESS != Status) 
     return Status; 
 endif 
  
 /* Invoke ExpandShadowPrincipal locally */ 
 Status := ExpandShadowPrincipal( 
     ExpandedSids, 
     ShadowPrincipalSids, 
     MaxShadowPrincipalValidityTimeHint); 
  
 if (MaxShadowPrincipalValidityTimeHint > 0) 
     MaxValidityTimeHint := min(MaxValidityTimeHint, MaxShadowPrincipalValidityTimeHint); 
 endif 
  
 ExpandedSids := ExpandedSids + ShadowPrincipalSids; 
  
 return Status; 

3.1.1.13.4 GetResourceDomainInfo 

 procedure GetResourceDomainInfo( 
     InputSids: ARRAY(SID), 
     ResourceSids: ARRAY(SID), 
     MaxValidityTimeHint: LARGE_INTEGER) : NTSTATUS 

InputSids: The SIDs to be expanded in the resource domain. 



 

414 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

ResourceSids: Returns the set of expanded SIDs. 

MaxValidityTimeHint: Returns a future timestamp that specifies when the returned results are no 
longer considered valid; a value of zero signifies that no hint is being returned. 

Return Values: This procedure returns STATUS_SUCCESS ([MS-ERREF] section 2.3.1) to indicate 

success; otherwise, an NTSTATUS error code. 

Logical Processing: 

 Status: NTSTATUS; 
  
 /* Invoke ExpandMemberships locally */ 
 Status := ExpandMemberships( 
     InputSids, 
     RevMembGetResourceGroups, 
     ResourceSids,  
     MaxValidityTimeHint); 
 return Status; 

3.1.1.13.5 ExpandShadowPrincipal 

 procedure ExpandShadowPrincipal( 
     InputSids: ARRAY(SID), 
     ExpandedSids: ARRAY(SID), 
     MaxValidityTimeHint: LARGE_INTEGER) : NTSTATUS 

InputSids: An array of SIDs to be expanded. 

ExpandedSids: Returns the set of expanded SIDs. 

MaxValidityTimeHint: Returns the smallest expiration timestamp of all memberships returned in 
ExpandedSids, or zero if all memberships are persistent.  

Return Values: This procedure returns STATUS_SUCCESS ([MS-ERREF] section 2.3.1) to indicate 
success; otherwise, an NTSTATUS error code. 

Note  In the following logical processing, the GUID of the Privileged Access Management optional 
feature is defined in section 6.1.1.2.4.1.3.2. 

Logical Processing: 

 v,u,w : DSName; 
 ShadowPrincipalContainer : DSName; 
 nameSet : set of DSName; 
 pamFeatureGuid: GUID; 
  
 MaxValidityTimeHint := 0; 
  
 /* Check if the feature is enabled */ 
 pamFeatureGuid := GUID of the Privileged Access Management optional feature; 
 if (!IsOptionalFeatureEnabled(DSName of Cross-Ref-Container, pamFeatureGuid)) 
   ExpandedSids := {}; 
   MaxValidityTimeHint := 0; 
   return STATUS_SUCCESS 
 endif 
  
 /* Get the name of the shadow principal container */ 
 ShadowPrincipalContainer := "CN=Shadow Principal Configuration,CN=Services" 
ShadowPrincipalContainer := ShadowPrincipalContainer + dc.configNC 

  
 /* Check if each SID is a member of any shadow principals */ 



 

415 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 foreach v in InputSids 
   nameSet := select all w from children ShadowPrincipalContainer where  
     (w!member := v) and  
     (w!objectClass := msDS-ShadowPrincipal) 
   /* For each shadow principal, add its shadow principal SID to the output */ 
   foreach u in nameSet  
      if (!(u!msDS-ShadowPrincipalSid in ExpandedSids))  
        ExpandedSids := ExpandedSids + u!msDS-ShadowPrincipalSid 
      endif 
   endfor 
 endfor  
  
 if ((minimum TTL of all memberships returned in ExpandedSids) > 0) 
     MaxValidityTimeHint := (minimum TTL of all memberships 

                            returned in ExpandedSids); 
 endif 

return STATUS_SUCCESS; 

3.1.1.13.6 GetUserLogonInfoByAttribute 

procedure GetUserLogonInfoByAttribute( 

    SearchKey: unicodestring, 

    Attribute: ATTRTYP, 

    ExpandedSids: ARRAY(SID), 

    MaxValidityTimeHint: LARGE_INTEGER) : NTSTATUS 

SearchKey: The principal whose logon information is to be retrieved. 

Attribute: The attribute to use when searching for the principal. 

ExpandedSids: Returns the set of expanded SIDs. 

MaxValidityTimeHint: Returns a future timestamp that specifies when the returned results are no 
longer considered valid; a value of zero signifies that no hint is being returned. 

Return Values: This procedure returns STATUS_SUCCESS ([MS-ERREF] section 2.3.1) to indicate 
success; otherwise, an NTSTATUS error code. 

Note  This procedure uses the pseudocode language defined in [MS-DRSR] section 3.4, and other 

functions defined in [MS-DRSR] section 4.1.4.2. 

Logical Processing: 

Status: NTSTATUS; 

Names: set of DSName 

 

/* Look for user account */ 

Names := LookupAttr(0, Attribute, SearchKey) 

if Names == null 

    return STATUS_NO_SUCH_USER 

endif 

 

/* Ensure uniqueness */ 

if number(Names) != 1 

    return STATUS_NO_SUCH_USER 

endif 

 

Status = GetUserLogonInfo( 

    Names[0], 

    ExpandedSids, 

    MaxValidityTimeHint); 

 



 

416 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

return Status; 

3.1.1.13.7 GetUserLogonInfoByUPNOrAccountName 

procedure GetUserLogonInfoByUPNOrAccountName( 

    UPNOrName: unicodestring, 

    ExpandedSids: ARRAY(SID), 

    MaxValidityTimeHint: LARGE_INTEGER) : NTSTATUS 

UPNOrName: The principal whose logon information is to be retrieved. 

ExpandedSids: Returns the set of expanded SIDs. 

MaxValidityTimeHint: Returns a future timestamp that specifies when the returned results are no 
longer considered valid; a value of zero signifies that no hint is being returned. 

Return Values: This procedure returns STATUS_SUCCESS ([MS-ERREF] section 2.3.1) to indicate 

success; otherwise, an NTSTATUS error code. 

Note  This procedure uses functions defined in [MS-DRSR] section 4.1.4.2. 

Logical Processing: 

Status: NTSTATUS; 

UserName: unicodestring 

 

 

/* Search on the userPrincipalName attribute first */ 

Status := GetUserLogonInfoByAttribute( 

    UPNOrName, 

    userPrincipalName, 

    ExpandedSids, 

    MaxValidityTimeHint); 

 

if Status == STATUS_SUCCESS 

    return Status; 

endif 

 

/* Search on the sAMAccountName attribute next */ 

Status := GetUserLogonInfoByAttribute( 

    UPNOrName, 

    sAMAccountName, 

    ExpandedSids, 

    MaxValidityTimeHint); 

 

if Status == STATUS_SUCCESS 

    return Status; 

endif  

 

/* Parse the input for the user name and search on that */ 

UserName := UserNameFromUPN(UPNOrName); 

if UserName != null 

    Status := GetUserLogonInfoByAttribute( 

       UserName, 

       sAMAccountName, 

       ExpandedSids, 

       MaxValidityTimeHint); 

   if Status == STATUS_SUCCESS 

       return Status; 

   endif 

endif 

 

return STATUS_NO_SUCH_USER; 



 

417 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

4 (Updated Section) Protocol Examples 

Note  For information about domain join see see section 6.4. To examine a sample scenario for 
joining a domain, see [MS-SYS-ARCHIVE] section 6. 

The Active Directory Technical Specification (this document) does not specify a protocol, but rather a 
state model and a set of behaviors that must be followedto follow such that protocols in the 
documentation set (for instance, the protocols specified in [MS-DRSR] and [MS-SAMR]) will expose 

the expected behavior to Windows clients. While this document includes a discussion of LDAP, it does 
so only to specify Active Directory's conformance with and extensions to that protocol, not to specify 
the protocol itself. 

As a result, no protocol examples are appropriate for this document. This section is left in place to 
maintain section numbering consistency with the documentation template that is used throughout the 
protocol documentation set. 



 

418 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

5 Security 

5.1 LDAP Security 

References 

LDAP attributes: userPassword, sAMAccountName, userPrincipalName, uPNSuffixes, supported 
Capabilities, servicePrincipalName, nTSecurityDescriptor, schemaIDGUID, attributeSecurityGUID, 
dSHeuristics, validAccesses, rightsGuid, appliesTo: [MS-ADA1], [MS-ADA2], [MS-ADA3] 

LDAP object class controlAccessRight: [MS-ADSC] 

ACCESS_MASK structure and access right bits: [MS-DTYP] section 2.4.3 

ACE structure: [MS-DTYP] section 2.4.4 

ACL structure: [MS-DTYP] section 2.4.5 

SECURITY_DESCRIPTOR structure: [MS-DTYP] section 2.4.6 

5.1.1 Authentication 

This section discusses the use of the LDAP bind mechanism in Active Directory to perform 

authentication, and the various authentication methods that are supported. 

5.1.1.1 Supported Authentication Methods 

[RFC2251] section 4.2 defines an AuthenticationChoice structure for a BindRequest that contains two 
alternatives: simple and SASL. [RFC1777] section 4.1 defines an authentication structure for a 

BindRequest that contains three alternatives: simple, krbv42LDAP, and krbv42DSA. Active Directory 
supports only simple and SASL authentication mechanisms. The former is for LDAP simple binds, while 

the latter is for LDAP SASL binds (as documented in [RFC2829]). In addition, Active Directory 
supports a third mechanism named "Sicily" that is primarily intended for compatibility with legacy 
systems. Sicily support adds three choices to the AuthenticationChoice structure, resulting in the 
following. 

 AuthenticationChoice ::= CHOICE { 
     simple                 [0]    OCTET STRING, 
     sasl                   [3]    SaslCredentials 
     sicilyPackageDiscovery [9]    OCTET STRING 
     sicilyNegotiate        [10]   OCTET STRING 
     sicilyResponse         [11]   OCTET STRING  } 

The relationship of the three authentication mechanisms, and the authentication protocols supported 
by each, is summarized in the following tables. 

Authentication Mechanism: Simple 

For the simple authentication mechanism, authentication is described entirely by the mechanism; no 
additional authentication protocols are used. 

Authentication Mechanism: SASL 

Authentication protocols  Comments  

GSS-SPNEGO GSS-SPNEGO, in turn, uses Kerberos or NTLM as the underlying 
authentication protocol. 



 

419 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Authentication protocols  Comments  

GSSAPI GSSAPI, in turn, always uses Kerberos as the underlying 
authentication protocol. 

EXTERNAL - 

DIGEST-MD5 - 

Authentication Mechanism: Sicily 

Authentication protocols  Comments  

NTLM - 

Each of the three authentication mechanisms supported by Active Directory is discussed in more detail 
in the following sections. 

5.1.1.1.1 Simple Authentication 

The support of simple bind in Active Directory is consistent with [RFC2251] section 4.2 and 
[RFC2829]. Active Directory does not require, but supports, the use of an SSL/TLS-encrypted or 

otherwise protected connection when performing a simple bind. Also, while section 6.2 of [RFC2829] 
specifies that an object possessing a userPassword attribute is a prerequisite to being able to perform 
a simple bind using that object's credentials, Active Directory does not use the userPassword attribute 
to store the user's password in most cases, and possession of such an attribute is not a prerequisite to 
performing a simple bind against an object. The password attributes used in Active Directory are 
discussed in more detail in "LDAP Password Modify Operations" in section 3.1.1.3.1.5. The simple bind 
uses the password policy settings described in the Group Policy: Security Protocol [MS-GPSB] section 

2.2.1.2 and is applied using the policy described in [MS-GPSB] section 3.2.5.2. 

When performing a simple bind, Active Directory accepts several forms of name in the name field of 
the BindRequest. Each name form is tried in turn. If the name field of the BindRequest maps to a 

single object using the attempted name form, the password on that object is checked, and the 
authentication succeeds or fails (with the error invalidCredentials / <unrestricted>) depending on the 
result. If the name field of the BindRequest maps to more than one object, the BindRequest fails with 
the error invalidCredentials / ERROR_INVALID_PARAMETER. If the name field of the BindRequest 

maps to no object, the next object name form is tried; if all forms have been tried, the BindRequest 
fails with the error invalidCredentials / ERROR_INVALID_PARAMETER. 

For AD DS, the name forms are tried in the order they are listed below. For AD LDS, the name forms 
are tried in the order below, except that forms marked "Only for AD DS" are not tried, and the User 
Principal Name (UPN) mapping (the second form below) is tried last. 

The name forms are: 

1. The DN of the object. 

2. The user principal name (UPN) of the object. The UPN of an object is either: 

▪ A value of the userPrincipalName attribute of the object, or 

▪ Only for AD DS: The value of the sAMAccountName attribute of the object, followed by a "@" 
sign, followed by either: 

▪ The DNS name of a domain in the same forest as the object, or 

▪ A value in the uPNSuffixes attribute of the Partitions container in the config NC replica. 



 

420 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

When a name matches both the userPrincipalName attribute of one object and the UPN 
generated from the sAMAccountName of another object, the simple bind processing attempts 

to authenticate as the first object (that is, priority is given to the value of the 
userPrincipalName attribute) rather than failing the bind due to duplicate objects. 

3. Only for AD DS: The NetBIOS domain name, followed by a backslash ("\"), followed by the value 
of the sAMAccountName attribute of the object. 

4. The canonical name of the object. 

5. The value of the objectGUID attribute of the object, expressed in dashed-string form ([RFC4122] 
section 3) and surrounded by curly braces (for example, "{ca2e693f-6280-4589-9376-
b3707345d3ad}"). 

6. The value of the displayName attribute of the object. 

7. Only for AD DS: A value of the servicePrincipalName attribute of the object. 

8. Only for AD DS: A value V that, when the MapSPN(V, M) algorithm of [MS-DRSR] section 
4.1.4.2.19 is applied to it, corresponds to a value of the servicePrincipalName attribute of the 
object. M is the value of the sPNMappings attribute of the nTDSService object. 

9. The value of the objectSid attribute of the object, in SDDL SID string form ([MS-DTYP] section 
2.4.2.1). 

10. Only for AD DS: A value from the sIDHistory attribute of the object, in SDDL SID string form 
([MS-DTYP] section 2.4.2.1). 

11. The canonical name of the object in which the rightmost forward slash (/) is replaced with a 
newline character (\n). 

5.1.1.1.2 SASL Authentication 

The support of SASL bind in Active Directory is consistent with [RFC2251] section 4.2.1 and 

[RFC2829]. The following SASL mechanisms are supported by Active Directory. They are briefly 
described in "LDAP SASL Mechanisms", section 3.1.1.3.4.5: 

▪ GSS_SPNEGO [MS-SPNG] 

▪ GSSAPI [RFC2078] 

▪ EXTERNAL [RFC2829] 

▪ DIGEST-MD5 [RFC2831] 

Active Directory supports the optional use of integrity verification or encryption that is negotiated as 

part of the SASL authentication. While Active Directory permits SASL binds to be performed on an 
SSL/TLS-protected connection, it does not permit the use of SASL-layer encryption/integrity 
verification mechanisms on such a connection. While this restriction is present in Active Directory on 
Windows 2000 Server operating system and later, versions prior to Windows Server 2008 operating 

system can fail to reject an LDAP bind that is requesting SASL-layer encryption/integrity verification 
mechanisms when that bind request is sent on a SSL/TLS-protected connection. 

Once a SASL-layer encryption/integrity verification mechanism is in use on a connection, the client 
SHOULD not send an additional bind request on that connection (for example, to change the 
credentials with which the connection is authenticated), unless the 
LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID capability is present in the supportedCapabilities 
attribute of the rootDSE for that DC (see "LDAP Capabilities" in section 3.1.1.3.4.3). If the client sends 
an additional bind to a DC on which that capability is not present, the DC returns the 
unwillingToPerform / ERROR_DS_INAPPROPRIATE_AUTH error. 



 

421 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Regarding [RFC2829] section 9: when using the EXTERNAL SASL mechanism, Active Directory 
supports the authzId field. However, it only supports the dnAuthzId form and not the uAuthzId form. 

Additionally, it does not permit an authorization identity to be established on the connection that is 
different from the authentication identity used on the connection. Violation of either of these rules 

causes the DC to return the invalidCredentials / <unrestricted> error. 

Regarding [RFC2829] section 6.1: when using the DIGEST-MD5 mechanism: 

▪ On Windows 2000 operating system, Windows Server 2003 operating system, Windows Server 
2003 R2 operating system, Windows Server 2008, and Windows Server 2008 R2 operating 
system, Active Directory does not support subsequent authentication, although the credentials 
field contains the string defined by "response-auth" in [RFC2831] section 2.1.3. 

▪ On Windows Server 2008 R2 operating system with Service Pack 1 (SP1) and Windows Server 

2012 operating system and later, Active Directory also does not support subsequent 
authentication, but will respond to such requests with an initial authentication challenge (see 
[RFC2831] section 2.1.1). 

5.1.1.1.3 Sicily Authentication 

Sicily is a combination of a package discovery mechanism and an authentication mechanism. Unlike 

SASL, Sicily includes package discovery in the authentication mechanism itself. The package discovery 
mechanism permits a client to discover the authentication protocols (also known as packages) that a 
DC supports. The authentication mechanism then permits a client to authenticate using one of those 
protocols. The authentication mechanism is independent of the package discovery mechanism in that 
a client can skip the package discovery mechanism entirely and proceed directly to the authentication 
mechanism (for example, if the client has some out-of-band knowledge of which authentication 
protocols the server supports). 

Active Directory exposes and supports only the NTLM authentication protocol, as specified in [MS-
NLMP], via Sicily. 

The package discovery mechanism is performed by the client sending a BindRequest to the DC in 

which the name field of the BindRequest is empty and the authentication field contains the 
sicilyPackageDiscovery choice. The octet string contained in the sicilyPackageDiscovery choice is not 
used and is empty. 

The DC responds to a sicilyPackageDiscovery by returning a SicilyBindResponse. A SicilyBindResponse 

is similar to an [RFC2251] BindResponse, but some of the fields differ. The SicilyBindResponse is 
defined as follows. 

 SicilyBindResponse ::= [APPLICATION 1] SEQUENCE { 
  
     resultCode   ENUMERATED { 
                      success                     (0), 
                      protocolError               (2), 
                      adminLimitExceeded          (11), 
                      inappropriateAuthentication (48), 
                      invalidCredentials          (49), 
                      busy                        (51), 
                      unavailable                 (52), 
                      unwillingToPerform          (53), 
                      other                       (80) }, 
  
     serverCreds  OCTET STRING, 
     errorMessage LDAPString } 

Note that resultCode is a subset of the enumeration present in LDAPResult. If the 
sicilyPackageDiscovery request is successful, the DC sets the resultCode to success in its 
SicilyBindResponse, and returns a string in serverCreds consisting of the semicolon-separated names 



 

422 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

of the authentication protocols it supports via the Sicily authentication mechanism. Active Directory 
supports NTLM, and returns the string "NTLM" in the package discovery response. The names of the 

authentication protocols are ordered in the server's preferred order, starting with the most-preferred 
authentication protocol. If the sicilyPackageDiscovery request is not successful, the DC returns an 

error in the resultCode field of the SicilyBindResponse. If the sicilyPackageDiscovery request fails 
because the DC does not support any authentication protocols via Sicily, the DC returns the error 
inappropriateAuthentication / ERROR_DS_INAPPROPRIATE_AUTH. The errorMessage field of the 
SicilyBindResponse can contain additional implementation-specific details indicating why the request 
failed. 

Once the client has determined which authentication protocol it will use, it uses the Sicily 
authentication mechanism to authenticate the connection. The Sicily authentication mechanism 

consists of two requests, both of which take the form of an LDAP BindRequest. The first request is the 
sicilyNegotiate request. If successful, this is followed by the sicilyResponse request. 

The authentication begins when the client sends the sicilyNegotiate request to the DC. This constitutes 
a BindRequest in which the name field is set to "NTLM" and the authentication field contains the 
sicilyNegotiate choice. The sicilyNegotiate choice contains an octet string consisting of binary data 

supplied by and dependent on the authentication protocol that is used, and which serves as a 

representation of the credentials with which the client wishes to authenticate the connection. If 
successful, the DC responds with a SicilyBindResponse in which the resultCode is set to success and 
the serverCreds contains binary data supplied by the authentication protocol on the server side. The 
client is expected to pass this binary data, whose content is authentication protocol–specific, to its 
implementation of the authentication package. If not successful, the DC returns an error in the 
resultCode field of the SicilyBindResponse, indicating that the sicilyNegotiate request was not 
successful. If the credentials supplied by the client are invalid, the DC returns the invalidCredentials / 

<unrestricted> error. If the client requests an authentication protocol that is not supported by the DC, 
it returns the inappropriateAuthentication / ERROR_DS_INAPPROPRIATE_AUTH error. The 
errorMessage field of the SicilyBindResponse can contain additional implementation-specific details 
indicating why the request failed. 

If the sicilyNegotiate request is successful, the client then sends the sicilyResponse request to the DC 
by sending a BindRequest in which the name field is empty and the authentication field contains the 

sicilyResponse choice. The octet string in the sicilyResponse choice contains authentication protocol–

specific data, generated in response to the data received in the serverCreds field of the 
SicilyBindResponse. The DC responds to this sicilyResponse request by sending a SicilyBindResponse. 
The serverCred field is not used in this response, and is empty. If successful, the DC sets the 
resultCode field to success, and the connection is now authenticated as the client-supplied credentials. 
If the bind fails, the DC sets resultCode to an error and the connection is not authenticated. As in the 
previous case, the DC uses the error invalidCredentials / <unrestricted> to indicate that the client 

presented incorrect credentials, and the error inappropriateAuthentication / 
ERROR_DS_INAPPROPRIATE_AUTH to indicate that the client requested an unsupported protocol. The 
errorMessage field of the SicilyBindResponse can contain additional implementation-specific details 
indicating why the request failed. 

As with SASL, integrity verification or encryption can be negotiated as part of the Sicily authentication. 
The support for, and means of implementation of, such mechanisms is dependent on the particular 
authentication protocol used (for example, NTLM). As with SASL, such mechanisms cannot be used on 

a connection that is protected by SSL/TLS mechanisms, and once such a mechanism is in use, the 

connection cannot be rebound unless the LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID 
capability is present in the supportedCapabilities attribute of the rootDSE of the DC. 

5.1.1.2 Using SSL/TLS 

Active Directory permits two means of establishing an SSL/TLS-protected connection to a DC. The first 
is by connecting to a DC on a protected LDAPS port (TCP ports 636 and 3269 in AD DS, and a 
configuration-specific port in AD LDS). The second is by connecting to a DC on a regular LDAP port 
(TCP ports 389 or 3268 in AD DS, and a configuration-specific port in AD LDS), and later sending an 



 

423 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LDAP_SERVER_START_TLS_OID extended operation [RFC2830]. In both cases, the DC will request 
(but not require) the client's certificate as part of the SSL/TLS handshake [RFC2246]. If the client 

presents a valid certificate to the DC at that time, it can be used by the DC to authenticate (bind) the 
connection as the credentials represented by the certificate. 

If the client establishes the SSL/TLS-protected connection by means of connecting on a protected 
LDAPS port, then the connection is considered to be immediately authenticated (bound) as the 
credentials represented by the client certificate. An EXTERNAL bind is not allowed, and the bind will be 
rejected with an error. If the client does not present a certificate during the SSL/TLS handshake, the 
connection is not authenticated and is treated as anonymous. In that case, the DC rejects any attempt 
to perform an EXTERNAL bind with the error invalidCredentials / <unrestricted>. 

If the client establishes the SSL/TLS-protected connection by means of an 

LDAP_SERVER_START_TLS_OID operation, the authentication state of the connection remains the 
same after the operation as it was before the operation. The DC authenticates the connection as the 
credentials represented by the client's certificate only if an EXTERNAL SASL bind is subsequently 
performed. This is similar to the "implicit assertion" of [RFC2830] section 5.1.2.1, except that neither 
the authentication identity nor the authorization identity is established on the connection until the 

EXTERNAL bind takes place. If the client includes the authzId field in the EXTERNAL bind, in accord 

with the "explicit assertion" of [RFC2830] section 5.1.2.2, then as described in section 5.1.1.1.2 the 
authzId field contains the DN of the object that the EXTERNAL bind is authenticating the connection 
as; in other words, the object associated with the credentials represented by the certificate. Therefore, 
the implicit assertion and explicit assertion are functionally identical. If the client performs an 
EXTERNAL bind but does not supply a certificate during the SSL/TLS handshake, the EXTERNAL bind 
fails with the error invalidCredentials / <unrestricted>. 

Alternatively, the client can perform any other form of LDAP bind that is permissible on an SSL/TLS-

protected connection, or the client can perform no bind to continue to use any authentication and 
authorization identity that was previously established on the connection. 

5.1.1.3 Using Fast Bind 

Active Directory supports a mode of operation known as "fast bind" that can be enabled for each LDAP 

connection. Fast bind mode allows a client to use the LDAP bind request to simply validate credentials 
and authenticate the client without the overhead of establishing the authorization information. Fast 
bind mode is enabled on a connection by sending the LDAP_SERVER_FAST_BIND_OID LDAP extended 
operation on the connection, documented in "LDAP Extended Operations" in section 3.1.1.3.4.2. 

Once fast bind mode is enabled on a connection, it cannot be disabled on that connection. This mode 
cannot be enabled on a connection on which a successful bind was previously performed, and the 

server returns unwillingToPerform / ERROR_DS_INAPPROPRIATE_AUTH if such an attempt is made. 

When fast bind mode is enabled on an LDAP connection, the DC accepts bind requests and validates 
the credentials presented, returning an error code that indicates a success or failure. However, on 
successful binds, the DC does not perform authorization steps, and the connection is treated as if it 
was authorized as the anonymous user. 

While [RFC2251] section 4.2.1 specifies that a bind request causes all operations currently in progress 

on a connection to be abandoned, when the connection is in fast bind mode, multiple independent 

binds (for example, using different credentials) can simultaneously be in progress on the same 
connection without any of them being abandoned. This permits a client to validate multiple sets of 
credentials at the same time, while the DC always considers the connection to be authenticated and 
authorized as the anonymous user. 

Only simple binds are accepted on a connection in fast bind mode. The client can use SSL/TLS 
protection on a connection in fast bind mode. 



 

424 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

5.1.1.4 Mutual Authentication 

[MS-DRSR] sections 2.2.2 and 2.2.4 specify the mutual authentication requirements for client-to-DC 
interactions over the RPC interfaces documented in [MS-DRSR]. The requirements are the same for 

mutual authentication in an LDAP connection. 

Therefore, by registering its SPNs (2) for the RPC interfaces documented in [MS-DRSR], a DC also 
satisfies its SPN (2) registration requirements for LDAP. 

5.1.1.5 (Updated Section) Supported Types of Security Principals 

For AD DS, the concept of "security principal" is straightforward: a security principal is an object in the 
directory that possesses an objectSid attribute. But for AD LDS, the notion of security principal is more 
complex, because AD LDS recognizes three distinct types of security principals, any of which can 
authenticate via an LDAP Bind request: 

▪ AD LDS security principals that are created in an AD LDS NC. 

▪ Principals that are defined by the operating system of the computer on which AD LDS is running. 

▪ Principals that are defined in an Active Directory domain to which the computer on which AD LDS 
is running is joined, or principals that are in domains that are trusted by the joined domain. 

In addition to these three types of security principals, AD LDS also supports bind proxies, which are 
not security principals but which can be authenticated via an LDAP Bind request. This section will 
discuss each of the three types of security principals in turn, and follow that with a discussion of bind 
proxies. Finally, it will conclude with an explanation of which types of LDAP Binds an AD LDS server 
mustMUST support for each type of principal and bind proxy. 

The first type of security principal in AD LDS is unchanged from AD DS: an object in the directory that 
possesses an objectSid attribute. However, while AD DS restricts security principals to the domain NC, 
AD LDS (which has no domain NCs) permits security principals to be stored in an application NC. 
Additionally, if the ADAMAllowADAMSecurityPrincipalsInConfigPartition configuration setting is 

supported and equals 1 (section 3.1.1.3.4.7), AD LDS permits security principals to be created in the 
config NC. 

In AD DS, the set of security principal object classes is fixed. In AD LDS, any object class that 

statically links (section 3.1.1.2.4.6) to the msDS-BindableObject auxiliary class is a security principal 
object class. Dynamically instantiating the msDS-BindableObject auxiliary class does not have the 
same effect. 

The second and third types of principals are similar to each other in that both are means for AD LDS to 
"pass through" the Authentication to the underlying operating system on which it is running. AD LDS 
recognizes as a security principal those security principals (users and groups) that are stored locally 

on the computer on which AD LDS is running. Additionally, if the computer is a member of a domain, 
then AD LDS recognizes as security principals any security principals that are in that domain or which 
are in a domain trusted by that domain. Such security principals can be included in the security 
descriptors of objects in the AD LDS directory in the same fashion as security principals of the first 
type. Additionally, such security principals can be included in the membership of group objects in AD 

LDS, and in the msDS-ServiceAccount attribute of nTDSDSA objects in AD LDS, via the automatic 
creation of foreignSecurityPrincipal objects (sections 3.1.1.5.2.4 and 3.1.1.5.3.3). 

Note that, except for the creation of foreignSecurityPrincipal objects as needed to represent group 
members or service accounts, the second and third types of principals are not represented as objects 
in AD LDS. Instead, upon receipt of an LDAP Bind request for such a principal, AD LDS provides the 
credentials it receives in the Bind request to the host operating system and relies on the host 
operating system to validate those credentials. The means of passing the received credentials to the 
host operating system, as well as the method that the host operating system uses to validate those 
credentials, is implementation-specific. 



 

425 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Bind proxies are objects in AD LDS that contain the msDS-BindProxy auxiliary class. A bind proxy 
contains an objectSid attribute but is not a security principal. Rather, it is a means of associating an 

object in AD LDS with a security principal of the underlying operating system (that is, the second or 
third type of security principal). The objectSid attribute contains the SID of a security principal of the 

second or third type. When an LDAP Bind request is received in which the object identified in the name 
field of the BindRequest is an msDS-BindProxy object, the server performs the following actions: 

▪ Retrieve the value V of the objectSid attribute from the named object. 

▪ Pass through the Authentication request to the host operating system as a request to authenticate 
a principal whose SID is V and whose password is as supplied in the LDAP Bind request. 

An LDAP Bind request that targets an msDS-BindProxy object O has nearly the same effect as an LDAP 
Bind request for a security principal S of the second or third type. Instead of directly naming S in the 

LDAP Bind request, the client names an object O such that O!objectSid equals the SID of S. The 
security context generated by the two requests is slightly different, as specified in section 5.1.3.4. 

In order for an object class to be usable in an LDAP Bind request in AD LDS, that object class 

mustMUST either contain the msDS-BindableObject class or the msDS-BindProxy class. 

AD LDS servers restrict the authentication mechanisms and protocols that can be used to authenticate 
different types of security principal and bind proxies. The authentication mechanisms and protocols 

supported by AD LDS for each type of principal or proxy are specified in the following table. 

Type of principal/proxy 
Supported authentication 
mechanism 

Supported authentication 
protocol 

First type (AD LDS principal) Simple 

SASL 

- 

DIGEST-MD5* 

Second or third type (computer or domain 
principal) 

SASL 

SASL 

SASL 

SASL 

Sicily 

GSSAPI 

GSS-SPNEGO 

DIGEST-MD5 

EXTERNAL 

NTLM 

Bind proxy Simple - 

* DIGEST-MD5 authentication for AD LDS security principals is supported only when the 

ADAMDisableSSI configurable setting (section 3.1.1.3.4.7) is supported and is equal to 0. If the 
ADAMDisableSSI configurable setting is not supported, then DIGEST-MD5 authentication for AD LDS 
security principals is not supported. 

In particular, note that simple bind is not supported for principals of the second or third type, and that 
DIGEST-MD5 is the only SASL protocol supported for all types of security principals in AD LDS. 

5.1.1.6 Authentication Expiration 

▪ If the authentication method used to establish a connection specifies an expiry time, the DC MUST 
associate the expiry time with the connection. The expiry time is then used as follows: A DC MUST 
disconnect connections having expiry times in a given period of time following the expiry time. 
Although the protocol places no boundary or other requirement on the length of the given time 

period, it is recommended that implementations minimize the length of the time period to improve 
client usability of the directory.  

▪ When a DC receives a new LDAP request on an existing connection that has an associated expiry 
time, where the current time exceeds the expiry time, the DC MUST NOT execute the LDAP 
request. Instead, the DC MUST disconnect the connection and send a Notice of Disconnection. 



 

426 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The Notice of Disconnection has the following ASN.1 definition: 

  NoticeOfDisconnectionLDAPMessage ::= SEQUENCE { 

          messageID       MessageID, 

          protocolOp      CHOICE { 

                 extendedResp    NoticeOfDisconnectionExtendedResponse }, 

          responseName    [10] LDAPOID} 

   

  NoticeOfDisconnectionExtendedResponse ::= [APPLICATION 24] SEQUENCE { 

          COMPONENTS OF LDAPResult } 

   

  where MessageID is defined in [RFC2251] 

Note that the NoticeOfDisconnectionLDAPMessage is used instead of the LDAPMessage specified in 

[RFC2251]. 

5.1.2 Message Security 

5.1.2.1 Using SASL 

Active Directory supports the optional use of an LDAP message security layer that provides message 
integrity and/or confidentiality protection services that are negotiated as part of the SASL 
authentication. Support for such mechanisms and their implementation is dependent on the specific 
authentication protocol used (for example, Kerberos or Digest), and is documented in the SASL 
specification for each authentication protocol. 

Once a SASL-negotiated security layer is in effect in the LDAP data stream, it remains in effect until 
either a subsequently negotiated security layer is installed or the underlying transport connection is 
closed. When in effect, the security layer processes protocol data into buffers of protected data as per 
[RFC2222]. 

While Active Directory permits SASL binds to be performed on an SSL/TLS-protected connection, it 
does not permit the use of SASL-layer confidentiality/integrity protection mechanisms on such a 

connection. Active Directory can also be configured to require that SASL layer integrity protection 
services be used on a LDAP connection (the way in which the configuration can be done is outside the 
scope of the state model and is implementation-dependent).  

On Windows 2000 Server and later, Active Directory treats a request for SASL-layer integrity 
protection and SASL-layer confidentiality protection distinctly. Therefore, if a client does not request 
SASL-layer integrity protection or requests SASL-layer confidentiality protection without requesting 
integrity protection when sending a bind request to a DC which is configured to require SASL-layer 

integrity protection, the DC will reject such a bind and return the error strongAuthRequired / 
ERROR_DS_STRONG_AUTH_REQUIRED. On Windows Server 2008 and later, Active Directory treats a 
request for SASL-layer confidentiality protection as also requesting SASL-layer integrity protection; 
therefore, a DC that is configured to require SASL-layer integrity protection will accept a bind from a 
client that requests SASL-layer confidentiality protection but does not explicitly request SASL-layer 
integrity protection. A DC configured to require SASL-layer integrity protection will accept a bind 
request from a client sent on a SSL/TLS-protected connection even if the client does not request 

SASL-layer integrity because it will accept the SSL/TLS-encryption in lieu of SASL-layer integrity. 

5.1.2.2 Using SSL/TLS 

Active Directory supports LDAP message security on an SSL/TLS-protected connection to a DC in 

accordance with [RFC2246]. 

As indicated in the previous section, Active Directory does not permit SASL-layer message 
confidentiality/integrity protection mechanisms to be employed on an SSL/TLS-protected LDAP 
connection. 



 

427 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Active Directory supports channel binding on SSL/TLS-protected LDAP connections, as specified in 
[RFC5929], [RFC5056], and [RFC4121]. Note that for LDAP connections, a DC MUST support the tls-

server-endpoint type binding, as specified in [RFC5929] and [RFC5056]. 

Active Directory can be configured for channel binding in the following ways: 

▪ To not use channel binding (the default). 

▪ To use channel binding but refuse connections that do not meet channel binding requirements. 

▪ To use channel binding and permit connections that do not meet channel binding requirements. 

The mechanism to specify such configurations is implementation-defined. 

5.1.3 (Updated Section) Authorization 

Although the LDAP security model does not include mechanisms for access control, Active Directory 
provides access control in the form of access control lists (ACLs) on directory objects. 

If the fLDAPBlockAnonOps heuristic of the dSHeuristics attribute (see section 6.1.1.2.4.1.2) is 
trueTRUE, anonymous (unauthenticated) users are limited to performing rootDSE searches and binds. 
If fLDAPBlockAnonOps is falseFALSE, anonymous users can perform any LDAP operation, subject to 

access checks that use the ACL mechanisms described in this section. 

5.1.3.1 Background 

The security context of a requester (see security context in the Glossary) requesting access to an 
Active Directory object represents the authorization information that is associated with the requester. 

A DC performs an access check to determine whether the security context, and thus the requester, is 
authorized for the type of access that has been requested before allowing any further processing to 
continue. Access control information associated with an object is contained in the security descriptor 
of the object. 

Every object in Active Directory has an nTSecurityDescriptor attribute whose value is the security 
descriptor that contains access control information for the object. 

An access check compares information in the thread's security context with information in the object's 
security descriptor: 

▪ The security context contains a SID that identifies the principal associated with the thread, and 
SIDs that identify the groups of which the principal is a member. 

▪ The security descriptor contains a DACL that specifies the access rights that are allowed or denied 
to specific principals or groups. It also identifies the owner of the object. The structure of a 
security descriptor is described in [MS-DTYP] section 2.4.6. 

A DACL in a security descriptor is an ordered list of access control entries (ACEs) that define the 
protections that apply to an object and its properties. Each ACE identifies a security principal (that is, 
a user, group, and so on) and specifies a set of access rights that are allowed, denied, or audited for 

that security principal. The data structures for an ACE and a DACL are described in [MS-DTYP] 
sections 2.4.4 and 2.4.5. 

There are two types of ACEs: simple and object-specific. A simple ACE applies to an entire object. If a 
simple ACE gives a particular user read access, the user can read all information associated with the 

object. An object-specific ACE, on the other hand, can apply to any individual attribute of an object or 
to a set of attributes. It makes it possible to place independent access controls on each attribute of an 
Active Directory object. 



 

428 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

During an access check, the server steps through the ACEs in the order in which they appear in the 
object's DACL, looking for ACEs that apply to the principal and group SIDs from the thread's security 

context. It steps through each ACE until it finds one that either allows or denies access to the principal 
or one of the principal's groups, or until there are no more ACEs to check. If it comes to the end of the 

DACL, and the thread's desired access is still not explicitly allowed or denied, the server denies access 
to the object.  

The order in which ACEs are listed in a DACL is important. For example, an object's DACL might 
contain one ACE that allows access to a group and another ACE that denies access to a principal who 
is a member of the group. If the access check process encounters the ACE that allows access to the 
group before the ACE that denies access to the principal, the principal is allowed access to the object. 
If the ACEs are encountered in the reverse order, then the principal is denied access to the object. 

AD LDS security principals cannot appear in an AD DS ACE. Section 6.1.3.3 specifies a restriction on 
the AD LDS security principals that can be used in an AD LDS ACE. 

5.1.3.2 (Updated Section) Access Rights 

The following diagram specifies access rights that can be assigned to or requested for an Active 
Directory object. The access mask in an ACE contains a combination of these values. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

G 
R 

G 
W 

G 
X 

G 
A 

X X X X X X X X W 
O 

W 
D 

R 
C 

D 
E 

X X X X X X X C 
R 

L 
O 

D 
T 

W 
P 

R 
P 

V 
W 

L 
C 

D 
C 

C 
C 

Note  The values are presented in big-endian byte order. 

CC (RIGHT_DS_CREATE_CHILD, 0x00000001): The right to create child objects of the object. The 
ObjectType member of an ACE can contain a GUID that identifies the objectClass of child object whose 
creation is controlled. If ObjectType does not contain a GUID, the ACE controls the creation of all child 

object classes allowed by the schema. 

DC (RIGHT_DS_DELETE_CHILD, 0x00000002): The right to delete child objects of the object. The 

ObjectType member of an ACE can contain a GUID that identifies the objectClass of the child object 
whose deletion is controlled. If ObjectType does not contain a GUID, the ACE controls the deletion of 
all child object classes.  

LC (RIGHT_DS_LIST_CONTENTS, 0x00000004): The right to list child objects of this object. For 
more information about this right, see section 3.1.1.4. 

VW (RIGHT_DS_WRITE_PROPERTY_EXTENDED, 0x00000008): The right to perform an 

operation controlled by a validated write access right. The ObjectType member of an ACE can contain 
a GUID that identifies the validated write. If ObjectType does not contain a GUID, the ACE controls the 
rights to perform all validated write operations associated with the object. For a list of validated write 
rights, see section 5.1.3.2.2. For specifics of validated write processing, see the Modify operation in 

section 3.1.1.5.3. 

RP (RIGHT_DS_READ_PROPERTY, 0x00000010): The right to read properties of the object. The 
ObjectType member of an ACE can contain a GUID that identifies a property set or an attribute. If 

ObjectType does not contain a GUID, the ACE controls the right to read all attributes of the object. 

WP (RIGHT_DS_WRITE_PROPERTY, 0x00000020): The right to write properties of the object. 
The ObjectType member of an ACE can contain a GUID that identifies a property set or an attribute. If 
ObjectType does not contain a GUID, the ACE controls the right to write all attributes of the object. 



 

429 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

DT (RIGHT_DS_DELETE_TREE, 0x00000040): The right to perform a Delete-Tree operation on 
this object. See the Delete operation in section 3.1.1.5.5 for more details. 

LO (RIGHT_DS_LIST_OBJECT, 0x00000080): The right to list a particular object. If the user is 
not granted this right, and the user is not granted the RIGHT_DS_LIST_CONTENTS right on the 

object's parent, the object is hidden from the user. Note that LIST_OBJECT rights are not enforced by 
Active Directory by default. In order to enable LIST_OBJECT enforcement, the fDoListObject heuristic 
of the dSHeuristics attribute (see section 6.1.1.2.4.1.2) mustMUST be trueTRUE. 

CR (RIGHT_DS_CONTROL_ACCESS, 0x00000100): The right to perform an operation controlled 
by a control access right. The ObjectType member of an ACE can contain a GUID that identifies the 
control access right. If ObjectType does not contain a GUID, the ACE controls the right to perform all 
control access right controlled operations associated with the object. For a list of control access rights, 

see section 5.1.3.2.1. 

DE (RIGHT_DELETE, 0x00010000): The right to delete the object. 

RC (RIGHT_READ_CONTROL, 0x00020000): The right to read data from the security descriptor of 

the object, not including the data in the SACL. 

WD (RIGHT_WRITE_DAC, 0x00040000): The right to modify the DACL in the object security 
descriptor. 

WO (RIGHT_WRITE_OWNER, 0x00080000): The right to modify the owner of an object in the 
object's security descriptor. A user can only take ownership of an object, but cannot transfer 
ownership of an object to other users. 

GA (RIGHT_GENERIC_ALL, 0x10000000): The right to create or delete child objects, delete a 
subtree, read and write properties, examine child objects and the object itself, add and remove the 
object from the directory, and read or write with an extended right. 

GX (RIGHT_GENERIC_EXECUTE, 0x20000000): The right to read permissions on, and list the 

contents of, a container object. 

GW (RIGHT_GENERIC_WRITE, 0x40000000): The right to read permissions on this object, write 
all the properties on this object, and perform all validated writes to this object. 

GR (RIGHT_GENERIC_READ, 0x80000000): The right to read permissions on this object, read all 
the properties on this object, list this object name when the parent container is listed, and list the 
contents of this object if it is a container. 

X: Ignored. These bits are ignored in Active Directory DACLs. 

The four generic rights are presented, along with the specific access rights which they represent. The 
mapping for access to objects in Active Directory is as follows: 

GR = (RC | LC | RP | LO) 

GW = (RC | WP | VW) 

GX = (RC | LC) 

GA = (DE | RC | WD | WO | CC | DC | DT | RP | WP | LC | LO | CR | VW) 

Note that the preceding "GENERIC" access mask bits are never stored in Active Directory security 
descriptor values. They can be present in an SD value sent by a user in an add or modify request. 
When the SD value is stored in the database, the GENERIC access bits are mapped according to the 
specific access rights that they represent, using the mapping described above. See section 6.1.3 and 
[MS-DTYP] section 2.4.3 for more information. 

5.1.3.2.1 Control Access Rights 



 

430 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

In Active Directory, the implementer can control which users have the right to perform a particular 
operation on an object or its attributes by using standard access rights. However, there are certain 

operations that have semantics that are not tied to specific properties, or where it is desirable to 
control access in a way that is not supported by the standard access rights. For example, the 

implementer can grant users a "Reanimate tombstones" right so that they are able to perform 
tombstone reanimation on any object in a naming context. Active Directory allows the standard access 
control mechanism to be extended for controlling access to custom actions or operations, using a 
mechanism called control access rights. 

A control access right is not identified by a specific bit in an access mask as the standard access rights 
are. Instead, each control access right is identified by a GUID. An ACE that grants or denies a control 
access right specifies the RIGHT_DS_CONTROL_ACCESS (CR) bit in the ACCESS_MASK field and the 

GUID identifying the particular control access right in the ObjectType field of the ACE. If the 
ObjectType field does not contain a GUID, the ACE is deemed to control the right to perform all 
operations associated with the objects that are controlled by control access rights. For convenience 
and easy identification by Active Directory administrative tools facilitating access control, each control 
access right is represented by an object of class controlAccessRight in the Extended-Rights container. 

Note that these objects are not integral to evaluating access to an operation and, therefore, their 

presence is not required for the proper functioning of the access control mechanism. There are a 
number of predefined control access rights in Active Directory, and that list can be extended by 
application developers by adding controlAccessRight objects to the Extended-Rights container. 

The pertinent attributes on the controlAccessRight object that defines the use of the control access 
right for the administrative tools are as follows:  

▪ validAccesses: The type of access right bits in the ACCESS_MASK field of an ACE with which the 
control access right can be associated. The only permitted access right for control access rights is 

RIGHT_DS_CONTROL_ACCESS (CR). 

▪ rightsGuid: The GUID that is used to identify the control access right in an ACE. The GUID value is 
placed in the ObjectType field of the ACE. 

▪ appliesTo: This multivalue attribute has a list of object classes that the control access right applies 

to. Each object class in the list is represented by the schemaIDGUID attribute of the classSchema 
object that defines the object class in the Active Directory schema. The appliesTo values on the 
controlAccessRight are not enforced by the directory server; that is, the controlAccessRight can be 

included in security descriptors of objects of classes not specified in the appliesTo attribute. 

The following table summarizes the predefined control access rights, and the corresponding GUID 
value identifying each right, that can be specified in an ACE that is supported by applicable Windows 
Server releases. 

The table contains information for the following products. See section 3 for more information. 

▪ A --> Windows 2000 

▪ D --> Windows Server 2003 

▪ DR2 --> Windows Server 2003 R2 

▪ K --> Windows Server 2008 AD DS 

▪ L --> Windows Server 2008 AD LDS 

▪ N --> Windows Server 2008 R2 AD DS 

▪ P --> Windows Server 2008 R2 AD LDS 

▪ S --> Windows Server 2012 AD DS 

▪ T --> Windows Server 2012 AD LDS 



 

431 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ V --> Windows Server 2012 R2 operating system AD DS 

▪ W --> Windows Server 2012 R2 AD LDS 

▪ Y --> Windows Server 2016 operating system AD DS 

▪ Z --> Windows Server 2016 AD LDS 

▪ B2 --> Windows Server v1709 operating system AD DS 

▪ C2 --> Windows Server v1709 AD LDS 

▪ E2 --> Windows Server v1803 operating system AD DS 

▪ F2 --> Windows Server v1803 AD LDS 

▪ H2 --> Windows Server v1809 operating system AD DS 

▪ I2 --> Windows Server v1809 AD LDS 

▪ K2 --> Windows Server 2019 operating system AD DS 

▪ L2 --> Windows Server 2019 AD LDS 

Control access right 
symbol 

Identifying GUID 
used in ACE A 

D, 
DR2 K L N P S T V W 

Y, 
B2, 
E2, 
H2, 
K2 

Z, 
C2, 
F2, 
I2, 
L2 

Abandon-Replication ee914b82-0a98-

11d1-adbb-
00c04fd8d5cd 

X            

Add-GUID 440820ad-65b4-
11d1-a3da-
0000f875ae0d 

X X X X X X X X X X X X 

Allocate-Rids 1abd7cf8-0a99-
11d1-adbb-
00c04fd8d5cd 

X X X  X  X  X  X  

Allowed-To-Authenticate 68b1d179-0d15-
4d4f-ab71-
46152e79a7bc 

 X X  X  X  X  X  

Apply-Group-Policy edacfd8f-ffb3-
11d1-b41d-
00a0c968f939 

X X X  X  X  X  X  

Certificate-Enrollment 0e10c968-78fb-

11d2-90d4-
00c04f79dc55 

X X X  X  X  X  X  

Certificate-AutoEnrollment a05b8cc2-17bc-
4802-a710-
e7c15ab866a2 

      X  X  X  

Change-Domain-Master 014bf69c-7b3b-
11d1-85f6-
08002be74fab 

 X X  X  X  X  X  

Change-Infrastructure-
Master 

cc17b1fb-33d9-
11d2-97d4-

X X X  X  X  X  X  



 

432 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Control access right 
symbol 

Identifying GUID 
used in ACE A 

D, 
DR2 K L N P S T V W 

Y, 
B2, 
E2, 
H2, 
K2 

Z, 
C2, 
F2, 
I2, 
L2 

00c04fd8d5cd 

Change-PDC bae50096-4752-
11d1-9052-
00c04fc2d4cf 

X X X  X  X  X  X  

Change-Rid-Master d58d5f36-0a98-
11d1-adbb-
00c04fd8d5cd 

X X X  X  X  X  X  

Change-Schema-Master e12b56b6-0a95-
11d1-adbb-
00c04fd8d5cd 

X X X X X X X X X X X X 

Create-Inbound-Forest-
Trust 

e2a36dc9-ae17-
47c3-b58b-
be34c55ba633 

 X X  X  X  X  X  

Do-Garbage-Collection fec364e0-0a98-
11d1-adbb-
00c04fd8d5cd 

X X X X X X X X X X X X 

Domain-Administer-Server ab721a52-1e2f-
11d0-9819-
00aa0040529b 

X X X  X  X  X  X  

DS-Check-Stale-Phantoms 69ae6200-7f46-
11d2-b9ad-
00c04f79f805 

X X X  X  X  X  X  

DS-Execute-Intentions-
Script 

2f16c4a5-b98e-
432c-952a-
cb388ba33f2e 

 X X X X X X X X X X X 

DS-Install-Replica 9923a32a-3607-
11d2-b9be-
0000f87a36b2 

X X X X X X X X X X X X 

DS-Query-Self-Quota 4ecc03fe-ffc0-
4947-b630-
eb672a8a9dbc 

 X X X X X X X X X X X 

DS-Replication-Get-
Changes 

1131f6aa-9c07-
11d1-f79f-
00c04fc2dcd2 

X X X X X X X X X X X X 

DS-Replication-Get-
Changes-All 

1131f6ad-9c07-
11d1-f79f-
00c04fc2dcd2 

 X X X X X X X X X X X 

DS-Replication-Get-
Changes-In-Filtered-Set 

89e95b76-444d-
4c62-991a-
0facbeda640c 

  X  X  X  X  X  

DS-Replication-Manage-
Topology 

1131f6ac-9c07-
11d1-f79f-
00c04fc2dcd2 

X X X X X X X X X X X X 

DS-Replication-Monitor- f98340fb-7c5b-  X X X X X X X X X X X 



 

433 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Control access right 
symbol 

Identifying GUID 
used in ACE A 

D, 
DR2 K L N P S T V W 

Y, 
B2, 
E2, 
H2, 
K2 

Z, 
C2, 
F2, 
I2, 
L2 

Topology 4cdb-a00b-
2ebdfa115a96 

DS-Replication-
Synchronize 

1131f6ab-9c07-
11d1-f79f-
00c04fc2dcd2 

X X X X X X X X X X X X 

Enable-Per-User-
Reversibly-Encrypted-

Password 

05c74c5e-4deb-
43b4-bd9f-

86664c2a7fd5 

 X X  X  X  X  X  

Generate-RSoP-Logging b7b1b3de-ab09-
4242-9e30-
9980e5d322f7 

 X X  X  X  X  X  

Generate-RSoP-Planning b7b1b3dd-ab09-
4242-9e30-
9980e5d322f7 

 X X  X  X  X  X  

Manage-Optional-Features 7c0e2a7c-a419-
48e4-a995-
10180aad54dd 

    X X X X X X X X 

Migrate-SID-History ba33815a-4f93-
4c76-87f3-
57574bff8109 

 X X  X  X  X  X  

msmq-Open-Connector b4e60130-df3f-
11d1-9c86-

006008764d0e 

X X X  X  X  X  X  

msmq-Peek 06bd3201-df3e-
11d1-9c86-
006008764d0e 

X X X  X  X  X  X  

msmq-Peek-computer-
Journal 

4b6e08c3-df3c-
11d1-9c86-
006008764d0e 

X X X  X  X  X  X  

msmq-Peek-Dead-Letter 4b6e08c1-df3c-
11d1-9c86-
006008764d0e 

X X X  X  X  X  X  

msmq-Receive 06bd3200-df3e-
11d1-9c86-
006008764d0e 

X X X  X  X  X  X  

msmq-Receive-computer-
Journal 

4b6e08c2-df3c-
11d1-9c86-

006008764d0e 

X X X  X  X  X  X  

msmq-Receive-Dead-
Letter 

4b6e08c0-df3c-
11d1-9c86-
006008764d0e 

X X X  X  X  X  X  

msmq-Receive-journal 06bd3203-df3e-
11d1-9c86-
006008764d0e 

X X X  X  X  X  X  



 

434 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Control access right 
symbol 

Identifying GUID 
used in ACE A 

D, 
DR2 K L N P S T V W 

Y, 
B2, 
E2, 
H2, 
K2 

Z, 
C2, 
F2, 
I2, 
L2 

msmq-Send 06bd3202-df3e-
11d1-9c86-
006008764d0e 

X X X  X  X  X  X  

Open-Address-Book a1990816-4298-
11d1-ade2-
00c04fd8d5cd 

X X X  X  X  X  X  

Read-Only-Replication-

Secret-Synchronization 

1131f6ae-9c07-

11d1-f79f-
00c04fc2dcd2 

  X  X  X  X  X  

Reanimate-Tombstones 45ec5156-db7e-
47bb-b53f-
dbeb2d03c40f 

 X X X X X X X X X X X 

Recalculate-Hierarchy 0bc1554e-0a99-
11d1-adbb-
00c04fd8d5cd 

X X X  X  X  X  X  

Recalculate-Security-
Inheritance 

62dd28a8-7f46-
11d2-b9ad-
00c04f79f805 

X X X X X X X X X X X X 

Receive-As ab721a56-1e2f-
11d0-9819-
00aa0040529b 

X X X  X  X  X  X  

Refresh-Group-Cache 9432c620-033c-

4db7-8b58-
14ef6d0bf477 

 X X  X  X  X  X  

Reload-SSL-Certificate 1a60ea8d-58a6-
4b20-bcdc-
fb71eb8a9ff8 

  X X X X X X X X X X 

Run-
Protect_Admin_Groups-
Task 

7726b9d5-a4b4-
4288-a6b2-
dce952e80a7f 

    X  X  X  X  

SAM-Enumerate-Entire-
Domain 

91d67418-0135-
4acc-8d79-
c08e857cfbec 

 X X  X  X  X  X  

Send-As ab721a54-1e2f-
11d0-9819-
00aa0040529b 

X X X  X  X  X  X  

Send-To ab721a55-1e2f-

11d0-9819-
00aa0040529b 

X X X  X  X  X  X  

Unexpire-Password ccc2dc7d-a6ad-
4a7a-8846-
c04e3cc53501 

 X X X X X X X X X X X 

Update-Password-Not-
Required-Bit 

280f369c-67c7-
438e-ae98-
1d46f3c6f541 

 X X  X  X  X  X  



 

435 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Control access right 
symbol 

Identifying GUID 
used in ACE A 

D, 
DR2 K L N P S T V W 

Y, 
B2, 
E2, 
H2, 
K2 

Z, 
C2, 
F2, 
I2, 
L2 

Update-Schema-Cache be2bb760-7f46-
11d2-b9ad-
00c04f79f805 

X X X X X X X X X X X X 

User-Change-Password ab721a53-1e2f-
11d0-9819-
00aa0040529b 

X X X X X X X X X X X X 

User-Force-Change-

Password 

00299570-246d-

11d0-a768-
00aa006e0529 

X X X X X X X X X X X X 

DS-Clone-Domain-
Controller 

3e0f7e18-2c7a-
4c10-ba82-
4d926db99a3e 

      X  X  X  

DS-Read-Partition-Secrets 084c93a2-620d-
4879-a836-
f0ae47de0e89 

        X X X X 

DS-Write-Partition-Secrets 94825a8d-b171-
4116-8146-
1e34d8f54401 

        X X X X 

DS-Set-Owner 4125c71f-7fac-
4ff0-bcb7-
f09a41325286 

        X X X X 

DS-Bypass-Quota 88a9933e-e5c8-

4f2a-9dd7-
2527416b8092 

        X X X X 

DS-Validated-Write-
Computer 

9b026da6-0d3c-
465c-8bee-
5199d7165cba 

          X  

 

5.1.3.2.2 Validated Writes 

In Active Directory, write access to an object's attributes is controlled by using the 
RIGHT_DS_WRITE_PROPERTY (WP) access right. However, that would allow any value that is 
permissible by the attribute schema to be written to the attribute with no value checking performed. 
There are cases where validation of the attribute values being written, beyond that required by the 
schema, is necessary before writing them to an object in order to maintain integrity constraints. Active 
Directory extends the standard access control mechanism to allow such additional validation semantics 

to be incorporated by using a mechanism called "validated write rights". The attributes to which the 
validated write rights apply, and the specific validations performed, are specified in section 
3.1.1.5.3.1. 

A validated write right is not identified by a specific bit in an access mask as the standard access 
rights are. Instead, each validated write right is identified by a GUID. This GUID is the value of the 
schemaIDGUID attribute from the attributeSchema object of the attribute where the validated write is 
defined. An ACE that grants or denies a validated write right specifies the 

RIGHT_DS_WRITE_PROPERTY_EXTENDED (VW) bit in the ACCESS_MASK field and the GUID 
identifying the particular validated write right in the ObjectType field of the ACE. If the ObjectType 



 

436 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

field does not contain a GUID, the ACE is deemed to control the right to perform all validated write 
operations associated with the object. As with control access rights, each validated write right is 

represented by an object of class controlAccessRight in the Extended-Rights container for convenience 
and easy identification by Active Directory administrative tools. Note that these objects are not 

integral to evaluating access to an update operation and, therefore, their presence is not required for 
the proper functioning of the access control mechanism. The predefined list of validated write rights in 
Active Directory cannot be extended by application developers. 

The attributes to which the validated write rights apply to, and the specific validations performed, are 
specified in section 3.1.1.5.3.1.1. The following table summarizes the validated write rights, and the 
corresponding GUID value identifying each right, that can be specified in an ACE that is supported by 
applicable Windows Server releases. 

The table contains information for the following products. See section 3 for more information. 

▪ A --> Windows 2000 

▪ D --> Windows Server 2003 

▪ DR2 --> Windows Server 2003 R2 

▪ K --> Windows Server 2008 AD DS 

▪ L --> Windows Server 2008 AD LDS 

▪ N --> Windows Server 2008 R2 AD DS 

▪ P --> Windows Server 2008 R2 AD LDS 

▪ S --> Windows Server 2012 AD DS 

▪ T --> Windows Server 2012 AD LDS 

▪ V --> Windows Server 2012 R2 AD DS 

▪ W --> Windows Server 2012 R2 AD LDS 

▪ Y --> Windows Server 2016 AD DS 

▪ Z --> Windows Server 2016 AD LDS 

▪ B2 --> Windows Server v1709 AD DS 

▪ C2 --> Windows Server v1709 AD LDS 

▪ E2 --> Windows Server v1803 AD DS 

▪ F2 --> Windows Server v1803 AD LDS 

▪ H2 --> Windows Server v1809 AD DS 

▪ I2 --> Windows Server v1809 AD LDS 

▪ K2 --> Windows Server 2019 AD DS 

▪ L2 --> Windows Server 2019 AD LDS 

Validated write 
right symbol Identifying GUID used in ACE 

A, D, 
DR2 

K, 
N 

L, 
P 

S, V, Y, 
B2, E2, 
H2, K2 

T, W, Z, 
C2, F2, 
I2, L2 

Self-Membership bf9679c0-0de6-11d0-a285-00aa003049e2 X X X X X 



 

437 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Validated write 
right symbol Identifying GUID used in ACE 

A, D, 
DR2 

K, 
N 

L, 
P 

S, V, Y, 
B2, E2, 
H2, K2 

T, W, Z, 
C2, F2, 
I2, L2 

(member attribute) 

Validated-DNS-Host-
Name 

72e39547-7b18-11d1-adef-00c04fd8d5cd 
(dNSHostName attribute) 

X X  X  

Validated-MS-DS-
Additional-DNS-Host-
Name 

80863791-dbe9-4eb8-837e-7f0ab55d9ac7 
(msDS-AdditionalDnsHostName attribute) 

   X  

Validated-MS-DS-
Behavior-Version 

d31a8757-2447-4545-8081-
3bb610cacbf2(msDS-Behavior-Version 
attribute) 

   X  

Validated-SPN f3a64788-5306-11d1-a9c5-0000f80367c1 
(servicePrincipalName attribute) 

X X  X  

 

5.1.3.3 Checking Access 

Before performing a requested access on an object in Active Directory, the DC performs an access 
check to confirm that the security context of the requester is authorized for the type of access 

requested. This determination is made by using the following information: 

▪ The requester's security context 

▪ The requester's desired access mask 

▪ An appropriate security descriptor (the security descriptor used for the access check is typically 
the security descriptor of the object itself, but for some types of access the security descriptor of 

the object's parent and/or other objects in the directory might be used). 

Note that a special principal called "Principal Self," identified by the fixed SID value of S-1-5-10, can 

appear in the SID field of an ACE in the security descriptor of an object. This fixed SID value 
represents the object itself in an ACE on a security principal object. For example, when an ACE on a 
user object grants certain access rights to Principal Self, it essentially grants those access rights to the 
user represented by that object. During an access check for object O, if O!nTSecurityDescriptor 
contains any ACEs with the fixed SID for Principal Self the server replaces them with O!objectSid 
before proceeding with the access check. 

For the access check behavior described in the following sections, it is assumed that any security 

descriptor used as input to that process has already undergone the SID substitution for Principal Self 
(as described in this section), if necessary. 

5.1.3.3.1 Null vs. Empty DACLs 

The presence of a NULL DACL in the nTSecurityDescriptor attribute of an object grants full access to 
the object to any principal that requests it; normal access checks are not performed with respect to 

the object. 

An empty DACL, on the other hand, is a properly allocated and initialized DACL containing no ACEs. An 
empty DACL in the nTSecurityDescriptor attribute of an object grants no access to the object. Note 
that even with an empty DACL, some rights are implied. For example, the current OWNER of an object 
is implicitly granted RIGHT_READ_CONTROL and RIGHT_WRITE_DAC access. When 
BlockOwnerImplicitRights is set to 1 and the requester is a member of neither the Domain 



 

438 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Administrators (section 6.1.1.6.5) or Enterprise Administrators (section 6.1.1.6.10) group, the implicit 
grant of WRITE_DAC MUST be ignored for purposes of the authorization check.7 

If the user possesses the SE_TAKE_OWNERSHIP_PRIVILEGE, then RIGHT_WRITE_OWNER access is 
implied. 

7 Under the stated conditions, the implicit WRITE_DAC grant MUST be ignored for purposes of the 
authorization check on computers running the operating systems specified in [MSFT-CVE-2021-
42291], each with its related MSKB article download installed. 

5.1.3.3.2 Checking Simple Access 

When evaluating standard access rights specified in simple ACEs for an Active Directory object, the 
security descriptor of the object is used. Let G and D denote the access rights that are granted and 

denied, respectively, on the object. Set both to a value of 0 initially. 

The following rules are used to determine the authorization for the requester's security context: 

1. If the security descriptor has no DACL or its "DACL Present" (DP) bit is not set, then grant the 
requester all possible access rights on the object. 

2. If the DACL does not have any ACE, then grant the requester no access rights on the object. 

3. If the SID in the Owner field of the object's security descriptor matches any SID in the requester's 

security context, then add the bits "Read Control" (RC), "Write DACL" (WD) and "Write Owner" 
(WO) to G. 

4. Evaluate the DACL by examining each ACE in sequence, starting with the first ACE. Perform the 
following sequence of actions for each ACE in the order as shown. Let the ACCESS_MASK field of 
the ACE have a value M. 

1. If the "Inherit Only" (IO) flag is set in the ACE, skip the ACE. 

2. If the SID in the ACE does not match any SID in the requester's security context, skip the 

ACE. 

3. If the ACE type is "Access Denied" and the access rights in M are not in G, then add the rights 
in M to D. 

4. If the ACE type is "Access Allowed" and the access rights in M are not in D, then add the rights 
in M to G. 

5. When the end of the DACL is reached, the access rights in G is the maximum standard access 
available to the requester on the object. Check the requested access mask against the access 

rights granted in G. 

5.1.3.3.3 Checking Object-Specific Access 

This section describes how object-specific access rights on Active Directory objects are evaluated, with 
the exception of access rights representing control access rights and validated write rights. That is the 

subject of the subsequent sections.  

When evaluating object-specific access rights specified in object-specific ACEs for an Active Directory 
object, the security descriptor of the object (or its parent) is used along with a three-level "object type 
tree" associated with that object. For an object O that is the subject of an access check, the object 
type tree T(V, E) consists of nodes V={v1, v2, ...}, edges E={e1, e2, ...}, and a GUID-valued label for 
each node in V indicated by Guid(v), and is constructed as follows: 

▪ Let O be an object of class c, and let A={a1, a2, ...} be the set of attributes that instances of class 
c can contain. For each attribute ai that is an element of A, if ai.attributeSecurityGUID ≠ NULL, 



 

439 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

then let pi denote the property set of which ai is a member and let Guid(pi) = 
ai.attributeSecurityGUID (see Property Set in section 3.1.1.2). Let P be the union of all such sets 

{pi}. 

▪ Add c to V as the root node of the tree and set Guid(c) to c!schemaIDGUID. 

▪ For every property set pi that is an element of P, add a node pi to V and Guid(pi) is as specified 
earlier. 

▪ For every attribute ai that is an element of A, add a node ai to V and set Guid(ai) to 
ai!schemaIDGUID. 

▪ For every property set pi that is an element of P, add an edge (c, pi) to E such that pi is a child of 
c. 

▪ For every attribute ai that is an element of A, if there exists a property set pi that is an element of 

P of which ai is a member then add an edge (pi, ai) to E such that ai is a child of pi; otherwise add 
an edge (c, ai) to E such that ai is a child of c. 

Note  The object type tree used during an access check can include only a subset of the property set 
(see Property Set in section 3.1.1.2.3.3) nodes and a subset of the attribute nodes that the requester 
is interested in. An object type tree for an object is illustrated by the following figure. 

 

Figure 4: An object type tree 

Let r be the root node of the object type tree T. Further, label each node v that is an element of V with 
two additional labels called Grant(v) and Deny(v) indicating the access rights that are granted and 
denied, respectively, at that node. Set both labels to a value 0 initially for every node. 

The following rules are used to determine the authorization for the requester's security context: 

1. If the security descriptor of object O has no DACL or its "DACL Present" (DP) bit is not set, then 
grant the requester all possible access rights on the object. 

2. If the DACL does not have any ACE, then grant the requester no access rights on the object. 

3. Evaluate the DACL by examining each ACE in sequence, starting with the first ACE. Perform the 
following sequence of actions for each ACE in the order as shown. Let the ACCESS_MASK field of 
the ACE have a value M.  

1. If the "Inherit Only" (IO) flag is set in the ACE, skip the ACE.  



 

440 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

2. If the SID in the ACE does not match any SID in the requester's security context, skip the 
ACE.  

3. If the ACE type is "Access Allowed" and the access rights in M are not in Deny(r), then add the 
rights in M to Grant(r) (where r denotes the root node of object type tree T as stated above). 

For every descendant node u of r, if the rights in M are not in Deny(u), then add the rights in 
M to Grant(u). 

4. If the ACE type is "Object Access Allowed" and the ObjectType field in the ACE is not present, 
then treat the ACE type as "Access Allowed" and perform the action in 3.3.  

5. If the ACE type is "Object Access Allowed" and the ObjectType field in the ACE contains a 
GUID value g:  

If there exists no node v that is an element of V such that Guid(v) = g, then skip the ACE.  

Otherwise, let v that is an element of V be the unique node such that Guid(v) = g. If the rights 
in M are not in Deny(v), then add the rights in M to Grant(v). For every descendant node u of 

v, if the rights in M are not in Deny(u), then add the rights in M to Grant(u). 

1. If v = r, then proceed to the next ACE. 

2. If Grant(v) = Grant(s) for every sibling s of node v, then add the rights in Grant(v) to 
Grant(p) where p is the parent of node v. Otherwise, proceed to the next ACE. 

3. Set v to p, and repeat these three steps. 

6. If the ACE type is "Access Denied" and the access rights in M are not in Grant(r), then add the 
rights in M to Deny(r). For every descendant node u below the root node, if the rights in M are 
not in Grant(u), then add the rights in M to Deny(u). 

7. If the ACE type is "Object Access Denied" and the ObjectType field in the ACE is not present, 
then treat the ACE type as "Access Denied" and perform the action in 3.6.  

8. If the ACE type is "Object Access Denied" and the ObjectType field in the ACE contains a GUID 

value g: 

If there exists no node v that is an element of V such that Guid(v) = g, then skip the ACE. 

Otherwise, let v be the unique node in P such that Guid(v) = g if any such node exists. If no 
such node exists, let v be the unique node in A such that Guid(v) = g. If the rights in M are 
not in Grant(v), then add the rights in M to Deny(v). For every descendant node u of v, if the 
rights in M are not in Grant(u), then add the rights in M to Deny(u). For every ancestor node 
w of v, add the rights in M to Deny(w). 

4. When the end of the DACL is reached, the access rights in Grant(r) at the root node of tree T is 
the maximum access available to the requester on the object. For each node u below the root 
node r, the access rights in Grant(u) is the maximum access available to the requester for that 
node. 

If the requested access is for the entire object, check the requested access mask against the access 
rights granted in Grant(r). If the requested access is for specific properties on the object, check the 

requested access mask against the rights granted in Grant(u) where u is the attribute node in tree T 
that is the target of the request. 

5.1.3.3.4 Checking Control Access Right-Based Access 

When evaluating the right to perform an operation that is controlled by a control access right identified 
by the GUID value G, use the following rules to determine the authorization for the requester's 
security context: 



 

441 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

1. If the security descriptor has no DACL or its "DACL Present" (DP) bit is not set, then grant the 
requester the requested control access right. 

2. If the DACL does not have any ACE, then deny the requester the requested control access right. 

3. Evaluate the DACL by examining each ACE in sequence, starting with the first ACE. Perform the 

following sequence of actions for each ACE in the order as shown. Let the ACCESS_MASK field of 
the ACE have a value M. 

1. If the "Inherit Only" (IO) flag is set in the ACE, skip the ACE. 

2. If the SID in the ACE does not match any SID in the requester's security context, skip the 
ACE. 

3. If the ACE type is "Object Access Allowed", the access right RIGHT_DS_CONTROL_ACCESS 
(CR) is present in M, and the ObjectType field in the ACE is not present, then grant the 

requested control access right. Stop any further access checks. 

4. If the ACE type is "Object Access Allowed" the access right RIGHT_DS_CONTROL_ACCESS 
(CR) is present in M, and the ObjectType field in the ACE contains a GUID value equal to G, 
then grant the requested control access right. Stop any further access checks. 

5. If the ACE type is "Object Access Denied", the access right RIGHT_DS_CONTROL_ACCESS 
(CR) is present in M, and the ObjectType field in the ACE is not present, then deny the 

requested control access right. Stop any further access checks. 

6. If the ACE type is "Object Access Denied" the access right RIGHT_DS_CONTROL_ACCESS (CR) 
is present in M, and the ObjectType field in the ACE contains a GUID value equal to G, then 
deny the requested control access right. Stop any further access checks. 

5.1.3.3.5 Checking Validated Write-Based Access 

When evaluating the right to perform an operation controlled by a validated write access right 

identified by the GUID value G, use the following rules to determine the authorization for the 

requester's security context: 

1. If the security descriptor has no DACL or its "DACL Present" (DP) bit is not set, then grant the 
requester the requested validated write right. 

2. If the DACL does not have any ACE, then deny the requester the requested validated write right. 

3. Evaluate the DACL by examining each ACE in sequence, starting with the first ACE. Perform the 
following sequence of actions for each ACE in the order as shown. Let the ACCESS_MASK field of 

the ACE have a value M. 

1. If the "Inherit Only" (IO) flag is set in the ACE, skip the ACE. 

2. If the SID in the ACE does not match any SID in the requester's security context, skip the 
ACE. 

3. If the ACE type is "Object Access Allowed", the access right 
RIGHT_DS_WRITE_PROPERTY_EXTENDED (VW) is present in M, and the ObjectType field in 

the ACE is not present, then grant the requested validated write right. Stop any further access 
checks. 

4. If the ACE type is "Object Access Allowed" the access right 
RIGHT_DS_WRITE_PROPERTY_EXTENDED (VW) is present in M, and the ObjectType field in 
the ACE contains a GUID value equal to G, then grant the requested validated write right. Stop 
any further access checks. 



 

442 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

5. If the ACE type is "Object Access Denied", the access right 
RIGHT_DS_WRITE_PROPERTY_EXTENDED (VW) is present in M, and the ObjectType field in 

the ACE is not present, then deny the requested validated write right. Stop any further access 
checks. 

6. If the ACE type is "Object Access Denied" the access right 
RIGHT_DS_WRITE_PROPERTY_EXTENDED (VW) is present in M, and the ObjectType field in 
the ACE contains a GUID value equal to G, then deny the requested validated write right. Stop 
any further access checks. 

5.1.3.3.6 Checking Object Visibility 

An object in Active Directory is considered to be "visible" to a requester if the requester can see the 

name of the object and thus learn of its existence, even if the requester can see no other attributes of 
the object. The default behavior of Active Directory with respect to making objects visible to a 
requesting principal is as follows: 

▪ If a user is granted the RIGHT_DS_LIST_CONTENTS access right on a container, all child objects 

of that container are visible to the user.  

▪ Otherwise (if a user is not granted the RIGHT_DS_LIST_CONTENTS access right on a container), 

no child object of that container is visible to the user. This allows the contents of entire containers 
to be hidden. 

However, Active Directory can optionally be put into a special mode, called the "List Object" mode. 
Active Directory is put into the "List Object" mode by setting the third character of dSHeuristics 
(section 6.1.1.2.4.1.2) to the value "1". The mode is disabled by setting the same character to the 
value "0". The default setting is "0". 

In "List Object" mode, a requester is allowed to selectively view specific child objects of a container 

while other child objects remain hidden. In this mode, an object is visible if the user has been granted 
the RIGHT_DS_LIST_CONTENTS right on the parent object. If, however, the user does not have that 
right on the parent, then the object is visible if the user is granted the RIGHT_DS_LIST_OBJECT right 

on both the object and its parent. 

In summary, an object is not visible to a requester if: 

▪ The object is not the root object of a NC replica, and 

▪ The requester lacks RIGHT_DS_LIST_CONTENTS right on the object's parent, and 

▪ "List Object" mode is not set (as described above) or the requester lacks the 
RIGHT_DS_LIST_OBJECT right on both the object and its parent. 

5.1.3.4 AD LDS Security Context Construction 

The construction of a Windows security context for an authenticated security principal in AD DS is 
specified in [MS-PAC] section 4.1.2.2. 

After a successful authentication to an AD LDS DC, the DC constructs a security context for the 
authenticated security principal as follows: 

1. Create an initial security context. 

▪ If the bind named an AD LDS user object, the initial security context contains only the 
objectSid of that object. 

▪ If the bind named an AD LDS bind proxy, or the SID of some Windows account, the initial 
security context is the context returned by the Windows login. 



 

443 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

2. Extend the security context with well-known SIDs. 

▪ If the bind named an AD LDS user object or an AD LDS bind proxy object, add the following 
SIDs to the security context if not already present: 

1. Authenticated Users (section 6.1.1.2.6.2). 

2. Everyone (section 6.1.1.2.6.10). 

3. Users, for the NC containing the AD LDS object (section 6.1.1.4.13.3). 

4. Users, for the config NC of the forest containing the AD LDS object (section 6.1.1.4.13.3). 

3. Extend the security context with AD LDS group memberships. 

▪ If a SID currently in the security context is a member of an AD LDS group on this DC, and that 
group is not already present in the context, add the SID of that group to the context. (The 
group membership is represented as a reference to an object whose objectSid equals the SID: 

either an AD LDS user, an AD LDS bind proxy, an AD LDS group, or a foreignSecurityPrincipal 
object.) Repeat until there are no more SIDs to add. 



 

444 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6 Additional Information 

6.1 Special Objects and Forest Requirements 

This section specifies some of the objects that are necessary for the proper functioning of the DCs in a 

forest and the requirements that govern the state of these objects. Newer implementations of 
applicable Windows Server releases might depend on additional objects that are added to the forest 
via an implementation-specific upgrade process. 

6.1.1 Special Objects 

6.1.1.1 Naming Contexts 

References 

▪ Special Attributes: Well-known Objects, Other Well-known Objects, Behavior Version 

▪ Forest Requirements 

▪ FSMO Roles 

▪ State Model: NC Naming 

▪ Security: SD Reference Domain 

Glossary terms: NC, NC replica, NC root, DC, Forest root, Domain NC, PDC, FSMO 

LDAP attributes: instanceType, subRefs, repsTo, repsFrom, replUpToDateVector, wellKnownObjects, 
otherWellKnownObjects, name, objectClass, nTSecurityDescriptor, fSMORoleOwner, msDS-Behavior-

Version, distinguishedName, systemFlags, nTMixedDomain, domainReplica, msDS-
AllowedDNSSuffixes, dNSHostName, msDS-AdditionalDnsHostName, msDS-SDReferenceDomain 

LDAP classes: configuration, dMD, domainDNS 

Constants 

▪ Access mask bits, control access rights: DS-Replication-Get-Changes, DS-Replication-Get-
Changes-All, DS-Replication-Get-Changes-In-Filtered-Set 

▪ systemFlags bits: FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE 

6.1.1.1.1 Any NC Root 

The following attributes have constant semantics across all types of NCs. 

instanceType: The instanceType of an NC root is a bit field, which is presented here in big-endian byte 
order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X X X X X G C A W U H 

X: Unused. SHOULD be zero and MUST be ignored. 

H (IT_NC_HEAD, 0x00000001): This flag is set (value 1) on all NC roots.  



 

445 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

U (IT_UNINSTANT, 0x00000002): If this flag is set, the NC replica that this root represents does 
not exist locally. This flag implies that this root is a subordinate reference object. 

W (IT_WRITE, 0x00000004): This flag is written locally based upon the desired NC replica type. A 
regular NC replica will have this flag set, and a partial NC replica will not have this flag set. The 

IT_WRITE flag MUST be propagated identically to every object in the NC replica. 

A (IT_NC_ABOVE, 0x00000008): This flag indicates that the local DC holds an instantiated NC 
replica that is a parent of the NC replica represented by this NC root. This flag also indicates that 
this NC root is a subordinate reference object. 

C (IT_NC_COMING, 0x00000010): This flag indicates that the NC replica has not completed its 
initial replication into the local DC, and might not have a full set of objects in the NC represented 
by this NC root. 

G (IT_NC_GOING, 0x00000020): This flag indicates that the NC replica is being removed from the 
local DC, and might not have a full set of objects in the NC represented by this NC root. 

Requirements: 

▪ IT_UNINSTANT can only be set with IT_NC_HEAD and IT_NC_ABOVE. The remaining bits are 
incompatible with IT_UNINSTANT. 

▪ IT_NC_COMING and IT_NC_GOING cannot be set at the same time. 

▪ If IT_NC_GOING is set, then no replication can occur with that NC, either as server or as client.  

subRefs: This value references all child objects in this NC replica of this NC root that are, themselves, 
NC roots. For example, the schema NC is always referenced by this value on the Config NC root 
object. 

repsTo: This attribute contains the abstract attribute repsTo that is associated with this DC for this NC 
replica. This attribute is nonreplicated. [MS-DRSR] section 5.173 specifies this abstract attribute. 

repsFrom: This attribute contains the abstract attribute repsFrom that is associated with this DC for 

this NC replica. This attribute is nonreplicated. [MS-DRSR] section 5.172 specifies this abstract 
attribute. 

replUpToDateVector: This attribute contains the abstract attribute replUpToDateVector that is 
associated with this DC for this NC replica. This attribute is nonreplicated. [MS-DRSR] section 5.166 
specifies this abstract attribute. 

6.1.1.1.2 Config NC Root 

name: Configuration 

parent: For AD DS, the forest root NC root object. For AD LDS, no parent. 

objectClass: configuration 

wellKnownObjects: This attribute holds DN-Binary values. See section 6.1.4 for details. 

instanceType: This value can never contain the following flags: 

▪ IT_NC_COMING 

▪ IT_NC_GOING 

▪ IT_UNINSTANT 

nTSecurityDescriptor: 



 

446 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Let D1 be a DC that is instructed to host a writable replica of the config NC (see section 6.1.2.3 for 
hosting requirements). In order for D1 to replicate the config NC, D1 MUST be granted the 

following rights on the config NC root: 

▪ DS-Replication-Get-Changes 

▪ DS-Replication-Get-Changes-All 

▪ DS-Replication-Get-Changes-In-Filtered-Set 

▪ Let D2 be a DC that is instructed to host a read-only replica of config NC (see section 6.1.2.3 for 
hosting requirements) such that the objects in the NC replica will not contain attributes in the 
filtered attribute set. In order for D2 to replicate the config NC, D2 MUST be granted the following 
rights on the config NC root: 

▪ DS-Replication-Get-Changes 

msDS-ReplAuthenticationMode: Present and used on AD LDS only. Specifies the authentication that is 

used for DC-to-DC communication over RPC ([MS-DRSR]). The msDS-ReplAuthenticationMode values 
0, 1, and 2 are valid; if absent, the effect is as if the value was 1. See [MS-DRSR] section 2.2.1 for 
the effects of these values. 

objectSid: Present and used on AD LDS only. This attribute contains the SID that is used in generating 
objectSid values for new AD LDS security principals residing in the config NC, as specified in section 

3.1.1.5.2.4. This attribute is not returned by LDAP queries. 

6.1.1.1.3 (Updated Section) Schema NC Root 

name: Schema 

parent: Config NC root 

objectClass: dMD 

fSMORoleOwner: This value refers to the nTDSDSA object of the DC that owns the Schema Master 

FSMO. See section 6.1.5. 

instanceType: This value can never contain the following flags: 

▪ IT_NC_COMING 

▪ IT_NC_GOING 

▪ IT_UNINSTANT 

nTSecurityDescriptor: Let D be a DC that is instructed to host the schema replica NC (see section 
6.1.2.3 for hosting requirements). In order for D to replicate the schema NC, D must be grantedMUST 

begranted the following rights on the schema NC root: 

▪ DS-Replication-Get-Changes  

▪ DS-Replication-Get-Changes-All 

▪ DS-Replication-Get-Changes-In-Filtered-Set 

6.1.1.1.4 (Updated Section) Domain NC Root 

distinguishedName: See section 3.1.1.1 for more information about domain NC naming rules. 

objectClass: domainDNS 



 

447 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

fSMORoleOwner: This value refers to the nTDSDSA object of the DC that owns the PDC FSMO role. 
See section 6.1.5 for more information about the PDC role. 

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE}  

wellKnownObjects: This attribute holds DN-Binary values. See section 6.1.4 for details. 

otherWellKnownObjects: This attribute holds DN-Binary values. See section 6.1.4 for details. 

msDS-Behavior-Version: This value defines the functional level of the domain. See section 6.1.4. 

nTMixedDomain: This value defines whether NT BDC replication [MS-NRPC] is available in the domain. 
See section 6.1.4.1. 

domainReplica: See section 3.1.1.5 for more information. 

msDS-AllowedDNSSuffixes: List of DNS suffixes that are allowed in the dNSHostName and msDS-

AdditionalDnsHostName attributes of computer objects in this domain. 

nTSecurityDescriptor: 

▪ Let D1 be a DC that is instructed to host a writable domain replica NC (see section 6.1.2.3 for 
hosting requirements). In order for D1 to replicate the domain NC, D1 mustMUST be granted the 
following rights on the domain NC root: 

▪ DS-Replication-Get-Changes 

▪ DS-Replication-Get-Changes-All 

▪ DS-Replication-Get-Changes-In-Filtered-Set 

▪ Let D2 be a DC that is instructed to host a partial or read-only domain replica NC (see section 
6.1.2.3 for hosting requirements) such that objects in the NC replica can have attributes in the 
filtered attribute set. In order for D2 to replicate the domain NC, D2 mustMUST be granted the 

following right on the domain NC root: 

▪ DS-Replication-Get-Changes 

▪ DS-Replication-Get-Changes-In-Filtered-Set 

▪  Let D3 be a DC that is instructed to host a partial or read-only domain replica NC (see section 
6.1.2.3 for hosting requirements) such that objects in the NC replica will not have attributes in the 
filtered attribute set. In order for D3 to replicate the domain NC, D3 mustMUST be granted the 
following right on the domain NC root: 

▪ DS-Replication-Get-Changes 

msDS-EnabledFeature: This value references the objects that represent optional features that are 

enabled in the domain. See section 3.1.1.9. 

6.1.1.1.5 (Updated Section) Application NC Root 

distinguishedName: See section 3.1.1.1 for more information about domain NC naming rules. 

objectClass: domainDNS (AD DS); any structural or 88 class except dMD and configuration (AD LDS) 

wellKnownObjects: This attribute holds DN-Binary values. See section 6.1.4 for details. 

otherWellKnownObjects: This attribute holds DN-Binary values. See section 6.1.4 for details. 

nTSecurityDescriptor: 



 

448 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Let D1 be a DC that is instructed to host a writable application replica NC (see section 6.1.2.3 for 
hosting requirements). In order for D1 to replicate the NC, D1 mustMUST be granted the following 

rights on the NC root: 

▪ DS-Replication-Get-Changes 

▪ DS-Replication-Get-Changes-All 

▪ DS-Replication-Get-Changes-In-Filtered-Set 

▪ Let D2 be a DC that is instructed to host a read-only application replica NC (see section 6.1.2.3 for 
hosting requirements) such that objects in the NC replica will not contain attributes in the filtered 
attribute set. In order for D2 to replicate the NC, D2 mustMUST be granted the following rights on 
the NC root: 

▪ DS-Replication-Get-Changes 

▪ Note that this nTSecurityDescriptor mustMUST be resolved with the domain specified on the 

msDS-SDReferenceDomain attribute on the crossRef object representing this NC; see section 5 for 
details. 

objectSid: Present and used on AD LDS only. This attribute contains the SID that is used in generating 
objectSid values for new AD LDS security principals residing in this application NC, as specified in 
section 3.1.1.5.2.4. This attribute is not returned by LDAP queries. 

6.1.1.2 Configuration Objects 

References 

▪ FSMO Roles 

▪ LDAP 

▪ Special Attributes 

▪ Forest Requirements 

▪ Security 

▪ Knowledge Consistency Checker 

▪ Originating Updates 

Glossary terms: NC, NC replica, NC root, DC, Domain NC, FSMO, forest functional level, Application 

NC, KCC, ISTG, Intra-site, Inter-site, Global Catalog, Forest, SMTP, Site, COM (Component Object 
Model (COM)), UUID, MAPI, ANR, NSPI 

LDAP attributes: name, objectClass, fSMORoleOwner, msDS-Behavior-Version, msDS-EnabledFeature, 
distinguishedName, systemFlags, nTMixedDomain, dnsRoot, nCName, msDS-Replication-Notify-First-
DSA-Delay, msDS-Replication-Notify-Subsequent-DSA-Delay, nETBIOSName, msDS-

SDReferenceDomain, options, schedule, interSiteTopologyGenerator, interSiteTopologyFailover, 
interSiteTopologyRenew, serverReference, dNSHostName, mailAddress, invocationId, hasMasterNCs, 

hasPartialReplicaNCs, msDS-HasInstantiatedNCs, instanceType, msDS-OptionalFeatureGUID, msDS-
RequiredForestBehaviorVersion, msDS-OptionalFeatureFlags, msDS-HasDomainNCs, msDS-
hasMasterNCs, msDS-ReplicationEpoch, enabledConnection, fromServer, transportType, mS-DS-
ReplicatesNCReason, siteObject, transportDLLName, transportAddressAttribute, cost, siteList, 
replInterval, siteLinkList, adminPropertyPages, shellPropertyPages, adminContextMenu, 
shellContextMenu, adminMultiselectPropertyPages, treatAsLeaf, creationWizard, createWizardExt, 
dSHeuristics, objectGUID, msDS-KeyVersionNumber, msDS-DeletedObjectLifetime, 



 

449 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

tombstoneLifetime, sPNMappings, msDS-Other-Settings, rightsGuid, appliesTo, localizationDisplayId, 
validAccesses, repsTo 

LDAP classes: crossRefContainer, crossRef, sitesContainer, site, nTDSSiteSettings, nTDSConnection, 
serversContainer, server, nTDSDSA, subnetContainer, subnet, interSiteTransportContainer, 

interSiteTransport, siteLink, container, displaySpecifier, nTDSService, physicalLocation, 
controlAccessRight 

Constants 

▪ systemFlags bits: FLAG_DISALLOW_DELETE, FLAG_CR_NTDS_NC, FLAG_CR_NTDS_DOMAIN, 
FLAG_CR_NTDS_NOT_GC_REPLICATED, FLAG_DISALLOW_MOVE_ON_DELETE, 
FLAG_CONFIG_ALLOW_LIMITED_MOVE, FLAG_CONFIG_ALLOW_RENAME 

▪ Replication bits: DRS_SYNC_FORCED 

6.1.1.2.1 Cross-Ref-Container Container 

name: Partitions 

parent: Config NC root 

objectClass: crossRefContainer 

fSMORoleOwner: This value references the Domain Naming Master FSMO role owner. See section 

6.1.5. 

systemFlags: {FLAG_DISALLOW_DELETE} 

msDS-Behavior-Version: This value defines the forest functional level. See section 6.1.4. 

msDS-EnabledFeature: This value references the objects that represent optional features that are 
enabled in the forest. See section 3.1.1.9. 

6.1.1.2.1.1 (Updated Section) Cross-Ref Objects 

The following is the description of the flags and their meaning for crossRef objects stored in 
systemFlags. The flags are presented in big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X G 
C 

D N 
C 

X: Unused. Must be zero and ignored. 

NC (FLAG_CR_NTDS_NC, 0x00000001): NC exists within the forest (not external). 

D (FLAG_CR_NTDS_DOMAIN, 0x00000002): NC is a domain. 

GC (FLAG_CR_NTDS_NOT_GC_REPLICATED, 0x00000004): NC mustMUST not be replicated to 
GC servers as a read-only replica. 

The following attributes and attribute values are common to crossRef objects representing all NC 

types: 

parent: crossRefContainer object 



 

450 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

objectClass: crossRef 

Enabled: If falseFALSE, this is a "pre-created" crossRef; that is, the crossRef exists, but the 
corresponding NC root does not yet exist. See section 3.1.1.5.2.8. 

dnsRoot: If Enabled equals falseFALSE, in AD DS dnsRoot holds the DNS name of the DC that will 

create the root of this NC. If Enabled equals falseFALSE, in AD LDS, dnsRoot holds the DNS name of 
the DC that will create the root of this NC followed by a colon (":"), followed by the LDAP port number 
used by the DC, followed by another colon (":"), followed by the SSL port number used by the DC. If 
Enabled is not falseFALSE, in AD DS dnsRoot holds the fully qualified DNS name used for LDAP 
referrals (section 3.1.1.4.6). If Enabled is not falseFALSE, in AD LDS dnsRoot is absent. 

nCName: If Enabled is not falseFALSE, a reference to the NC root corresponding to this crossRef. 

msDS-Replication-Notify-First-DSA-Delay: Indicates the number of seconds that each DC mustMUST  

delay after receiving updates (originating or replicated) to objects in the NC referred to by nCName 
before the DC notifies another DC of updates received according to the DCs local repsTos. See 
IDL_DRSReplicaSync in [MS-DRSR] section 4.1.23. 

msDS-Replication-Notify-Subsequent-DSA-Delay: Indicates the number of seconds that each DC 
mustMUST delay after notifying the first DC of updates received to objects in the NC referred to by 
nCName before notifying each additional DC according to the DCs local repsTos. See 

IDL_DRSReplicaSync in [MS-DRSR] section 4.1.23. 

6.1.1.2.1.1.1 Foreign crossRef Objects 

A foreign crossRef object is used to enable referrals for searches that need to return objects from 
different forests or LDAP services. For more information, see section 3.1.1.3. The following attribute 
and attribute values are defined for a foreign crossRef: 

systemFlags: 0 

6.1.1.2.1.1.2 (Updated Section) Configuration crossRef Object 

name: Enterprise Configuration 

systemFlags: { FLAG_CR_NTDS_NC } 

nCName: The value mustMUST equal the config NC root. 

dnsRoot: In AD DS, the value is the forest root's fully qualified DNS name. Not present in AD LDS. 

6.1.1.2.1.1.3 (Updated Section) Schema crossRef Object 

name: Enterprise Schema 

systemFlags: { FLAG_CR_NTDS_NC } 

nCName: The value mustMUST equal the schema NC root. 

dnsRoot: In AD DS, the value is the forest root's fully qualified DNS name. Not present in AD LDS. 

6.1.1.2.1.1.4 (Updated Section) Domain crossRef Object 

The following attribute and attribute values are common to domain crossRef objects: 

name: The NetBIOS name of the domain. 

nCName: The reference mustMUST be to a domain NC root. 



 

451 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

nETBIOSName: This value is the NetBIOS name of the domain. 

trustParent: This attribute is not present on the root domain NC'sNC’s crossRef object. For child NCs, 
this value references the parent NC'sNC’s crossRef object. For a domain NC that is not the root and 
does not have a parent NC, this value references the root domain'sdomain’s crossRef object. 

nTMixedDomain: This value is read-only on this object. It is kept in sync with the same attribute on 
the NC root of the NC referred to by nCName. See section 6.1.4.1. 

systemFlags: { FLAG_CR_NTDS_NC | FLAG_CR_NTDS_DOMAIN } 

msDS-Behavior-Version: This value is read-only on this object. It is kept in sync with the same 
attribute on the NC root of the NC referred to by nCName. See section 6.1.4. 

6.1.1.2.1.1.5 (Updated Section) Application NC crossRef Object 

dnsRoot: In AD DS, the value for dnsRoot for an application NC crossRef is derived by syntactically 
converting the DN portion of the crossRef'scrossRef’s nCName into a fully qualified DNS name as 

specified in section 3.1.1.1.5. Not present in AD LDS. 

systemFlags: { FLAG_CR_NTDS_NC | FLAG_CR_NTDS_NOT_GC_REPLICATED } 

msDS-NC-Replica-Locations: This attribute references the nTDSDSA objects representing every DC 
instructed to hold a writable NC replica of this application NC. See Hosting Requirements in section 

6.1.2.3. 

msDS-SDReferenceDomain: In AD DS, the attribute references an NC root object for a domain. All 
security descriptors in this application NC mustMUST use the NC represented as the reference domain 
for resolution. See section 5 for security descriptor reference domain information. Not present in AD 
LDS. 

msDS-NC-RO-Replica-Locations: This attribute references the nTDSDSA object representing every DC 
instructed to hold a read-only NC replica of this application NC. See Hosting Requirements in section 

6.1.2.3. 

6.1.1.2.2 Sites Container 

Each forest contains a Sites container in the Config NC. For each site in the forest, a site object exists 
in the Sites container. 

name: Sites 

parent: Config NC root object 

objectClass: sitesContainer 

systemFlags: { FLAG_DISALLOW_DELETE | FLAG_DISALLOW_MOVE_ON_DELETE } 

6.1.1.2.2.1 Site Object 

A site object corresponds to a set of one or more IP subnets that have LAN connectivity. Thus, by 
virtue of their subnet associations, DCs that are in the same site are well connected in terms of speed. 
Each site object has a child nTDSSiteSettings object and a Servers container. 

parent: Sites container 

objectClass: site 

systemFlags: { FLAG_CONFIG_ALLOW_RENAME | FLAG_DISALLOW_MOVE_ON_DELETE } 



 

452 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Note  The initial AD DS and AD LDS configuration contains one initial site object named Default-First-
Site-Name, which has no subnet association. 

6.1.1.2.2.1.1 (Updated Section) NTDS Site Settings Object 

NTDS site settings objects identify site-wide settings. There is one nTDSSiteSettings object per site. 

name: NTDS Site Settings 

parent: site object 

objectClass: nTDSSiteSettings 

options: One or more bits from the following diagram. The bits are presented in big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X R 
S 
E 

S 
H 
E 

B 
H 
D 

W 
2 
K 

F 
W 
B 

G 
C 
E 

I 
S 
D 

D 
S 
D 

M 
H 
D 

T 
C 
D 

A 
T 
D 

X: Unused. Must be zero and ignored. 

ATD (NTDSSETTINGS_OPT_IS_AUTO_TOPOLOGY_DISABLED, 0x00000001): Automatic 

topology generation is disabled. See section 6.2 for more information. 

TCD (NTDSSETTINGS_OPT_IS_TOPL_CLEANUP_DISABLED, 0x00000002): Automatic topology 
cleanup is disabled. See section 6.2 for more information. 

MHD (NTDSSETTINGS_OPT_IS_TOPL_MIN_HOPS_DISABLED, 0x00000004): Automatic 
minimum hops topology is disabled. See section 6.2 for more information. 

DSD (NTDSSETTINGS_OPT_IS_TOPL_DETECT_STALE_DISABLED, 0x00000008): Automatic 
stale server detection is disabled. See section 6.2 for more information. 

ISD (NTDSSETTINGS_OPT_IS_INTER_SITE_AUTO_TOPOLOGY_DISABLED, 0x00000010): 
Automatic intersite topology generation is disabled. See section 6.2 for more information. 

GCE (NTDSSETTINGS_OPT_IS_GROUP_CACHING_ENABLED, 0x00000020): Caching of users' 
group memberships is enabled for this site. This caching is an implementation-specific behavior. 
This flag can be ignored by other implementations but mustMUST not be used in a conflicting way 
that would affect the performance of Windows DCs. 

FWB (NTDSSETTINGS_OPT_FORCE_KCC_WHISTLER_BEHAVIOR, 0x00000040): Force the 

KCC to behave in a forest functional level of DS_BEHAVIOR_WIN2003 or greater. See section 6.2 
for more information. 

W2K (NTDSSETTINGS_OPT_FORCE_KCC_W2K_ELECTION, 0x00000080): Force the KCC to use 

the Windows 2000 operating system intersite topology generator (ISTG) election algorithm. See 
section 6.2 for more information. 

BHD (NTDSSETTINGS_OPT_IS_RAND_BH_SELECTION_DISABLED, 0x00000100): Prevent the 

KCC from randomly picking a bridgehead when creating a connection. See section 6.2 for more 
information. 

SHE (NTDSSETTINGS_OPT_IS_SCHEDULE_HASHING_ENABLED, 0x00000200): Allow the KCC 
to use hashing when creating a replication schedule. See section 6.2 for more information. 



 

453 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

RSE (NTDSSETTINGS_OPT_IS_REDUNDANT_SERVER_TOPOLOGY_ENABLED, 0x00000400): 
Create static failover connections. See section 6.2 for more information. 

schedule: The default replication schedule (defined as a SCHEDULE structure) that applies to all 
nTDSConnection objects for intrasite replication within this site. If this attribute does not contain any 

value, a schedule of once per hour is applied to replication within this site. See section 6.2 for more 
information. 

interSiteTopologyGenerator: A reference to the nTDSDSA object of the DC that is acting as the ISTG 
for this site. See section 6.2 for more information on the ISTG. 

interSiteTopologyFailover: Indicates how much time mustMUST transpire since the last keep-alive for 
the ISTG to be considered dead. See section 6.2 for more information. 

interSiteTopologyRenew: Indicates how often the intersite topology generator (ISTG) updates the 

keep-alive message that is sent to domain controllers contained in the same site. See section 6.2 for 
more information. 

6.1.1.2.2.1.2 Servers Container 

Each site contains a Servers container that contains the server objects for all the DCs that are in that 
site. 

parent: site object 

objectClass: serversContainer 

systemFlags: FLAG_DISALLOW_MOVE_ON_DELETE 

6.1.1.2.2.1.2.1 (Updated Section) Server Object 

Each DC in a domain has a server object in the config NC. See requirements in section 6.1.2.1. A 
server object has the following attributes: 

parent: The parent of this object is a serversContainer object. 

objectClass: server 

systemFlags: { FLAG_CONFIG_ALLOW_RENAME | FLAG_CONFIG_ALLOW_LIMITED_MOVE | 
FLAG_DISALLOW_MOVE_ON_DELETE }  

serverReference: In AD DS, a reference to the domain controller object representing this DC. See 
requirements in section 6.1.2.1. Not present in AD LDS. 

dNSHostName: Fully qualified DNS name of the DC. 

mailAddress: To enable the DC to perform intersite replication via the SMTP protocol (see [MS-SRPL]), 
this attribute mustMUST contain the SMTP mail address of the server. 

6.1.1.2.2.1.2.1.1 (Updated Section) nTDSDSA Object 

Each DC in a forest has an nTDSDSA object in the config NC. See requirements in section 6.1.2.1. An 
nTDSDSA object has the following attributes: 

name: NTDS Settings 

parent: An object with objectClass server. 

objectClass: nTDSDSA 

dMDLocation: The DSName of the schema NC root. 



 

454 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

invocationId: The invocationId for this DC (section 3.1.1.1.9). 

options: One or more of the following bits presented in big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X X X X X X D 
S 

D 
N 
X 

D 
O 

D 
I 

G 
C 

X: Unused. Must be zero and ignored. 

GC (NTDSDSA_OPT_IS_GC, 0x00000001): This DC is, or is becoming, a GC server. 

DI (NTDSDSA_OPT_DISABLE_INBOUND_REPL, 0x00000002): This DC does not perform 

inbound replication unless the DRS_SYNC_FORCED flag is passed. See [MS-DRSR] section 

4.1.10.4.1, ReplicateNCRequestMsg, for the effects of this option. 

DO (NTDSDSA_OPT_DISABLE_OUTBOUND_REPL, 0x00000004): This DC does not perform 
outbound replication unless the DRS_SYNC_FORCED flag is passed. See [MS-DRSR] section 
4.1.10.5.2, GetReplChanges, for the effects of this option. 

DNX (NTDSDSA_OPT_DISABLE_NTDSCONN_XLATE, 0x00000008): This DC does not translate 

connection objects into repsFroms. See section 6.2 for more information. 

DS (NTDSDSA_OPT_DISABLE_SPN_REGISTRATION, 0x00000010): This DC does not perform 
SPN (2) registration. Only interpreted by AD LDS DCs. See [MS-DRSR] sections 2.2.3.3 and 
2.2.4.3, SPN (2) for a Target DC in AD LDS, for the effects of this option. 

systemFlags: {FLAG_DISALLOW_MOVE_ON_DELETE} 

msDS-Behavior-Version: Indicates the DC version. See section 6.1.4.2 for more information. 

msDS-PortLDAP: In AD LDS, stores the LDAP port for this instance. Not present in AD DS. 

msDS-PortSSL: In AD LDS, stores the SSL port for this instance. Not present in AD DS. 

msDS-ServiceAccount: In AD LDS, stores the foreignSecurityPrincipal object that represents the 
service account running this DC. Not present in AD DS. 

hasMasterNCs: Contains the DSName of the NC root objects representing the schema NC, config NC, 
and domain NC for the default domain of the DC. This attribute always contains these three values 
and only these three values. This attribute is not present on the nTDSDSA object of an RODC. 

hasPartialReplicaNCs: Contains the DSName of the root objects of all domain NCs within the forest for 

which the DC hosts a partial NC replica. 

msDS-HasInstantiatedNCs: Contains an Object(DN-Binary) value for each NC replica that is hosted by 

this DC. The DN field is the DN of the root object of the NC. The Binary field contains the value of the 
instanceType attribute on the root object of the NC. This is a binary encoding of attribute instanceType 
with little-endian byte ordering.  

Requirement: The DN fields of all the values of msDS-HasInstantiatedNCs mustMUST be equal to the 

set of DNs contained in the values of msDS-hasMasterNCs and hasPartialReplicaNCs. 

msDS-HasDomainNCs: Equals the DSName of the NC root object for which the DC is hosting a 
regular NC replica. This attribute mustMUST have only one value. This NC root is called the default 
domain for the DC. 



 

455 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

msDS-hasMasterNCs: Contains the DSNames of the root objects of all writable NC replicas hosted by 
this DC. Not present on the nTDSDSA object of an RODC. On a normal (writable) DC, includes the 

default NC, config NC, schema NC, and all application NC replicas hosted by the DC. 

msDS-hasFullReplicaNCs: Contains the DSNames of the root objects of all read-only full NC replicas 

hosted by this DC. Not present on the nTDSDSA object of a normal (writable) DC. On an RODC, 
includes the default NC, config NC, schema NC, and all application NC replicas hosted by the DC. 

msDS-ReplicationEpoch: [MS-DRSR] section 4.1.3.1 (client behavior of IDL_DRSBind) and [MS-DRSR] 
section 4.1.10.5 (server behavior of IDL_DRSGetNCChanges) specify the effects of this attribute. 

msDS-DefaultNamingContext: In AD LDS, specifies the NC that is to be returned as the default NC by 
the defaultNamingContext attribute of the root DSE. If this attribute is not set, AD LDS does not have 
a default NC and the defaultNamingContext attribute of the root DSE is treated by the server as if it 

does not exist. Not present in AD DS. 

objectCategory: This attribute is a mandatory attribute representing the schema definition of the 
nTDSDSA object. If the objectCategory points to the classSchema object for the nTDSDSA class, then 

this nTDSDSA object is for a normal (writable) DC. If the objectCategory points to the classSchema 
object for the nTDSDSARO class, then this nTDSDSA object is for an RODC. 

msDS-EnabledFeature: This value references the objects that represent optional features that are 

enabled in the DC. See section 3.1.1.9. 

6.1.1.2.2.1.2.1.2 (Updated Section) Connection Object 

An nTDSConnection object represents a path for replication from a source DC to a destination DC. This 
object is a child of the nTDSDSA object of the destination DC. See section 6.2 for more information 
about connection objects. 

Each nTDSConnection object has the following attributes: 

parent: nTDSDSA object 

objectClass: nTDSConnection 

enabledConnection: Indicates whether the connection can be used for replication. 

fromServer: A reference to the nTDSDSA object of the source DC. 

schedule: Contains a SCHEDULE structure specifying the time intervals when replication can be 
performed between the source and the destination DCs. In case of intrasite replication (source and 
destination DCs are in the same site), the value of this attribute is derived from the schedule attribute 

on the nTDSSiteSettings object of the site where the two DCs reside. In case of intersite replication 
(source and destination DCs are in different sites), the value is derived from the schedule attribute on 
the siteLink object that links the two sites. 

systemFlags: {FLAG_CONFIG_ALLOW_RENAME | FLAG_CONFIG_ALLOW_MOVE} 

options: One or more bits from the following diagram. The bits are presented in big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X X X X X U 
O 
S 

D 
I 
C 

U 
N 

O 
N 
D 

T 
S 

I 
G 

X: Unused. Must be zero and ignored. 



 

456 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

IG (NTDSCONN_OPT_IS_GENERATED, 0x00000001): The nTDSConnection object was generated 
by the KCC. See section 6.2 for more information. 

TS (NTDSCONN_OPT_TWOWAY_SYNC, 0x00000002): Indicates that a replication cycle 
mustMUST be performed in the opposite direction at the end of a replication cycle that is using 

this connection. 

OND (NTDSCONN_OPT_OVERRIDE_NOTIFY_DEFAULT, 0x00000004): Do not use defaults to 
determine notification. 

UN (NTDSCONN_OPT_USE_NOTIFY, 0x00000008): The source DC notifies the destination DC 
regarding changes on the source DC. 

DIC (NTDSCONN_OPT_DISABLE_INTERSITE_COMPRESSION, 0x00000010): For intersite 
replication, this indicates that the compression of replication data is disabled. 

UOS (NTDSCONN_OPT_USER_OWNED_SCHEDULE, 0x00000020): For KCC-generated 
connections, indicates that the schedule attribute is owned by the user and mustMUST not be 

modified by the KCC. See section 6.2 for more information. 

transportType: A reference to the interSiteTransport object for the transport used on this connection. 
For more information about physical transport types, see [MS-SRPL]. 

mS-DS-ReplicatesNCReason: For each NC that is replicated using this connection, this attribute 

contains an Object(DN-Binary) value, where the DN portion is the DN of the NC, and the binary value 
is a 32-bit–wide bit field. The binary portion contains extended information about a connection object 
that could be used by administrators. It consists of one or more bits from the following diagram. The 
bits are presented in big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X R 
S 

S 
I 
F 

S 
F 

I 
S 

I 
S 
G 

O 
C 

S 
S 

M 
H 

R G 
C 

X: Unused. Must be zero and ignored. 

GC (NTDSCONN_KCC_GC_TOPOLOGY, 0x00000001): Not used. 

R (NTDSCONN_KCC_RING_TOPOLOGY, 0x00000002): The connection object is created to form a 
ring topology.  

MH (NTDSCONN_KCC_MINIMIZE_HOPS_TOPOLOGY, 0x00000004): The connection object is 
created to minimize hops between replicating nodes. 

SS (NTDSCONN_KCC_STALE_SERVERS_TOPOLOGY, 0x00000008): If the KCC finds that the 
destination server is not responding, then it sets this bit. 

OC (NTDSCONN_KCC_OSCILLATING_CONNECTION_TOPOLOGY, 0x00000010): The KCC sets 
this bit if deletion of the connection object was prevented.  

When the KCC considers deleting a connection object, it first checks if it previously deleted 
connection objects with the same source DC, destination DC, and options for an implementation-
specific number of times T (default value is 3) over the last implementation-specific time period t 
(the default is 7 days) since the server has started. If it did, it will set the 
NTDSCONN_KCC_OSCILLATING_CONNECTION_TOPOLOGY bit on the connection object and 
will not delete it. Otherwise, it will delete the connection object. 



 

457 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

ISG (NTDSCONN_KCC_INTERSITE_GC_TOPOLOGY, 0x00000020): This connection is to enable 
replication of partial NC replica between DCs in different sites. 

IS (NTDSCONN_KCC_INTERSITE_TOPOLOGY, 0x00000040): This connection is to enable 
replication of a full NC replica between DCs in different sites. 

SF (NTDSCONN_KCC_SERVER_FAILOVER_TOPOLOGY, 0x00000080): This connection is a 
redundant connection between DCs that is used for failover when other connections between DCs 
are not functioning. 

SIF (NTDSCONN_KCC_SITE_FAILOVER_TOPOLOGY, 0x00000100): This connection is a 
redundant connection between bridgehead DCs in different DCs; it is used for failover when other 
connections between bridgehead DCs connecting two sites are not functioning. 

RS (NTDSCONN_KCC_REDUNDANT_SERVER_TOPOLOGY, 0x00000200): Redundant connection 

object connecting bridgeheads in different sites. 

The connection object is for server-to-server replication implementation only. Peer DCs MAY assign a 

meaning to it, but it is not required for interoperation with Windows clients. 

See section 6.2 for more information about these options. 

6.1.1.2.2.1.2.1.3 (Updated Section) RODC NTFRS Connection Object 

An RODC NTFRS connection object exists for each RODC in the forest. RODC NTFRS connection 
objects do not exist for writable DCs. An RODC NTFRS connection object represents a path for File 
Replication Service (FRS) replication [MS-FRS1] from a source DC to a destination DC; it is not used 
for directory replication service (DRS) replication [MS-DRSR]. This object is a child of the nTDSDSA 
object of the destination RODC. See section 6.2 for more information about connection objects. 

Each RODC NTFRS connection object has the following attributes: 

name: RODC Connection (SYSVOL) 

Note  On Windows Server 2008 operating system and Windows Server 2008 R2 operating system, the 
name attribute was set to "RODC Connection (FRS)". 

parent: nTDSDSA object 

objectClass: nTDSConnection 

enabledConnection: trueTRUE 

fromServer: A reference to the nTDSDSA object of the source DC. 

schedule: Contains a SCHEDULE structure that specifies the time intervals when replication can be 

performed between the source and the destination DCs. See section 6.2.2.7 for more information 
about how this value is derived. 

systemFlags: {FLAG_CONFIG_ALLOW_RENAME} 

options: Both of the bits from the following diagram. The bits are presented in big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X X X X R 
T 

X X X X X I 
G 

X: Unused. Must be zero and ignored. 



 

458 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

IG (NTDSCONN_OPT_IS_GENERATED, 0x00000001): The nTDSConnection object was generated 
by the system, not by a user or administrator directly. 

RT (NTDSCONN_OPT_RODC_TOPOLOGY, 0x00000040): The NTDSCONN_OPT_RODC_TOPOLOGY 
bit in the options attribute indicates whether the connection can be used for DRS replication [MS-

DRSR]. When set, the connection mustMUST be ignored by DRS replication and used only by FRS 
replication [MS-FRS1]. See section 6.2 and [MS-FRS1] section 3.1.1.8. 

6.1.1.2.2.2 Subnets Container 

Each forest contains a Subnets container in the config NC. A network subnet is a segment of a TCP/IP 
network to which a set of logical IP addresses is assigned. For each subnet in the forest, a subnet 
object exists in the Subnets container. 

name: Subnets 

parent: Sites container 

objectClass: subnetContainer 

systemFlags: FLAG_DISALLOW_DELETE 

6.1.1.2.2.2.1 (Updated Section) Subnet Object 

Subnet objects define network subnets in the directory. Subnets group computers in a way that 
identifies their physical proximity on the network. subnet objects are used to map computers to sites. 

▪ name: The name of the subnet object identifies the set of IP addresses that fall in this subnet. An 
IP address that falls in this subnet is considered to be in the site specified by the siteObject 
attribute of this object. 

A valid subnet name mustMUST satisfy the following constraints: 

Let s be the subnet name. 

Let l be the length of the subnet name. 

Let BitMask[] = {0x00000000, 0x00000080, 0x000000C0, 0x000000E0, 0x000000F0, 
0x000000F8, 0x000000FC, 0x000000FE, 0x000000FF, 0x000080FF, 0x0000C0FF, 0x0000E0FF, 
0x0000F0FF, 0x0000F8FF, 0x0000FCFF, 0x0000FEFF, 0x0000FFFF, 0x0080FFFF, 0x00C0FFFF, 
0x00E0FFFF, 0x00F0FFFF, 0x00F8FFFF, 0x00FCFFFF, 0x00FEFFFF, 0x00FFFFFF, 0x80FFFFFF, 
0xC0FFFFFF, 0xE0FFFFFF, 0xF0FFFFFF, 0xF8FFFFFF, 0xFCFFFFFF, 0xFEFFFFFF, 0xFFFFFFFF }; 

s is a valid subnet name if: 

1. There is only one occurrence of the character "/" in s. Let i be the index of the character "/" in 
s. 

2. The substring s[0, i-1] is either a valid IPv4 address in dotted decimal notation (as specified in 
[RFC1166]) or a valid IPv6 address in colon-hexadecimal form or compressed form (as specified in 

[RFC4291]), and mustMUST meet the following constraints: 

▪ IPv4 addresses mustMUST not have any leading zeros in any individual component of the 

address. 

▪ IPv6 addresses mustMUST be in canonical text representation format (as specified in 
[RFC5952] section 4), except that the addresses are treated as case insensitive. 

Examples: 

 Valid IPv4 subnet names: 



 

459 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ 10.2.1.0/24 

▪ 10.20.1.0/24 

 Invalid IPv4 subnet names: 

▪ 10.02.0.0/16 

 Valid IPv6 subnet names: 

▪ A:A:A:A::/64 

▪ a:b::c:d:0:0/64 

▪ 0:0:e0::/48 

▪ A:b:C::/128 

▪ A:B::F:0/128 

▪ 12AB:0:0:CD30::/60 

▪ A:a:e:b:0:d:e:f/128 

 Invalid IPv6 subnet names: 

▪ A:B:0C:D::/64 

▪ A:B:0:0:0:0:E:F/128 

▪ 12AB::CD30:0:0:0:0/60 

▪ 12AB:0:0:CD30::F:0/60 

▪ A:a:e:b::d:e:f/128 

Let b be the binary representation of the address in little-endian format. 

3. The substring s[i+1, l-1] does not have any leading zeros and can be converted to an unsigned 
integer n. 

4. When the address is in IPv4 format, 0 < n <= 32. When the address is in IPv6 format, 0 < n 
<= 128. 

5. When the address is in IPv4 format, b & (~BitMask[n]) = 0. 

6. When the address is in IPv4 format, b ≠ BitMask[n]. 

Based on the subnet object name, the range of the IP addresses that the subnet contains can be 
determined. For example, if the IPv4 subnet object name is 10.121.0.0/22, then according the 
above definition, b will be 00001010.01111001.00000000.00000000 and n will be 22. This means 
that the first 22 bits of b will be fixed for the range of the IP addresses the subnet contains. Then 

the IP address range of the subnet is from 00001010.01111001.00000000.00000000 to 
00001010.01111001.00000011.11111111, namely from 10.121.0.0 to 10.121.3.255. Similarly, an 

IPv6 subnet object name 2001:DA8::/48 represents the IPv6 addresses from 
2001:DA8:0:0:0:0:0:0 to 2001:DA8:0:FFFF:FFFF:FFFF:FFFF:FFFF. 

▪ parent: Subnets container 

▪ objectClass: subnet 

▪ systemFlags: FLAG_CONFIG_ALLOW_RENAME 



 

460 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ siteObject: The DSName of the site object for the site that covers this subnet. 

6.1.1.2.2.3 Inter-Site Transports Container 

The Inter-Site Transports container provides the means for specifying the transport or wire protocol to 

be used for replication between sites. Intersite replication can use either the RPC protocol over IP (see 
[MS-DRSR]), or the SMTP protocol (see [MS-SRPL]). 

name: Inter-Site Transports 

parent: Sites container 

objectClass: interSiteTransportContainer 

systemFlags: FLAG_DISALLOW_DELETE 

6.1.1.2.2.3.1 IP Transport Container 

The IP Transport container contains all the siteLink and siteLinkBridge objects that connect two or 
more sites for intersite replication using RPC over IP protocol. 

parent: Inter-Site Transports container 

objectClass: interSiteTransport 

transportDLLName: The value of this attribute MUST be the string "ismip.dll". 

transportAddressAttribute: Identifies which attribute on the server object of a DC is to be used as the 
network address of the DC for replication using this transport. For the IP transport, the attribute is 
dNSHostName. 

options: A set of the following bit flags presented in big-endian byte order. For IP transport, the initial 
value is none present (options value 0x0). 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X B 
R 

I 
S 

X: Unused. Must be zero and ignored. 

IS (NTDSTRANSPORT_OPT_IGNORE_SCHEDULES, 0x00000001): If present, values of the 
schedule attribute for siteLink objects associated with this transport are ignored. In this case, the 

schedule is assumed to be always "on"; that is, that the transport is always available to send and 
receive messages. 

BR (NTDSTRANSPORT_OPT_BRIDGES_REQUIRED, 0x00000002): If present, transitive 
connectivity between siteLink objects associated with this transport is assumed only if the siteLink 

objects are in the siteLinkList of the same siteLinkBridge object. If absent, the system behaves as 
if all siteLink objects associated with this transport were in the siteLinkList of a common 
siteLinkBridge object associated with this transport. 

6.1.1.2.2.3.2 SMTP Transport Container 

In AD DS, the SMTP Transport container contains all the siteLink and siteLinkBridge objects that 
connect two or more sites for intersite replication using the SMTP protocol. Not present in AD LDS. 

parent: Inter-Site Transports container 



 

461 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

objectClass: interSiteTransport 

transportDLLName: The value of this attribute MUST be the string "ismsmtp.dll". 

transportAddressAttribute: Identifies which attribute on the server object of a DC is to be used as the 
network address of the DC for replication using this transport. For the SMTP transport, the attribute is 

mailAddress. 

options: A set of bit flags as defined for options in section 6.1.1.2.2.3.1. For SMTP transport, the initial 
value is NTDSTRANSPORT_OPT_IGNORE_SCHEDULES present (options value 0x1). 

6.1.1.2.2.3.3 (Updated Section) Site Link Object 

For a DC in one site to replicate directly with a DC in a different site, a siteLink object (or a series of 
siteLink objects) mustMUST connect the two sites specified. A siteLink object identifies the transport 

(wire protocol) to be used for replication between the sites. If the transport is IP, the siteLink object is 
a child of the IP Transport container. If the transport is SMTP, the siteLink object is a child of the SMTP 
Transport container. Any single siteLink object can encompass two or more sites. If a siteLink object 

contains two sites, then those two sites are considered to be directly connected. If a siteLink object 
contains more than two sites, then all of the sites listed in the siteLink are considered to be connected 
in a mesh of point-to-point links. 

parent: Either IP Transport container or SMTP Transport container. 

objectClass: siteLink 

systemFlags: FLAG_CONFIG_ALLOW_RENAME 

cost: An administrator-defined cost value associated with that replication path. 

siteList: Contains the DSName of the site objects for the sites that are connected using this site link. 

replInterval: An interval that determines how frequently replication occurs over this site link during 
the times when the schedule allows replication. 

schedule: Replication schedule of type SCHEDULE that specifies the time intervals when replication is 
permitted between the two sites. 

options: A set of the following bit flags presented in big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X D 
C 

T 
S 

U 
N 

X: Unused. Must be zero and ignored. 

UN (NTDSSITELINK_OPT_USE_NOTIFY, 0x00000001): If present, enables replication 

notifications (see Updates, section 3.1.1.5) between DCs in different sites in the siteList. 

TS (NTDSSITELINK_OPT_TWOWAY_SYNC, 0x00000002): If present, forces a replication cycle in 

the opposite direction at the end of a replication cycle between DCs in different sites in the 
siteList. 

DC (NTDSSITELINK_OPT_DISABLE_COMPRESSION, 0x00000004): If present, disables 
compression of IDL_DRSGetNCChanges response messages sent between DCs in different sites in 
the siteList. 



 

462 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.1.2.2.3.4 Site Link Bridge Object 

A siteLinkBridge object connects two or more siteLink objects that are associated with the same 
transport. The siteLinkBridge object is a child of the interSiteTransport object for the transport used by 

the siteLink objects that are being connected. 

When NTDSTRANSPORT_OPT_BRIDGES_REQUIRED is present in the options of a transport, 
replication only assumes transitive communication between sites as specified in the siteLinkBridge 
objects for that transport. See the specification of IDL_QuerySitesByCost ([MS-DRSR] section 
4.1.16.3). 

parent: Either an IP transport container or an SMTP transport container. 

objectClass: siteLinkBridge 

systemFlags: FLAG_CONFIG_ALLOW_RENAME 

siteLinkList: Contains the DSNames of the siteLink objects for the site links that are being connected 

by this site link bridge. 

6.1.1.2.3 Display Specifiers Container 

The Display Specifier objects are installed in the directory for use by the administrative applications of 

the directory. Each supported locale (that is, language and location) for the administrative application 
is assigned a number, called a Locale ID (LCID), and each of the children of the Display Specifier 
container is named with that number's hexadecimal character representation (for example, 1033 is 
named "409"). Section 2.2.1 contains a table associating each locale with an LCID. Some locales do 
not have Display Specifier objects installed by default. 

name: DisplaySpecifiers 

parent: Config NC root 

objectClass: container 

systemFlags: FLAG_DISALLOW_DELETE 

6.1.1.2.3.1 (Updated Section) Display Specifier Object 

name: The name of each Display Specifier is a hexadecimal number in Unicode characters that 
represents a locale.  

parent: Display Specifiers container 

objectClass: displaySpecifier 

The children of the Display Specifier object describe an implementation component of the 
administrative application. These objects are not interpreted by the DC. 

The attributes of the children of the Display Specifier object are: 

parent: Display Specifier object 

objectClass: displaySpecifier 

adminPropertyPages: Each administrative application component for an object of class displaySpecifier 

associates a Component Object Model (COM) object represented by a universally unique identifier 
(UUID) called a property page in this attribute. Each value in this multivalued attribute describes a 
single COM object. The description of a COM object is a string with the following format: 

<order-number>,<UUID>,[optional data] 



 

463 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

where: 

▪ The order-number determines the desired ordering in the application for each COM object 
represented in the value. 

▪ The UUID is a string representation of a UUID representing a COM object enclosed in curly braces. 

▪ The optional data is passed to the COM object by the implementation.  

shellPropertyPages: This attribute has the same semantics as adminPropertyPages. 

adminContextMenu: This attribute can store values, where each value describes either a single COM 
object representation or a single application representation. For a COM object, this attribute has the 
same semantics as adminPropertyPage. For an application representation, the description is stored as 
a string with the following format: 

<order-number>,<context menu name>,<program name> 

where: 

▪ The order-number determines the desired ordering for each COM object represented in the value. 

▪ The context menu name is the text of the menu item for the administrative application interface. 

▪ The program name is the application that is executed when the application references this 
adminContextMenu attribute. Either the full path mustMUST be specified, or the application 
mustMUST be in the search path. 

shellContextMenu: This attribute has the same semantics as adminContextMenu. 

adminMultiselectPropertyPages: This attribute has the same semantics as adminPropertyPages. 

treatAsLeaf: This attribute is a Boolean that instructs the administrative application to ignore any child 
objects of this object, whether they exist or not. 

creationWizard: The creationWizard attribute identifies primary object creation COM objects to replace 
the existing or native object creation wizard in Active Directory administrative applications. The COM 
objects in this value are represented by UUID. 

createWizardExt: The createWizardExt attribute identifies secondary object creation COM objects for 
the administrative applications, if needed. This attribute is multivalued and requires the following 
format: 

<order number>,<UUID> 

where  

▪ The order-number determines the desired ordering for each COM object represented in the value. 

▪ The UUID is a string representation of a UUID representing a COM object. 

iconPath: The iconPath attribute can be specified in one of two ways: 

1. "<state>,<icon file name>" or 

2. "<state>,<module file name>,<resource ID>" 

In these examples, the "<state>" is an integer with a value between 0 and 15. The value 0 is defined 
to be the default or closed state of the icon. The value 1 is defined to be the open state of the icon. 
The value 2 is the disabled state. All other values are application-defined. 

The "<icon file name>" is the path and file name of an icon file that contains the icon image. 



 

464 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The "<module file name>" is the path and file name of a module, such as an EXE or DLL, that contains 
the icon image in a resource. The "<resource ID>" is an integer that specifies the resource identifier 

of the icon resource within the module. 

6.1.1.2.4 Services 

name: Services 

parent: Config NC root object 

objectClass: container 

systemFlags: { FLAG_DISALLOW_DELETE } 

6.1.1.2.4.1 Windows NT 

name: Windows NT 

parent: Services 

objectClass: container 

6.1.1.2.4.1.1 Directory Service 

name: Directory Service 

parent: Windows NT (section 6.1.1.2.4.1) 

objectClass: nTDSService 

tombstoneLifetime: The number of days that a tombstone or recycled-object exists before it is 
garbage collected. See 3.1.1 for more information. 

deletedObjectLifetime: The number of days that a deleted-object exists before it is transformed into a 

recycled-object. If no value is specified, the value of the tombstoneLifetime attribute is used instead. 

sPNMappings: In AD DS, a set of SPN (2) mappings, as specified in [MS-DRSR] section 4.1.4.2.19 

(MapSPN). Not present in AD LDS. 

msDS-Other-Settings: A multivalued string where each string value encodes a name-value pair. In the 
encoding, the name and value are separated by an "=". For example, the encoding of the name 
"DisableVLVSupport" with value "0" is "DisableVLVSupport=0". Each name is the name of an LDAP 
configurable setting, and the value is the value of that setting. The LDAP configurable settings and 
their effects are specified in section 3.1.1.3.4.7. 

dSHeuristics: See section 6.1.1.2.4.1.2. By default, this attribute is not set. 

6.1.1.2.4.1.2 (Updated Section) dSHeuristics 

dSHeuristics is a Unicode string attribute. Each character in the string represents a heuristic that is 

used to determine the behavior of Active Directory. These heuristics are described partly in this 
section and partly elsewhere in this specification. 

The following constraints apply to the dSHeuristics string: 

▪ The order of the characters in the string is fixed; characters can be omitted only by truncating the 

string. 

▪ By default, the dSHeuristics attribute does not exist and, unless otherwise specified, the default 
value of each character in the dSHeuristics string is "0". 



 

465 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ When modifying an existing dSHeuristics string, the values of all existing characters that are not 
of interest to the modification mustMUST be preserved. 

These constraints are illustrated by the following examples. 

1. If dSHeuristics is not present or has length of zero, then the fSupFirstLastANR heuristic is 

falseFALSE. 

2. If dSHeuristics is only two Unicode characters long, then the fDoListObject heuristic, which would 
be represented by the third character in the string, is falseFALSE. 

3. Consider a scenario where the fSupFirstLastANR, fSupLastFirstANR, and fDoNickRes heuristics are 
required for certain system behaviors. The dSHeuristics string would consist of at least four 
characters, fSupFirstLastANR, fSupLastFirstANR, fDoListObject, and fDoNickRes, even 
though the fDoListObject heuristic is not needed. An implementer would set the fDoListObject 

character to the default value of "0" as described earlier. 

4. Consider a scenario where anonymous LDAP operations to Active Directory need to be enabled. In 

this scenario, the seventh character of the dSHeuristics string, fLDAPBlockAnonOps, would be 
set to character "2". If the dSHeuristics string was already in existence before this operation, no 
characters in the dSHeuristics string other than the seventh character would be modified. If the 
dSHeuristics string did not yet exist before this operation, the first through sixth characters would 

be set to their default values, resulting in a dSHeuristics string of "0000002" in this case. 

The following table describes the characters of the dSHeuristics string. 

Character 
number Character name Description 

1 fSupFirstLastANR If this character is "0", then the fSupFirstLastANR 
heuristic is falseFALSE; otherwise, the 

fSupFirstLastANR heuristic is trueTRUE. 

Section 3.1.1.3.1.3.4 specifies the effects of this 
heuristic. 

2 fSupLastFirstANR If this character is "0", then the fSupLastFirstANR 
heuristic is falseFALSE; otherwise, the 
fSupLastFirstANR heuristic is trueTRUE. 

Section 3.1.1.3.1.3.4 specifies the effects of this 
heuristic. 

3 fDoListObject If this character is "1", then the fDoListObject 
heuristic is trueTRUE; otherwise, the 
fDoListObject heuristic is falseFALSE. 

Section 5.1.3.2 specifies the effects of this 
heuristic. 

4 fDoNickRes If this character is "0", then the fDoNickRes 
heuristic is falseFALSE; otherwise, the fDoNickRes 
heuristic is trueTRUE. 

The effects of the fDoNickRes heuristic are outside 
the state model. If the fDoNickRes heuristic is 
trueTRUE, an ANR request via MAPI attempts an 
exact match against the MAPI nickname attribute 
(the attribute with mAPIID equal to 0x3A00) 
before performing an ANR search (see section 
3.1.1.3.1.3.4). 

5 fLDAPUsePermMod If this character is "0", then the 
fLDAPUsePermMod heuristic is falseFALSE; 
otherwise, the fLDAPUsePermMod heuristic is 



 

466 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Character 
number Character name Description 

trueTRUE. 

If the fLDAPUsePermMod heuristic is trueTRUE, 
then all LDAP Modify operations behave as if the 
LDAP_SERVER_PERMISSIVE_MODIFY_OID control 
was passed. Section 3.1.1.3.4.1.8 specifies the 
effects of the 
LDAP_SERVER_PERMISSIVE_MODIFY_OID 
control. 

6 ulHideDSID The ulHideDSID heuristic equates to the numeric 
value of this character; that is, character "0" 
equates to 0, character "1" equates to 1, and so 
on. 

The ulHideDSID heuristic controls when DSIDs are 
returned in the LDAP extended error string when 
an operation encounters an error. If the heuristic 
is 0, then DSIDs will be returned at all times. If 
the heuristic is 1, then DSIDs will be returned as 
long as the error is not a name error where 
different DSIDs can reveal the existence of an 
object that is not visible to the client. If the 
heuristic is anything but 0 or 1, then DSIDs will 
not be returned at all. 

A DSID consists of the string "DSID-", followed by 
an implementation-specific 32-bit integer 
expressed in hexadecimal. The integer identifies 

the execution point at which an error occurred. 

7 fLDAPBlockAnonOps If this character is "2", then the 
fLDAPBlockAnonOps heuristic is falseFALSE; 
otherwise, the fLDAPBlockAnonOps heuristic is 
trueTRUE. If this character is not present in the 
string, it defaults to "2" when the DC functional 
level is less than DS_BEHAVIOR_WIN2003, and to 
"0" otherwise. 

Section 5.1.3 specifies the effects of this heuristic. 

8 fAllowAnonNSPI If this character is "0", then the fAllowAnonNSPI 
heuristic is falseFALSE; otherwise, the 
fAllowAnonNSPI heuristic is trueTRUE. 

If the fAllowAnonNSPI heuristic is trueTRUE, allow 
anonymous calls to the name service provider 
interface (NSPI) RPC bind method. Otherwise, 

only allow authenticated clients. 

9 fUserPwdSupport If this character is neither "0" nor "2", then the 
fUserPwdSupport heuristic is trueTRUE. If this 
character is "2", then the fUserPwdSupport 
heuristic is falseFALSE. If this character is "0", 
then the fUserPwdSupport heuristic is falseFALSE 
for AD DS and trueTRUE for AD LDS. 

Sections 3.1.1.3.1.5.2 and 3.1.1.4.4 specify the 
effects of this heuristic. 

10 tenthChar When setting dSHeuristics to a value that is 10 or 
more Unicode characters long, if the value of 
tenthChar is not character "1", the server rejects 
the update. See section 3.1.1.5.3.2. 

11 fSpecifyGUIDOnAdd If this character is "0", then the 



 

467 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Character 
number Character name Description 

fSpecifyGUIDOnAdd heuristic is falseFALSE; 
otherwise, the fSpecifyGUIDOnAdd heuristic is 
trueTRUE. 

The fSpecifyGUIDOnAdd heuristic applies only to 
AD DS. AD LDS always treats this heuristic as if 
the character is "0"; that is, as if the 
fSpecifyGUIDOnAdd heuristic is falseFALSE. 

Section 3.1.1.5.2.2 specifies the effects of this 
heuristic. 

12 fDontStandardizeSDs If this character is "0", then the 
fDontStandardizeSDs heuristic is falseFALSE; 
otherwise, the fDontStandardizeSDs heuristic is 
trueTRUE. 

Section 6.1.3 specifies the effects of this heuristic. 

13 fAllowPasswordOperationsOverNonSecure
Connection 

If this character is "0", then the 
fAllowPasswordOperationsOverNonSecureConnecti
on heuristic is falseFALSE; otherwise, the 
fAllowPasswordOperationsOverNonSecureConnecti
on heuristic is trueTRUE. 

The 
fAllowPasswordOperationsOverNonSecureConnecti
on heuristic applies only to AD LDS. 

Sections 3.1.1.3.1.5.1, 3.1.1.5.2.2, and 
3.1.1.5.3.2 specify the effects of this heuristic. 

14 fDontPropagateOnNoChangeUpdate If this character is "0", then the 
fDontPropagateOnNoChangeUpdate heuristic is 
falseFALSE; otherwise, the 
fDontPropagateOnNoChangeUpdate heuristic is 
trueTRUE. 

If the fDontPropagateOnNoChangeUpdate 
heuristic is trueTRUE, when the 
nTSecurityDescriptor attribute of an object is set 
to a value that is bitwise identical to the current 
value, no work item is enqueued for the task that 
updates the security descriptors on the children of 
a modified object in order to propagate inherited 
ACEs (section 6.1.3). If the 
fDontPropagateOnNoChangeUpdate heuristic is 
falseFALSE, a work item is always enqueued when 
the nTSecurityDescriptor attribute is modified. 

The fDontPropagateOnNoChangeUpdate heuristic 
applies to Windows Server 2008 and later. 
Windows 2000 Server operating system through 
Windows Server 2003 R2 operating system 
versions of Active Directory behave as if the 
fDontPropagateOnNoChangeUpdate heuristic is 
falseFALSE. 

15 fComputeANRStats If this character is "0", then the 
fComputeANRStats heuristic is falseFALSE; 
otherwise, the fComputeANRStats heuristic is 
trueTRUE. 

The effects of the fComputeANRStats heuristic are 
outside the state model. If the fComputeANRStats 
heuristic is trueTRUE, ANR searches (section 
3.1.1.3.1.3.4) are optimized using cardinality 



 

468 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Character 
number Character name Description 

estimates like all other searches. 

16 dwAdminSDExMask The valid values for this character are from the 
set "0"–"9" and "a"–"f". The dwAdminSDExMask 
heuristic equals the character interpreted as a hex 
digit and converted into a 4-bit value (that is, 
"1"=0x1, "f"=0xF). 

Section 3.1.1.6.1 specifies the effects of this 
heuristic. 

17 fKVNOEmuW2K If this character is "0", then the fKVNOEmuW2K 
heuristic is falseFALSE; otherwise, the 

fKVNOEmuW2K heuristic is trueTRUE. 

Section 3.1.1.4.5.16 specifies the effects of this 
heuristic. 

18 fLDAPBypassUpperBoundsOnLimits If this character is "0", then the 
fLDAPBypassUpperBoundsOnLimits heuristic is 
falseFALSE; otherwise, the 
fLDAPBypassUpperBoundsOnLimits heuristic is 
trueTRUE. 

If the fLDAPBypassUpperBoundsOnLimits heuristic 
is falseFALSE, DCs impose implementation-
dependent limits when interpreting values of the 
LDAP policies specified in section 3.1.1.3.4.6. If 
the configured policy value exceeds the limit, the 
DC ignores the policy value and instead uses the 
implementation-dependent limit. 

This heuristic applies to Windows Server 2008 and 
later. Windows 2000 Server through Windows 
Server 2003 R2 versions of Active Directory do 
not impose any such limits. 

19 fDisableAutoIndexingOnSchemaUpdate If this character is "0", then the 
fDisableAutoIndexingOnSchemaUpdate heuristic is 
falseFALSE; otherwise, the 
DisableAutoIndexingOnSchemaUpdate heuristic is 
trueTRUE. The effects of the 
fDisableAutoIndexingOnSchemaUpdate heuristic 
are outside the state model. 

If the fDisableAutoIndexingOnSchemaUpdate 
heuristic is falseFALSE, DCs can initiate index 
creation upon detection of index-related changes 
to the searchFlags attribute (see section 2.2.10). 
If the fDisableAutoIndexingOnSchemaUpdate 
heuristic is trueTRUE, it is a hint to DCs that index 
creation can be delayed upon detection of index-
related changes to the searchFlags attribute until 
either an administrator issues the 
schemaUpdateNow rootDSE modify operation, the 
DC is rebooted, or an implementation-dependent 
time period has elapsed. 

This heuristic applies to Windows Server 2012 
operating system and later. Windows 2000 Server 
through Windows Server 2008 R2 do not 
implement support for this heuristic. 

20 twentiethChar When setting dSHeuristics to a value that is 20 or 
more Unicode characters long, if the value of 
twentiethChar is not character "2", the server 



 

469 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Character 
number Character name Description 

rejects the update. See section 3.1.1.5.3.2. 

21 DoNotVerifyUPNAndOrSPNUniqueness In AD LDS, if this character is anything other than 
"0", AD LDS will not check values of 
userPrincipalName for uniqueness (section 
3.1.1.5.2.2). In AD LDS, this heuristic applies to 
Windows Server 2003 operating system and later. 

 

The following applies to AD DS only: 

 

This heuristic value is converted to an unsigned 
integer and the result is interpreted as a bitwise 
OR. 

 

In AD DS, this heuristic applies to Windows Server 
2012 R2 operating system with [MSKB-3070083] 
installed.  

 

Note: In AD DS, the 
DoNotVerifyUPNAndOrSPNUniqueness heuristic 
also applies to the operating systems specified in 
[MSFT-CVE-2021-42282], each with its related 
MSKB article download installed 

 

Bit 2 is supported with values between “0” and 
“7”. Otherwise, only Bit 0 and 1 are supported, 

meaning supported values are between “0” and 
“3”. 

 

The heuristic value is interpreted as follows, with 
Bit 0 as the lower bit: 

  

Bit 0: AD DS will check values of 
userPrincipalName (UPN) for uniqueness only if 
this bit is set (section 3.1.1.5.1.3). 

 

Bit 1: AD DS will check values of 
servicePrincipalName (SPN) for uniqueness only if 
this bit is set (section 3.1.1.5.1.3). 

 

Bit 2: AD DS will check values of SPN (1) for alias 
uniqueness only if this bit is set (section 
3.1.1.5.1.3). 

 

22-23 MinimumGetChangesRequestVersion A hexadecimal value, ranging from "00" to "FF". 
This value controls the minimum version of the 
DRS_MSG_GETCHGREQ* structures the DC will 
send or accept. If the value is not set, the value 
"00" is used. When the value is "00", no 
restriction is enforced. 

See [MS-DRSR] section 4.1.10.5.1. 

24-25 MinimumGetChangesReplyVersion A hex value, ranging from "00" to "FF". This value 
controls the minimum version of the 
DRS_MSG_GETCHGREPLY* structures the DC will 



 

470 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Character 
number Character name Description 

send or accept. If the value is not set, the value 
"00" is used. When the value is "00", no 
restriction is enforced. 

See [MS-DRSR] section 4.1.10.5.20. 

26 fLoadV1AddressBooksOnlySetting If this character is "0", then the 
fLoadV1AddressBooksOnlySetting heuristic is 
falseFALSE; otherwise, the 
fLoadV1AddressBooksOnlySetting heuristic is 
trueTRUE. 

 

If fLoadV1AddressBooksOnly is trueTRUE, then 
the hierarchy table used to support the MAPI 
address book is calculated using V1 attributes 
only, which means ignoring the V2 attributes 
"addressBookRoots2" and "templateRoots2". 

 

If fLoadV1AddressBooksOnly is falseFALSE, then 
those V2 attributes are used. This heuristic 
applies to Windows 10 v1903 operating system 
and later and Windows Server v1903 operating 
system and later. 

27 fTreatTokenGroupsAsLDAPTransitiveAttri
bute 

If this character is "0" (or not set), then the 
fTreatTokenGroupsAsLDAPTransitiveAttribute 
heuristic is falseFALSE; otherwise, the 
fTreatTokenGroupsAsLDAPTransitiveAttribute 
heuristic is trueTRUE.  

This heuristic applies to Windows 10 v1903 and 
later and Windows Server v1903 and later. This 
heuristic also applies only to the number of values 
returned by the following constructed attributes: 

 

3.1.1.4.5.19 - tokenGroups, 
tokenGroupsNoGCAcceptable 

3.1.1.4.5.42 - msds-tokenGroupNames, msds-
tokenGroupNamesNoGCAcceptable 

3.1.1.4.5.43 - msds-
tokenGroupNamesGlobalAndUniversal 

3.1.1.4.5.20 - tokenGroupsGlobalAndUniversal 

 

If fTreatTokenGroupsAsLDAPTransitiveAttribute is 
false, then the number of values returned is 
defined by the “MaxValRange” LDAP policy, as  
defined in section 3.1.1.3.4.6. 

 

If fTreatTokenGroupsAsLDAPTransitiveAttribute is 
trueTRUE, then the number of values returned is 
defined by the “MaxValRangeTransitive” LDAP 
policy, as defined in section 3.1.1.3.4.6. 

 

Note: The ability to use LDAP limits to configure 
the maximum number of objects returned by the 
msds-TokenGroup* family constructed attributes, 
is supported in Windows 11, version 22H2 
operating system and later, and in the operating 



 

471 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Character 
number Character name Description 

systems specified in [MSKB-5011543], [MSKB-
5011551], [MSKB-5011558], and [MSKB-
5011563], each with the corresponding KB 
package installed. 

28 AttributeAuthorizationOnLDAPAdd If this character is "0", “1”, or “2”, the 
AttributeAuthorizationOnLDAPAdd heuristic is set 
to the equivalent numeric value (0, 1, or 2). If 
this character is not set, the 
AttributeAuthorizationOnLDAPAdd heuristic 
defaults to 0. If this character has any other 
value, the AttributeAuthorizationOnLDAPAdd 
heuristic defaults to 1.  

 

See section 3.1.1.5.2.1.1. 

Note: This heuristic is supported by the operating 
systems specified in [MSFT-CVE-2021-42291], 
each with the related MSKB article download 
installed. 

29 BlockOwnerImplicitRights If this character is "0", “1”, or “2”, the 
BlockOwnerImplicitRights heuristic is set to the 
equivalent numeric value (0, 1, or 2). If this 
character is not set, the BlockOwnerImplicitRights 
heuristic defaults to 0. If this character has any 
other value, the BlockOwnerImplicitRights 
heuristic defaults to 1. 

 

See sections 3.1.1.5.2.1.1 and 3.1.1.5.3.1. 

Note: This heuristic is supported by the operating 
systems specified in [MSFT-CVE-2021-42291], 
each with the related MSKB article download 
installed. 

 

6.1.1.2.4.1.3 Optional Features Container 

A container to store the optional features objects. See section 3.1.1.9, Optional Features. 

parent: Directory Service 

name: Optional Features 

objectClass: container 

6.1.1.2.4.1.3.1 Recycle Bin Feature Object 

An msDS-OptionalFeature object that represents the Recycle Bin optional feature. See section 3.1.1.9 
for information on optional features. See section 3.1.1.9.1 for the effects of the Recycle Bin optional 
feature. 

parent: Optional Features 

name: Recycle Bin Feature 

objectClass: msDS-OptionalFeature 



 

472 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

msDS-OptionalFeatureFlags: FOREST_OPTIONAL_FEATURE (see section 3.1.1.9) 

msDS-OptionalFeatureGUID: 766ddcd8-acd0-445e-f3b9-a7f9b6744f2a 

msDS-RequiredForestBehaviorVersion: DS_BEHAVIOR_WIN2008R2 

6.1.1.2.4.1.3.2 Privileged Access Management Feature Object 

An msDS-OptionalFeature object that represents the Privileged Access Management optional feature. 
See section 3.1.1.9 for information on optional features. See section 3.1.1.9.2 for the effects of the 
Privileged Access Management optional feature. 

parent: Optional Features 

name: Privileged Access Management Feature 

objectClass: msDS-OptionalFeature 

msDS-OptionalFeatureFlags: FOREST_OPTIONAL_FEATURE (see section 3.1.1.9) 

msDS-OptionalFeatureGUID: ec43e873-cce8-4640-b4ab-07ffe4ab5bcd  

msDS-RequiredForestBehaviorVersion: DS_BEHAVIOR_WIN2016 

6.1.1.2.4.1.4 Query-Policies 

A container to store the default queryPolicy object. Can also contain queryPolicy objects created by 

administrators. See section 3.1.1.3.4.6 for the effects of queryPolicy objects. 

name: Query-Policies 

parent: Directory Service 

objectClass: container 

6.1.1.2.4.1.4.1 Default Query Policy 

Stores the default LDAP query policies. See section 3.1.1.3.4.6 for the effects of the default 

queryPolicy object. 

name: Default Query Policy 

parent: Query-Policies 

objectClass: queryPolicy 

lDAPAdminLimits: Encoding of the LDAP policies as specified in section 3.1.1.3.4.6. 

6.1.1.2.4.1.5 (Updated Section) SCP Publication Service Object 

This object is present only in AD LDS. It is system-created but can be removed and recreated by the 
administrator if desired. This object stores forest-wide configuration that is used to control the 
creation of serviceConnectionPoint objects by an AD LDS DC running on a computer joined to an AD 
DS domain. Section 6.3.8 specifies the effects of this object. 

name: SCP Publication Service 

parent: Directory Service 

objectClass: msDS-ServiceConnectionPointPublicationService 



 

473 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Enabled: A Boolean value. If falseFALSE, no DC in this forest will create a serviceConnectionPoint 
object. 

msDS-DisableForInstances: A set of references to nTDSDSA objects in this forest. A DC in this set will 
not create a serviceConnectionPoint object. 

msDS-SCPContainer: If present, is a reference to an AD DS object (a reference to an object outside 
this AD LDS forest). The parent of any serviceConnectionPoint object created by a DC in this forest is 
msDS-SCPContainer. If an AD LDS DC in this forest is joined to domain D, then a DC of domain D 
mustMUST be capable of generating a referral to a DC containing a writable replica of the NC 
containing msDS-SCPContainer. 

keywords: A set of strings. The keywords attribute of any serviceConnectionPoint object created by a 
DC in this forest contains all of these strings. There are no semantic constraints imposed on this 

attribute apart from any syntactic constraints that might be imposed by the schema. 

6.1.1.2.4.2 Claims Configuration 

name: Claims Configuration 

parent: Services 

objectClass: container 

Section 3.1.1.11 specifies additional information on how this container is used. 

6.1.1.2.5 Physical Locations 

This object is not present on AD LDS. 

name: Physical Locations 

parent: Config NC root object 

objectClass: physicalLocation 

6.1.1.2.6 WellKnown Security Principals 

This object is not present on AD LDS. 

name: WellKnown Security Principals 

parent: Config NC root object 

objectClass: container 

systemFlags: { FLAG_DISALLOW_DELETE} 

6.1.1.2.6.1 Anonymous Logon 

name: Anonymous Logon 

parent: WellKnown Security Principals 

objectSid: S-1-5-7 

6.1.1.2.6.2 Authenticated Users 

name: Authenticated Users 



 

474 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

parent: WellKnown Security Principals 

objectSid: S-1-5-11 

6.1.1.2.6.3 Batch 

name: Batch 

parent: WellKnown Security Principals 

objectSid: S-1-5-3 

6.1.1.2.6.4 Console Logon 

name: Console Logon 

parent: WellKnown Security Principals 

objectSid: S-1-2-1 

6.1.1.2.6.5 Creator Group 

name: Creator Group 

parent: WellKnown Security Principals 

objectSid: S-1-3-1 

6.1.1.2.6.6 Creator Owner 

name: Creator Owner 

parent: WellKnown Security Principals 

objectSid: S-1-3-0 

6.1.1.2.6.7 Dialup 

name: Dialup 

parent: WellKnown Security Principals 

objectSid: S-1-5-1 

6.1.1.2.6.8 Digest Authentication 

name: Digest Authentication 

parent: WellKnown Security Principals 

objectSid: S-1-5-64-21 

6.1.1.2.6.9 Enterprise Domain Controllers 

name: Enterprise Domain Controllers 

parent: WellKnown Security Principals 

objectSid: S-1-5-9 



 

475 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

By default all normal (writable) DCs in the forest belong to this group. 

6.1.1.2.6.10 Everyone 

name: Everyone 

parent: WellKnown Security Principals 

objectSid: S-1-1-0 

6.1.1.2.6.11 Interactive 

name: Interactive 

parent: WellKnown Security Principals 

objectSid: S-1-5-4 

6.1.1.2.6.12 IUSR 

name: IUSR 

parent: WellKnown Security Principals 

objectSid: S-1-5-17 

6.1.1.2.6.13 Local Service 

name: Local Service 

parent: WellKnown Security Principals 

objectSid: S-1-5-19 

6.1.1.2.6.14 Network 

name: Network 

parent: WellKnown Security Principals 

objectSid: S-1-5-2 

6.1.1.2.6.15 Network Service 

name: Network Service 

parent: WellKnown Security Principals 

objectSid: S-1-5-20 

6.1.1.2.6.16 NTLM Authentication 

name: NTLM Authentication 

parent: WellKnown Security Principals 

objectSid: S-1-5-64-10 

6.1.1.2.6.17 Other Organization 



 

476 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

name: Other Organization 

parent: WellKnown Security Principals 

objectSid: S-1-5-1000 

6.1.1.2.6.18 Owner Rights 

name: Owner Rights 

parent: WellKnown Security Principals 

objectSid: S-1-3-4 

6.1.1.2.6.19 Proxy 

name: Proxy 

parent: WellKnown Security Principals 

objectSid: S-1-5-8 

6.1.1.2.6.20 Remote Interactive Logon 

name: Remote Interactive Logon 

parent: WellKnown Security Principals 

objectSid: S-1-5-14 

6.1.1.2.6.21 Restricted 

name: Restricted 

parent: WellKnown Security Principals 

objectSid: S-1-5-12 

6.1.1.2.6.22 SChannel Authentication 

name: SChannel Authentication 

parent: WellKnown Security Principals 

objectSid: S-1-5-64-14 

6.1.1.2.6.23 Self 

name: Self 

parent: WellKnown Security Principals 

objectSid: S-1-5-10 

6.1.1.2.6.24 Service 

name: Service 

parent: WellKnown Security Principals 



 

477 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

objectSid: S-1-5-6 

6.1.1.2.6.25 System 

name: System 

parent: WellKnown Security Principals 

objectSid: S-1-5-18 

6.1.1.2.6.26 Terminal Server User 

name: Terminal Server User 

parent: WellKnown Security Principals 

objectSid: S-1-5-13 

6.1.1.2.6.27 This Organization 

name: This Organization 

parent: WellKnown Security Principals 

objectSid: S-1-5-15 

6.1.1.2.7 Extended Rights 

name: Extended Rights 

parent: Config NC root object 

objectClass: container 

systemFlags: { FLAG_DISALLOW_DELETE } 

6.1.1.2.7.1 controlAccessRight objects 

All controlAccessRight objects have: 

objectClass: controlAccessRight 

rightsGuid: This value is the identifier of the control access right used for security descriptors and 
SDDL. 

appliesTo: Each value in this attribute is a GUID, with each GUID equaling an attribute schemaIDGUID 
on a schema object defining a class in the schema NC. This class defines the objects in which the 
control access right can be a security descriptor for. The appliesTo values on the controlAccessRight 

are not enforced by the directory server; that is, the controlAccessRight can be included in security 
descriptors of objects of classes not specified in the appliesTo attribute. 

localizationDisplayId: This is implementation-specific information for the administrative application. 

validAccesses: This is implementation-specific information for the administrative application. 

displayName: This is implementation-specific information for human consumption. Some of the values 
that are used by the Windows implementation can be found at [MSDN-CAR] and [MSDOCS-SchUpd]. 

6.1.1.2.7.2 Change-Rid-Master 



 

478 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

This object is present in AD DS only. 

name: Change-Rid-Master 

rightsGuid: d58d5f36-0a98-11d1-adbb-00c04fd8d5cd 

appliesTo: 6617188d-8f3c-11d0-afda-00c04fd930c9 

6.1.1.2.7.3 Do-Garbage-Collection 

This object is present in AD DS and AD LDS. 

name: Do-Garbage-Collection 

rightsGuid: fec364e0-0a98-11d1-adbb-00c04fd8d5cd 

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed 

6.1.1.2.7.4 Recalculate-Hierarchy 

This object is present in AD DS only. 

name: Recalculate-Hierarchy 

rightsGuid: 0bc1554e-0a99-11d1-adbb-00c04fd8d5cd 

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed 

6.1.1.2.7.5 Allocate-Rids 

This object is present in AD DS only. 

name: Allocate-Rids 

rightsGuid: 1abd7cf8-0a99-11d1-adbb-00c04fd8d5cd 

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed 

6.1.1.2.7.6 Change-PDC 

This object is present in AD DS only. 

name: Change-PDC 

rightsGuid: bae50096-4752-11d1-9052-00c04fc2d4cf 

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.7 Add-GUID 

This object is present in AD DS and AD LDS. 

name: Add-GUID 

rightsGuid: 440820ad-65b4-11d1-a3da-0000f875ae0d 

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.8 Change-Domain-Master 

This object is present in AD DS only. 



 

479 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

name: Change-Domain-Master 

rightsGuid: 014bf69c-7b3b-11d1-85f6-08002be74fab 

appliesTo: ef9e60e0-56f7-11d1-a9c6-0000f80367c1 

6.1.1.2.7.9 Public-Information 

This object is present in AD DS and AD LDS. 

name: Public-Information 

rightsGuid: e48d0154-bcf8-11d1-8702-00c04fb96050 

appliesTo: 

▪ 4828CC14-1437-45bc-9B07-AD6F015E5F28 

▪ bf967a86-0de6-11d0-a285-00aa003049e2 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

▪ ce206244-5827-4a86-ba1c-1c0c386c1b64 (for AD DS only) 

▪ 7b8b558a-93a5-4af7-adca-c017e67f1057 (only in AD DS schema version 87 and greater) 

6.1.1.2.7.10 msmq-Receive-Dead-Letter 

This object is present in AD DS only. 

name: msmq-Receive-Dead-Letter 

rightsGuid: 4b6e08c0-df3c-11d1-9c86-006008764d0e 

appliesTo: 9a0dc344-c100-11d1-bbc5-0080c76670c0 

6.1.1.2.7.11 msmq-Peek-Dead-Letter 

This object is present in AD DS only. 

name: msmq-Peek-Dead-Letter 

rightsGuid: 4b6e08c1-df3c-11d1-9c86-006008764d0e 

appliesTo: 9a0dc344-c100-11d1-bbc5-0080c76670c0 

6.1.1.2.7.12 msmq-Receive-computer-Journal 

This object is present in AD DS only. 

name: msmq-Receive-computer-Journal 

rightsGuid: 4b6e08c2-df3c-11d1-9c86-006008764d0e 

appliesTo: 9a0dc344-c100-11d1-bbc5-0080c76670c0 

6.1.1.2.7.13 msmq-Peek-computer-Journal 

This object is present in AD DS only. 

name: msmq-Peek-computer-Journal 



 

480 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

rightsGuid: 4b6e08c3-df3c-11d1-9c86-006008764d0e 

appliesTo: 9a0dc344-c100-11d1-bbc5-0080c76670c0 

6.1.1.2.7.14 msmq-Receive 

This object is present in AD DS only. 

name: msmq-Receive 

rightsGuid: 06bd3200-df3e-11d1-9c86-006008764d0e 

appliesTo: 9a0dc343-c100-11d1-bbc5-0080c76670c0 

6.1.1.2.7.15 msmq-Peek 

This object is present in AD DS only. 

name: msmq-Peek 

rightsGuid: 06bd3201-df3e-11d1-9c86-006008764d0e 

appliesTo: 9a0dc343-c100-11d1-bbc5-0080c76670c0 

6.1.1.2.7.16 msmq-Send 

This object is present in AD DS only. 

name: msmq-Send 

rightsGuid: 06bd3202-df3e-11d1-9c86-006008764d0e 

appliesTo: 

▪ 9a0dc343-c100-11d1-bbc5-0080c76670c0 

▪ 46b27aac-aafa-4ffb-b773-e5bf621ee87b (only in schema version 30 and greater) 

6.1.1.2.7.17 msmq-Receive-journal 

This object is present in AD DS only. 

name: msmq-Receive-journal 

rightsGuid: 06bd3203-df3e-11d1-9c86-006008764d0e 

appliesTo: 9a0dc343-c100-11d1-bbc5-0080c76670c0 

6.1.1.2.7.18 msmq-Open-Connector 

This object is present in AD DS only. 

name: msmq-Open-Connector 

rightsGuid: b4e60130-df3f-11d1-9c86-006008764d0e 

appliesTo: bf967ab3-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.19 Apply-Group-Policy 

This object is present in AD DS only. 



 

481 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

name: Apply-Group-Policy 

rightsGuid: edacfd8f-ffb3-11d1-b41d-00a0c968f939 

appliesTo: f30e3bc2-9ff0-11d1-b603-0000f80367c1 

6.1.1.2.7.20 RAS-Information 

This object is present in AD DS only. 

name: RAS-Information 

rightsGuid: 037088f8-0ae1-11d2-b422-00a0c968f939 

appliesTo:  

▪ 4828CC14-1437-45bc-9B07-AD6F015E5F28 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.21 DS-Install-Replica 

This object is present in AD DS and AD LDS. 

name: DS-Install-Replica 

rightsGuid: 9923a32a-3607-11d2-b9be-0000f87a36b2 

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.22 Change-Infrastructure-Master 

This object is present in AD DS only. 

name: Change-Infrastructure-Master 

rightsGuid: cc17b1fb-33d9-11d2-97d4-00c04fd8d5cd 

appliesTo: 2df90d89-009f-11d2-aa4c-00c04fd7d83a 

6.1.1.2.7.23 Update-Schema-Cache 

This object is present in AD DS and AD LDS. 

name: Update-Schema-Cache 

rightsGuid: be2bb760-7f46-11d2-b9ad-00c04f79f805 

appliesTo: bf967a8f-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.24 Recalculate-Security-Inheritance 

This object is present in AD DS and AD LDS. 

name: Recalculate-Security-Inheritance 

rightsGuid: 62dd28a8-7f46-11d2-b9ad-00c04f79f805 

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed 

6.1.1.2.7.25 DS-Check-Stale-Phantoms 



 

482 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

This object is present in AD DS only. 

name: DS-Check-Stale-Phantoms 

rightsGuid: 69ae6200-7f46-11d2-b9ad-00c04f79f805 

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed 

6.1.1.2.7.26 Certificate-Enrollment 

This object is present in AD DS only. 

name: Certificate-Enrollment 

rightsGuid: 0e10c968-78fb-11d2-90d4-00c04f79dc55 

appliesTo: e5209ca2-3bba-11d2-90cc-00c04fd91ab1 

6.1.1.2.7.27 Self-Membership 

This object is present in AD DS and AD LDS. 

name: Self-Membership 

rightsGuid: bf9679c0-0de6-11d0-a285-00aa003049e2 

appliesTo: bf967a9c-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.28 Validated-DNS-Host-Name 

This object is present in AD DS only. 

name: Validated-DNS-Host-Name 

rightsGuid: 72e39547-7b18-11d1-adef-00c04fd8d5cd 

appliesTo: 

▪ bf967a86-0de6-11d0-a285-00aa003049e2 

▪ ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater) 

▪ 7b8b558a-93a5-4af7-adca-c017e67f1057 (only in schema version 55 and greater) 

6.1.1.2.7.29 Validated-SPN 

This object is present in AD DS only. 

name: Validated-SPN 

rightsGuid: f3a64788-5306-11d1-a9c5-0000f80367c1 

appliesTo: 

▪ bf967a86-0de6-11d0-a285-00aa003049e2 

▪ ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater) 

▪ 7b8b558a-93a5-4af7-adca-c017e67f1057 (only in schema version 87 and greater) 

6.1.1.2.7.30 Generate-RSoP-Planning 



 

483 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

This object is present in AD DS only. 

name: Generate-RSoP-Planning 

rightsGuid: b7b1b3dd-ab09-4242-9e30-9980e5d322f7 

appliesTo:  

▪ 19195a5b-6da0-11d0-afd3-00c04fd930c9 

▪ bf967aa5-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.31 Refresh-Group-Cache 

This object is present in AD DS only. 

name: Refresh-Group-Cache 

rightsGuid: 9432c620-033c-4db7-8b58-14ef6d0bf477 

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed 

6.1.1.2.7.32 Reload-SSL-Certificate 

This object is present in AD DS and AD LDS. 

name: Reload-SSL-Certificate 

rightsGuid: 1a60ea8d-58a6-4b20-bcdc-fb71eb8a9ff8 

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed 

6.1.1.2.7.33 SAM-Enumerate-Entire-Domain 

This object is present in AD DS only. 

name: SAM-Enumerate-Entire-Domain 

rightsGuid: 91d67418-0135-4acc-8d79-c08e857cfbec 

appliesTo: bf967aad-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.34 Generate-RSoP-Logging 

This object is present in AD DS only. 

name: Generate-RSoP-Logging 

rightsGuid: b7b1b3de-ab09-4242-9e30-9980e5d322f7 

appliesTo:  

▪ 19195a5b-6da0-11d0-afd3-00c04fd930c9 

▪ bf967aa5-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.35 Domain-Other-Parameters 

This object is present in AD DS only. 

name: Domain-Other-Parameters 



 

484 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

rightsGuid: b8119fd0-04f6-4762-ab7a-4986c76b3f9a 

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.36 DNS-Host-Name-Attributes 

This object is present in AD DS only. 

name: DNS-Host-Name-Attributes 

rightsGuid: 72e39547-7b18-11d1-adef-00c04fd8d5cd 

appliesTo:  

▪ bf967a86-0de6-11d0-a285-00aa003049e2 

▪ ce206244-5827-4a86-ba1c-1c0c386c1b64 

▪ 7b8b558a-93a5-4af7-adca-c017e67f1057 (only in schema version 55 and greater) 

6.1.1.2.7.37 Create-Inbound-Forest-Trust 

This object is present in AD DS only. 

name: Create-Inbound-Forest-Trust 

rightsGuid: e2a36dc9-ae17-47c3-b58b-be34c55ba633 

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.38 DS-Replication-Get-Changes-All 

This object is present in AD DS and AD LDS. 

name: DS-Replication-Get-Changes-All 

rightsGuid: 1131f6ad-9c07-11d1-f79f-00c04fc2dcd2 

appliesTo:  

▪ bf967a8f-0de6-11d0-a285-00aa003049e2 

▪ bf967a87-0de6-11d0-a285-00aa003049e2 

▪ 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.39 Migrate-SID-History 

This object is present in AD DS only. 

name: Migrate-SID-History 

rightsGuid: BA33815A-4F93-4c76-87F3-57574BFF8109 

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.40 Reanimate-Tombstones 

This object is present in AD DS and AD LDS. 

name: Reanimate-Tombstones 



 

485 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

rightsGuid: 45EC5156-DB7E-47bb-B53F-DBEB2D03C40F 

appliesTo:  

▪ bf967a8f-0de6-11d0-a285-00aa003049e2 

▪ bf967a87-0de6-11d0-a285-00aa003049e2 

▪ 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.41 Allowed-To-Authenticate 

This object is present in AD DS only. 

name: Allowed-To-Authenticate 

rightsGuid: 68B1D179-0D15-4d4f-AB71-46152E79A7BC 

appliesTo: 

▪ 4828cc14-1437-45bc-9b07-ad6f015e5f28 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

▪ bf967a86-0de6-11d0-a285-00aa003049e2 

▪ ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater) 

▪ 7b8b558a-93a5-4af7-adca-c017e67f1057 (only in schema version 87 and greater) 

6.1.1.2.7.42 DS-Execute-Intentions-Script 

This object is present in AD DS and AD LDS. 

name: DS-Execute-Intentions-Script 

rightsGuid: 2f16c4a5-b98e-432c-952a-cb388ba33f2e 

appliesTo: ef9e60e0-56f7-11d1-a9c6-0000f80367c1 

6.1.1.2.7.43 DS-Replication-Monitor-Topology 

This object is present in AD DS and AD LDS. 

name: DS-Replication-Monitor-Topology 

rightsGuid: f98340fb-7c5b-4cdb-a00b-2ebdfa115a96 

appliesTo:  

▪ bf967a8f-0de6-11d0-a285-00aa003049e2 

▪ bf967a87-0de6-11d0-a285-00aa003049e2 

▪ 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.44 Update-Password-Not-Required-Bit 

This object is present in AD DS only. 

name: Update-Password-Not-Required-Bit 



 

486 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

rightsGuid: 280f369c-67c7-438e-ae98-1d46f3c6f541 

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.45 Unexpire-Password 

This object is present in AD DS and AD LDS. 

name: Unexpire-Password 

rightsGuid: ccc2dc7d-a6ad-4a7a-8846-c04e3cc53501 

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.46 Enable-Per-User-Reversibly-Encrypted-Password 

This object is present in AD DS only. 

name: Enable-Per-User-Reversibly-Encrypted-Password 

rightsGuid: 05c74c5e-4deb-43b4-bd9f-86664c2a7fd5 

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.47 DS-Query-Self-Quota 

This object is present in AD DS and AD LDS. 

name: DS-Query-Self-Quota 

rightsGuid: 4ecc03fe-ffc0-4947-b630-eb672a8a9dbc 

appliesTo: da83fc4f-076f-4aea-b4dc-8f4dab9b5993 

6.1.1.2.7.48 Private-Information 

This object is present in AD DS only. 

name: Private-Information 

rightsGuid: 91e647de-d96f-4b70-9557-d63ff4f3ccd8 

appliesTo:  

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

▪ 4828cc14-1437-45bc-9b07-ad6f015e5f28 

6.1.1.2.7.49 MS-TS-GatewayAccess 

This object is present in AD DS only. 

name: MS-TS-GatewayAccess 

rightsGuid: ffa6f046-ca4b-4feb-b40d-04dfee722543 

appliesTo:  

▪ bf967a86-0de6-11d0-a285-00aa003049e2 

▪ ce206244-5827-4a86-ba1c-1c0c386c1b64 



 

487 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ 7b8b558a-93a5-4af7-adca-c017e67f1057 (only in schema version 87 and greater) 

6.1.1.2.7.50 Terminal-Server-License-Server 

This object is present in AD DS only. 

name: Terminal-Server-License-Server 

rightsGuid: 5805bc62-bdc9-4428-a5e2-856a0f4c185e 

appliesTo:  

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

▪ 4828cc14-1437-45bc-9b07-ad6f015e5f28 

6.1.1.2.7.51 Domain-Administer-Server 

This object is present in AD DS only. 

name: Domain-Administer-Server 

rightsGuid: ab721a52-1e2f-11d0-9819-00aa0040529b 

appliesTo: bf967aad-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.52 User-Change-Password 

This object is present in AD DS and AD LDS. 

name: User-Change-Password 

rightsGuid: ab721a53-1e2f-11d0-9819-00aa0040529b 

appliesTo: 

▪ bf967a86-0de6-11d0-a285-00aa003049e2 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

▪ 4828CC14-1437-45bc-9B07-AD6F015E5F28 (only in schema version 30 and greater) 

▪ ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater, for AD DS 
only) 

6.1.1.2.7.53 User-Force-Change-Password 

This object is present in AD DS and AD LDS. 

name: User-Force-Change-Password 

rightsGuid: 00299570-246d-11d0-a768-00aa006e0529 

appliesTo: 

▪ bf967a86-0de6-11d0-a285-00aa003049e2 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

▪ 4828CC14-1437-45bc-9B07-AD6F015E5F28 (only in schema version 30 and greater) 



 

488 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater, for AD DS 
only) 

6.1.1.2.7.54 Send-As 

This object is present in AD DS only. 

name: Send-As 

rightsGuid: ab721a54-1e2f-11d0-9819-00aa0040529b 

appliesTo: 

▪ bf967a86-0de6-11d0-a285-00aa003049e2 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

▪ 4828CC14-1437-45bc-9B07-AD6F015E5F28 (only in schema version 30 and greater) 

▪ ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater) 

▪ 7b8b558a-93a5-4af7-adca-c017e67f1057 (only in schema version 87 and greater) 

6.1.1.2.7.55 Receive-As 

This object is present in AD DS only. 

name: Receive-As 

rightsGuid: ab721a56-1e2f-11d0-9819-00aa0040529b 

appliesTo: 

▪ bf967a86-0de6-11d0-a285-00aa003049e2 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

▪ 4828CC14-1437-45bc-9B07-AD6F015E5F28 (only in schema version 30 and greater) 

▪ ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater) 

▪ 7b8b558a-93a5-4af7-adca-c017e67f1057 (only in schema version 87 and greater) 

6.1.1.2.7.56 Send-To 

This object is present in AD DS only. 

name: Send-To 

rightsGuid: ab721a55-1e2f-11d0-9819-00aa0040529b 

appliesTo: bf967a9c-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.57 Domain-Password 

This object is present in AD DS only. 

name: Domain-Password 

rightsGuid: c7407360-20bf-11d0-a768-00aa006e0529 

appliesTo:  



 

489 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ 19195a5b-6da0-11d0-afd3-00c04fd930c9 

▪ 19195a5a-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.58 General-Information 

This object is present in AD DS and AD LDS. 

name: General-Information 

rightsGuid: 59ba2f42-79a2-11d0-9020-00c04fc2d3cf 

appliesTo:  

▪ 4828CC14-1437-45bc-9B07-AD6F015E5F28 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.59 User-Account-Restrictions 

This object is present in AD DS and AD LDS. 

name: User-Account-Restrictions 

rightsGuid: 4c164200-20c0-11d0-a768-00aa006e0529 

appliesTo:  

▪ 4828CC14-1437-45bc-9B07-AD6F015E5F28 

▪ bf967a86-0de6-11d0-a285-00aa003049e2 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

▪ ce206244-5827-4a86-ba1c-1c0c386c1b64 (for AD DS only) 

▪ 7b8b558a-93a5-4af7-adca-c017e67f1057 (only in schema version 54 and greater, for AD DS only) 

6.1.1.2.7.60 User-Logon 

This object is present in AD DS and AD LDS. 

name: User-Logon 

rightsGuid: 5f202010-79a5-11d0-9020-00c04fc2d4cf 

appliesTo:  

▪ 4828CC14-1437-45bc-9B07-AD6F015E5F28 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.61 Membership 

This object is present in AD DS and AD LDS. 

name: Membership 

rightsGuid: bc0ac240-79a9-11d0-9020-00c04fc2d4cf 

appliesTo:  



 

490 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ 4828CC14-1437-45bc-9B07-AD6F015E5F28 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.62 Open-Address-Book 

This object is present in AD DS only. 

name: Open-Address-Book 

rightsGuid: a1990816-4298-11d1-ade2-00c04fd8d5cd 

appliesTo: 3e74f60f-3e73-11d1-a9c0-0000f80367c1 

6.1.1.2.7.63 Personal-Information 

This object is present in AD DS and AD LDS. 

name: Personal-Information 

rightsGuid: 77B5B886-944A-11d1-AEBD-0000F80367C1 

appliesTo:  

▪ 4828CC14-1437-45bc-9B07-AD6F015E5F28 

▪ bf967a86-0de6-11d0-a285-00aa003049e2 

▪ 5cb41ed0-0e4c-11d0-a286-00aa003049e2 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

▪ ce206244-5827-4a86-ba1c-1c0c386c1b64 (for AD DS only) 

▪ 641e87a4-8326-4771-ba2d-c706df35e35a (only in AD DS schema version 52 and greater) 

▪ 7b8b558a-93a5-4af7-adca-c017e67f1057 (only in AD DS schema version 87 and greater) 

6.1.1.2.7.64 Email-Information 

This object is present in AD DS and AD LDS. 

name: Email-Information 

rightsGuid: E45795B2-9455-11d1-AEBD-0000F80367C1 

appliesTo:  

▪ 4828CC14-1437-45bc-9B07-AD6F015E5F28 

▪ bf967a9c-0de6-11d0-a285-00aa003049e2 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.65 Web-Information 

This object is present in AD DS and AD LDS. 

name: Web-Information 

rightsGuid: E45795B3-9455-11d1-AEBD-0000F80367C1 



 

491 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

appliesTo:  

▪ 4828CC14-1437-45bc-9B07-AD6F015E5F28 

▪ 5cb41ed0-0e4c-11d0-a286-00aa003049e2 

▪ bf967aba-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.66 DS-Replication-Get-Changes 

This object is present in AD DS and AD LDS. 

name: DS-Replication-Get-Changes 

rightsGuid: 1131f6aa-9c07-11d1-f79f-00c04fc2dcd2 

appliesTo:  

▪ bf967a8f-0de6-11d0-a285-00aa003049e2 

▪ bf967a87-0de6-11d0-a285-00aa003049e2 

▪ 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.67 DS-Replication-Synchronize 

This object is present in AD DS and AD LDS. 

name: DS-Replication-Synchronize 

rightsGuid: 1131f6ab-9c07-11d1-f79f-00c04fc2dcd2 

appliesTo:  

▪ bf967a8f-0de6-11d0-a285-00aa003049e2 

▪ bf967a87-0de6-11d0-a285-00aa003049e2 

▪ 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.68 DS-Replication-Manage-Topology 

This object is present in AD DS and AD LDS. 

name: DS-Replication-Manage-Topology 

rightsGuid: 1131f6ac-9c07-11d1-f79f-00c04fc2dcd2 

appliesTo:  

▪ bf967a8f-0de6-11d0-a285-00aa003049e2 

▪ bf967a87-0de6-11d0-a285-00aa003049e2 

▪ 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.69 Change-Schema-Master 

This object is present in AD DS and AD LDS. 

name: Change-Schema-Master 



 

492 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

rightsGuid: e12b56b6-0a95-11d1-adbb-00c04fd8d5cd 

appliesTo: bf967a8f-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.70 DS-Replication-Get-Changes-In-Filtered-Set 

This object is present in AD DS only. 

name: DS-Replication-Get-Changes-In-Filtered-Set 

rightsGuid: 89e95b76-444d-4c62-991a-0facbeda640c 

appliesTo: 

▪ 19195a5b-6da0-11d0-afd3-00c04fd930c9 

▪ bf967a87-0de6-11d0-a285-00aa003049e2 

▪ bf967a8f-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.71 Run-Protect-Admin-Groups-Task 

This object is present in AD DS only. 

name: Run-Protect-Admin-Groups-Task 

rightsGuid: 7726b9d5-a4b4-4288-a6b2-dce952e80a7f 

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.72 Manage-Optional-Features 

This object is present in AD DS and AD LDS. 

name: Manage-Optional-Features 

rightsGuid: 7c0e2a7c-a419-48e4-a995-10180aad54dd 

appliesTo: ef9e60e0-56f7-11d1-a9c6-0000f80367c1 

6.1.1.2.7.73 Read-Only-Replication-Secret-Synchronization 

This object is present in AD DS only. 

name: Read-Only-Replication-Secret-Synchronization 

rightsGuid: 1131f6ae-9c07-11d1-f79f-00c04fc2dcd2 

appliesTo 

▪ bf967a8f-0de6-11d0-a285-00aa003049e2 

▪ bf967a87-0de6-11d0-a285-00aa003049e2 

▪ 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.74 Validated-MS-DS-Additional-DNS-Host-Name 

This object is present in AD DS only. 

name: Validated-MS-DS-Additional-DNS-Host-Name 



 

493 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

rightsGuid: 80863791-dbe9-4eb8-837e-7f0ab55d9ac7 

appliesTo: bf967a86-0de6-11d0-a285-00aa003049e2 

6.1.1.2.7.75 Validated-MS-DS-Behavior-Version 

This object is present in AD DS only. 

name: Validated-MS-DS-Behavior-Version 

rightsGuid: d31a8757-2447-4545-8081-3bb610cacbf2 

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed 

6.1.1.2.7.76 DS-Clone-Domain-Controller 

This object is present in AD DS only. 

name: DS-Clone-Domain-Controller 

rightsGuid: 3e0f7e18-2c7a-4c10-ba82-4d926db99a3e 

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9 

6.1.1.2.7.77 Certificate-AutoEnrollment 

This object is present in AD DS only. 

name: Certificate-AutoEnrollment 

rightsGuid: a05b8cc2-17bc-4802-a710-e7c15ab866a2 

appliesTo: e5209ca2-3bba-11d2-90cc-00c04fd91ab1 

6.1.1.2.7.78 DS-Read-Partition-Secrets 

name: DS-Read-Partition-Secrets 

rightsGuid: 084c93a2-620d-4879-a836-f0ae47de0e89 

appliesTo: 26f11b08-a29d-4869-99bb-ef0b99fd883e 

6.1.1.2.7.79 DS-Write-Partition-Secrets 

name: DS-Write-Partition-Secrets 

rightsGuid: 94825a8d-b171-4116-8146-1e34d8f54401 

appliesTo: 26f11b08-a29d-4869-99bb-ef0b99fd883e 

6.1.1.2.7.80 DS-Set-Owner 

name: DS-Set-Owner 

rightsGuid: 4125c71f-7fac-4ff0-bcb7-f09a41325286 

appliesTo: 26f11b08-a29d-4869-99bb-ef0b99fd883e 

6.1.1.2.7.81 DS-Bypass-Quota 



 

494 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

name: DS-Bypass-Quota 

rightsGuid: 88a9933e-e5c8-4f2a-9dd7-2527416b8092 

appliesTo: 26f11b08-a29d-4869-99bb-ef0b99fd883e 

6.1.1.2.7.82 DS-Validated-Write-Computer 

This object is present in AD DS only. 

name: DS-Validated-Write-Computer 

rightsGuid: 9b026da6-0d3c-465c-8bee-5199d7165cba 

appliesTo: bf967a86-0de6-11d0-a285-00aa003049e2 

6.1.1.2.8 (Updated Section) Forest Updates Container 

The Forest Updates container includes child containers that specify the version of the forest revision. 
Some or all of the following containers exist, depending on the forest revision. 

Container Minimum forest revision for which the container exists 

Operations 0.9 

Windows2003Update 0.9 

ActiveDirectoryUpdate 2.9 

If the version of the RODC revision is 2 or higher, the Forest Updates container includes the child 

container ActiveDirectoryRodcUpdate. 

The major version of the forest revision is stored on the revision attribute of the 
ActiveDirectoryUpdate container. If the ActiveDirectoryUpdate container does not exist, the major 

version is 0. After a forest revision upgrade process, it mustMUST be equal to the major version of the 
current revision. 

The minor version of the forest revision is stored on the revision attribute of the Windows2003Update 

container. If the Windows2003Update container does not exist, the minor version is 0. After a forest 
revision upgrade process, it mustMUST be equal to the minor version of the current revision. 

The version of the RODC revision is stored on the revision attribute of the ActiveDirectoryRodcUpdate 
container. If the ActiveDirectoryRodcUpdate container does not exist, the version is 0. After an RODC 
revision upgrade process, it mustMUST be equal to the version of the current revision. 

parent: Config NC root object 

name: ForestUpdates 

objectClass: container 

6.1.1.2.8.1 Operations Container 

The contents of the Operations container are outside the state model and are implementation-specific. 

parent: Forest Updates container 

name: Operations 

objectClass: container 



 

495 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.1.2.8.2 Windows2003Update Container 

This container stores the minor version of the forest revision. 

parent: Forest Updates container 

name: Windows2003Update 

objectClass: container 

revision: The minor version of the forest revision. 

6.1.1.2.8.3 ActiveDirectoryUpdate Container 

This container stores the major version of the forest revision. 

parent: Forest Updates container 

name: ActiveDirectoryUpdate 

objectClass: container 

revision: The major version of the forest revision. 

6.1.1.2.8.4 ActiveDirectoryRodcUpdate Container 

This container stores the version of the RODC revision. 

parent: Forest Updates container 

name: ActiveDirectoryRodcUpdate 

objectClass: container 

revision: The version of the RODC revision. 

6.1.1.3 Critical Domain Objects 

References 

▪ FSMO Roles 

▪ Forest Requirements 

▪ Security 

▪ Originating Updates 

▪ LDAP 

Attribute Syntaxes: DN-Binary 

Glossary terms: NC, NC replica, NC root, DC, Domain NC, FSMO, Forest, UUID, SPN (2), PDC, RID 

LDAP attributes: name, objectClass, distinguishedName, systemFlags, primaryGroupID, 
servicePrincipalName, dNSHostName, msDS-AdditionalDnsHostName, wellKnownObjects, isDeleted, 
revision 

LDAP classes: computer, container, msDS-QuotaContainer, infrastructureUpdate, organizationalUnit, 
domainPolicy, samServer 



 

496 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

WKGuids: GUID_USERS_CONTAINER_W, GUID_COMPUTERS_CONTAINER_W, 
GUID_SYSTEMS_CONTAINER_W, GUID_DOMAIN_CONTROLLERS_CONTAINER_W, 

GUID_INFRASTRUCTURE_CONTAINER_W, GUID_DELETED_OBJECTS_CONTAINER_W, 
GUID_LOSTANDFOUND_CONTAINER_W, GUID_FOREIGNSECURITYPRINCIPALS_CONTAINER_W, 

GUID_PROGRAM_DATA_CONTAINER_W, GUID_NTDS_QUOTAS_CONTAINER_W 

Constants 

▪ systemFlags bits: FLAG_DISALLOW_DELETE, FLAG_DOMAIN_DISALLOW_RENAME, 
FLAG_DOMAIN_DISALLOW_MOVE 

▪ userAccountControl bits: ADS_UF_SERVER_TRUST_ACCOUNT, 
ADS_UF_TRUSTED_FOR_DELEGATION 

▪ groupType bits: GROUP_TYPE_RESOURCE_GROUP, GROUP_TYPE_SECURITY_ENABLED, 

GROUP_TYPE_ACCOUNT_GROUP 

6.1.1.3.1 Domain Controller Object 

In AD DS, each normal (not read-only) DC in a domain has a domain controller object in its default 
NC. The DC's domain controller object is the DC's computer object (subject to the computer object 
constraints specified in [MS-SAMR] sections 3.1.1.6 and 3.1.1.8) with additional requirements as 

described in this section. 

An AD DS RODC has a read-only domain controller object as specified in section 6.1.1.3.2. An AD LDS 
DC does not have a domain controller object. 

objectClass: computer 

userAccountControl: {ADS_UF_SERVER_TRUST_ACCOUNT | ADS_UF_TRUSTED_FOR_DELEGATION} 

primaryGroupID: Contains the value 516.  

This attribute is populated by the system during creation of the DC corresponding to the DC object. 

The primary group of a DC object is the domain relative well-known Domain Controllers security 
group. So the primaryGroupID attribute of a DC object equals the RID of the Domain Controllers 
security group, 516. 

servicePrincipalName: This attribute contains all of the SPNs (2) for a normal (not read-only) DC, as 
specified in [MS-DRSR] section 2.2.2. 

dNSHostName: Fully qualified DNS name of the DC. 

msDS-AdditionalDnsHostName: Additional DNS names by which the DC can be identified. 

objectCategory: Contains the distinguished name of the classSchema object for the computer class. 
This is the value of the defaultObjectCategory attribute of the computer class. 

6.1.1.3.2 Read-Only Domain Controller Object 

Each RODC in a domain has a read-only DC object in its default NC. The DC's RODC object is the DC's 
computer object (subject to the computer object constraints specified in [MS-SAMR] sections 3.1.1.6 

and 3.1.1.8) with additional requirements as described in this section. An RODC object cannot be 
created on Windows 2000 Server through Windows Server 2003 R2 DCs and cannot be created until 
the Read-Only Domain Controllers Object exists in the domain. 

objectClass: computer 

userAccountControl: {ADS_UF_PARTIAL_SECRETS_ACCOUNT | 
ADS_UF_WORKSTATION_TRUST_ACCOUNT} 



 

497 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

primaryGroupID: Contains the value 521. 

This attribute is populated during creation of the RODC corresponding to the RODC object. The 
primary group of an RODC object is the domain relative well-known RODCs security group. So the 
primaryGroupID attribute of an RODC object equals the RID of the RODCs security group, 521. 

servicePrincipalName: This attribute contains all of the SPNs (2) for the RODC, as specified in [MS-
DRSR] section 2.2.2. 

dNSHostName: Fully qualified DNS name of the RODC. 

msDS-AdditionalDnsHostName: Additional DNS names by which the RODC can be identified. 

msDS-RevealedUsers: Contains information about the user objects whose secret attributes are cached 
at this RODC. This attribute is maintained by the system; see procedure UpdateRevealedList, [MS-
DRSR] section 4.1.10.5.9. A more usable form of this attribute is the constructed attribute msDS-

RevealedList, specified in section 3.1.1.4.5.34. 

msDS-AuthenticatedToAccountlist: Contains a list of user objects that have attempted to authenticate 
at this RODC. This attribute is a back link attribute whose corresponding forward link is the msDS-
AuthenticatedAtDC attribute. The msDS-AuthenticatedAtDC attribute is maintained by the system; see 
section 6.1.4.6. 

msDS-NeverRevealGroup: This attribute is maintained by an administrator. It contains a set of user 

and security-enabled group objects. A user in this set, or reachable from this set by traversing any 
number of member links from a group in this set, will not change state from not being cached to being 
cached at this RODC. If a user is added to this attribute (directly or indirectly) while one of its secret 
attributes is already cached, the secret attribute remains cached until the secret attribute changes, at 
which time the caching stops. For the use of this attribute, see procedure 
RevealSecretsForUserAllowed, [MS-DRSR] section 4.1.10.5.15. 

msDS-RevealOnDemandGroup: This attribute is maintained by an administrator. It contains a set of 

user and security-enabled group objects. A user in this set, or reachable from this set by traversing 
any number of member links from a group in this set, and not excluded by membership in msDS-

NeverRevealGroup can change state from not being cached to being cached at this RODC. For the use 
of this attribute see procedure RevealSecretsForUserAllowed, [MS-DRSR] section 4.1.10.5.15. 

msDS-KrbTgtLink: This attribute is populated during creation of the RODC object. It contains a 
reference to the secondary Kerberos ticket-granting ticket (TGT) account of the RODC. See [MS-KILE] 
section 3.1.5.10. 

managedBy: If the value of this attribute points to a valid security principal, that security principal will 
be an implicit member of the administrators group of this RODC. This applies to this RODC only. 

objectCategory: Contains the distinguished name of the classSchema object for the computer class. 
This is the value of the defaultObjectCategory attribute of the computer class. 

6.1.1.4 Well-Known Objects 

Within each NC (excluding the schema NC), there are certain well-known system objects that can be 
referred to using a well-known GUID (see section 3.1.1.3 for more information). Domain and Config 
NC root objects contain an attribute called wellKnownObjects that lists the well-known objects (WKO) 
within that NC. Each value in this list is an Object(DN-Binary) value where the Binary portion is the 
well-known GUID in binary form and the DN portion is the DN of the object. The well-known GUID can 

be used in conjunction with the NC DN to refer to the object (for more information, see section 
3.1.1.3). In addition to the wellKnownObjects attribute, each NC root object can also contain an 
attribute called otherWellKnownObjects that lists other WKOs. Objects listed in the attribute 
otherWellKnownObjects can be referred to in the same way as those in the attribute 
wellKnownObjects. 



 

498 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The following requirements apply to the wellKnownObjects attribute on the NC root object and the 
referred-to objects, but do not apply to the otherWellKnownObjects attribute: 

▪ For each of the well-known GUIDs listed below for a given NC, the wellKnownObjects attribute on 
the NC root object MUST contain a value such that the binary portion matches the well-known 

GUID. There MUST be exactly one such value. 

▪ If rename of the referred-to object is permitted (based on the value of the systemFlags attribute 
on each object), the DN portion of the value is updated. 

▪ The well-known Users container and the well-known Computers container in the domain NC can be 
redirected, under the following constraints: 

▪ The modification is made on a DC that owns the PDC FSMO. 

▪ The modification removes the reference to the existing object and adds a new reference in the 

same operation. 

▪ The new object being referred to is not in the System container of the domain NC. 

▪ The new object being referred to does exist, and if different from the currently referred-to 
Users or Computers containers, it does not have the following bits in the systemFlags 
attribute: FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE 

▪ As part of the redirection, the following flags are added to the new object being referred to 
and removed from the old object: FLAG_DISALLOW_DELETE | 
FLAG_DOMAIN_DISALLOW_RENAME | FLAG_DOMAIN_DISALLOW_MOVE  

In AD DS, the following well-known objects exist within each domain NC. 

RDN  Symbolic name for well-known GUID  

Computers GUID_COMPUTERS_CONTAINER_W  

Deleted Objects GUID_DELETED_OBJECTS_CONTAINER_W 

Domain Controllers GUID_DOMAIN_CONTROLLERS_CONTAINER_W 

ForeignSecurityPrincipals GUID_FOREIGNSECURITYPRINCIPALS_CONTAINER_W 

Infrastructure GUID_INFRASTRUCTURE_CONTAINER_W 

LostAndFound GUID_LOSTANDFOUND_CONTAINER_W 

MicrosoftNote 1 GUID_MICROSOFT_PROGRAM_DATA_CONTAINER_W 

NTDS Quotas GUID_NTDS_QUOTAS_CONTAINER_W 

Program Data GUID_PROGRAM_DATA_CONTAINER_W 

System GUID_SYSTEMS_CONTAINER_W 

Users GUID_USERS_CONTAINER_W 

Note 1 The Microsoft container is a child of the Program Data container. 

In AD DS, the following well-known objects exist within each application NC. 



 

499 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

RDN  Symbolic name for well-known GUID  

Deleted Objects GUID_DELETED_OBJECTS_CONTAINER_W 

Infrastructure GUID_INFRASTRUCTURE_CONTAINER_W 

LostAndFound GUID_LOSTANDFOUND_CONTAINER_W 

NTDS Quotas GUID_NTDS_QUOTAS_CONTAINER_W 

In AD DS, the following well-known objects exist within the config NC. 

RDN  Symbolic name for well-known GUID  

Deleted Objects GUID_DELETED_OBJECTS_CONTAINER_W 

LostAndFoundConfig GUID_LOSTANDFOUND_CONTAINER_W 

NTDS Quotas GUID_NTDS_QUOTAS_CONTAINER_W 

In AD LDS, the following well-known objects exist within each application NC. 

RDN  Symbolic name for well-known GUID  

Deleted Objects GUID_DELETED_OBJECTS_CONTAINER_W  

ForeignSecurityPrincipalsNote 2 GUID_FOREIGNSECURITYPRINCIPALS_CONTAINER_W 

LostAndFound GUID_LOSTANDFOUND_CONTAINER_W 

NTDS Quotas GUID_NTDS_QUOTAS_CONTAINER_W 

Roles GUID_USERS_CONTAINER_W 

Note 2 The ForeignSecurityPrincipals container is created (and the corresponding value created in the 
wellKnownObjects attribute) when the first foreignSecurityPrincipal object is created in the NC. 

In AD LDS, the following well-known objects exist within the config NC. 

RDN  Symbolic name for well-known GUID  

Deleted Objects GUID_DELETED_OBJECTS_CONTAINER_W 

ForeignSecurityPrincipals GUID_FOREIGNSECURITYPRINCIPALS_CONTAINER_W 

LostAndFoundConfig GUID_LOSTANDFOUND_CONTAINER_W 

NTDS Quotas GUID_NTDS_QUOTAS_CONTAINER_W 

Roles GUID_USERS_CONTAINER_W 

The following other well-known object exists within each domain NC. 

RDN  Symbolic name for well-known GUID  

Managed Service Accounts GUID_MANAGED_SERVICE_ACCOUNTS_CONTAINER_W 

The following table gives the GUID values for each of the symbolic names of the well-known GUIDs. 



 

500 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Symbolic name for well-known GUID  GUID  

GUID_COMPUTERS_CONTAINER_W  AA312825768811D1ADED00C04FD8D5CD 

GUID_DELETED_OBJECTS_CONTAINER_W 18E2EA80684F11D2B9AA00C04F79F805 

GUID_DOMAIN_CONTROLLERS_CONTAINER_W A361B2FFFFD211D1AA4B00C04FD7D83A 

GUID_FOREIGNSECURITYPRINCIPALS_CONTAINER_W 22B70C67D56E4EFB91E9300FCA3DC1AA 

GUID_INFRASTRUCTURE_CONTAINER_W 2FBAC1870ADE11D297C400C04FD8D5CD 

GUID_LOSTANDFOUND_CONTAINER_W AB8153B7768811D1ADED00C04FD8D5CD 

GUID_MICROSOFT_PROGRAM_DATA_CONTAINER_W F4BE92A4C777485E878E9421D53087DB 

GUID_NTDS_QUOTAS_CONTAINER_W 6227F0AF1FC2410D8E3BB10615BB5B0F 

GUID_PROGRAM_DATA_CONTAINER_W 09460C08AE1E4A4EA0F64AEE7DAA1E5A 

GUID_SYSTEMS_CONTAINER_W AB1D30F3768811D1ADED00C04FD8D5CD 

GUID_USERS_CONTAINER_W A9D1CA15768811D1ADED00C04FD8D5CD 

GUID_MANAGED_SERVICE_ACCOUNTS_CONTAINER_W 1EB93889E40C45DF9F0C64D23BBB6237 

 

6.1.1.4.1 Lost and Found Container 

Each domain NC, application NC, and config NC contains a Lost and Found container for objects that 
are orphaned as a result of Add and Delete operations that originated on different DCs. 

objectClass: lostAndFound 

systemFlags: On domain and application NCs: {FLAG_DISALLOW_DELETE | 
FLAG_DOMAIN_DISALLOW_RENAME | FLAG_DOMAIN_DISALLOW_MOVE} 

On Config NC: {FLAG_DISALLOW_DELETE} 

isCriticalSystemObject: TRUE 

6.1.1.4.2 (Updated Section) Deleted Objects Container 

Each domain NC and application NC, as well as the config NC, contains a Deleted Objects container. 
Objects within the domain NC that are deleted are stored in this container (unless indicated otherwise 
by the object's systemFlags). 

Tombstones and recycled-objects are stored until at least an amount of time equal to the tombstone 
lifetime has passed, after which they are permanently removed from storage. 

Deleted-objects are stored until at least an amount of time equal to the deleted-object lifetime has 
passed, after which they are transformed into recycled-objects. 

To ensure that this container does not get garbage collected, the replication metadata for the 
isDeleted attribute mustMUST show that the time at which the isDeleted attribute was set to trueTRUE 
is 9999-12-29. Furthermore, the isRecycled attribute mustMUST have no values. See section 3.1.1.5.5 
for more information about the tombstone lifetime, the deleted-object lifetime, and the Deleted 
Objects container. 

objectClass: container 



 

501 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

isDeleted: trueTRUE 

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE} 

isCriticalSystemObject: TRUE 

6.1.1.4.3 NTDS Quotas Container 

Each domain NC, application NC, and the config NC contain an NTDS Quotas Container that contains 
quotas restricting the number of objects that can be created by a specified security principal. 

objectClass: msDS-QuotaContainer 

systemFlags:{FLAG_DISALLOW_DELETE} 

isCriticalSystemObject: TRUE 

msDS-DefaultQuota: Specifies the default object creation quota for security principles. By default this 
attribute is not set. See section 3.1.1.5.2.5 for details. 

6.1.1.4.4 Infrastructure Object 

In AD DS, each domain and application NC has an infrastructure object that maintains a reference to 
the current Infrastructure role owner. This object is not present in AD LDS. 

objectClass: infrastructureUpdate 

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE}  

fSMORoleOwner: This value refers to the nTDSDSA object of the DC that owns the Infrastructure 
FSMO role. 

isCriticalSystemObject: TRUE 

6.1.1.4.5 Domain Controllers OU 

This is a well-known container within the domain NC containing the computer objects for domain 
controllers within this domain. 

objectClass: organizationalUnit 

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE} 

isCriticalSystemObject: TRUE 

6.1.1.4.6 Users Container 

Each domain NC contains a well-known default Users container. 

objectClass: container 

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE} 

isCriticalSystemObject: TRUE 

6.1.1.4.7 Computers Container 



 

502 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Each domain NC contains a well-known default Computers container. 

objectClass: container 

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE} 

isCriticalSystemObject: TRUE 

6.1.1.4.8 Program Data Container 

Each domain NC contains a well-known default Program Data container. This container initially 
contains a single object of class container named "Microsoft". This protocol does not constrain the 
applications that store data in these containers, nor the application-specific data that is stored, beyond 
the normal access control and schema validation that is applied to all data access. 

name: Program Data 

parent: domain NC root 

objectClass: container 

systemFlags: {} 

6.1.1.4.9 Managed Service Accounts Container 

In AD DS, each domain NC contains this container. This container is not present in AD LDS. 

name: Managed Service Accounts 

parent: domain NC root 

objectClass: container 

systemFlags: {} 

6.1.1.4.10 Foreign Security Principals Container 

In AD DS, each domain NC contains a well-known Foreign Security Principals container. This container 
holds objects of class foreignSecurityPrincipal. These objects represent security principals from trusted 
domains external to the forest, and allow foreign security principals to become members of groups 
within the domain. 

In AD LDS, the config NC contains a well-known Foreign Security Principals container. It stores foreign 
security principals from outside of the AD LDS forest. 

In an AD LDS application NC, a Foreign Security Principals container is created (and the corresponding 

value created in the wellKnownObjects attribute) when the first foreignSecurityPrincipal object is 
created in the application NC. 

The automatic creation of foreignSecurityPrincipal objects is specified in sections 3.1.1.5.2.4 and 
3.1.1.5.3.3). 

name: ForeignSecurityPrincipals 

parent: domain NC root on AD DS; Config NC root on AD LDS. 

objectClass: container 

systemFlags (on AD DS): {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE} 



 

503 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

systemFlags (on AD LDS): {FLAG_DISALLOW_DELETE} 

isCriticalSystemObject: TRUE 

6.1.1.4.11 System Container 

name: System 

parent: Domain NC root object 

objectClass: container 

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE} 

isCriticalSystemObject: TRUE 

6.1.1.4.11.1 Password Settings Container 

In AD DS, each domain NC contains a well-known Password Settings container. This container is 
initially empty, but is designed to contain objects of class msDS-PasswordSettings. These objects 
represent password settings for a group of users in the domain. For more information, see [MS-SAMR] 
section 3.1.1.5. 

name: Password Settings container 

parent: System container 

objectClass: msDS-PasswordSettings 

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE} 

6.1.1.4.12 Builtin Container 

In AD DS, each domain NC contains this container. Its children are described later in this section. This 

container is not present in AD LDS. 

name: Builtin 

parent: domain NC root 

objectClass: builtinDomain 

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE} 

The children of the Builtin container are well-known security principals from the built-in domain. 

Each child of the Builtin container is a group with the following attributes: 

parent: Builtin container 

objectClass: group 

objectSid: The domain portion is the built-in domain SID (S-1-5-32). The RID portion is specified per 
object in the following subsections. For instance, the Account Operators RID is 548, so the Account 
Operators objectSid is S-1-5-32-548. 

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 

FLAG_DOMAIN_DISALLOW_MOVE} 



 

504 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

groupType: {GROUP_TYPE_BUILTIN_LOCAL_GROUP | GROUP_TYPE_RESOURCE_GROUP | 
GROUP_TYPE_SECURITY_ENABLED} 

Unless otherwise noted in the following subsections, the initial membership of each group is empty. 
After initialization, the administrator controls the membership of each group. 

6.1.1.4.12.1 Account Operators Group Object 

name: Account Operators 

RID: 548 

6.1.1.4.12.2 Administrators Group Object 

name: Administrators 

RID: 544 

member: Administrator (section 6.1.1.6.1), Domain Administrators (section 6.1.1.6.5), Enterprise 
Administrators (section 6.1.1.6.10). 

6.1.1.4.12.3 Backup Operators Group Object 

name: Backup Operators 

RID: 551 

6.1.1.4.12.4 Certificate Service DCOM Access Group Object 

name: Certificate Service DCOM Access 

RID: 574 

6.1.1.4.12.5 Cryptographic Operators Group Object 

name: Cryptographic Operators 

RID: 569 

6.1.1.4.12.6 Distributed COM Users Group Object 

name: Distributed COM Users 

RID: 562 

6.1.1.4.12.7 Event Log Readers Group Object 

name: Event Log Readers 

RID: 573 

6.1.1.4.12.8 Guests Group Object 

name: Guests 

RID: 546 

member: Guest (section 6.1.1.6.2), Domain Guests (section 6.1.1.6.8) 



 

505 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.1.4.12.9 IIS_IUSRS Group Object 

name: IIS_IUSRS 

RID: 568 

member: NT AUTHORITY\IUSR well-known security principal (SID S-1-5-17). 

6.1.1.4.12.10 Incoming Forest Trust Builders Group Object 

name: Incoming Forest Trust Builders 

RID: 557 

6.1.1.4.12.11 Network Configuration Operators Group Object 

name: Network Configuration Operators 

RID: 556 

6.1.1.4.12.12 Performance Log Users Group Object 

name: Performance Log Users 

RID: 559 

6.1.1.4.12.13 Performance Monitor Users Group Object 

name: Performance Monitor Users 

RID: 558 

6.1.1.4.12.14 Pre-Windows 2000 Compatible Access Group Object 

name: Pre-Windows 2000 Compatible Access 

RID: 554 

member: The initial membership of this group depends on the version of Windows running on the first 
DC of the domain and on the administrator's choice between "Pre-Windows 2000 Compatible 
Permissions mode" and "Windows 2000-Only Permissions mode". In Windows 2000 Server, in the Pre-
Windows 2000 Compatible Permissions mode, Everyone (S-1-1-0) is a member, and in the Windows 
2000-Only Permissions mode, the membership is empty. In Windows Server 2003, in the Pre-Windows 
2000 Compatible Permissions mode, Everyone (S-1-1-0) and Anonymous (S-1-5-7) are members, and 

in the Windows 2000-Only Permissions mode, Authenticated Users (S-1-5-11) are members. 

6.1.1.4.12.15 Print Operators Group Object 

name: Print Operators 

RID: 550 

6.1.1.4.12.16 Remote Desktop Users Group Object 

name: Remote Desktop Users 

RID: 555 

6.1.1.4.12.17 Replicator Group Object 



 

506 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

name: Replicator 

RID: 552 

6.1.1.4.12.18 Server Operators Group Object 

name: Server Operators 

RID: 549 

6.1.1.4.12.19 Terminal Server License Servers Group Object 

name: Terminal Server License Servers 

RID: 561 

6.1.1.4.12.20 Users Group Object 

name: Users 

RID: 545 

member: Domain Users group (section 6.1.1.6.9), NT AUTHORITY\Authenticated Users well-known 
security principal (SID S-1-5-11), NT AUTHORITY\INTERACTIVE well-known security principal (SID S-
1-5-4). 

6.1.1.4.12.21 Windows Authorization Access Group Group Object 

name: Windows Authorization Access Group 

RID: 560 

member: NT AUTHORITY\ENTERPRISE DOMAIN CONTROLLERS well-known security principal (SID S-
1-5-9). 

6.1.1.4.13 Roles Container 

In AD LDS, each application NC and the config NC contain this container. It stores the well-known AD 
LDS groups for this NC. This container is not present in AD DS, nor are any of its child objects, which 
are specified later in this section. 

name: Roles 

parent: Application NC root or Config NC root 

objectClass: container 

systemFlags: {FLAG_DISALLOW_DELETE} 

Each child of the Roles container is a group with the following attributes: 

parent: Roles Container 

objectClass: group 

objectSid: A SID with two SubAuthority values, consisting of the objectSid of the NC root followed by 
the RID that is specified for each child in the following subsections. 

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED} 



 

507 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

member: Unless otherwise noted in the following sections, the initial membership of each group is 
empty. After initialization the administrator can modify the membership of each group. 

6.1.1.4.13.1 Administrators Group Object 

name: Administrators 

RID: 519 (in the config NC) or 512 (in an application NC). 

member: At least one foreignSecurityPrincipal is configured into this group by the administrator when 
creating a forest. 

6.1.1.4.13.2 Readers Group Object 

name: Readers 

RID: 514 

6.1.1.4.13.3 Users Group Object 

This group is used in constructing an AD LDS security context as specified in section 5.1.3.4. 

name: Users 

RID: 513 

6.1.1.4.13.4 Instances Group Object 

In AD LDS, every DC's service account belongs to this group. The system attempts to maintain this 
group, although an administrator can still modify the membership. This group is only present in the 
Roles container of the config NC. 

name: Instances 

RID: 518 

member: An AD LDS DC ensures that its service account is a member of this group. If an AD LDS DC's 
service account is Network Service or Local System, the DC also ensures that its computer object is a 
member of this group. 

6.1.1.5 Other System Objects 

The following sections describe other objects that are required by Active Directory, in addition to those 
listed in section 6.1.1.4.  

6.1.1.5.1 AdminSDHolder Object 

parent: System container 

name: AdminSDHolder 

objectClass: container 

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE} 

isCriticalSystemObject: TRUE 



 

508 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

nTSecurityDescriptor: The default value of nTSecurityDescriptor for AdminSDHolder depends on the 
schema version (see section 3.1.1.2). In the following text, the value of the nTSecurityDescriptor is 

specified using SDDL ([MS-DTYP] section2.5.1). 

 Schema version 13: 
 O:S-1-5-21-1330137634-1750626333-945493308-512G:S-1-5-21-1330137634-1750626333-945493308-
512D:PAI(A;;LCRPLORC;;;AU)(A;;CCDCLCSWRPWPLOCRSDRCWDWO;;;BA)(A;;CCDCLCSWRPWPLOCRRCWDWO;;;S-1-

5-21-1330137634-1750626333-945493308-519)(A;;CCDCLCSWRPWPLOCRRCWDWO;;;S-1-5-21-1330137634-

1750626333-945493308-512)(A;;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;SY)(OA;;RP;037088f8-0ae1-11d2-b422-

00a0c968f939;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;59ba2f42-79a2-11d0-9020-

00c04fc2d3cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;bc0ac240-79a9-11d0-9020-

00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;4c164200-20c0-11d0-a768-

00aa006e0529;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;5f202010-79a5-11d0-9020-

00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;LCRPLORC;;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;CR;ab721a53-1e2f-11d0-9819-

00aa0040529b;;WD)S:AI(AU;CIIDSAFA;CCDCSWWPDTCRSDWDWO;;;WD) 

 Schema version 30, Schema version 31: 
 O:DAG:DAD:PAI(A;;LCRPLORC;;;AU)(A;;CCDCLCSWRPWPLOCRSDRCWDWO;;;BA)(A;;CCDCLCSWRPWPLOCRRCWDWO;;
;EA)(A;;CCDCLCSWRPWPLOCRRCWDWO;;;DA)(A;;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;SY)(OA;;RP;037088f8-

0ae1-11d2-b422-00a0c968f939;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;59ba2f42-79a2-

11d0-9020-00c04fc2d3cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;bc0ac240-79a9-11d0-

9020-00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;4c164200-20c0-11d0-a768-

00aa006e0529;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;5f202010-79a5-11d0-9020-

00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;LCRPLORC;;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;CR;ab721a53-1e2f-11d0-9819-00aa0040529b;;WD)(OA;;CR;ab721a53-1e2f-11d0-

9819-00aa0040529b;;PS)(OA;;RPWP;bf967a7f-0de6-11d0-a285-00aa003049e2;;CA)(OA;;RP;037088f8-

0ae1-11d2-b422-00a0c968f939;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)(OA;;RP;59ba2f42-79a2-

11d0-9020-00c04fc2d3cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)(OA;;RP;bc0ac240-79a9-11d0-

9020-00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)(OA;;RP;4c164200-20c0-11d0-a768-

00aa006e0529;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)(OA;;RP;5f202010-79a5-11d0-9020-

00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)(OA;;LCRPLORC;;4828cc14-1437-45bc-9b07-

ad6f015e5f28;RU)(OA;;RP;46a9b11d-60ae-405a-b7e8-ff8a58d456d2;;S-1-5-32-

560)(OA;;RPWP;6db69a1c-9422-11d1-aebd-0000f80367c1;;S-1-5-32-

561)S:AI(AU;SA;WPWDWO;;;WD)(OU;CIIOIDSA;WP;f30e3bbe-9ff0-11d1-b603-0000f80367c1;bf967aa5-

0de6-11d0-a285-00aa003049e2;WD)(OU;CIIOIDSA;WP;f30e3bbf-9ff0-11d1-b603-0000f80367c1;bf967aa5-

0de6-11d0-a285-00aa003049e2;WD) 

  
 Schema version 44, Schema version 47: 
 O:DAG:DAD:PAI(OA;;RP;4c164200-20c0-11d0-a768-00aa006e0529;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;;RP;4c164200-20c0-11d0-a768-00aa006e0529;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;RP;5f202010-79a5-11d0-9020-00c04fc2d4cf;4828cc14-1437-45bc-9b07-

ad6f015e5f28;RU)(OA;;RP;5f202010-79a5-11d0-9020-00c04fc2d4cf;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;RP;bc0ac240-79a9-11d0-9020-00c04fc2d4cf;4828cc14-1437-45bc-9b07-

ad6f015e5f28;RU)(OA;;RP;bc0ac240-79a9-11d0-9020-00c04fc2d4cf;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;RP;59ba2f42-79a2-11d0-9020-00c04fc2d3cf;4828cc14-1437-45bc-9b07-

ad6f015e5f28;RU)(OA;;RP;59ba2f42-79a2-11d0-9020-00c04fc2d3cf;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;RP;037088f8-0ae1-11d2-b422-00a0c968f939;4828cc14-1437-45bc-9b07-

ad6f015e5f28;RU)(OA;;RP;037088f8-0ae1-11d2-b422-00a0c968f939;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;RPWP;bf967a7f-0de6-11d0-a285-00aa003049e2;;CA)(OA;;RP;46a9b11d-60ae-

405a-b7e8-ff8a58d456d2;;S-1-5-32-560)(OA;;RPWP;6db69a1c-9422-11d1-aebd-0000f80367c1;;S-1-5-

32-561)(OA;;RPWP;5805bc62-bdc9-4428-a5e2-856a0f4c185e;;S-1-5-32-561)(OA;;LCRPLORC;;4828cc14-

1437-45bc-9b07-ad6f015e5f28;RU)(OA;;LCRPLORC;;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;CR;ab721a53-1e2f-11d0-9819-00aa0040529b;;WD)(OA;;CR;ab721a53-1e2f-11d0-

9819-00aa0040529b;;PS)(OA;CI;RPWPCR;91e647de-d96f-4b70-9557-

d63ff4f3ccd8;;PS)(A;;CCDCLCSWRPWPLOCRRCWDWO;;;DA)(A;;CCDCLCSWRPWPLOCRRCWDWO;;;EA)(A;;CCDCLCSW

RPWPLOCRSDRCWDWO;;;BA)(A;;LCRPLORC;;;AU)(A;;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;SY)S:AI(AU;SA;WPWDWO

;;;WD)(OU;CIIOIDSA;WP;f30e3bbe-9ff0-11d1-b603-0000f80367c1;bf967aa5-0de6-11d0-a285-

00aa003049e2;WD)(OU;CIIOIDSA;WP;f30e3bbf-9ff0-11d1-b603-0000f80367c1;bf967aa5-0de6-11d0-a285-

00aa003049e2;WD) 

6.1.1.5.2 Default Domain Policy Container 

This container is not necessary for Active Directory functioning, and this protocol does not define any 

constraints beyond those listed in this section. This container is used by the Group Policy System 
([MS-GPOD] section 1.1.4). 



 

509 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

parent: System container 

name: Default Domain Policy 

objectClass: domainPolicy 

isCriticalSystemObject: TRUE 

6.1.1.5.3 Sam Server Object 

parent: System container 

name: Server 

objectClass: samServer 

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME | 
FLAG_DOMAIN_DISALLOW_MOVE} 

Note  Domain controllers running Windows Server 2012 do not create the systemFlags attribute on 
the Sam Server object. 

6.1.1.5.4 (Updated Section) Domain Updates Container 

The Domain Updates container includes child containers that specify the version of the domain 
revision. Some or all of the following containers exist, depending on the domain revision. 

Container Minimum domain revision for which the container exists 

Operations 0.8 

Windows2003Update 0.8 

ActiveDirectoryUpdate 3.9 

The version of the revision is stored under the Domain Updates child containers. 

The major version is stored on the revision attribute of the ActiveDirectoryUpdate container. If the 
ActiveDirectoryUpdate container does not exist, the major version is 0. After a domain revision 

upgrade process, the revision attribute of the ActiveDirectoryUpdate container mustMUST be equal to 
the major version of the current revision. 

The minor version is stored on the revision attribute of the Windows2003Update container. If the 
Windows2003Update container does not exist, the minor version is 0. After a domain revision upgrade 
process, the revision attribute of the Windows2003Update container mustMUST  be equal to the minor 
version of the current revision. 

parent: System container 

name: DomainUpdates 

objectClass: container 

6.1.1.5.4.1 Operations Container 

The contents of the Operations container are outside the state model and are implementation-specific. 

parent: Domain Updates container 

name: Operations  



 

510 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

objectClass: container 

6.1.1.5.4.2 Windows2003Update Container 

This container stores the minor version of the domain revision. 

parent: Domain Updates container 

name: Windows2003Update 

objectClass: container 

revision: The minor version of the domain revision.  

6.1.1.5.4.3 ActiveDirectoryUpdate Container 

This container stores the major version of the domain revision. 

parent: Domain Updates container 

name: ActiveDirectoryUpdate 

objectClass: container 

revision: The major version of the domain revision.  

6.1.1.6 Well-Known Domain-Relative Security Principals 

In each domain NC, there are certain well-known security principals. These well-known security 
principals are given default privileges in the domain. For more information, see section 5 and also see 
[MS-SAMR] section 3.1.4.2. 

Each of these objects has the following attributes: 

parent: Users Container (section 6.1.1.4.6). 

objectSid: A SID consisting of the objectSid of the domain NC root, followed by the RID that is 
specified for each child in the following subsections. 

The objects of class user have the following attribute: 

primaryGroupID: This value is a RID, which refers to another well-known domain relative security 
principal. 

6.1.1.6.1 Administrator 

name: Administrator 

objectClass: user 

RID: 500 

primaryGroupID: 513 (Domain Users) 

6.1.1.6.2 Guest 

name: Guest 

objectClass: user 



 

511 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

RID: 501 

primaryGroupID: 514 (Domain Guests) 

6.1.1.6.3 Key Distribution Center Service Account 

name: krbtgt 

objectClass: user 

RID: 502 

primaryGroupID: 513 (Domain Users) 

6.1.1.6.4 Cert Publishers 

name: Cert Publishers 

objectClass: group 

RID: 517 

groupType: {GROUP_TYPE_RESOURCE_GROUP | GROUP_TYPE_SECURITY_ENABLED} 

6.1.1.6.5 Domain Administrators 

name: Domain Admins 

objectClass: group 

RID: 512 

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED} 

6.1.1.6.6 Domain Computers 

name: Domain Computers 

objectClass: group 

RID: 515 

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED} 

6.1.1.6.7 Domain Controllers 

name: Domain Controllers 

objectClass: group 

RID: 516 

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED} 

6.1.1.6.8 Domain Guests 

name: Domain Guests 

objectClass: group 

RID: 514 



 

512 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED} 

6.1.1.6.9 Domain Users 

name: Domain Users 

objectClass: group 

RID: 513 

groupType: { GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED } 

6.1.1.6.10 Enterprise Administrators 

This group exists only in the forest root domain. 

name: Enterprise Admins 

objectClass: group 

RID: 519 

groupType: 

▪ If the forest root domain is mixed (section 6.1.4.1): 

▪ {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED} 

▪ If the forest root domain is not mixed: 

▪ {GROUP_TYPE_UNIVERSAL_GROUP | GROUP_TYPE_SECURITY_ENABLED} 

6.1.1.6.11 Group Policy Creator Owners 

name: Group Policy Creator Owners 

objectClass: group 

RID: 520 

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED} 

6.1.1.6.12 RAS and IAS Servers 

name: RAS and IAS Servers 

objectClass: group 

RID: 553 

groupType: {GROUP_TYPE_RESOURCE_GROUP | GROUP_TYPE_SECURITY_ENABLED} 

6.1.1.6.13 Read-Only Domain Controllers 

name: Read-Only Domain Controllers  

objectClass: group 

RID: 521 

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED} 



 

513 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

This group is created in a domain by the PDC the first time a Windows Server 2008 or later DC holds 
the PDC FSMO. 

6.1.1.6.14 Enterprise Read-Only Domain Controllers 

name: Enterprise Read-Only Domain Controllers 

objectClass: group 

RID: 498 

groupType: {GROUP_TYPE_UNIVERSAL_GROUP | GROUP_TYPE_SECURITY_ENABLED} 

This group is created in the root domain by the root domain PDC the first time a Windows Server 2008 
or later DC holds the root domain PDC FSMO. 

6.1.1.6.15 Schema Admins 

This group exists only in the forest root domain. 

name: Schema Admins 

objectClass: group 

RID: 518 

groupType: 

▪ If the forest root domain is mixed (section 6.1.4.1): 

▪ { GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED } 

▪ If the forest root domain is not mixed: 

▪ { GROUP_TYPE_UNIVERSAL_GROUP | GROUP_TYPE_SECURITY_ENABLED } 

6.1.1.6.16 Allowed RODC Password Replication Group 

name: Allowed RODC Password Replication Group 

objectClass: group 

RID: 571 

groupType: { GROUP_TYPE_RESOURCE_GROUP | GROUP_TYPE_SECURITY_ENABLED } 

6.1.1.6.17 Denied RODC Password Replication Group 

name: Denied RODC Password Replication Group 

objectClass: group 

RID: 572 

groupType: { GROUP_TYPE_RESOURCE_GROUP | GROUP_TYPE_SECURITY_ENABLED } 

6.1.2 Forest Requirements 

References: nTDSDSA object, server object, domain controller object, SPN (2) construction, crossRef 

object, NC root object 



 

514 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Glossary terms: DC, NC, NC replica 

LDAP attributes: serverReference, dNSHostName, servicePrincipalName, nCName, msDS-NC-Replica-
Locations, msDS-hasMasterNCs, msDS-HasInstantiatedNCs, hasPartialReplicaNCs 

LDAP classes: nTDSDSA, server, crossRef 

Constants: NTDSDS_OPT_IS_GC 

6.1.2.1 (Updated Section) DC Existence 

For any DC in the forest, the following objects mustMUST exist: 

▪ nTDSDSA object: See section 6.1.1. 

▪ server object: See section 6.1.1. 

▪ Domain Controller object (in AD DS, not AD LDS): See section 6.1.1. 

For the purposes of this section, an RODC object is a Domain Controller object. 

Any one of these objects can be said to "represent" the DC. 

Relationships: 

▪ The server object is the parent of the nTDSDSA object. On AD DS, the name of the server object 

is the computer name of the DC; on AD LDS, the name of the server object is the computer name, 
followed by "$", followed by the instance name of the DC. 

▪ On AD DS, the attribute serverReference on the server object mustMUST reference the domain 
controller object. 

▪ On AD DS, the dNSHostName attribute of the domain controller object mustMUST equal the 
dNSHostName attribute of the server object.  

▪ The dNSHostName attribute of the server object mustMUST equal the DNS hostname of the 

computer that is physically the DC. 

▪ On AD DS, every value of the servicePrincipalName attribute of the domain controller object, 
which has a DNS hostname as the instance name (see section 5.1.1.4, "Mutual Authentication", 
for SPN (2) construction), mustMUST have an instance name equal to the dNSHostName of the 
domain controller object. 

6.1.2.2 (Updated Section) NC Existence 

For any NC in the forest, the following objects mustMUST exist: 

▪ crossRef: see section 6.1.1. 

▪ NC root: see section 6.1.1. 

Either of these objects can be said to "represent" the NC. 

Relationships: 

▪ The nCName attribute of the crossRef object mustMUST reference the NC root object. 

6.1.2.3 Hosting Requirements 

6.1.2.3.1 (Updated Section) DC and Application NC Replica 



 

515 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

A DC is instructed to host an application NC replica if: 

▪ The attribute msDS-NC-Replica-Locations on the crossRef representing the NC contains the 
DSName of the nTDSDSA object representing the DC. 

A DC is hosting an application NC replica when the following are trueTRUE: 

▪ The attribute msDS-hasMasterNCs on the nTDSDSA object representing the DC contains the 
DSName of the NC root representing the NC. 

▪ The attribute msDS-HasInstantiatedNCs on the nTDSDSA object representing the DC contains an 
Object(DN-Binary) value such that the DN field is the DSName of the NC root representing the 
NC, and the Data field contains the value of the instanceType attribute on the NC root object on 
the DC. 

6.1.2.3.2 (Updated Section) DC and Regular Domain NC Replica 

A DC is instructed to host a regular domain NC replica if: 

▪ The domain controller object representing the DC is in the domain NC. 

A DC is hosting a regular domain NC replica when the following are trueTRUE: 

▪ The attribute msDS-hasMasterNCs and attribute hasMasterNCs on the nTDSDSA object 
representing the DC contain the DSName of the NC root representing the domain NC. 

▪ The attribute msDS-HasInstantiatedNCs on the nTDSDSA object representing the DC contains an 
Object(DN-Binary) value such that the DN field is the DSName of the domain NC root 
representing the domain NC, and the Data field contains the value of the instanceType attribute on 
the domain NC root object on the DC. 

▪ The attribute msDS-HasDomainNCs on the nTDSDSA object representing the DC references the 
domain NC root. A DC hosts only one full domain NC replica. 

6.1.2.3.3 (Updated Section) DC and Schema/Config NC Replicas 

Every DC is instructed to host the schema and config NC replicas. 

A DC is hosting the schema and config NC replicas when the following are trueTRUE: 

▪ The attribute msDS-hasMasterNCs and attribute hasMasterNCs on the nTDSDSA object 
representing the DC contain the DSName of both the NC roots representing the schema and 
config NCs. 

▪ The attribute msDS-HasInstantiatedNCs on the nTDSDSA object representing the DC contains two 

Object(DN-Binary) values such that the DN fields are the DSName of the NC root representing 
the config and schema NCs, and the binary fields contain the values of the instanceType attribute 
on the config and schema NC root objects on the DC. 

6.1.2.3.4 (Updated Section) DC and Partial Replica NCs Replicas 

A DC is instructed to host a partial NC replica of every domain NC in the forest if: 

▪ The options attribute of the nTDSDSA object representing that DC has the following flag: 

NTDSDS_OPT_IS_GC. 

A DC hosts a partial NC replica of a domain NC when the following are trueTRUE: 

▪ The attribute hasPartialReplicaNCs on the nTDSDSA object representing the DC contains the 
DSName of the NC roots representing the domain NC. 



 

516 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ The attribute msDS-HasInstantiatedNCs on the nTDSDSA object representing the DC contains an 
Object(DN-Binary) value such that the DN field is the DSName of the NC root representing the 

NC, and the Data field contains the value of the instanceType attribute on the NC root object on 
the DC. 

6.1.3 (Updated Section) Security Descriptor Requirements 

Constants 

▪ LDAP constants: LDAP_SERVER_SD_FLAGS_OID. 

▪ SD flags: OWNER_SECURITY_INFORMATION, GROUP_SECURITY_INFORMATION, 
DACL_SECURITY_INFORMATION, SACL_SECURITY_INFORMATION, SECURITY_PRIVATE_OBJECT. 

▪ Security access mask bits and privileges: SE_RESTORE_PRIVILEGE, RIGHT_WRITE_DAC, 
RIGHT_WRITE_OWNER, ACCESS_SYSTEM_SECURITY, SE_GROUP_OWNER, 
SE_GROUP_USE_FOR_DENY_ONLY. 

▪ Security descriptor values stored in Active Directory are in SECURITY_DESCRIPTOR format (see 
[MS-DTYP] section 2.4.6). In addition to the defined fields, the RM Control (Resource Manager 

Control) field is used. It is stored in the Sbz1 byte of the SECURITY_DESCRIPTOR structure. The 
SECURITY_PRIVATE_OBJECT bit (0x01) might be present in the field. 

▪ Error codes: ERROR_INVALID_OWNER. 

The following requirements apply to SDs that are maintained by a DC: 

1. Each object's SD retains the set of explicit (noninherited) ACEs stamped in its DACL and SACL (if 
present). It also retains the owner and group SID values as well as various SD flags (see SD 
reference [MS-DTYP] section 2.4.6). The owner SID cannot be NULL, while the group SID can be 

NULL. 

2. The SD also includes the set of inheritable ACEs from its parent object. It includes both applicable 
and nonapplicable inheritable ACEs. The following exceptions apply to the preceding rule: 

1. The object is the root of an NC. In this case, the SD does not include any inherited ACEs. 

2. If the ACL (either DACL or SACL) has the "protected from inheritance" flag set. In this case, 
the ACL does not include inheritable ACEs from the parent object's SD. 

3. The object is deleted. In this case, the set of inheritable ACEs that were obtained from the 
parent object's SD at the time of object deletion is retained. 

3. When the forest functional level is DS_BEHAVIOR_WIN2003 or above and the 
fDontStandardizeSDs heuristic is falseFALSE (section 6.1.1.2.4.1.2), then the ACEs in the ACLs are 
sorted according to ACE ordering rules (see the following ACE ordering rules section). Otherwise, if 
the forest functional level is less than DS_BEHAVIOR_WIN2003, the order of explicit ACEs supplied 
by the client is preserved. 

4. The ACEs with the inheritedObjectType field present are marked as effective or ineffective by 

setting the INHERIT_ONLY_ACE flag. The INHERIT_ONLY_ACE flag identifies an ineffective ACE, 
which does not control access to the object to which it is attached. If this flag is not set, the ACE is 
an effective ACE, which controls access to the object to which it is attached. This flag is set 
according to SD merge rules (see the CreateSecurityDescriptor algorithm in [MS-DTYP] section 
2.5.3.4.1), based on the current value of the object's objectClass attribute. Specifically, the 
following objectClass values are considered when processing inheritable ACEs from the parent's 

SD: the most specific structural objectClass value, as well as all dynamic auxiliary class values. 
The static auxiliary classes and non–most specific object classes are not considered. For example, 
in Active Directory schema, computer objects have the following objectClass values: top, person, 
organizationalPerson, user, and computer. In this case, only the computer class has to be 



 

517 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

considered for inheritance processing. For inheritance processing, each effective objectClass value 
is converted to the GUID (as per schema mapping object classes to GUIDs; see 

Schema (section 3.1.1.3.1.1)) and supplied as an input to the SD merge routine. 

5. In order to compute the resultant SD value for an object, the CreateSecurityDescriptor algorithm 

([MS-DTYP] section 2.5.3.4.1) is invoked with the following input parameters: 

1. ParentDescriptor: If the object is NC root, then NULL; otherwise, the SD value of the parent 
object. 

2. CreatorDescriptor: The current SD value stamped on the object. When an LDAP add operation 
is performed and no SD value is supplied, the SD value is first defaulted according to the rules 
specified in sections 6.1.3.6 and 6.1.3.7. 

3. IsContainerObject: trueTRUE is always passed. 

4. AutoInheritFlags: DACL_AUTO_INHERIT | SACL_AUTO_INHERIT. 

5. Token: When processing an originating SD write, the security information of the requester is 
used. Otherwise, SYSTEM security information is used; note that, in the case of auto-
propagation into children, the information from the token is never used, because all required 
SD parts are always present and there is nothing that needs to be defaulted. 

6. GenericMapping: The following mapping table is used for all Active Directory SD operations: 

▪ GENERIC_READ_MAPPING = RIGHT_READ_CONTROL | RIGHT_DS_LIST_CONTENTS | 
RIGHT_DS_READ_PROPERTY | RIGHT_DS_LIST_OBJECT 

▪ GENERIC_WRITE_MAPPING = RIGHT_READ_CONTROL | 
RIGHT_DS_WRITE_PROPERTY_EXTENDED | RIGHT_DS_WRITE_PROPERTY 

▪ GENERIC_EXECUTE_MAPPING = RIGHT_READ_CONTROL | RIGHT_DS_LIST_CONTENTS 

▪ GENERIC_ALL_MAPPING = RIGHT_DELETE | RIGHT_READ_CONTROL | 

RIGHT_WRITE_DAC | RIGHT_WRITE_OWNER | RIGHT_DS_CREATE_CHILD | 

RIGHT_DS_DELETE_CHILD | RIGHT_DS_DELETE_TREE | RIGHT_DS_READ_PROPERTY | 
RIGHT_DS_WRITE_PROPERTY | RIGHT_DS_LIST_CONTENTS | RIGHT_DS_LIST_OBJECT | 
RIGHT_DS_CONTROL_ACCESS | RIGHT_DS_WRITE_PROPERTY_EXTENDED 

6. Any CREATOR/OWNER ineffective ACE has a matching effective ACE granted to the current owner 
of the object (as obtained from the SD OWNER field). 

7. NULL DACLs are disallowed. 

6.1.3.1 ACE Ordering Rules 

ACE ordering rules apply only to ACLs in canonical form (see [MS-DTYP] section 2.4.5), and only when 
the forest functional level is DS_BEHAVIOR_WIN2003 or above. The following rules are applied, in the 
following order: 

1. Explicit ACEs come before inherited ACEs. 

2. Deny ACEs come before Allow ACEs. 

3. Regular ACEs come before object ACEs. 

4. Within each group, the ACEs are ordered lexicographically (that is, based on octet string 
comparison rules). 



 

518 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Rules 3 and 4 above are enforced only when the forest functional level is DS_BEHAVIOR_WIN2003 or 
above. Otherwise, the order of ACEs within each group defined by rules 1 and 2 is retained as supplied 

by the user or replication partner. 

6.1.3.2 SD Flags Control 

When performing an LDAP operation (modify or search), the client might supply an SD Flags Control 
LDAP_SERVER_SD_FLAGS_OID (section 3.1.1.3.4.1.11) with the operation. The value of the control is 
an integer, which is used to identify which security descriptor (SD) parts the client intends to read or 

modify. When the control is not specified, the default value of 15 (0x0000000F) is used. 

The SD parts are identified using the following bit values: OWNER_SECURITY_INFORMATION, 
GROUP_SECURITY_INFORMATION, DACL_SECURITY_INFORMATION, SACL_SECURITY_INFORMATION, 
which correspond to OWNER, GROUP, DACL and SACL SD fields, respectively. 

If the LDAP_SERVER_SD_FLAGS_OID control is present in an LDAP search request, the server returns 
an SD with the parts specified in the control when the SD attribute name is explicitly mentioned in the 

requested attribute list, or when the requested attribute list is empty, or when all attributes are 

requested ([RFC2251] section 4.5.1). Without the presence of this control, the server returns an SD 
only when the SD attribute name is explicitly mentioned in the requested attribute list. 

For update operations, the bits identify which SD parts are affected by the operation. Note that the 
client might supply values for other (or all) SD fields. However, the server only updates the fields that 
are identified by the SD control. The remaining fields are ignored. When performing an LDAP add 
operation, the client can supply an SD flags control with the operation; however, it will be ignored by 
the server. 

6.1.3.3 Processing Specifics 

1. The clients might send in SD values that include both explicit and inherited ACEs (during add or 
modify operations). Only the set of explicit ACEs is considered authoritative data. Any inherited 

ACEs that are included in the SD value are ignored. Instead, the set of inherited ACEs is computed 

per the rules in the preceding sections and set on the object. 

2. During an add operation, the DC makes sure that the object's security descriptor value is 
consistent with the parent's SD value (according to the preceding rules), at the moment when the 
add operation is committed. 

3. During a move operation, the DC makes sure that the moved object's security descriptor value is 
consistent with the new parent's SD value (according to the preceding rules), at the moment when 

the move operation is committed. If the moved object has descendant objects (that is, a tree 
move was performed), then the SD values of the children objects are updated outside of the move 
transaction (see Modify DN, section 3.1.1.5.4). 

4. During an SD modify operation, the DC ensures that the updated object's security descriptor value 
is consistent with the parent's SD value (according to the preceding rules), at the moment when 
the modify operation is committed. If the updated object has descendant objects, then the SD 
values of the children objects are updated outside of the modify transaction.  

5. When processing inbound replication containing SD updates, the SD requirements are enforced (in 
other words, it is not guaranteed that the SD value sent by the replication partner is consistent 
with the parent's SD value). It is the responsibility of the DC performing the inbound replication to 
ensure that the set of inherited ACEs present in the SD is consistent in the subtree that is rooted 
at the affected object (according to the preceding rules). One exception to this rule is when 
processing inbound replication of a deleted object. In this case, the DC retains the SD value 

(including both explicit and inherited ACEs) as it is supplied by the replication partner, in cases 
when it is supplied by the replication partner. If the SD value is not supplied by the replication 
partner, then the existing SD value is retained. 



 

519 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6. When an originating add operation is processed, the client might or might not supply an SD value. 
If the SD value is not supplied, then the DACL and SACL on the newly created object are defaulted 

according to the SD defaulting rules (section 6.1.3.6). If the SD value is present, then the DACL 
and SACL are obtained from this value. If the DACL is not present in the supplied value, then the 

add operation is failed with unwillingToPerform / <unrestricted>  (per the preceding constraint). If 
the SACL is not present in the supplied value, then a NULL value is written in place of this SACL. 

7. If the RM control field is present in the supplied SD value, then its value is reset to contain the 
SECURITY_PRIVATE_OBJECT bit, and nothing else. 

8. AD LDS imposes a restriction on the security principals that can be used in an AD LDS security 
descriptor (owner, group, and SID values within ACEs). The SID of a security principal within an 
AD LDS application NC can appear in a security descriptor within that application NC, but cannot 

appear in a security descriptor within any other NC of the same forest. Other SIDs are not 
restricted, so for instance a Windows security principal is allowed in any AD LDS security 
descriptor, as is a security principal from another AD LDS forest, as well as a security principal 
from the config NC of the same AD LDS forest. 

9. Windows Server 2008 R2 and later impose a restriction on modifying the OWNER field. If a modify 
operation attempts to set the OWNER SID to a value, the operation will fail with a 

constraintViolation / ERROR_INVALID_OWNER error unless at least one of the following conditions 
applies.  

Let U be the user performing the modify operation: 

▪ U.SID equals OWNER SID. 

▪ Let G be a group in U.Groups whose SID is being set in the OWNER field. G.Attributes contains 
SE_GROUP_OWNER but not SE_GROUP_USE_FOR_DENY_ONLY. 

▪ U.Privileges contains SE_RESTORE_PRIVILEGE. 

This restriction is processed before the security checks described in section 6.1.3.5. 

6.1.3.4 (Updated Section) Blocking Implicit Owner Rights 

The Owner of a security descriptor is implicitly granted READ_CONTROL and WRITE_DAC rights by 

default. For servers running specific operating systems, these implicit rights are blocked when the 
following are trueTRUE: 

▪ The BlockOwnerImplicitRights dsHeuristic is set to 1 (section 6.1.1.2.4.1.2). 

▪ The requester is a member of neither the Domain Administrators (section 6.1.1.6.5) or the 
Enterprise Administrators (section 6.1.1.6.10) group. 

▪ The objectClass being added or modified is either of type computer or is derived from type 
computer. 

Note: For servers running the operating systems specified in [MSFT-CVE-2021-42291], each with the 
related MSKB article download installed, implicit rights granted by default to the owner of the security 

descriptor are blocked when the specified conditions are trueTRUE. 

6.1.3.5 (Updated Section) Security Considerations 

When an Add operation is processed, the client is allowed to specify any SD value, subject to some 
constraints to the OWNER field, as specified in this section and in section 3.1.1.5.2.1.1. 

When a Modify operation is processed, the following security checks are applied to the requester's 
security context. If the requester does not pass the check, then accessDenied is returned. 



 

520 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

1. If the DACL value is written (according to SD flags), then one of the following requirements MUST 
be satisfied: 

▪ Explicit RIGHT_WRITE_DAC is granted to the requester on the object. 

▪ The OWNER SID in the SD value is one of the SIDs in the requester's token (either as user SID or 

group SID), in which case, implicit Owner rights are not blocked, as specified in section 6.1.3.4. 

Note: The requirements that MUST be satisfied when a DACL value is written according to SD 
flags, as described in this section, are supported on operating systems specified in [MSFT-CVE-
2021-42291], each with the related MSKB article download installed. These requirements are also 
supported in Windows 11 v22H2 and later. 

2. If the OWNER and/or GROUP value is written (according to SD flags), then one of the following 
requirements mustMUST be satisfied: 

▪ RIGHT_WRITE_OWNER is granted to the requester on the object. 

▪ The requester possesses the SE_TAKE_OWNERSHIP_PRIVILEGE. 

▪ The control access right DS-Set-Owner is granted to the requestor on the object that is the root of 
the naming context to which the object holding the SD belongs. 

3. If the SACL value is written (according to SD flags), then the following requirement mustMUST be 
satisfied: 

▪ The requester possesses the SE_SECURITY_PRIVILEGE. 

4. If the object being modified is in the config NC or schema NC, and the RM control of the SD is 
present and contains SECURITY_PRIVATE_OBJECT bit, then additional requirements on the DC 
performing the operation mustMUST be enforced: 

▪ The DC mustMUST be a member of the root domain in the forest, or 

▪ The DC mustMUST be a member of the same domain to which the current object owner 

belongs. 

5. When the OWNER value is being written (via SD flags control, either in an add or a modify 
operation), then the following constraint mustconstraints have to be satisfied. The value of the 
OWNER field mustMUST be one of the following SIDs: 

▪ The SID of the user performing the operation. 

▪ The SID of the "default administrators group" (DAG; section 6.1.3.7), only when the DAG is 
defined and the user is a member of this group. 

▪ Any SID, when the user possesses the SE_RESTORE_PRIVILEGE. 

If the owner SID does not satisfy the preceding rules, then the server fails the operation, 
returning an unwillingToPerform / ERROR_INVALID_OWNER error. 

6. If the owner SID is written on an object in the config NC or schema NC, then additional 
requirements on the DC performing the operation are enforced: 

▪ The DC mustMUST be a member of the root domain in the forest, or 

▪ The DC mustMUST be a member of the same domain to which the current object owner 

belongs. 



 

521 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.3.6 SD Defaulting Rules 

When an add operation is performed and the client does not supply an SD value, then the SD value is 
defaulted as follows: 

1. The SD is determined from the defaultSecurityDescriptor value obtained from the classSchema 
object corresponding to the most specific structural objectClass of the object being created. The 
value of defaultSecurityDescriptor is an SDDL string. The string is converted to the binary SD 
value in the context of domain SID (used to resolve domain SID references, such as Domain 
Administrators alias) and root domain SID (used to resolve forest SID references, such as 
Enterprise Administrators alias). See [MS-DTYP] section 2.5.1 for more details. 

2. When the object is created in an application NC, then the value or sdReferenceDomain from the 

crossRef corresponding to the NC is used to determine the domain SID used as context in the 
SDDL conversion process. 

6.1.3.7 Owner and Group Defaulting Rules 

The OWNER and GROUP fields are defaulted in the following scenarios: 

▪ The SD flags do not include the OWNER bit. 

▪ The SD flags include the OWNER bit, but the OWNER field in the supplied value is NULL. 

In the preceding cases, the OWNER field is defaulted as follows: 

▪ If the user performing the operation is a member of the DAG for the object (when it is defined), 
the SID of this group is written into the OWNER field of the SD. 

▪ Otherwise, if the requester's security context contains the TokenOwner field, then the SID 

contained in this field is written into the OWNER field of the SD. 

▪ Otherwise, the requester's user SID is written into the OWNER field of the SD. 

If the DC functional level is DS_BEHAVIOR_WIN2008 or higher, and the DAG was used as the default 
OWNER field value, then the same SID is written into the GROUP field. In all other cases, the GROUP 
field is not modified before the SD value is passed to the CreateSecurityDescriptor algorithm as 
specified in section 6.1.3. 

6.1.3.8 Default Administrators Group 

The "default administrators group" (DAG), which is used for OWNER/GROUP defaulting and also in 
OWNER write access checks, is computed based on two inputs: the contents of the requester's token 
and the location of the object whose SD is being written. The following rules are applied (in order): 

1. When the object belongs to a domain NC: 

1. If the user is a member of Domain Admins for this domain, then Domain Admins is designated 
as the DAG. 

2. If the user is a member of Enterprise Admins for the forest, then Enterprise Admins is 
designated as the DAG. 

3. Otherwise, the DAG is undefined. 

2. When the object belongs to the config NC: 

1. If the user is a member of Enterprise Admins, then Enterprise Admins is designated as the 
DAG. 



 

522 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

2. If the user is a member of Domain Admins (for the domain that the current DC belongs to), 
then this Domain Admins group is designated as the DAG. 

3. Otherwise, the DAG is undefined. 

3. When the object belongs to the schema NC: 

1. If the user is a member of Schema Admins, then Schema Admins is designated as the DAG. 

2. If the user is a member of Enterprise Admins, then Enterprise Admins is designated as the 
DAG. 

3. If the user is a member of Domain Admins (for the domain that the current DC belongs to), 
then this Domain Admins group is designated as the DAG. 

4. Otherwise, the DAG is undefined. 

4. When the object belongs to an application NC: 

1. If the user is a member of Domain Admins for the domain that is designated as 
sdReferenceDomain for this application NC, then this Domain Admins group is designated as 
the DAG. 

2. If the user is a member of Enterprise Admins, then Enterprise Admins is designated as the 
DAG. 

3. Otherwise, the DAG is undefined. 

6.1.4 Special Attributes 

Glossary terms: FSMO role, PDC FSMO role owner 

LDAP attributes: nTMixedDomain, msDS-Behavior-Version 

LDAP classes: nTDSDSA, crossRef 

Constants: crossRefContainer 

6.1.4.1 (Updated Section) ntMixedDomain 

The attribute nTMixedDomain is present on each domain NC root object. The value of this attribute 

MUST be 0 or 1. The value 1 indicates a domain that is in mixed mode and that supports replication to 
Windows NT operating system backup domain controllers ([MS-NRPC]). The value 0 indicates a 
domain that does not support such replication. 

If the value of the attribute nTMixedDomain is 0, it cannot be changed. 

The attribute nTMixedDomain attribute on a crossRef object is read-only and equals the attribute 
nTMixedDomain attribute on the corresponding domain NC root object. 

If there are Windows Server 2008 or later DCs in the domain, then nTMixedDomain MUST be 0. This 

implies that Windows Server 2008 and later DCs cannot be used in a domain that is in mixed mode. 

6.1.4.2 msDS-Behavior-Version: DC Functional Level 

The msDS-Behavior-Version attribute is written on the nTDSDSA object representing a DC. The value 
is the highest domain or forest functional level that the DC is capable of supporting. A DC supports 

any domain or forest functional level less than or equal to its msDS-Behavior-Version. 



 

523 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The value of the msDS-Behavior-Version attribute on an nTDSDSA object changes during an operating 
system upgrade of that DC. The value of the msDS-Behavior-Version attribute never decreases. 

The absence of the msDS-Behavior-Version attribute on an nTDSDSA object is equivalent to the 
msDS-Behavior-Version attribute on that object having the value zero. 

The following values are defined. 

Identifier Applicable domain controller operating system Value 

DS_BEHAVIOR_WIN2000 * Windows 2000 Server 0 

DS_BEHAVIOR_WIN2003 Windows Server 2003, Windows Server 2003 R2 2 

DS_BEHAVIOR_WIN2008 Windows Server 2008 3 

DS_BEHAVIOR_WIN2008R2 Windows Server 2008 R2 4 

DS_BEHAVIOR_WIN2012 Windows Server 2012 5 

DS_BEHAVIOR_WIN2012R2 Windows Server 2012 R2 operating system 6 

DS_BEHAVIOR_WIN2016 Windows Server 2016 operating system 

Windows Server v1709 operating system 

Windows Server v1803 operating system 

Windows Server v1809 operating system 

Windows Server 2019 operating system 

7 

* Not available in AD LDS. 

6.1.4.3 msDS-Behavior-Version: Domain NC Functional Level 

The msDS-Behavior-Version for domains is written on both the domain NC root object and the 

crossRef representing the domain. The attribute on the crossRef is read-only and is kept in sync with 
the attribute on the domain NC root object. Only the PDC FSMO role owner accepts originating 
updates to the attribute on the domain NC root. 

Requirements: The functional level of a domain is never larger than any domain DC's functional level 
that hosts or is instructed to host (see section 6.1.2.3) the domain NC. When the functional level of a 

domain is DS_BEHAVIOR_WIN2003 or greater, the attribute nTMixedDomain on the domain NC root is 
0 (see section 6.1.4.1).  

The absence of the msDS-Behavior-Version attribute on a domain NC root object is equivalent to the 
msDS-Behavior-Version attribute on that object having the value zero. 

The value msDS-Behavior-Version defines the lower limit on the version of the server operating 
system that can run on domain controllers within the domain. Ensuring this lower limit allows 
advanced features to be enabled throughout the domain. 

The following values are defined. 

Identifier 
Domain controller operating systems that 
are allowed in the domain Value 

DS_BEHAVIOR_WIN2000 Windows 2000 Server through Windows Server 
2008 

0 

DS_BEHAVIOR_WIN2003_WITH_MIXED_DOMAINS Windows Server 2003 through Windows Server 
2016 

1 



 

524 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Identifier 
Domain controller operating systems that 
are allowed in the domain Value 

DS_BEHAVIOR_WIN2003 Windows Server 2003 through Windows Server 
2016 

2 

DS_BEHAVIOR_WIN2008 Windows Server 2008 and later 3 

DS_BEHAVIOR_WIN2008R2 Windows Server 2008 R2 and later 4 

DS_BEHAVIOR_WIN2012 Windows Server 2012 and later 5 

DS_BEHAVIOR_WIN2012R2 Windows Server 2012 R2 and later 6 

DS_BEHAVIOR_WIN2016 Windows Server 2016 and later 7 

 

6.1.4.4 msDS-Behavior-Version: Forest Functional Level 

The msDS-Behavior-Version for the forest is written on the crossRefContainer object (see section 

6.1.1.2.1). Only the Domain Naming Master FSMO role owner accepts updates to this attribute. 

Requirements: The value of msDS-Behavior-Version for the forest is never larger than any functional 
level of any domain NC in the forest.  

The absence of the msDS-Behavior-Version attribute on a crossRefContainer object is equivalent to 
the msDS-Behavior-Version attribute on that object having the value zero. 

The value msDS-Behavior-Version defines the lower limit on the version of the server operating 

system that can run on domain controllers within the forest. Ensuring this lower limit allows advanced 
features to be enabled throughout the forest. 

The following values are defined. 

Identifier 
Domain controller operating systems or 
products that are allowed in the forest Value 

DS_BEHAVIOR_WIN2000 * Windows 2000 Server through Windows 
Server 2008 

0 

DS_BEHAVIOR_WIN2003_WITH_MIXED_DOMAINS * Windows Server 2003 through Windows 
Server 2016 

1 

DS_BEHAVIOR_WIN2003 Windows Server 2003 

Active Directory Application Mode (ADAM) 

Windows Server 2003 R2 through Windows 
Server 2016 

2 

DS_BEHAVIOR_WIN2008 Windows Server 2008 and later 3 

DS_BEHAVIOR_WIN2008R2 Windows Server 2008 R2 and later 4 

DS_BEHAVIOR_WIN2012 Windows Server 2012 and later 5 

DS_BEHAVIOR_WIN2012R2 Windows Server 2012 R2 and later 6 

DS_BEHAVIOR_WIN2016 Windows Server 2016 and later 7 

* Not available in AD LDS. 



 

525 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.4.5 Replication Schedule Structures 

6.1.4.5.1 (Updated Section) SCHEDULE_HEADER Structure 

0 1 2 3 4 5 6 7 8 9 
1 
0 1 2 3 4 5 6 7 8 9 

2 
0 1 2 3 4 5 6 7 8 9 

3 
0 1 

Type 

Offset 

Type (4 bytes): This value mustMUST be 0. 

Offset (4 bytes): An offset, in bytes, into the Data field of the SCHEDULE structure. The offset 
represents the start of the replication schedule data. 

6.1.4.5.2 SCHEDULE Structure 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Size 

Bandwidth 

NumberOfSchedules 

Schedules 

... 

Data (variable) 

... 

Size (4 bytes): Size of the entire replication schedule structure. 

Bandwidth (4 bytes):  Not used; this field is ignored. 

NumberOfSchedules (4 bytes): Number of elements in Schedules. This value is always 1. 

Schedules (8 bytes): Array of SCHEDULE_HEADER structures. There is only one 
SCHEDULE_HEADER element in the array. 

Data (variable): This is a sequence of bytes specifying the time slots when replication is permitted 

between the source and the destination DC. Each schedule header specifies an offset into the data 

field. The replication schedule data for that schedule is the next 168 bytes. Each byte represents 
an hour in the week (24 * 7 = 168). The lower 4 bits of each byte represent 15-minute intervals 
in the hour. The first bit, that is, the fourth least significant bit in the byte, corresponds to the first 
15 minutes in the hour, the second bit corresponds to the next 15 minutes, and so on. If one of 
these bits is set, it indicates that replication is permitted in that 15-minute time interval within 
that hour. 

The offset field of the SCHEDULE_HEADER structure points to the beginning of the Data field, and the 
Data field is exactly 168 bytes since there is only one schedule. 



 

526 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.4.5.3 REPS_FROM 

Specified in [MS-DRSR] section 5.170. 

6.1.4.5.4 REPS_TO 

Specified in [MS-DRSR] section 5.171. 

6.1.4.5.5 MTX_ADDR Structure 

Specified in [MS-DRSR] section 5.132. 

6.1.4.5.6 REPLTIMES Structure 

Specified in [MS-DRSR] section 5.165. 

6.1.4.5.7 PAS_DATA Structure 

Specified in [MS-DRSR] section 5.149. 

6.1.4.6 msDS-AuthenticatedAtDC 

This attribute is maintained by the DC on user and computer objects. The attribute contains a list of 
computer objects, corresponding to the RODCs at which the user or computer has authenticated. This 
attribute is a forward link attribute whose corresponding back link is the msDS-
AuthenticatedToAccountlist attribute (see section 6.1.1.3.2). When a writable DC authenticates a user 
or computer to an RODC, that writable DC adds the DN of the RODC's computer object to the list in 
the msDS-AuthenticatedAtDC attribute of the user or computer that was authenticated. 

This attribute was first maintained by DCs running Windows Server 2008. 

6.1.5 (Updated Section) FSMO Roles 

References: SID, RID, RID Allocation, RID Master role in interdomain move, PDC Emulator role, 

Infrastructure role 

Functions: RoleObject, GetRoleScope 

Glossary terms: FSMO role, NC replica, DC, SID 

LDAP attributes: fSMORoleOwner 

LDAP classes: nTDSDSA 

A FSMO role is defined as a set of objects that can be updated in only one NC replica at any given 
time. The DC that hosts this NC replica is the owner for that FSMO role. 

Each FSMO role is represented by an object in the directory. The function RoleObject (section 

3.1.1.5.1.8) specifies the object for a given FSMO role type and NC. This object is an element of the 
FSMO role and contains the fSMORoleOwner attribute, which references the nTDSDSA object of the DC 
that owns the role. The function GetRoleScope defined in [MS-DRSR] section 4.1.10.5.16 identifies the 
set of objects that comprise each FSMO role. These objects mustMUST be updated only on the DC that 
currently owns the FSMO role.  

6.1.5.1 Schema Master FSMO Role 

The Schema Master FSMO role owner is the DC responsible for performing updates to the directory 
schema. This DC is the only one that can process updates to the directory schema. Once the schema 



 

527 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

update is complete, it is replicated from the Schema Master FSMO role owner to all other DCs in the 
directory. There is only one Schema Master FSMO role per forest. 

6.1.5.2 Domain Naming Master FSMO Role 

The Domain Naming Master FSMO role owner is the DC responsible for making changes to the forest-
wide domain name space of the directory in the Partitions container. This DC is the only one that can 
add or remove a domain or application NC from the directory. It can also add or remove cross 
references to domains in external directories. Only the Domain Naming Master FSMO role owner can 

write to the Partitions container or its children. There is only one Domain Naming Master FSMO role 
per forest. 

6.1.5.3 RID Master FSMO Role 

The RID Master FSMO role owner is the single DC responsible for processing RID pool requests from 

all DCs within a given domain. It is also responsible for moving an object from one domain to another 

during an interdomain object move. 

When a DC creates a security principal object such as a user or group, it attaches a unique SID to the 
object. This SID consists of a domain SID (the same for all SIDs created in a domain) and a relative 
ID (RID) that is unique for each security principal SID created in a domain. 

RIDs are allocated from a RID pool that is controlled by the RID Master FSMO. When a new domain is 
created, the rIDAvailablePool attribute on the RID Manager object is set to a value of 

4611686014132421709. This value defines the minimum and maximum RIDs that will be allocated by 
the RID Master FSMO within the domain. See [MS-DRSR] section 4.1.10.5.12 for details on how this 
attribute is used by the RID Master FSMO. Each DC in the domain is then allocated a pool of RIDs that 
it is allowed to assign to the security principals it creates. 

When a DC's allocated RID pool falls below a threshold, that DC issues a request for additional RIDs to 
the domain's RID Master FSMO role owner (see [MS-DRSR] section 4.1.10.4.3, 

PerformExtendedOpRequestMsg with ulExtendedOp = EXOP_FSMO_REQ_RID_ALLOC). The RID Master 

FSMO role owner responds to the request by retrieving RIDs from the domain's unallocated RID pool 
and assigns them to the pool of the requesting DC (see [MS-DRSR] section 4.1.10.5.12, 
ProcessFsmoRoleRequest with ulExtendedOp = EXOP_FSMO_REQ_RID_ALLOC). There is one RID 
Master FSMO role per domain in a directory. 

See section 3.1.1.5 for more information about the RID Master's role in interdomain object move 
operations. 

6.1.5.4 PDC Emulator FSMO Role 

The PDC Emulator FSMO role owner performs the following functions: 

▪ Password changes performed by other DCs in the domain are replicated preferentially to the PDC 
emulator. 

▪ If a logon authentication fails at a given DC in a domain due to a bad password, the DC will 

forward the authentication request to the PDC emulator to validate the request against the most 
current password. If the PDC reports an invalid password to the DC, the DC will send back a bad 
password failure message to the user. 

▪ Account lockout is processed on the PDC emulator. 

▪ The PDC emulator FSMO also fulfills the role of the PDC in the NetLogon Remote Protocol methods 

described in [MS-NRPC] section 3. Therefore, the PDC emulator FSMO MUST support and perform 
all PDC specific functionality specified in that section. Every DC, other than the PDC emulator 
FSMO, MUST NOT perform this functionality. 



 

528 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The PDC emulator periodically queries state about trusting forests and stores it in the 
msdsForestTrustInfo attribute (see section 3.1.1.6.4). 

Note: Periodically querying trusting forest state and storing that information is also supported in 
Windows 11 v22H2 and later. 

There is one PDC Emulator FSMO role per domain in a directory. See 3.1.1.7 for more information 
about the PDC Emulator FSMO role. 

6.1.5.5 (Updated Section) Infrastructure FSMO Role 

When an object in one domain is referenced by another object in another domain, it represents the 
reference as a dsname. There is one Infrastructure FSMO role per domain and application NC in a 
directory. 

If all the domain controllers in a domain also host the GC, then all the domain controllers have the 
current data, and it is not important which domain controller owns the Infrastructure Master (IM) role. 

See section 3.1.1.5 for more information about the Infrastructure Master. 

When the Recycle Bin optional feature is not enabled, the Infrastructure FSMO role owner is the DC 

responsible for updating a cross-domain object reference in the event that the referenced object is 
moved, renamed, or deleted. In this case, the Infrastructure Master role mustMUST be held by a 
domain controller that is not a GC server. If the Infrastructure Master runs on a GC server, it will not 
update object information, because it does not contain any references to objects that it does not hold. 
This is because a GC server holds a partial replica of every object in the forest. 

When the Recycle Bin optional feature is enabled, every DC is responsible for updating its cross-
domain object references in the event that the referenced object is moved, renamed, or deleted. In 

this case, there are no tasks associated with the Infrastructure FSMO role, and it is not important 
which domain controller owns the Infrastructure Master role. 

6.1.6 Trust Objects 

6.1.6.1 Overview (Synopsis) 

Active Directory domains rarely exist in isolation. Many Active Directory deployments in customer sites 
consist of two or more domains that represent boundaries between different geographical, managerial, 
organizational, or administrative layouts. For example, when company "A" acquires company "B," it 

quickly becomes necessary for preexisting domains to start trusting each other. Alternately, in some 
deployments, servers that have a specific role (such as a mail server) can be members of a "resource 
domain", easing the management burden by combining like roles under one administrative domain. 

Enabling communication between disparate domains, especially secure communication involving 
authentication and authorization, requires that some stateful knowledge be shared between the peer 
domains in order for them to trust one another. Some of this knowledge is sensitive, forming the 
cryptographic basis of trust mechanisms used in protocols such as Kerberos and Netlogon RPC. Other 

state is public knowledge, such as the NetBIOS name of a peer domain, or which security identifiers 
are owned by the peer domain. Information like this plays a crucial role when performing name 

lookups, which are essential for authorization, locating user accounts, or simply displaying information 
in some type of user interface. 

Active Directory stores trust information in trusted domain objects (TDOs) and, depending on the kind 
of trust established, in associated user accounts (interdomain trust accounts) for the trusted domain. 

This section of the document details the contents of these objects, focusing on analysis of the 
properties that are specific to TDOs and interdomain trust accounts, and that are essential for proper 
interdomain functionality. 



 

529 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.6.2 Relationship to Other Protocols 

6.1.6.2.1 TDO Replication over DRS 

After they are created, TDOs are replicated along with other objects over replication protocols (as 
specified in [MS-DRSR] and [MS-SRPL]). In this manner, they are no different than any other 
directory service object. 

6.1.6.2.2 TDO Roles in Authentication Protocols over Domain Boundaries 

For most network authentication protocols, if a client wishes to securely authenticate to a service 
residing in a foreign domain, it becomes necessary for the client and service domains to have some 

form of trust. Most trust systems in use today rely upon some form of key for trust validation. 

TDOs play an important part in the storage and distribution of information used for trust validation 
between domains. Commonly used Windows network authentication mechanisms such as Kerberos 
([RFC4120] section 1.1) retrieve information from TDOs that have been established between the client 

and service domains. Additionally, services using other protocols such as NTLM, Digest, and SSL 
Certificate Mapping use the Generic Pass-through Mechanism over the Netlogon Remote Protocol [MS-
NRPC] to authenticate users from foreign domains. Establishing the Netlogon Secure Channel requires 

the use of information contained in TDOs. The format and storage locations for this information will be 
discussed later (section 6.1.6.9.1), including information on the usage for relevant authentication 
protocols. 

6.1.6.2.3 (Updated Section) TDO Roles in Authorization over Domain Boundaries 

In some configurations, authorization data from a trusted domain, such as a SID ([MS-DTYP] section 

2.4.2) or a client name in a Kerberos cross-realm ticket-granting ticket (TGT) ([RFC4120] section 
5.3), mustMUST be scrutinized to protect against attempts in the foreign domain to claim identities 
from within the local domain. For example, if the foreign DC were to become compromised by an 
attacker, without these protections it would be possible to inject the SID of the local domain 
administrator into the transferred TGT. This would have the end result of granting the attacker domain 

administrator rights in the local domain. 

To protect against these attacks, TDOs contain name spaces and SID spaces that legitimately belong 

to the foreign domain. When enabled, authentication protocols will use this information to verify that 
authorization data that is passed through the protocol is valid for the trust. If a SID or name within 
the authorization data does not correspond to those claimed within the TDO, the request is rejected. 
This can cause network logon attempts to fail or alternately cause Kerberos ticket requests to fail, as 
discussed in [MS-PAC] section 4.2.3. 

6.1.6.3 Prerequisites/Preconditions 

TDOs are only used for storing trust information on Windows 2000 and later. 

6.1.6.4 Versioning and Capability Negotiation 

▪ Building TDOs that represent cross-forest trusts requires that both the domain and the forest are 
running in a domain and forest functional level of DS_BEHAVIOR_WIN2003 or greater. 

▪ An uplevel trust, by definition, is one in which both trusting domains are running all Windows 2000 
or newer DCs. 

▪ A downlevel trust is one in which either of the trusting domains are running Windows NT 4.0 
operating system DCs. 



 

530 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.6.5 Vendor-Extensible Fields 

It is possible to store provider-specific values in the trustAuthOutgoing and the trustAuthIncoming 
attributes [MS-ADA3] on a TDO. See the sections on TDO keys (section 6.1.6.9.1) and 

trustAuthIncoming (section 6.1.6.7.10) for details on the range of extensible values. 

6.1.6.6 Transport 

TDOs are replicated along with other DS objects, as described in [MS-DRSR] and [MS-SRPL]. 

6.1.6.7 Essential Attributes of a Trusted Domain Object 

TDOs are stored in the System container, with a CN representing the fully qualified domain name 
(FQDN) (2) of the trusted domain. For example, if a.example.com trusts b.example.com, an object 
would be created in the System container with a CN of b.example.com. The System container can be 

found by using the function GetWellknownObject(NC, default NC, GUID_SYSTEM_CONTAINER_W). For 

more information, see section 3.1.1.1. 

The contents of TDOs are described by the trustedDomain schema object [MS-ADSC]. The following 
table details those attributes that are essential to a well-functioning interdomain trust, with links to 
specific sections detailing their relevance and format when these attributes are present. 

Attribute name  Reference  

flatName MS-ADA1 

isCriticalSystemObject MS-ADA1 

msDS-SupportedEncryptionTypes MS-ADA2, 

MS-ADTS section 6.1.6.9.1 

msDS-TrustForestTrustInfo MS-ADA2, 

MS-ADTS section 6.1.6.9.3 

nTSecurityDescriptor MS-ADA3 

objectCategory MS-ADA3 

objectClass MS-ADA3 

securityIdentifier MS-ADA3 

trustAttributes MS-ADA3 

trustAuthIncoming MS-ADA3, 

MS-ADTS section 6.1.6.9.1 

trustAuthOutgoing MS-ADA3, 

MS-ADTS section 6.1.6.9.1 

trustDirection MS-ADA3 

trustPartner MS-ADA3 

trustPosixOffset MS-ADA3, 

MS-ADTS section 6.1.6.9.4 

trustType MS-ADA3 

 



 

531 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.1.6.7.1 flatName 

The flatName attribute contains the NetBIOS name (as specified in [RFC1088]) of the trusted domain 
in String(Unicode) syntax. 

This attribute is unique on all TDOs within the domain. The system rejects attempts to create a 
duplicate value. 

6.1.6.7.2 (Updated Section) isCriticalSystemObject 

A mandatory Boolean attribute. Always set to trueTRUE for TDOs, which indicates that it mustMUST be 
replicated when a new replica is installed. 

6.1.6.7.3 msDs-supportedEncryptionTypes 

Implemented on Windows Server 2008 and later. 

Contains bitmapped values as specified in [MS-KILE] section 2.2.7 that define the encryption types 

supported by this trust relationship. 

6.1.6.7.4 msDS-TrustForestTrustInfo 

Implemented on Windows Server 2003 and later. 

The contents of this attribute are fully specified in section 6.1.6.9.3. 

6.1.6.7.5 nTSecurityDescriptor 

A mandatory object attribute that contains the security descriptor that is tied to the Active Directory 
object. The security descriptor mandates access controls to the object. TDOs are sensitive objects and 
have tight access controls placed upon them. Stored as the type String(NT-Sec-Desc) in SDDL ([MS-
DTYP] section 2.5.1), the default security descriptor for TDOs is as follows. 

 Platforms    Default Security Descriptor in SDDL Format 
 ---------    ------------------------------------------ 
 W2000        D:(A;;RPWPCRCCDCLCLORCWOWDSDDTSW;;;DA)(A;;RPWPCRCCDCLCLOR 
              CWOWDSDDTSW;;;SY)(A;;RPLCLORC;;;AU) 
  
 W2003        D:(A;;RPWPCRCCDCLCLORCWOWDSDDTSW;;;DA)(A;;RPWPCRCCDCLCLOR 
 W2003R2      CWOWDSDDTSW;;;SY)(A;;RPLCLORC;;;AU)(OA;;WP;736e4812-af31- 
 W2008        11d2-b7df-00805f48caeb;bf967ab8-0de6-11d0-a285-00aa003049 
 W2008R2      e2;CO)(A;;SD;;;CO) 

6.1.6.7.6 objectCategory 

A mandatory attribute representing the schema definition for TDOs. The value is a reference to the 
classSchema object for the trustedDomain class. 

6.1.6.7.7 objectClass 

A mandatory multivalued attribute representing the classes that the target object is derived from. For 
a TDO, this value contains [top, leaf, trustedDomain ]. 

6.1.6.7.8 securityIdentifier 

The securityIdentifier attribute contains a String(Octet) representation of the SID belonging to the 
trusted domain. This value contains the domain relative SID ([MS-DTYP] section 2.4.2) of identities 
issued by the trusted domain. For example, for "example.com", a trusted domain, the value might be 



 

532 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

S-1-5-2223345-6677. The domain administrator for example.com would have a SID of S-1-5-
2223345-6677-512. 

This attribute is unique on all TDOs within the domain. The system rejects attempts to create a 
duplicate value. 

6.1.6.7.9 trustAttributes 

The trustAttributes attribute contains the value of a trust relationship. This value corresponds to the 
TrustAttributes field detailed in the LSAPR_TRUSTED_DOMAIN_INFORMATION_EX structure ([MS-
LSAD] section 2.2.7.9). The flags in the following diagram are presented in big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

R R R R R R R R O O R R R R R R R R R R R T 
A 
P 
T 

T 
A 
N 
C 

R T 
A 
R 
C 

T 
A 
T 
E 

T 
A 
W 
F 

T 
A 
C 
O 

T 
A 
F 
T 

T 
A 
Q 
D 

T 
A 
U 
O 

T 
A 
N 
T 

These flags have the following meaning. 

Name and value Description and restrictions/special notes 

TANT 

(TRUST_ATTRIBUTE_NON_TRANSITIVE) 

0x00000001 

If this bit is set, then the trust cannot be used 
transitively. For example, if domain A trusts domain B, 
which in turn trusts domain C, and the A<-->B trust has 
this attribute set, then a client in domain A cannot 
authenticate to a server in domain C over the A<-->B<--
>C trust linkage. 

TAUO 

(TRUST_ATTRIBUTE_UPLEVEL_ONLY) 

0x00000002 

If this bit is set in the attribute, then only Windows 2000 
and newer clients can use the trust link. Netlogon does 

not consume trust objects that have this flag set. 

TAQD 

(TRUST_ATTRIBUTE_QUARANTINED_DOMAIN) 

0x00000004 

If this bit is set, the trusted domain is quarantined and is 
subject to the rules of SID Filtering as described in [MS-
PAC] section 4.1.2.2. 

TAFT 

(TRUST_ATTRIBUTE_FOREST_TRANSITIVE) 

0x00000008 

If this bit is set, the trust link is a cross-forest trust [MS-
KILE] between the root domains of two forests, both of 
which are running in a forest functional level of 
DS_BEHAVIOR_WIN2003 or greater. 

Only evaluated on Windows Server 2003 and later. 

Can only be set if forest and trusted forest are running in 
a forest functional level of DS_BEHAVIOR_WIN2003 or 
greater. 

TACO 

(TRUST_ATTRIBUTE_CROSS_ORGANIZATION) 

0x00000010 

If this bit is set, then the trust is to a domain or forest 
that is not part of the organization. The behavior 
controlled by this bit is explained in [MS-KILE] section 
3.3.5.7.5 and [MS-APDS] section 3.1.5. 

Only evaluated on Windows Server 2003 and later. 

Can only be set if forest and trusted forest are running in 
a forest functional level of DS_BEHAVIOR_WIN2003 or 
greater. 

TAWF If this bit is set, then the trusted domain is within the 



 

533 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Name and value Description and restrictions/special notes 

(TRUST_ATTRIBUTE_WITHIN_FOREST) 

0x00000020 

same forest. 

Only evaluated on Windows Server 2003 and later. 

TATE 

(TRUST_ATTRIBUTE_TREAT_AS_EXTERNAL) 

0x00000040 

If this bit is set, then a cross-forest trust to a domain is to 
be treated as an external trust for the purposes of SID 
Filtering. Cross-forest trusts are more stringently filtered 
than external trusts. This attribute relaxes those cross-
forest trusts to be equivalent to external trusts. For more 
information on how each trust type is filtered, see [MS-
PAC] section 4.1.2.2. 

Only evaluated on Windows Server 2003 and later. 

Only evaluated if SID Filtering is used. 

Only evaluated on cross-forest trusts having 
TRUST_ATTRIBUTE_FOREST_TRANSITIVE. 

Can only be set if forest and trusted forest are running in 
a forest functional level of DS_BEHAVIOR_WIN2003 or 
greater. 

TARC 

(TRUST_ATTRIBUTE_USES_RC4_ENCRYPTION) 

0x00000080 

This bit is set on trusts with the trustType set to 
TRUST_TYPE_MIT, which are capable of using RC4 keys. 
Historically, MIT Kerberos distributions supported only 
DES and 3DES keys ([RFC4120], [RFC3961]). MIT 1.4.1 
adopted the RC4HMAC encryption type common to 
Windows 2000 [MS-KILE], so trusted domains deploying 
later versions of the MIT distribution required this bit. For 
more information, see "Keys and Trusts", section 
6.1.6.9.1. 

Only evaluated on TRUST_TYPE_MIT 

TANC 

(TRUST_ATTRIBUTE_CROSS_ORGANIZATION_NO_
TGT_DELEGATION) 

0x00000200 

If this bit is set, tickets granted under this trust MUST 
NOT be trusted for delegation. The behavior controlled by 
this bit is as specified in [MS-KILE] section 3.3.5.7.5. 

Initially supported on Windows Server 2008 and later. 
After [MSKB-4490425] is installed, this bit is superseded 
by the 
TRUST_ATTRIBUTE_CROSS_ORGANIZATION_ENABLE_TG
T_DELEGATION bit. 

TAEC 

(TRUST_ATTRIBUTE_CROSS_ORGANIZATION_ENA
BLE_TGT_DELEGATION) 

0x00000800 

If this bit is set, tickets granted under this trust MUST be 
trusted for delegation. The behavior controlled by this bit 
is as specified in [MS-KILE] section 3.3.5.7.5. 

Only supported on Windows Server 2008 and later after 
[MSKB-4490425] updates are installed. 

TAPT 

(TRUST_ATTRIBUTE_PIM_TRUST) 

0x00000400 

If this bit and the TATE bit are set, then a cross-forest 
trust to a domain is to be treated as Privileged Identity 
Management trust for the purposes of SID Filtering. For 
more information on how each trust type is filtered, see 
[MS-PAC] section 4.1.2.2. 

Evaluated on Windows Server 2012 R2 only with [MSKB-
3155495] installed. Also evaluated on Windows Server 
2016 and later. 

Evaluated only if SID Filtering is used. 

Evaluated only on cross-forest trusts having 
TRUST_ATTRIBUTE_FOREST_TRANSITIVE. 

R 

0x00000100 

0x00000800 - 0x00200000 

Reserved 



 

534 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Name and value Description and restrictions/special notes 

0x01000000 - 0x80000000 

O 

0x00400000 - 0x00800000 

Previously used trust bits, and are obsolete. 

 

6.1.6.7.10 trustAuthIncoming 

This is a String(Octet) attribute. This value is used to compute keys used in inbound trust validation. 
For more information on the contents of this attribute, see "Keys and Trusts", section 6.1.6.9.1. 

This is a secret attribute ([MS-DRSR] section 4.1.10.3.11, IsSecretAttribute), and is not readable 
outside of the context of the LSA on a DC. 

6.1.6.7.11 trustAuthOutgoing 

This is a String(Octet) attribute. This value is used to compute keys used in outbound trust validation. 
For more information on the contents of this attribute, see "Keys and Trusts", section 6.1.6.9.1. 

This is a secret attribute ([MS-DRSR] section 4.1.10.3.11, IsSecretAttribute), and is not readable 
outside of the context of the LSA on a DC. 

6.1.6.7.12 trustDirection 

The trustDirection attribute dictates in which direction the trust flows. It is stored as an integer value. 

There are four valid values, corresponding to the TrustDirection field in the 
LSAPR_TRUSTED_DOMAIN_INFORMATION_EX structure ([MS-LSAD] section 2.2.7.9). The flags in the 
following diagram are presented in big-endian byte order. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X T 
D 
O 

T 
D 
I 

TRUST_DIRECTION_DISABLED, 0x00000000: Absence of any flags. The trust relationship exists 
but has been disabled. 

TDI (TRUST_DIRECTION_INBOUND, 0x00000001): The trusted domain trusts the primary 
domain to perform operations such as name lookups and authentication. If this flag is set, then 

the trustAuthIncoming attribute is present on this object. 

TDO (TRUST_DIRECTION_OUTBOUND, 0x00000002): The primary domain trusts the trusted 
domain to perform operations such as name lookups and authentication. If this flag is set, then 

the trustAuthOutgoing attribute is present on this object. 

TRUST_DIRECTION_BIDIRECTIONAL, 0x00000003: OR'ing of the preceding flags and behaviors 
representing that both domains trust one another for operations such as name lookups and 
authentication. 

6.1.6.7.13 trustPartner 

This String(Unicode) attribute contains the FQDN (2) of the trusted domain. This is a mandatory 
attribute. 



 

535 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

As with the securityIdentifier attribute, this attribute is unique on all TDOs within the domain. The 
system rejects attempts to create a duplicate value. 

6.1.6.7.14 trustPosixOffset 

This integer value contains the Portable Operating System Interface (POSIX) offset for the trusted 
domain. This value is added to the RID of a SID to give the POSIX user ID or group ID (as specified in 
[IEEE1003.1] sections 3.188 and 3.425) for that user in the trusted domain. The calculation of this 
value is documented in section 6.1.6.9.4. 

6.1.6.7.15 trustType 

The trustType attribute is an integer value that dictates what type of trust has been designated for the 

trusted domain. Following are the valid values, corresponding to the TrustType field in 
LSAPR_TRUSTED_DOMAIN_INFORMATION_EX, as specified in [MS-LSAD] section 2.2.7.9. The 
trustType contains one of the following values: 

TTD (TRUST_TYPE_DOWNLEVEL, 0x00000001): The trusted domain is a Windows domain not 
running Active Directory. 

TTU (TRUST_TYPE_UPLEVEL, 0x00000002): The trusted domain is a Windows domain running 

Active Directory. 

TTM (TRUST_TYPE_MIT, 0x00000003): The trusted domain is running a non-Windows, RFC4120-
compliant Kerberos distribution. This type of trust is distinguished in that (1) a SID is not required 
for the TDO, and (2) the default key types include the DES-CBC and DES-CRC encryption types 
(see [RFC4120] section 8.1). 

TTDCE (TRUST_TYPE_DCE, 0x00000004): Historical reference; this value is not used in Windows. 

TTAAD (TRUST_TYPE_AAD, 0x00000005): The trusted domain is in Azure Active Directory. 

Note: This trustType is supported by the operating systems specified in [MSKB-5025305], [MSKB-
5025298], [MSKB-5025297], [MSKB-5026362], and [MSKB-5026370], each with its related MSKB 

article download installed. 

6.1.6.8 Essential Attributes of Interdomain Trust Accounts 

TDOs contain all the information regarding trusts. Trusts that have the trustDirection attribute equal 
to TRUST_DIRECTION_INBOUND or TRUST_DIRECTION_BIDIRECTIONAL, however, also have 
associated user accounts called interdomain trust accounts within the default container for users 
defined in section 6.1.1.4.6. The TDO O1 and the interdomain trust account object O2 for the same 
trust are associated through the partner domain's NetBIOS name, used to form the following values: 
the flatName attribute of O1 and the sAMAccountName attribute of O2. Given the partner domain's 

NetBIOS <NetBIOS Name>, O1!flatName=<NetBIOS Name> and O2!samAccountName=<NetBIOS 
Name>$. 

The following table lists the attributes that MUST be set in an interdomain trust account. 

Attribute name Reference 

cn (RDN) [MS-ADA1] 

objectClass [MS-ADA3] 

sAMAccountName [MS-ADA3] 

sAMAccountType [MS-ADA3] 



 

536 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Attribute name Reference 

userAccountControl [MS-ADA3] 

 

6.1.6.8.1 cn (RDN) 

The RDN of an interdomain trust account, the cn attribute, contains the NetBIOS name of the trusted 
domain account appended with the character '$', in String(Unicode) syntax. 

6.1.6.8.2 objectClass 

An attribute that represents the classes that the target object is derived from. For a user account, this 
value contains the sequence [top, person, organizationalPerson, user]. 

6.1.6.8.3 sAMAccountName 

The sAMAccountName attribute contains the NetBIOS name of the trusted domain account appended 

with the character '$', in String(Unicode) syntax. 

6.1.6.8.4 sAMAccountType 

In a domain trust account, the sAMAccountType attribute MUST have the value 
SAM_TRUST_ACCOUNT (0x30000002), in the Enumeration syntax. 

6.1.6.8.5 userAccountControl 

In a domain trust account, the userAccountControl attribute MUST have the flag 
ADS_UF_INTERDOMAIN_TRUST_ACCOUNT (0x00000800) set. 

6.1.6.9 Details 

6.1.6.9.1 trustAuthInfo Attributes 

Domain peers share a password in order to validate protocol messages flowing between the trusted 
domains. The password is only good in one direction of the trust. Each direction is stored in its own 
attribute: the trustAuthIncoming and trustAuthOutgoing attributes. These are both secret attributes 
([MS-DRSR] section 4.1.10.3.11, IsSecretAttribute), and are not readable outside of the context of the 
LSA on a DC. 

Both trustAuthIncoming and trustAuthOutgoing are stored as a String(Octet). The storage of this 
information in a TDO is described in the following diagram. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Count of auth infos 

Byte offset to AuthenticationInformation 

Byte offset to PreviousAuthenticationInformation 

AuthenticationInformation (variable) 



 

537 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

... 

PreviousAuthenticationInformation (variable) 

... 

Count of auth infos (4 bytes): A ULONG count of the pairs of LSAPR_AUTH_INFORMATION 
structures. Each current Authentication Information structure is accompanied by a previous 
Authentication Information structure (even if it is marked as invalid), and the count of the pairs of 

elements is stored in this field. 

Byte offset to AuthenticationInformation (4 bytes): The BYTE offset from the base of the 
structure to the array of LSAPR_AUTH_INFORMATION structures representing the current 
authentication information. 

Byte offset to PreviousAuthenticationInformation (4 bytes): The BYTE offset from the base of 

the structure to the array of LSAPR_AUTH_INFORMATION structures representing the previous 

authentication information. 

AuthenticationInformation (variable): Array of LSAPR_AUTH_INFORMATION [1...Count]. 

Following the byte offset to PreviousAuthenticationInformation is an array of 
LSAPR_AUTH_INFORMATION structures representing the current authentication information. 

PreviousAuthenticationInformation (variable): Array of LSAPR_AUTH_INFORMATION [1...Count]. 

Following the current authentication information is an array of LSAPR_AUTH_INFORMATION 
structures representing the previous authentication information. If authentication information has 

not been previously stored, then the previous Authentication Information structure is an exact 
copy of the current Authentication Information structure. 

6.1.6.9.1.1 LSAPR_AUTH_INFORMATION 

The format of the LSAPR_AUTH_INFORMATION structure is as follows. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

LastUpdateTime 

... 

AuthType 

AuthInfoLength 

AuthInfo (variable) 

... 

Padding (variable) 

... 



 

538 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LastUpdateTime (8 bytes): This LARGE_INTEGER value represents the last time that the 
authentication information was set, in FILETIME format, as specified in [MS-DTYP] section 2.3. 

AuthType (4 bytes): This ULONG value dictates the type of AuthInfo that is being stored. There are 
four values that are recognized by Windows. 

Possible Values Meaning 

TRUST_AUTH_TYPE_NONE 

0 

AuthInfo byte field is invalid/not relevant. 

TRUST_AUTH_TYPE_NT4OWF 

1 

AuthInfo byte field contains an RC4 Key [RFC4757]. 

TRUST_AUTH_TYPE_CLEAR 

2 

AuthInfo byte field contains a cleartext password, encoded as a 
Unicode string. 

TRUST_AUTH_TYPE_VERSION 

3 

AuthInfo byte field contains a version number, used by 
Netlogon for versioning interdomain trust secrets. 

AuthInfoLength (4 bytes): A ULONG count of bytes in AuthInfo. 

AuthInfo (variable): A BYTE field containing authentication data. Its size is [1...AuthInfoLength]. 

Padding (variable): Some number of bytes used to align the end of the LSAPR_AUTH_INFORMATION 
structure to a ULONG boundary. This padding is not included in the AuthInfoLength and consists 
of zeros. 

6.1.6.9.1.2 Kerberos Usages of trustAuthInfo Attributes 

The Microsoft implementation of Kerberos ([RFC4120], [MS-KILE]) uses TDOs to retrieve cross-
domain passwords when building cross-realm ticket-granting ticket (TGT). The KDC supports the 
following AuthTypes: 

1. TRUST_AUTH_TYPE_CLEAR 

This flag indicates that the information stored in the attribute is a Unicode plaintext password. If 
this AuthType is present, Kerberos can then use this password to derive additional key types 

needed to encrypt and decrypt cross-realm TGTs: 

▪ DES-CBC ([RFC4120] section 8.1) 

▪ DES-CRC [RFC4120] 

▪ RC4HMAC [RFC4757] 

Other derivations of the plaintext password are possible using the string-to-key functionality 
defined in [RFC3961]. It is important to note that if the trustType is set to TRUST_TYPE_MIT, then 
RC4HMAC keys will not be derived for the trust unless the corresponding TDO's trustAttribute 

includes the TRUST_ATTRIBUTE_USES_RC4_ENCRYPTION bit flag. 

In Windows Server 2008 and later, if KERB_ENCTYPE_RC4_HMAC_MD5 (4) is set in the msDs-
supportedEncryptionTypes attribute, then the MIT realm supports RC4. 

2. TRUST_AUTH_TYPE_NT4OWF 

This flag indicates that the key is stored as a raw RC4HMAC key [RFC4757]. Because the key was 
precomputed with this AuthType, it is not possible to derive alternate key types for the TDO. 



 

539 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Kerberos' usage of the TDO keys is somewhat counterintuitive. Consider the following scenario 
involving two trusting Active Directory domains, where a user in a primary domain wishes to 

authenticate to a service in the trusted domain using Kerberos. The primary domain issues a referral 
TGT to the trusted domain containing the service. 

 

Figure 5: Kerberos protocol usage of keys 

There is a one-way trust in place. The referral TGT issued by the primary domain is encrypted based 
on the key in trustAuthIncoming, not trustAuthOutgoing. This is non-intuitive but fits the definition of 
an inbound trust. This direction of trust allows Kerberos to build a TGT for the trusted domain in the 

primary domain, fulfilling the definition of an inbound trust. 

6.1.6.9.2 Netlogon Usages of Trust Objects 

Netlogon uses information stored in the TDO and the interdomain trust account to establish the secure 
channel. The way in which the secure channel is established is described in [MS-NRPC] sections 3.1.1 
and 3.1.4.3. 

6.1.6.9.3 msDS-TrustForestTrustInfo Attribute 

Information about trust relationships with other forests is stored in objects of class trustedDomain in 
the domain NC replica of the forest root domain. Specifically, the msDS-TrustForestTrustInfo attribute 
on such objects contains information about the trusted forest or realm. The structure of the 
information contained in this attribute is represented in the following manner. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Version 

RecordCount 

Records (variable) 

... 

Version (4 bytes): Version of the data structure. The only supported version of the data structure is 

1. 

RecordCount (4 bytes): Number of records present in the data structure. 

Records (variable): Variable-length records each containing a specific type of data about the forest 
trust relationship. 



 

540 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

IMPORTANT NOTE: Records are not aligned to 32-bit boundaries. Each record starts at the next 
byte after the previous record ends. 

Each record is represented as described in section 6.1.6.9.3.1. 

Note  All fields have little-endian byte ordering. 

6.1.6.9.3.1 Record 

Each Record is represented in the following manner. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

RecordLen 

Flags 

Timestamp 

... 

RecordType ForestTrustData (variable) 

... 

... 

RecordLen (4 bytes): Length, in bytes, of the entire record, not including RecordLen. 

Flags (4 bytes): Individual bit flags that control how the forest trust information in this record can be 

used. 

If RecordType = 0 or 1, the Flags field, represented here in big-endian byte order, can have one 
or more of the following bits. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X T 
D 
C 

T 
D 
A 

T 
D 
N 

X: Unused. Must be zero and ignored. 

TDN (LSA_TLN_DISABLED_NEW, 0x00000001): Entry is not yet enabled. 

TDA (LSA_TLN_DISABLED_ADMIN, 0x00000002): Entry is disabled by administrator. 

TDC (LSA_TLN_DISABLED_CONFLICT, 0x00000004): Entry is disabled due to a conflict with 
another trusted domain. 

If RecordType = 2, the Flags field, represented here in big-endian byte order, can have one or 
more of the following bits. 



 

541 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X N 
D 
C 

N 
D 
A 

S 
D 
C 

S 
D 
A 

SDA (LSA_SID_DISABLED_ADMIN, 0x00000001): Entry is disabled for SID, NetBIOS, and 
DNS name–based matches by the administrator. 

SDC (LSA_SID_DISABLED_CONFLICT, 0x00000002): Entry is disabled for SID, NetBIOS, and 
DNS name–based matches due to a SID or DNS name–based conflict with another trusted domain. 

NDA (LSA_NB_DISABLED_ADMIN, 0x00000004): Entry is disabled for NetBIOS name–based 

matches by the administrator. 

NDC (LSA_NB_DISABLED_CONFLICT, 0x00000008): Entry is disabled for NetBIOS name–

based matches due to a NetBIOS domain name conflict with another trusted domain. 

For RecordType = 2, NETBIOS_DISABLED_MASK is defined as a mask on the lower 4 bits of the 
Flags field.  

For all record types, LSA_FTRECORD_DISABLED_REASONS is defined as a mask on the lower 16 

bits of the Flags field. Unused bits covered by the mask are reserved for future use. 

Timestamp (8 bytes): 64-bit timestamp value indicating when this entry was created, in system 
time (see the FILETIME structure in [MS-DTYP] section 2.3.3). 

RecordType (1 byte): 8-bit value specifying the type of record contained in this specific entry. The 
structure of the content in the next field depends on this value. The current version of the protocol 
defines the behavior of the next field ForestTrustData if the value of RecordType is one of the 
five values below. 

Name Value 

ForestTrustTopLevelName 0 

ForestTrustTopLevelNameEx 1 

ForestTrustDomainInfo 2 

ForestTrustBinaryInfo 3 

ForestTrustScannerInfo 4 

Note: The ForestTrustBinaryInfo and ForestTrustScannerInfo record types are also 
supported in Windows 11 v22H2 and later. 

ForestTrustData (variable): Variable-length type-specific record, depending on the RecordType 

value, containing a specific type of data about the forest trust relationship. 

IMPORTANT NOTE: The type-specific ForestTrustData record is not necessarily aligned to a 32-bit 

boundary. Each record starts at the byte following the RecordType field. 

There are three different type-specific records. Depending on the value of the RecordType field, the 
structure of the type-specific record differs as follows: 

▪ If RecordType = ForestTrustTopLevelName or RecordType = ForestTrustTopLevelNameEx, then 
the type-specific record is represented in the following manner. 



 

542 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

NameLen 

Name (variable) 

... 

NameLen: Length, in bytes, of the following Name field. 

Name (variable): The top level name (TLN) of the trusted forest, in UTF-8 format. 

▪ If RecordType = ForestTrustDomainInfo, then the type-specific record is represented in the 

following manner. Note that the record contains the following structures one after another. It is 
important to note here that none of the data shown is necessarily aligned to 32-bit boundaries. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

SidLen 

Sid (variable) 

... 

DnsNameLen 

DnsName (variable) 

... 

NetbiosNameLen 

NetbiosName (variable) 

... 

SidLen: Length, in bytes, of the following Sid field. 

Sid: The SID of a domain in the trusted forest, specified as a SID structure, which is defined in 
[MS-DTYP] section 2.4.2. 

DnsNameLen: Length, in bytes, of the following DnsName field. 

DnsName: The DNS name of a domain in the trusted forest, in UTF-8 format. 

NetbiosNameLen: Length, in bytes, of the following NetbiosName field. 

NetbiosName: The NetBIOS name of a domain in the trusted forest, in UTF-8 format. 

▪ If RecordType = ForestTrustScannerInfo, then the type-specific record is represented in the 
following manner. Note that the record contains the following structures one after another. It is 
important to note here that none of the data shown is necessarily aligned to 32-bit boundaries. 



 

543 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

BinaryDataLen 

SubRecordType 

SidLen 

Sid (variable) 

... 

DnsNameLen 

DnsName (variable) 

... 

NetbiosNameLen 

NetbiosName (variable) 

... 

BinaryDataLen: Length, in bytes, of all remaining fields. 

SubRecordType: MUST be ForestTrustScannerInfo. 

SidLen: Length, in bytes, of the following Sid field. It is valid for this field to be zero which 

means that the Sid field is interpreted as empty. 

Sid: The SID of a domain in the trusted forest, specified as a SID structure, which is defined in 
[MS-DTYP] section 2.4.2. 

DnsNameLen: Length, in bytes, of the following DnsName field. 

DnsName: The DNS name of a domain in the trusted forest, in UTF-8 format. 

NetbiosNameLen: Length, in bytes, of the following NetbiosName field. 

NetbiosName: The NetBIOS name of a domain in the trusted forest, in UTF-8 format. 

▪ If RecordType is ForestTrustBinaryInfo or is not one of the other preceding values, the current 
version of the protocol does not define the behavior for the record data. The type-specific record is 

represented in the following manner. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

BinaryDataLen 

SubRecordType 



 

544 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

BinaryData (variable) 

... 

BinaryDataLen: Length, in bytes, of the following BinaryData field. 

SubRecordType: An 8-bit value specifying the type of record contained in this specific entry. 

BinaryData: The record data. If the BinarydataLen field has a value other than 0, this field 

MUST NOT be NULL. 

6.1.6.9.3.2 (Updated Section) Building Well-Formed msDS-TrustForestTrustInfo 

Messages 

The msDS-TrustForestTrustInfo attribute contains a String(Octet) with the data structures specified in 
the preceding sections. This attribute contains information about the namespaces that are served by a 

given trusted forest. For example, if forest a.com contains the domains a.com, b.a.com, and c.a.com, 
then the msDS-TrustForestTrustInfo for a.com would contain the FQDN (2) and NetBIOS names for 
each domain, as well as the SID space served by each domain. This section details the rules that well-
formed msDS-TrustForestTrustInfo messages mustMUST follow. 

The msDS-TrustForestTrustInfo attribute is written on the PDC for the trusting and trusted domains. 
Both the trusted and trusting forest have forest functional level DS_BEHAVIOR_WIN2003 or greater. 

Some concepts are necessary to understand the algorithm that is used when validating this attribute.  

Namespaces 

Namespaces are meant to represent those NetBIOS, FQDN (2), or SID values that a trusted forest or 
domain claims.  

Top Level Names (TLNs) 

TLNs are an important concept when detecting and resolving conflicts in namespaces between 
different TDOs, and for determining which forest owns a given namespace. A TLN really corresponds 

to a forest namespace, and in order to be enabled, the TLN mustMUST be unique among all TDOs. For 
example, the TLN for the forest example.com is example.com. Note that it is possible that the forest 
example.com could have another domain corresponding to an entirely different TLN (for example, 
mailservers.com), in which case two TLNs would need to be registered for the example.com forest. 
TLNs for a TDO are stored in records identified by the ForestTrustTopLevelName Record Type.  

TLNs that mustMUST be excluded from a namespace are identified by the ForestTrustTopLevelNameEx 
RecordType. Exclusion becomes necessary if the namespaces of two forests collide (for example, the 

forests corp.mycompany.com and the forest hr.corp.mycompany.com). These exclusions are set 
administratively to ensure proper functioning of the domain. 

Superior/Subordinate Namespaces 

When evaluating all forest trusts, TLNs are expressed as FQDNs (2). Parsing the FQDN (2) allows the 
concept of superior and subordinate namespaces. For example, for the namespace 
sample.example.com, the superior namespace (and the TLN) is example.com. Similarly, the 

sample.example.com namespace is subordinate to the example.com namespace. This allows the 
routing mechanism to understand that the name sample.example.com is associated with the 
example.com namespace expressed in the TLN, as it is a subordinate. 

Enabled Records vs. Disabled Records 



 

545 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

During validation of the Records stored in the msDS-ForestTrustForestInfo, it is possible to have TLN 
or namespace conflicts. In these circumstances, the conflicting record is disabled. Namespace conflicts 

are determined using the Record Flags specified in the msDS-ForestTrustInfo data format definitions. 

1. ForestTrustTopLevelName RecordType (0) 

If the TDN / TDA / TDC Flags are present, then the name that is present in the TLN and its 
subordinate namespaces (as well as all domains whose FQDNs (2) are equal to or subordinate to 
the TLN) is not used for routing names or SIDs. 

2. ForestTrustTopLevelNameEx RecordType (1) 

If the TDN / TDA / TDC Flags are present, then the name that is present in the exclusion TLN is 
not used for exclusion purposes, and conflicts will be unresolved. All domains whose FQDNs (2) 
are equal to or subordinate to the exclusion TLN are not used for routing names or SIDs. 

3. ForestTrustDomainInfo RecordType (2) 

If the NDC or NDA Flags are set, then the NetBIOS name is excluded from routing for the NetBIOS 
name. 

If the SDA or SDC Flags are set, then the entire domain and all domains whose FQDN (2) names 
are subordinate to the FQDN (2) name of that domain are excluded from name routing by SID, 
FQDN (2), or NetBIOS names. The entire subtree of the forest that is rooted at the affected 

domain is effectively not computed in the trust domain name mappings. 

msDS-TrustForestTrustInfo Validation 

When the TDO information for a domain is added or changed, or if the DC possessing the PDC FSMO 
role in the root domain of the forest is freshly started, every TDO with msDS-ForestTrustInfo 
attributes is validated against all other TDOs. The results of that validation are then rewritten to the 
DS and replicated to the other DCs in the domain. DCs that do not own the PDC FSMO role treat the 
attribute as READONLY and internally consistent. 

Validation of the matrix of trusted domains and trusted forest information stored in msDS-
ForestTrustInfo includes a mechanism to prevent name collisions. Manipulations of this attribute 
ensure that each namespace is only assigned to a single TDO. If any of the following rules are 
violated, the colliding RecordFlag is marked as disabled. 

The rules for determining whether namespaces collide for ForestTrustDomainInfo Records are as 
follows: 

1. Each SID corresponding to a domain in a trusted forest is unique among all TDOs and among all of 

the SIDs listed within the ForestTrustData Records. If not, the Record MUST have the SDC bit in 
the Record Flags. 

2. Each SID for each domain in a trusted forest does not equal any SIDs within the domains of the 
local forest. If not, the Record MUST have the SDC bit in the Record Flags. 

3. Each FQDN (2) corresponding to a domain in a trusted forest is unique among all TDOs and among 

all of the FQDNs (2) and TLNs listed within the ForestTrustData Records. If not, the Record MUST 

have the SDC bit in the Record Flags. 

4. Each FQDN (2) for each domain in the trusted forest does not correspond to any FQDNs (2) within 
the domains from the local forest. If not, the Record MUST have the SDC bit in the Record Flags. 

5. Each NetBIOS domain name corresponding to a domain in a trusted forest is unique among all 
TDOs and among all of the NetBIOS domains listed within the Forest Trust Data records. If not, 
the Record MUST have the NDC bit in the Record Flags. For conflict resolution, the TDO with the 
alphabetically longest name is disabled. 



 

546 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6. Each NetBIOS name for each domain in the trusted forest does not equal any NetBIOS domain 
name within the domains of the local forest. If not, the Record MUST have the NDC bit in the 

Record Flags. Local forest NetBIOS names always take precedence over those of trusted forests. 

The rules for determining whether namespaces collide for ForestTrustTopLevelName Records are as 

follows: 

1. Each TLN corresponding to a domain in a trusted forest is unique among all TDOs, and among all 
of the FQDNs (2) and TLNs listed within the Forest Trust Data records. If not, the conflicting 
Record has the TDC bit in the Record Flags. For the sake of consistency, since the two TLNs are 
equal, the first TLN Record that is read is authoritative, and subsequent conflicting Records are 
disabled.  

2. Each TLN for each domain in the trusted forest does not correspond to any FQDNs (2) within the 

domains from the local forest. If not, the Record has the TDC bit in the Record Flags. 

ForestTrustTopLevelNameEx Records, by definition, cannot conflict. 

Additionally, additions to msDS-TrustForestTrustInfo pass namespace consistency checks before the 
attribute is set. Any failures in the consistency checks cause the attempt to modify the msDS-
TrustForestTrustInfo to fail. The following rules dictate the requirements that each trusted forest 
mustMUST match: 

2. At least one ForestTrustTopLevelName TLN Record is specified for each msDS-
TrustForestTrustInfo. It is possible for a forest to have more than one TLN if it contains additional 
TLNs. 

3. All domains listed in the ForestTrustDomainInfo for a TDO are subordinate to the TLNs for that 
TDO. 

4. All domains listed in the ForestTrustDomainInfo are not subordinate or superior to other TLNs 
unless an exclusion record for that TLN or domain is registered. 

If all of the preceding tests pass, then the entry is written in binary format to the msDS-

ForestTrustInfo, replicated, and honored by all DCs in the forest. 

6.1.6.9.4 Computation of trustPosixOffset 

When a new TDO is created, a POSIX offset is computed and assigned to the new TDO's 
trustPosixOffset attribute. This is done by retrieving the values of the trustPosixOffset attribute of all 
of the existing outgoing Windows trusts (both TRUST_TYPE_UPLEVEL and TRUST_TYPE_DOWNLEVEL). 

These values are then sorted. Finally, the range of numbers is searched starting from 1, looking for 
the next unused valid POSIX offset. The selection process excludes the following values, which are 
reserved for well-known identities. 

 Value   Description  

0x0800 Reserved for built-in domain 

0x4000 Reserved for account domain 

0xC000 Reserved for primary domain 

The selection process only happens on the DC that possesses the PDC FSMO role. If the trust creation 
happens on another DC the trustPosixOffset value is set to 0 and is computed using the logic above 
when the TDO replicates to the PDC FSMO role owner. This keeps TDOs from having matching POSIX 
offsets, which could result in collisions of UIDS and GIDS. 

6.1.6.9.5 Mapping Logon SIDs to POSIX Identifiers 



 

547 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Logon SIDs are assigned by the Windows logon process for each logon session and have the form S-1-
5-5-X-Y, where X and Y are treated as a single LARGE_INTEGER that is incremented for each logon 

session. POSIX offsets, as described in section 6.1.6.7.14, are not used during the logon SID to POSIX 
identifier mapping process. These SIDs are mapped to the constant POSIX ID 0xFFF. 

6.1.6.9.6 Timers 

6.1.6.9.6.1 Trust Secret Cycling 

The keys used to validate trusts periodically expire (typically every 30 days). This is performed by the 
Netlogon service, which performs this operation when establishing the Secure Channel. Resetting the 
secure channel secret is discussed in [MS-NRPC] section 3.5.4.4.5. 

6.1.6.9.6.2 PDC Forest Trust Scanning 

The PDC emulator FSMO role DC will periodically query and store information about trusting forests. 
See section 3.1.1.6.4. 

6.1.6.9.7 Initialization 

Despite being replicated normally between peer DCs in a domain, the process of creating or 

manipulating TDOs is specifically restricted to the LSA Policy APIs, as detailed in [MS-LSAD] section 
3.1.1.5. Unlike other objects in the DS, TDOs  cannot be created or modified by client machines over 
the LDAPv3 transport. TDOs can be deleted by client machines over the LDAPv3 transport. 

The following trust manipulation remote procedure calls specifically target TDOs and are responsible 
for creating the special properties detailed in section 6.1.6.7. All are documented in [MS-LSAD] 
section 3.1.4. 

▪ LsarCreateTrustedDomainEx() 

▪ LsarDeleteTrustedDomain() 

▪ LsarSetTrustedDomainInfoByName() 

▪ LsarSetTrustedDomainInformation() 

The preceding APIs enforce the following restrictions. 

Each TDO corresponds to exactly one trusted domain. The FQDN (2), SID, and NetBIOS name set on 
the TDO all reference the same domain. 

The server verifies that the trust is pointing either to a domain within the forest or a domain outside 
the forest. The check is performed by verifying whether any other domain within the forest has the 
SID, DNS name, or NetBIOS name matching the information being set. One of two options is legal: 

1. SID, DNS name, and NetBIOS name all match the same domain within the forest. 

2. No SID, DNS name, or NetBIOS name matches any domain within the forest. 

Any other alternative (some information pointing inside the forest and some outside, or information 
pointing at different domains within the forest) is illegal and causes the server to fail the request. 

An attempt by the requester to set the TRUST_ATTRIBUTE_FOREST_TRANSITIVE bit in the trust 
attributes of the trusted domain object can only succeed if the domain is in a forest functional level of 
DS_BEHAVIOR_WIN2003 or greater and the server is a domain controller in the root domain of the 
forest. Failing this, the server rejects the request and does not create the TDO. 

An attempt by the requester to set the TRUST_ATTRIBUTE_CROSS_ORGANIZATION bit in the trust 
attributes of the trusted domain object can only succeed if the domain is in a forest functional level of 



 

548 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

DS_BEHAVIOR_WIN2003 or greater. Failing this, the server rejects the request and does not create 
the TDO. 

Neither TRUST_ATTRIBUTE_FOREST_TRANSITIVE nor TRUST_ATTRIBUTE_CROSS_ORGANIZATION 
bits are compatible with the TRUST_ATTRIBUTE_WITHIN_FOREST bit. The server rejects invalid 

combinations of trust attributes and does not create the TDO. 

Uplevel or downlevel trusts that have TRUST_DIRECTION_OUTBOUND as one of the direction bits 
cannot have a SID of NULL. Attempts to set this combination of parameters cause the server to fail 
the request. 

If the TRUST_ATTRIBUTE_FOREST_TRANSITIVE bit is cleared from a TDO's trustAttributes attribute, 
all of the forest trust information on that TDO is removed from the TDO's msDS-TrustForestTrustInfo 
attribute. 

6.1.6.10 Security Considerations for Implementers 

Mechanisms of trust depend on secure initialization. [MS-LSAD] describes the secure trust creation 
system that is used by Active Directory. In this system, all creation and manipulation of TDOs takes 

place over a secure session transport, where the client has been authenticated, and sensitive trust 
information is not sent in the clear. Keys used for trust secrets are sufficiently strong to disallow brute 
force attacks on the cryptographic material used in cross-domain protocols. 

6.1.7 (Updated Section) DynamicObject Requirements 

Dynamic objects are objects that are automatically deleted after a period of time. They are 
distinguished by the presence of the dynamicObject auxiliary class among their objectClass values. 
The intended time of deletion is specified by the msDS-Entry-Time-To-Die attribute. 

The following requirements apply to dynamic objects: 

▪ All of the dynamic object's descendants are dynamic objects. 

▪ A dynamic object MUST be garbage collected when all of the following conditions are trueTRUE: 

▪ The current time value is greater than or equal to its msDS-Entry-Time-To-Die attribute value. 

▪ It has no descendants. 

▪ If a dynamic object has descendent objects and the msDS-Entry-Time-To-Die of the dynamic 
object is earlier than msDS-Entry-Time-To-Die of its descendant, then the DC MUST update the 
msDS-Entry-Time-To-Die of the object to be greater than the maximum msDS-Entry-Time-To-Die 
of its descendants. This update MUST occur before the current time reaches its original msDS-
Entry-Time-To-Die value. 

▪ NC replicas do not contain objects with linked attribute values referencing deleted dynamic 
objects. In other words, when a dynamic object is deleted, any linked attribute values on other 
objects referencing it are removed. 

▪ If any NC replicas contain other objects with nonlinked attribute values referencing deleted 
dynamic objects, those attribute values on those objects are retained. In other words, when a 
dynamic object is deleted, any nonlinked attribute values on other objects referencing it are not 
removed. 

▪ The value of the entryTTL constructed attribute is specified in section 3.1.1.4.5.12. 



 

549 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.2 Knowledge Consistency Checker 

A server running Active Directory is part of a distributed system that performs replication. The 
Knowledge Consistency Checker (KCC) is a component that reduces the administrative burden of 

maintaining a functioning replication topology. Additional background is provided in section 3.1.1.1.13. 

6.2.1 References 

▪ DRS options bits: [MS-DRSR] section 5.41. 

▪ instanceType bits: [MS-DRSR] section 5.91. 

▪ repsFrom abstract attribute: [MS-DRSR] section 5.172. 

▪ repsTo abstract attribute: [MS-DRSR] section 5.173. 

▪ replUpToDateVector abstract attribute: [MS-DRSR] section 5.166. 

▪ kCCFailedConnections and kCCFailedLinks variables: [MS-DRSR] sections 5.111 and 5.112. 

▪ IDL_DRSGetNCChanges method: [MS-DRSR] section 4.1.10. 

▪ IDL_DRSReplicaAdd method: [MS-DRSR] section 4.1.19. 

▪ IDL_DRSReplicaDel method: [MS-DRSR] section 4.1.20. 

▪ IDL_DRSReplicaModify method: [MS-DRSR] section 4.1.22. 

▪ IDL_DRSExecuteKCC method: [MS-DRSR] section 4.1.6. 

▪ DWORD, GUID types: [MS-DTYP] sections 2.2 and 2.3.4. 

▪ AmIRODC method: [MS-DRSR] section 5.7. 

6.2.2 (Updated Section) Overview 

The KCC automates management of the NC replica graph for each NC in the forest. In doing so, it 
maintains the following requirements: 

▪ There exists a path from each writable replica to every other NC replica (writable, read-only full, 
or read-only partial) of the same NC. 

▪ No path from a writable replica to another writable replica passes through a read-only replica. 

▪ For each domain NC, the path from a writable replica to another writable replica utilizes only the 
RPC transport (never SMTP [MS-SRPL]). 

▪ For each domain NC, the path from a writable replica to a read-only full replica utilizes only the 
RPC transport (never SMTP [MS-SRPL]). 

▪ Replication latency is short between NC replicas on DCs in the same site, at the expense of 
additional replication traffic within the site. 

▪ Replication traffic between sites is low, at the expense of additional replication latency between 
sites. 

▪ A state in which one or more DCs are offline or unreachable (temporarily or indefinitely) does not 
cause the replication latency across the remaining DCs to grow without bound. 

▪ Edges between DCs in different sites constitute a least cost spanning tree for an administrator-
defined cost metric. 



 

550 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The KCC performs this work in a sequence of tasks called a "run". These runs execute periodically and 
on receipt of an IDL_DRSExecuteKCC request. The first periodic run of the Windows KCC begins 5 

minutes after system startup. Subsequent runs execute such that the interval between the end of one 
run and the beginning of the next run is 15 minutes. 

These tasks utilize the following inputs: 

▪ Config NC objects: crossRef, interSiteTransport, nTDSDSA, nTDSConnection, site, 
nTDSSiteSettings, siteLink, siteLinkBridge 

▪ Abstract attributes of NC replicas: repsFrom, repsTo 

▪ Variables of DCs: kCCFailedConnections, kCCFailedLinks 

▪ Current date/time 

And produce or update the following: 

▪ Config NC objects: nTDSConnection 

▪ Abstract attributes of NC replicas: repsFrom, repsTo 

▪ Variables of DCs: kCCFailedConnections, kCCFailedLinks 

The KCC individual tasks are detailed in the remainder of this section, and are executed in the 
sequence in which they appear in this document. In summary, these tasks are: 

▪ Refresh kCCFailedLinks and kCCFailedConnections. 

▪ Create intra-site connections. 

▪ Create inter-site connections. 

▪ Remove unnecessary connections. 

▪ Translate connections. 

▪ Remove unnecessary kCCFailedLinks and kCCFailedConnections. 

To simplify the task descriptions, the following concepts are used: 

▪ An NC replica that "is present" on a DC. Given NC replica r of NC n and a DC with nTDSDSA object 

o, r "is present" on the DC if both of the following conditions is trueTRUE: 

▪ o!hasMasterNCs contains n or o!msDS-hasFullReplicaNCs contains n or o!hasPartialReplicaNCs 
contains n. 

▪ One of the following two conditions is trueTRUE: 

▪ o!msDS-HasInstantiatedNCs contains no value v where the dsname portion of v = n. (In 
this case n is in the process of being instantiated.) 

▪ o!msDS-HasInstantiatedNCs contains a value v, where the dsname part of v = n, and the 

binary part of v (DWORD in big-endian byte order) is an integer such that the 
IT_NC_GOING bit is clear. (In this case n is instantiated, and is not in the process of being 
uninstantiated.) 

▪ An NC replica that "shouldSHOULD be present" on a DC. Given NC replica r of NC n and a DC with 
nTDSDSA object o, r "shouldSHOULD be present" on the DC if r is one of the following: 

▪ A writable replica of the config NC, the schema NC, or the DC's default NC on a writable DC. 



 

551 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ A full read-only replica of the config NC, the schema NC, or the DC's default NC on an RODC. 

▪ A writable replica of an application NC for which there exists a crossRef object cr such that 
cr!nCName = n and cr!msDS-NC-Replica-Locations contains a reference to o. 

▪ A full read-only replica of an application NC for which there exists a crossRef object cr such 

that cr!nCName = n and cr.ms-DS-NC-RO-Replica-Locations contains a reference to o. 

▪ If the DC is a GC server (that is, if bit NTDSDSA_OPT_IS_GC is set in o!options), a partial 
replica of a domain NC n such that n ≠ the DC's default NC, and there exists a crossRef object 
cr such that cr!nCName = n. 

▪ An nTDSConnection object "implies" a tuple in the repsFrom abstract attribute of an NC replica 
(and a corresponding edge in an NC replica graph). An nTDSConnection object cn implies a tuple 
in r!repsFrom for NC replica r of NC n on the DC with nTDSDSA object t, if each of the following is 

trueTRUE: 

▪ cn is a child of t. 

▪ cn!fromServer references an nTDSDSA object s. 

▪ An NC replica of n "is present" on s. 

▪ r "shouldSHOULD be present" on t. 

▪ The NC replica on s is a full replica or r is a partial replica. 

▪ n is not a domain NC, or r is a partial replica, or cn!transportType has no value, or 
cn!transportType has an RDN of CN=IP. 

6.2.2.1 Refresh kCCFailedLinks and kCCFailedConnections 

This task refreshes and reconciles the contents of the kCCFailedLinks and kCCFailedConnections 

variables. 

The KCC updates kCCFailedLinks by inspecting the repsFrom abstract attribute associated with each 
NC replica on the local DC. It first resets the FailureCount of each tuple in kCCFailedLinks to 0. Then, 
for each NC replica r, for each tuple rf in r!repsFrom, if rf.consecutiveFailures > 0: 

▪ If a tuple f exists in kCCFailedLinks such that f.UUIDDsa = rf.uuidDsa and f.FailureCount ≠ 0: 

▪ Set f.FailureCount to MAX(f.FailureCount, rf.consecutiveFailures) 

▪ Set f.TimeFirstFailure to MIN(f.TimeFirstFailure, rf.timeLastSuccess) 

▪ Set f.LastResult to rf.resultLastAttempt 

▪ If a tuple f exists in kCCFailedLinks such that f.UUIDDsa = rf.uuidDsa and f.FailureCount = 0: 

▪ Set f.FailureCount to rf.consecutiveFailures 

▪ Set f.TimeFirstFailure to rf.timeLastSuccess 

▪ Set f.LastResult to rf.resultLastAttempt 

▪ If no tuple f exists in kCCFailedLinks such that f.UUIDDsa = rf.uuidDsa, add tuple g to 

kCCFailedLinks such that: 

▪ g.UUIDDsa = rf.uuidDsa 

▪ g.FailureCount = rf.consecutiveFailures 



 

552 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ g.TimeFirstFailure = rf.timeLastSuccess 

▪ g.LastResult = rf.resultLastAttempt 

For each tuple k in kCCFailedConnections, the KCC attempts to connect to that DC by calling the 
IDL_DRSBind method. If the method call is successful, the KCC removes k from 

kCCFailedConnections. Otherwise, it increments k.FailureCount by 1. 

6.2.2.2 (Updated Section) Intrasite Connection Creation 

This task computes an NC replica graph for each NC replica that "shouldSHOULD be present" on the 

local DC. Then for each edge of the graph directed to an NC replica on the local DC, the KCC reconciles 
its portion of the NC replica graph by creating an nTDSConnection object to "imply" that edge if one 
does not already exist. 

If the site of the local DC has a site settings object o and the 
NTDSSETTINGS_OPT_IS_AUTO_TOPOLOGY_DISABLED bit is set in o!options, the KCC skips this task. 

For each NC x for which an NC replica "shouldSHOULD be present" on the local DC, the KCC constructs 
an NC replica graph as follows: 

▪ Let R be a sequence containing each writable replica f of x such that f "is present" on a DC s 
satisfying the following criteria: 

▪ s is a writable DC other than the local DC. 

▪ s is in the same site as the local DC. 

▪ If x is a read-only full replica and x is a domain NC, then the DC's functional level is at least 
DS_BEHAVIOR_WIN2008. 

▪ Bit NTDSSETTINGS_OPT_IS_TOPL_DETECT_STALE_DISABLED is set in the options attribute of 

the site settings object for the local DC's site, or no tuple z exists in the kCCFailedLinks or 
kCCFailedConnections variables such that z.UUIDDsa is the objectGUID of the nTDSDSA object 

for s, z.FailureCount > 0, and the current time - z.TimeFirstFailure > 2 hours.  

▪ If a partial (not full) replica of x "shouldSHOULD be present" on the local DC, append to R each 
partial replica p of x such that p "is present" on a DC s satisfying the same criteria defined above 
for full replica DCs. 

▪ Append to R the NC replica that "shouldSHOULD be present" on the local DC. 

▪ Sort R in order of the value of the objectGUID attribute of the corresponding DC's nTDSDSA 
object. Let ri be the i'th NC replica in R, where 0 ≤ i < |R|. 

▪ Add a node for each ri to the NC replica graph. 

▪ Add an edge from ri to ri+1 for each 0 ≤ i < |R|-1 if ri is a full replica or ri+1 is a partial replica. 

▪ Add an edge from ri+1 to ri for each 0 ≤ i < |R|-1 if ri+1 is a full replica or ri is a partial replica. 

▪ Add an edge from r|R|-1 to r0 if r|R|-1 is a full replica or r0 is a partial replica. 

▪ Add an edge from r0 to r|R|-1 if r0 is a full replica or r|R|-1 is a partial replica. 

The KCC can create additional edges, but does not create more than 50 edges directed to a single DC. 
To optimize replication latency in sites with many NC replicas, the Windows KCC determines that each 
ri shouldSHOULD have n+2 total edges directed to it such that n is the smallest non-negative integer 
satisfying |R| ≤ 2n2 + 6n + 7. For each existing nTDSConnection object implying an edge from rj of R 
to ri such that j ≠ i, an edge from rj to ri is not already in the graph, and the total edges directed to ri 
is less than n+2, the KCC adds that edge to the graph. The KCC then adds new edges directed to ri to 



 

553 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

bring the total edges to n+2, where the NC replica rk of R from which the edge is directed is chosen at 
random such that k ≠ i and an edge from rk to ri is not already in the graph. 

For each edge directed to the NC replica that "shouldSHOULD be present" on the local DC, the KCC 
determines whether an object c exists such that: 

▪ c is a child of the local DC's nTDSDSA object. 

▪ c!objectCategory = nTDSConnection 

▪ Given the NC replica ri from which the edge is directed, c!fromServer is the dsname of the 
nTDSDSA object of the DC on which ri "is present". 

▪ c!options does not contain NTDSCONN_OPT_RODC_TOPOLOGY 

If no such object c exists, the KCC adds an object c to the local DC's NC replica of the config NC such 
that it satisfies the above criteria and has the following additional attributes: 

▪ c!objectClass contains nTDSConnection 

▪ c!enabledConnection = trueTRUE 

▪ c!options = NTDSCONN_OPT_IS_GENERATED 

▪ c!systemFlags = FLAG_CONFIG_ALLOW_RENAME + FLAG_CONFIG_ALLOW_MOVE 

▪ c!schedule = z : SCHEDULE, such that: 

▪ z.Size = 188 

▪ z.Bandwidth = 0 

▪ z.NumberOfSchedules = 1 

▪ z.Schedules[0].Type = 0 

▪ z.Schedules[0].Offset = 20 

▪ Byte offset 20 from z begins a stream of 168 bytes with value 0x01. 

If the DC is a GC server, the KCC constructs an additional NC replica graph (and creates 
nTDSConnection objects) for the config NC as above, except that only NC replicas that "are present" 

on GC servers are added to R. 

The DC repeats the NC replica graph computation and nTDSConnection creation for each of the NC 
replica graphs above, this time assuming that no DC has failed. It does so by re-executing the steps 
as if the bit NTDSSETTINGS_OPT_IS_TOPL_DETECT_STALE_DISABLED were set in the options 
attribute of the site settings object for the local DC's site. 

The net result of each DC executing this distributed algorithm is the following set of overlapping rings: 

▪ For each NC, a ring containing each full replica in the site. 

▪ For each NC, a ring containing each NC replica (full or partial) in the site. 

▪ A ring containing each GC server in the site. 

▪ For each NC, a ring containing each full replica in the site that has not failed. 

▪ For each NC, a ring containing each NC replica (full or partial) in the site that has not failed. 

▪ A ring containing each GC server in the site that has not failed. 



 

554 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.2.2.3 (Updated Section) Intersite Connection Creation 

This task computes an NC replica graph for each NC replica that "shouldSHOULD be present" on the 
local DC or "is present" on any DC in the same site as the local DC. For each edge directed to an NC 

replica on such a DC from an NC replica on a DC in another site, the KCC reconciles its portion of the 
NC replica graph by creating an nTDSConnection object to "imply" that edge if one does not already 
exist. 

If the site of the local DC has a site settings object o and the 
NTDSSETTINGS_OPT_IS_INTER_SITE_AUTO_TOPOLOGY_DISABLED bit is set in o!options, the KCC 
skips this task. 

Like intrasite connection, intersite connection creation utilizes distributed algorithms—algorithms that 

rely upon each DC in the forest implementing the same algorithm and arriving at the same conclusions 
given the same inputs. However, the algorithms used for intersite connection creation are significantly 
more complex. Sufficient analysis of a given variation of this algorithm might yield that DCs 
implementing the variation are compatible with Windows DCs, but no such different-yet-compatible 
algorithm is known. To illustrate this point, consider the following simple example: 

Assume a forest F that contains three DCs of the same domain in three distinct sites—DC1 in Site1, 

DC2 in Site2, and DC3 in Site3—where siteLink objects exist specifying that each site is connected to 
the other two sites with the same cost. DC1 and DC2 execute one implementation of the KCC, and 
DC3 executes a different implementation. 

DC1 and DC2 determine that the three sites shouldSHOULD be connected by a minimum cost 
spanning tree rooted at site3: both DC1 and DC2 replicate updates from DC3, assuming that DC3 
replicates updates from DC1 and DC2. 

DC3, because it is running a different implementation, determines that the three sites shouldSHOULD 

be connected by a minimum cost spanning tree rooted at site1: DC3 replicates updates from DC1, 
assuming that DC2 replicates updates from DC1 and DC1 replicates updates from DC2 and DC3. 

The minimum cost spanning trees chosen by all the DCs are equally valid. However, the fact that they 
did not arrive at the same conclusions results in a violation of the first requirement described in 

section 6.2.1: 

▪ DC1 replicates updates from DC3. 

▪ DC3 replicates updates from DC1. 

▪ DC2 replicates updates from DC3 (and therefore transitively receives updates from DC1). 

▪ Neither DC1 nor DC2 replicates updates from DC2. 

Slight variations in algorithms might result in similar failures that appear only when given specific, 
complex combinations of inputs. For this reason, these algorithms are described to a high level of 
detail, and implementers mustMUST carefully analyze any deviations from them. 

6.2.2.3.1 ISTG Selection 

First, the KCC on a writable DC determines whether it acts as an ISTG for its site. 

▪ Let s be the object such that s!lDAPDisplayName = nTDSDSA and classSchema in s!objectClass. 

▪ Let D be the sequence of objects o in the site of the local DC such that o!objectCategory = s. D is 
sorted in ascending order by objectGUID. 

▪ Let o be the site settings object for the site of the local DC, or NULL if no such o exists. 



 

555 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Let f be the duration o!interSiteTopologyFailover seconds, or 2 hours if o!interSiteTopologyFailover 
is 0 or has no value. 

▪ If o ≠ NULL and o!interSiteTopologyGenerator is not the nTDSDSA object for the local DC and 
o!interSiteTopologyGenerator is an element dj of sequence D: 

▪ Let c be the cursor in the pUpToDateVector variable associated with the NC replica of the 
config NC such that c.uuidDsa = dj!invocationId. If no such c exists (No evidence of replication 
from current ITSG): 

▪ Let i  = j. 

▪ Let t = 0. 

▪ Else if the current time < c.timeLastSyncSuccess - f (Evidence of time sync problem on 
current ISTG): 

▪ Let i = 0. 

▪ Let t = 0. 

▪ Else (Evidence of replication from current ITSG): 

▪ Let i = j. 

▪ Let t = c.timeLastSyncSuccess. 

▪ Otherwise (Nominate local DC as ISTG): 

▪ Let i be the integer such that di is the nTDSDSA object for the local DC. 

▪ Let t = the current time. 

▪ (Compute a function that maintains the current ISTG if it is alive, cycles through other candidates 
if not.) Let k be the integer (i + ((current time - t) / o!interSiteTopologyFailover)) MOD |D|. 

The local writable DC acts as an ISTG for its site if and only if dk is the nTDSDSA object for the 
local DC. If the local DC does not act as an ISTG, the KCC skips the remainder of this task. 

If the local DC does act as an ISTG and o exists but o!interSiteTopologyGenerator is not the dsname 

of the local DC's nTDSDSA object, the KCC performs an originating update to set 
o!interSiteTopologyGenerator to this value. 

The KCC on an RODC always acts as an ISTG for itself. 

6.2.2.3.2 Merge of kCCFailedLinks and kCCFailedLinks from Bridgeheads 

The KCC on a writable DC attempts to merge the link and connection failure information from 
bridgehead DCs in its own site to help it identify failed bridgehead DCs. 

For each nTDSDSA object bh with objectCategory nTDSDSA other than the local DC but in the local 

DC's site, if bh has a child nTDSConnection object cn such that cn!fromServer is a reference to an 
nTDSDSA object in a site other than the local DC's site, and cn! options does not contain 
NTDSCONN_OPT_RODC_TOPOLOGY, the KCC adds the tuples from bh's kCCFailedConnections and 
kCCFailedLinks to the tuples in those same variables on the local DC. It does so by calling in the 
sequence IDL_DRSBind, IDL_DRSGetReplInfo for DS_REPL_INFO_KCC_DSA_CONNECT_FAILURES, 

IDL_DRSGetReplInfo for DS_REPL_INFO_KCC_DSA_LINK_FAILURES, and IDL_DRSUnbind. 

If any of these calls fails, the KCC adds a tuple for bh!objectGUID to kCCFailedConnections. 



 

556 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

For each DS_REPL_KCC_DSA_FAILUREW d it receives, the KCC updates its corresponding variable v 
(kCCFailedLinks for DS_REPL_INFO_KCC_DSA_LINK_FAILURES, kCCFailedConnections for 

DS_REPL_INFO_KCC_DSA_CONNECT_FAILURES) as follows: 

▪ If a tuple f exists in v such that f.UUIDDsa = d.uuidDsaObjGuid and f.FailureCount ≠ 0: 

▪ Set f.FailureCount to MAX(f.FailureCount, d.cNumFailures) 

▪ Set f.TimeFirstFailure to MIN(f.TimeFirstFailure, d.ftimeFirstFailure) 

▪ Set f.LastResult to d.dwLastResult 

▪ If a tuple f exists in v such that f.UUIDDsa = d.uuidDsaObjGuid and f.FailureCount = 0: 

▪ Set f.FailureCount to d.cNumFailures 

▪ Set f.TimeFirstFailure to d.ftimeFirstFailure 

▪ Set f.LastResult to d.dwLastResult 

▪ If no tuple f exists in v such that f.UUIDDsa = d.uuidDsaObjGuid, add tuple g to v such that 

▪ g.UUIDDsa = d.uuidDsaObjGuid 

▪ g.FailureCount = d.cNumFailures 

▪ g.TimeFirstFailure = d.ftimeFirstFailure 

▪ g.LastResult = d.dwLastResult 

6.2.2.3.3 (Updated Section) Site Graph Concepts 

For each NC with an NC replica that "shouldSHOULD be present" on the local DC or "is present" on any 
DC in the same site as the local DC, the KCC constructs a site graph—a precursor to an NC replica 
graph. The site connectivity for a site graph is defined by objects of class interSiteTransport, siteLink, 

and siteLinkBridge in the config NC. The semantics of these objects are described in section 6.1. 

The pseudocode in the next section maps these objects and the various constraints on these objects 
as follows. 

KCC concept  Site graph concept  

site VERTEX 

siteLink MULTIEDGE 

siteLinkBridge MULTIEDGESET 

interSiteTransport MULTIEDGE.Type 

A siteLink object can connect more than two sites. All vertices in a MULTIEDGE are treated as a fully 
connected subgraph. 

siteLink object attributes: cost, schedule, options, 
and replInterval. 

MULTIEDGE properties in its ReplInfo field: Cost, 
Schedule, Options, and Interval. As paths are formed, 
this information is aggregated. 

siteLink objects of different interSiteTransports 
objects co-exist in the same graph and compete 
based on cost. 

MULTIEDGEs with differing Types co-exist in the graph 
and in the spanning tree. 

Only the siteLink objects referenced by a 
siteLinkBridge can be combined together to form 

MULTIEDGEs in a MULTIEDGESET are considered 



 

557 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

KCC concept  Site graph concept  

aggregated paths, with the vertices in common 
acting as routers. 

transitive. 

NTDSTRANSPORT_OPT_BRIDGES_REQUIRED bit in 
the options attribute of an interSiteTransport object. 

If clear, a MULTIEDGESET is inferred that includes all 
MULTIEDGEs with the corresponding Type.  

NTDSTRANSPORT_OPT_IGNORE_SCHEDULES bit in 
the options attribute of an interSiteTransport object 

If set, all MULTIEDGEs with the corresponding Type 
have a Schedule that is NULL. 

For a given NC, a site can contain one or more 
writable replicas and zero or more partial read-only 
replicas, zero writable replicas but one or more 
partial read-only replicas, or zero writable replicas 
and zero partial read-only replicas. 

VERTEX.Color 

VERTEX.Color is RED, BLACK, or WHITE, respectively. 

A full replica cannot replicate from a partial replica. No edge exists from a black vertex to a red vertex. 

For each NC other than the config NC and the 
schema NC, the path from a writable replica to 
another full replica utilizes only the RPC transport. 

VERTEX.AcceptRedRed 

VERTEX.AcceptBlack 

If both vertices for a given edge are red, the edge's 
type mustMUST be in the AcceptRedRed set of both 
vertices. 

If one or both vertices for a given edge are black, the 
edge's type mustMUST be in the AcceptBlack set of 
both vertices. 

A site without a bridgehead DC for a particular 
transport cannot replicate updates over that 
transport to or from DCs in other sites. 

The vertex for such a site does not contain the 
corresponding type in its AcceptRedRed or AcceptBlack 
properties. 

 

6.2.2.3.4 Connection Creation 

The methods described in this section calculate a spanning tree for each NC replica graph and create 
corresponding nTDSConnection objects that "imply" the corresponding spanning tree edges. 

This pseudocode utilizes a type SEQUENCE<X>, which is a sequence of values of a given type X. 
Values of type X can be appended to and removed from the sequence. If s is a value of type 
SEQUENCE<X>, s[i] is the i'th value in s, such that 0 ≤ i < |s|. 

It also references the types DWORD and GUID from [MS-DTYP] sections 2.2 and 2.3.4. 

6.2.2.3.4.1 Types 

The following new types are used to represent and to evaluate site graphs: 

 /***** REPL_INFO *****/ 
 /* Replication parameters of a graph edge. */ 
 struct REPLINFO { 
     DWORD Cost;             /* Cost of network traffic between 
                              * vertices; lower is preferred. */ 
     DWORD Interval;         /* Interval between replication attempts. 
                              */ 
     DWORD Options;          /* siteLink object options bits. */ 
     SCHEDULE Schedule;      /* Schedule during which communication is 
                                possible; NULL means "always". */ 
 } 
  
 /***** COLOR *****/ 



 

558 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 /* Color of a vertex. */ 
 enum COLOR { 
     RED,    /* Site contains one or more full replicas. */ 
     BLACK,  /* Site contains no full replicas but one or more 
              * partial replicas. */ 
     WHITE   /* Site contains no replicas. */ 
 } 
  
 /***** VERTEX *****/ 
 /* A vertex in the site graph. */ 
 struct VERTEX { 
     GUID ID;                      /* objectGUID of corresponding site 
                                    * object. */ 
     SEQUENCE<GUID> EdgeIDs;       /* Edges currently being evaluated 
                                    * for this vertex. */ 
     COLOR Color;                  /* Color of the vertex. */ 
     SEQUENCE<GUID> AcceptRedRed;  /* Edge types accepted when both 
                                    * vertices are RED. */ 
     SEQUENCE<GUID> AcceptBlack;   /* Edge types accepted when one or 
                                    * both vertices are BLACK. */ 
     REPLINFO ReplInfo;            /* Replication parameters. */ 
     int DistToRed;                /* Distance in the spanning tree 
                                    * from this vertex to the nearest 
                                    * red vertex. */ 
     /* Dijkstra data */ 
     GUID RootID;                  /* The ID of the closest RED or 
                                    * BLACK vertex. */ 
     bool Demoted;                 /* TRUE if vertex should be treated 
                                    * as if Color is WHITE. */ 
     /* Kruskal data */ 
     GUID ComponentID;             /* The id of the graph component 
                                    * this vertex is in. */ 
     int ComponentIndex;           /* The index of the graph 
                                      component. */ 
 } 
  
 /***** MULTIEDGE *****/ 
 /* Fully connected subgraph of vertices. */ 
 struct MULTIEDGE { 
     GUID ID;                   /* objectGUID of corresponding siteLink 
                                 * object. */ 
     SEQUENCE<GUID> VertexIDs;  /* IDs of connected vertices. */ 
     GUID Type;                 /* Type (interSiteTransport 
                                 * objectGUID). */ 
     REPLINFO ReplInfo;         /* Replication parameters. */ 
     bool Directed;             /* TRUE if uni-directional, FALSE if 
                                 * bi-directional */ 
 } 
  
 /***** MULTIEDGESET *****/ 
 /* Set of transitively connected MULTIEDGEs. All edges within the set 
  * have the same Type. */ 
 struct MULTIEDGESET { 
     GUID ID;                  /* objectGUID of corresponding 
                                * siteLinkBridge object. */ 
     SEQUENCE<GUID> EdgeIDs;   /* IDs of connected edges. */ 
 } 
  
 /***** GRAPH *****/ 
 /* A site graph. */ 
 struct GRAPH { 
     SEQUENCE<VERTEX> Vertices;          /* All vertices, sorted by 
                                          * ascending ID (site 
                                          * objectGUID). */ 
     SEQUENCE<MULTIEDGE> Edges;          /* All edges. */ 
     SEQUENCE<MULTIEDGESET> EdgeSets;    /* All edge sets. */ 
 } 
  
 /***** INTERNALEDGE *****/ 
 /* Path found in the graph between two non-WHITE vertices. */ 



 

559 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 struct INTERNALEDGE { 
     GUID V1ID, V2ID;    /* The endpoints of the path. */ 
     bool RedRed;        /* TRUE if and only both endpoints are red. */ 
     REPLINFO ReplInfo;  /* Combined replication info for the path. */ 
     GUID Type;          /* All path edges must have same type. */ 
 } 

6.2.2.3.4.2 Main Entry Point 

The CreateIntersiteConnections method is the beginning of the control flow. This method invokes the 
remainder of the methods, directly or indirectly. 

 /***** CreateIntersiteConnections *****/ 
 /* Computes an NC replica graph for each NC replica that "should be 
  * present" on the local DC or "is present" on any DC in the same site 
  * as the local DC. For each edge directed to an NC replica on such a 
  * DC from an NC replica on a DC in another site, the KCC creates an 
  * nTDSConnection object to imply that edge if one does not already 
  * exist. 
  * 
  * OUT: keepConnections - A sequence of objectGUID values of 
  *      nTDSConnection objects for edges that are directed to the 
  *      local DC's site in one or more NC replica graphs. 
  * RETURNS: TRUE if spanning trees were created for all NC replica 
  *      graphs, otherwise FALSE. 
  */ 
 CreateIntersiteConnections(OUT SEQUENCE<GUID> keepConnections) : bool 
 { 
     LET allConnected be TRUE 
     SET keepConnections to an empty sequence of GUID 
      
     LET crossRefList be the set containing each object o of class 
     crossRef such that o is a child of the CN=Partitions child of the 
     config NC  
  
     FOR each crossRef object cr in crossRefList 
         IF cr!enabled has a value and is false, or if FLAG_CR_NTDS_NC 
         is clear in cr!systemFlags, skip cr. 
         LET g be the GRAPH return of SetupGraph() 
          
         /* Create nTDSConnection objects, routing replication traffic 
          * around "failed" DCs. */ 
         LET foundFailedDC be a Boolean variable 
         LET c be the Boolean return of CreateConnections(g, cr, TRUE, 
         keepConnections, foundFailedDC) 
          
         IF !c 
             SET allConnected to FALSE 
             IF foundFailedDC 
                 /* One or more failed DCs preclude use of the ideal NC 
                  * replica graph. Add connections for the ideal graph. 
                  */ 
                 CALL CreateConnections(graph, cr, FALSE, 
                 keepConnections, foundFailedDCs) 
             ENDIF 
         ENDIF 
     ENDFOR 
      
     RETURN allConnected 
 } 

6.2.2.3.4.3 Site Graph Construction 



 

560 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The following methods construct the initial site graph, comprising the vertices, multi-edges, and multi-
edge sets corresponding to the site, siteLink, and siteLinkBridge objects (respectively) in the config 

NC. 

 /***** SetupGraph *****/ 
 /* Set up a GRAPH, populated with a VERTEX for each site object, a 
  * MULTIEDGE for each siteLink object, and a MUTLIEDGESET for each 
  * siteLinkBridge object (or implied siteLinkBridge). 
  * 
  * RETURNS: A new graph. */ 
 SetupGraph() : GRAPH 
 { 
     LET vertexIDs be the sequence containing the objectGUID of each 
     site object child of the CN=Sites child of the config NC 
     LET g be the GRAPH return of CreateGraph(vertexIDs) 
     LET localSite be the site object for the site of the local DC 
      
     FOR each interSiteTransport object t that is a child of the 
     CN=Inter-Site Transports child of the CN=Sites child of the config 
     NC 
         LET L be the set containing each siteLink object that is a 
         child of t 
         FOR each l in L 
             APPEND CreateEdge(t!objectGUID, l) to g.Edges 
         ENDFOR 
         IF NTDSTRANSPORT_OPT_BRIDGES_REQUIRED bit is clear in 
         t!options and NTDSSETTINGS_OPT_W2K3_BRIDGES_REQUIRED bit is 
         clear in localSite!options 
             APPEND CreateAutoEdgeSet(g, t!objectGUID, L) to g.EdgeSets 
         ELSE 
             FOR each siteLinkBridge object b that is a child of t 
                 APPEND CreateEdgeSet(g, t!objectGUID, b) to g.EdgeSets 
             ENDFOR 
         ENDIF 
     ENDFOR 
   RETURN g 
 } 
  
 /***** CreateGraph *****/ 
 /* Create a GRAPH instance. 
  * IN: vertexIDs - Set containing the ID of each vertex to add to the 
  *      graph. 
  * RETURNS: A new graph containing vertices with the specified IDs. 
  */ 
 CreateGraph(IN SEQUENCE<GUID> vertexIDs) : GRAPH 
 { 
     LET g be a new GRAPH 
     SORT vertexIDs in ascending order of objectGUID 
     FOR each id in vertexIDs 
         LET v be a new VERTEX 
         SET v.ID to id 
         APPEND v to g.Vertices 
     ENDFOR 
     RETURN g 
 } 
  
 /***** CreateEdge *****/ 
 /* Create a MULTIEDGE instance. 
  * IN: type - Type of edge to add. 
  * IN: link - Corresponding siteLink object. 
  * RETURNS: A new MULTIEDGE instance. 
  */ 
 CreateEdge(IN GUID type, IN siteLink link) : MULTIEDGE 
 { 
     LET e be a new MULTIEDGE 
     SET e.ID to link!objectGUID 
     SET e.VertexIDs to be the set containing the objectGUID value of 
     each site referenced by link!siteList 



 

561 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     SET e.ReplInfo.Cost to link!cost; 
     SET e.ReplInfo.Options to link!options 
     SET e.ReplInfo.Interval to link!replInterval 
     IF link!schedule has a value 
         SET e.ReplInfo.Schedule to link!schedule 
     ELSE 
         SET e.ReplInfo.Schedule to NULL 
     EndIF 
     SET e.Type to type 
     SET e.Directed to FALSE 
  RETURN e 
 } 
  
 /***** CreateAutoEdgeSet *****/ 
 /* Create a MULTIEDGESET instance containing edges for all siteLink 
  * objects. 
  * INOUT: g - Site graph. 
  * IN: type - Type of edges being connected. 
  * IN: L - All siteLink objects. 
  * RETURNS: A new MULTIEDGESET instance. 
  */ 
 CreateAutoEdgeSet(INOUT GRAPH g, IN GUID type, 
     IN SET OF siteLink L) : MULTIEDGESET 
 { 
     LET s be a new MULTIEDGESET 
     SET s.ID to NULL GUID 
     FOR each l in L 
         LET e be the edge in g.Edges such that e.ID = l!objectGUID 
         IF e.Type = type 
             APPEND l!objectGUID to s.EdgeIDs 
         ENDIF 
     ENDFOR 
     RETURN s 
 } 
  
 /***** CreateEdgeSet *****/ 
 /* Create a MULTIEDGESET instance. 
  * INOUT: g - Site graph. 
  * IN: type - Type of edges being connected. 
  * IN: b - Corresponding siteLinkBridge object. 
  * RETURNS: A new MULTIEDGESET instance. 
  */ 
 CreateEdgeSet(INOUT GRAPH g, IN GUID type, IN siteLinkBridge b) 
 : MULTIEDGESET 
 { 
     LET s be a new MULTIEDGESET 
     SET e.ID to b!objectGUID 
     FOR each DSNAME l in b!siteLinkList 
         LET e be the edge in g.Edges such that e.ID = l!objectGUID 
         IF e.Type = type 
             APPEND l!objectGUID to s.EdgeIDs 
         ENDIF 
     ENDFOR 
     RETURN s 
 } 
  
 /***** ColorVertices *****/ 
 /* Color each vertex to indicate which kinds of NC replicas it 
  * contains. 
  * INOUT: g - Site graph. 
  * IN: cr - crossRef for NC. 
  * IN: detectFailedDCs - TRUE to detect failed DCs and route 
  *      replication traffic around them, FALSE to assume no DC 
  *      has failed. 
  * RETURNS: TRUE if one or more failed DCs were detected, 
  *      otherwise FALSE. 
  */ 
 ColorVertices(INOUT GRAPH g, IN crossRef cr, 
     IN bool detectFailedDCs) : bool 
 { 



 

562 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     LET foundFailedDCs be FALSE 
      
     FOR each v in g.Vertices 
         LET s be the site object with objectGUID v.ID 
         IF s contains one or more DCs with full replicas of the NC 
         cr!nCName 
             SET v.Color to COLOR.RED 
         ELSEIF s contains one or more partial replicas of the NC 
             SET v.Color to COLOR.BLACK 
         ELSE 
             SET v.Color to COLOR.WHITE 
         ENDIF 
     ENDFOR 
     LET localSiteVertex be the vertex in graph.Vertices such that 
     localSiteVertex.ID = objectGUID of the local DC's site object 
    FOR each v in g.Vertices 
         FOR each interSiteTransport object t that is a child of the 
         CN=Inter-Site Transports child of the CN=Sites child of the 
         config NC 
             IF localSiteVertex.Color = COLOR.RED and t!name ≠ "IP" 
             and FLAG_CR_NTDS_DOMAIN bit is set in cr!systemFlags 
                 Skip t 
             ENDIF 
             IF no edge e exists in g.Edges such that e.VertexIDs 
             contains v.ID 
                 Skip t 
             ENDIF 
             LET partialReplicaOkay be TRUE if and only if  
             localSiteVertex.Color = COLOR.BLACK 
              
             LET bh be the result of GetBridgeheadDC( 
             localSiteVertex.ID, cr, t, partialReplicaOkay, 
             detectFailedDCs) 
             IF bh = null 
                 /* No bridgehead DC is currently available. */ 
                 SET foundFailedDCs to TRUE 
                 Skip t 
             ENDIF 
             APPEND t!objectGUID to v.AcceptRedRed 
             APPEND t!objectGUID to v.AcceptBlack 
         ENDFOR 
     ENDFOR 
      
     RETURN foundFailedDCs 
 } 

6.2.2.3.4.4 Spanning Tree Computation 

The following methods process the site graph and compute the minimum-cost spanning tree. 

 /***** GetSpanningTreeEdges *****/ 
 /* Calculate the spanning tree and return the edges that include the 
  * vertex for the local site. 
  * INOUT: g - Site graph. 
  * OUT: componentCount - Set to the number of graph components 
  *      calculated by Kruskal's algorithm. If 1, all sites are 
  *      connected by a spanning tree. Otherwise, one or more sites 
  *      could not be connected in a spanning tree. 
  * RETURNS: Edges that include the vertex for the local site. 
  */ 
 GetSpanningTreeEdges(INOUT GRAPH g, OUT int componentCount) 
     : SET<MULTIEDGE> 
 { 
     /* Phase I: Run Dijkstra's algorithm and build up a list of 
      * internal edges, which are really just shortest-paths 
      * connecting colored vertices.  
      */ 



 

563 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     LET internalEdges be an empty sequence of INTERNALEDGE 
          
     FOR each s in g.EdgeSets 
         LET edgeType be NULL GUID 
         FOR each v in g.Vertices 
             REMOVE all items from v.EdgeIDs 
         ENDFOR 
          
         FOR each edge e in g.Edges such that s.EdgeIDs contains e.ID 
             SET edgeType to e.Type 
             FOR each vertex v in g.Vertices such that e.VertexIDs 
             contains v.ID 
                 APPEND e to v.Edges 
             ENDFOR 
         ENDFOR 
          
         /* Run Dijkstra's algorithm with just the red vertices as 
          * the roots */ 
         CALL Dijkstra(g, edgeType, FALSE) 
          
         /* Process the minimum-spanning forest built by Dijkstra, 
          * and add any inter-tree edges to our list of internal 
          * edges */ 
         CALL ProcessEdgeSet(g, s, internalEdges) 
          
         /* Run Dijkstra's algorithm with red and black vertices as 
          * the root vertices */ 
         CALL Dijkstra(g, edgeType, TRUE) 
          
         /* Process the minimum-spanning forest built by Dijkstra, 
          * and add any inter-tree edges to our list of internal 
          * edges */ 
         CALL ProcessEdgeSet(g, s, internalEdges) 
     ENDFOR 
      
     /* Process the implicit empty edge set */ 
     CALL SetupVertices(g) 
     CALL ProcessEdgeSet(g, NULL, internalEdges) 
      
     /* Phase II: Run Kruskal's Algorithm on the internal edges. */ 
     LET outputEdges be the result of Kruskal(g, internalEdges) 
      
     /* Phase III: Post-process the output: 
      *  - Traverse tree structure to find one-way black-black edges 
      *  - Determine the component structure */ 
     FOR each v in g.Vertices 
         IF v.Color = COLOR.RED 
             SET v.DistToRed to 0 
         ELSEIF there exists a path from v to a COLOR.RED vertex 
             SET v.DistToRed to the length of the shortest such path 
         ELSE 
             SET v.DistToRed to MAX DWORD 
         ENDIF 
     ENDFOR 
     SET componentCount to CountComponents(g) 
     LET stEdgeList be CopyOutputEdges(g, outputEdges) 
      
     RETURN stEdgeList 
 } 
  
 /***** GetBridgeheadDC *****/ 
 /* Get a bridghead DC. 
  * IN: siteObjectGUID - objectGUID of the site object representing 
  *      the site for which a bridgehead DC is desired. 
  * IN: cr - crossRef for NC to replicate. 
  * IN: t - interSiteTransport object for replication traffic. 
  * IN: partialReplicaOkay - TRUE if a DC containing a partial 
  *      replica or a full replica will suffice, FALSE if only 
  *      a full replica will suffice. 
  * IN: detectFailedDCs - TRUE to detect failed DCs and route 



 

564 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

  *      replication traffic around them, FALSE to assume no DC 
  *      has failed. 
  * RETURNS: nTDSDSA object for the selected bridgehead DC, or NULL if 
  *      none is available. 
  */ 
 GetBridgeheadDC(IN GUID siteObjectGUID, IN crossRef cr, 
     IN interSiteTransport t, IN bool partialReplicaOkay, 
     IN bool detectFailedDCs) : nTDSDSA 
 { 
     LET bhs be the result of GetAllBridgeheadDCs(siteObjectGUID, cr, 
     t, partialReplicaOkay, detectFailedDCs) 
      
     IF bhs is empty 
         RETURN NULL 
     ELSE 
         RETURN bhs[0] 
     ENDIF 
 } 
  
 /***** GetAllBridgeheadDCs *****/ 
 /* Get all bridghead DCs satisfying the given criteria. 
  * IN: siteObjectGUID - objectGUID of the site object representing 
  *      the site for which bridgehead DCs are desired. 
  * IN: cr - crossRef for NC to replicate. 
  * IN: t - interSiteTransport object for replication traffic. 
  * IN: partialReplicaOkay - TRUE if a DC containing a partial 
  *      replica or a full replica will suffice, FALSE if only 
  *      a full replica will suffice. 
  * IN: detectFailedDCs - TRUE to detect failed DCs and route 
  *      replication traffic around them, FALSE to assume no DC 
  *      has failed. 
  * RETURNS: nTDSDSA objects for available bridgehead DCs. 
  */ 
 GetAllBridgeheadDCs(IN GUID siteObjectGUID, IN crossRef cr, 
     IN interSiteTransport t, IN bool partialReplicaOkay, 
     IN bool detectFailedDCs) : SEQUENCE OF nTDSDSA 
 { 
     LET bhs be an empty sequence of nTDSDSA objects 
     LET s be the site object such that s!objectGUID = siteObjectGUID 
     LET k be an object such that 
     s!lDAPDisplayName = nTDSDSA and classSchema in s!objectClass 
     LET allDCsInSite be the sequence of objects o that are 
     descendants of s such that o!objectCategory = k 
      
     FOR each dc in allDCsInSite 
         IF t!bridgeheadServerListBL has one or more values and 
         t!bridgeheadServerListBL does not contain a reference to the 
         parent object of dc 
             Skip dc 
         ENDIF 
          
         IF dc is in the same site as the local DC 
             IF a replica of cr!nCName is not in the set of NC replicas 
             that "should be present" on dc or a partial replica of the 
             NC "should be present" but partialReplicaOkay = FALSE 
                 Skip dc 
             ENDIF 
         ELSE 
             IF an NC replica of cr!nCName is not in the set of NC 
             replicas that "are present" on dc or a partial replica of 
             the NC "is present" but partialReplicaOkay = FALSE 
                 Skip dc 
             ENDIF 
         ENDIF 
          
         IF AmIRODC() and cr!nCName corresponds to default NC then 
           Let dsaobj be the nTDSDSA object of the dc 
           IF  dsaobj.msDS-Behavior-Version < DS_BEHAVIOR_WIN2008 
             Skip dc 
           ENDIF 



 

565 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

         ENDIF 
          
         IF t!name ≠ "IP" and the parent object of dc has no value for 
         the attribute specified by t!transportAddressAttribute 
             Skip dc 
         ENDIF 
          
         IF BridgeheadDCFailed(dc!objectGUID, detectFailedDCs) = TRUE 
             Skip dc 
         ENDIF 
          
         APPEND dc to bhs 
     ENDFOR 
      
     IF bit NTDSSETTINGS_OPT_IS_RAND_BH_SELECTION_DISABLED is set in 
     s!options 
         SORT bhs such that all GC servers precede DCs that are not GC 
         servers, and otherwise by ascending objectGUID 
     ELSE 
         SORT bhs in a random order 
     ENDIF 
      
     RETURN bhs 
 } 
  
 /***** BridgeheadDCFailed *****/ 
 /* Determine whether a given DC is known to be in a failed state. 
  * IN: objectGUID - objectGUID of the DC's nTDSDSA object. 
  * IN: detectFailedDCs - TRUE if and only if failed DC detection is 
  *      enabled. 
  * RETURNS: TRUE if and only if the DC should be considered to be in a 
  *      failed state. 
  */ 
 BridgeheadDCFailed(IN GUID objectGUID, IN bool detectFailedDCs) : bool 
 { 
     IF detectFailedDCs is FALSE 
         RETURN FALSE 
     ENDIF 
  
     IF bit NTDSSETTINGS_OPT_IS_TOPL_DETECT_STALE_DISABLED is set in 
     the options attribute of the site settings object for the local 
     DC's site 
         RETURN FALSE 
     ENDIF 
  
     IF a tuple z exists in the kCCFailedLinks or 
     kCCFailedConnections variables such that 
     z.UUIDDsa = objectGUID, z.FailureCount > 1, and 
     the current time - z.TimeFirstFailure > 2 hours 
         RETURN TRUE 
     ENDIF 
  
     RETURN FALSE 
 } 
  
 /***** SetupVertices *****/ 
 /* Setup the fields of the vertices that are relevant to Phase I 
  * (Dijkstra's Algorithm). For each vertex, set up its cost, 
  * root vertex, and component. This defines the shortest-path 
  * forest structures. 
  * INOUT: graph - Site graph. 
  */ 
 SetupVertices(INOUT GRAPH g) 
 { 
     FOR each v in g.Vertices 
         IF v.Color = COLOR.WHITE 
             SET v.ReplInfo.Cost to MAX DWORD 
             SET v.RootID to NULL GUID 
             SET v.ComponentID to NULL GUID 
         ELSE 



 

566 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

             SET v.ReplInfo.Cost to 0 
             SET v.RootID to v.ID 
             SET v.ComponentID to v.ID 
         ENDIF 
          
         SET v.ReplInfo.Interval to 0 
         SET v.ReplInfo.Options to 0xFFFFFFFF 
         SET v.ReplInfo.Schedule to NULL 
         SET v.HeapLocation to STHEAP_NOT_IN_HEAP 
         SET v.Demoted to FALSE 
     ENDFOR 
 } 
  
 /***** Dijkstra *****/ 
 /* Run Dijkstra's algorithm with the red (and possibly black) vertices 
  * as the root vertices, and build up a shortest-path forest. 
  * INOUT: g - Site graph. 
  * IN: edgeType - Type of the edges in the current edge set. 
  * IN: fIncludeBlack - If this is true, black vertices are also used 
  *      as roots. 
  */ 
 Dijkstra(INOUT GRAPH g, IN GUID edgeType, IN bool fIncludeBlack) 
 { 
     LET vs be the result of SetupDijkstra(g, edgeType, fIncludeBlack) 
     WHILE vs is not empty 
         LET c be the least ReplInfo.Cost of any vertex in vs 
         LET u be the vertex in vs with the least ID of all 
         vertices with ReplInfo.Cost = c 
         REMOVE u from vs 
          
         FOR each e in g.Edges such that u.EdgeIDs contains e.ID 
             FOR each vertexId in e.VertexIDs 
                 LET v be the vertex in g.Vertices such that v.ID = 
                 vertexId 
                 CALL TryNewPath(g, vs, u, e, v) 
             ENDFOR 
         ENDFOR         
     ENDWHILE 
 } 
  
 /***** SetupDijkstra *****/ 
 /* Build the initial sequence for use with Dijkstra's algorithm. It 
  * will contain the red and black vertices as root vertices, unless 
  * these vertices accept no edges of the current edgeType, or unless 
  * black vertices are not being including. 
  * INOUT: g - Site graph. 
  * IN: edgeType - Type of the edges in the current edge set. 
  * IN: fIncludeBlack - If this is true, black vertices are also used 
  *      as roots. 
  * RETURNS: Sequence of vertices. 
  */  
 SetupDijkstra(INOUT GRAPH g, IN GUID edgeType, IN bool fIncludeBlack) 
     : SEQUENCE<VERTEX> 
 { 
     CALL SetupVertices(g) 
     LET vs be an empty sequence of VERTEX 
     FOR each v in g.Vertices 
         IF v.Color = COLOR.WHITE 
             Skip v 
         ENDIF 
          
         IF (v.Color = COLOR.BLACK and fIncludeBlack = FALSE) or 
         v.AcceptBlack does not contain edgeType or v.AcceptRedRed 
         does not contain edgeType 
             /* If black vertices are not being allowing, or if this 
              * vertex accepts neither red-red nor black edges, then 
              * 'demote' it to a WHITE vertex for the purposes of Phase 
              * I. Note that the 'Color' member of the vertex structure 
              * is not changed. */ 
             SET v.ReplInfo.Cost to MAX DWORD 



 

567 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

             SET v.RootID to NULL GUID 
             SET v.Demoted to TRUE 
         ELSE 
             APPEND v to vs 
         ENDIF 
     ENDFOR 
      
     RETURN vs 
 } 
  
 /***** TryNewPath *****/ 
 /* Helper function for Dijkstra's algorithm. A new path has been found 
  * from a root vertex to vertex v. This path is (u->root, ..., u, v). 
  * Edge e is the edge connecting u and v. If this new path is better 
  * (in this case cheaper, or has a longer schedule), update v to use 
  * the new path. 
  * INOUT: g - Site graph. 
  * INOUT: vs - Vertices being evaluated. 
  * IN: u - Vertex connected by e to v. 
  * IN: e - Edge between u and v. 
  * INOUT: v - Vertex connected by e to u. 
  */ 
 TryNewPath(INOUT GRAPH g, INOUT SEQUENCE<VERTEX> vs, IN VERTEX u, 
     IN MULTIEDGE e, INOUT VERTEX v) 
 { 
     LET newRI be an empty REPLINFO 
     LET fIntersect be the result of CombineReplInfo(g, u.ReplInfo, 
         Edge.ReplInfo, OUT newRI) 
          
     IF newRI.Cost > v->ReplInfo.Cost 
         RETURN 
     ENDIF 
      
     IF newRI.Cost < v.ReplInfo.Cost and fIntersect = FALSE 
         RETURN 
     ENDIF 
      
     LET newDuration be the total duration newRI.Schedule shows as 
     available 
     LET oldDuration be the total duration v.ReplInfo.Schedule shows as 
     available 
      
     IF newRI.cost < v.ReplInfo.Cost or newDuration > oldDuration 
         /* The new path to v is either cheaper or has a longer 
          * schedule. Update v with its new root vertex, cost, and 
          * replication info. */ 
         SET v.RootID to u.RootID 
         SET v.ComponentID to u.ComponentID 
         SET v.ReplInfo to newRI 
         APPEND v to vs 
     ENDIF 
 } 
  
 /***** CombineReplInfo *****/ 
 /* Merge schedules, replication intervals, options and costs. 
  * INOUT: g - Site graph. 
  * IN: a - Replication info to combine with b. 
  * IN: b - Replication info to combine with a. 
  * OUT: c - Combination of a and b. 
  * RETURNS: TRUE if schedules intersect, FALSE if they don't. 
  */ 
 CombineReplInfo(INOUT GRAPH g, IN REPLINFO a, IN REPLINFO b, 
     OUT REPLINFO c) : bool 
 { 
     LET s be the schedule that is the intersection of a.Schedule and 
     b.Schedule, such that a given time is available in c if and only 
     if that time is available in both a.Schedule and b.Schedule 
      
     IF s has no available time 
         RETURN FALSE 



 

568 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     ENDIF 
      
     IF a.Cost + b.Cost overflows 
         SET c.Cost to MAX DWORD 
     ELSE 
         SET c.Cost to a.Cost + b.Cost 
     ENDIF 
      
     SET C.Interval to maximum of a.Interval and b.Interval 
     SET C.Options to a.Options BITWISE-AND b.Options 
     SET C.Schedule = s 
      
     RETURN TRUE 
 } 
  
 /***** ProcessEdgeSet *****/ 
 /* After running Dijkstra's algorithm to determine the shortest-path 
  * forest, examine all edges in this edge set. Find all inter-tree 
  * edges, from which to build the list of 'internal edges', which 
  * will later be passed on to Kruskal's algorithm. 
  * INOUT: g - Site graph. 
  * IN: s - Edge set, or NULL for the implicit edge set with no edges. 
  * INOUT: internalEdges - Sequence to which to add new internal edges. 
  */ 
 ProcessEdgeSet(INOUT GRAPH g, IN MULTIEDGESET s, 
     INOUT SEQUENCE<INTERNALEDGE> internalEdges) 
 { 
     IF s = NULL 
         FOR each e in g.Edges 
             FOR each v in g.Vertices such that e.VertexIDs contains 
             v.ID 
                 CALL CheckDemoteOneVertex(v, e.Type) 
             ENDFOR 
             CALL ProcessEdge(g, e, internalEdges) 
             FOR each v in g.Vertices such that e.VertexIDs contains 
             v.ID 
                 CALL UndemoteOneVertex(v) 
             ENDFOR 
         ENDFOR 
     ELSE 
         FOR each e in g.Edges such s.EdgeIDs contains e.ID 
             CALL ProcessEdge(g, e, internalEdges) 
         ENDFOR 
     ENDIF 
 } 
  
 /***** CheckDemoteOneVertex *****/ 
 /* Demote one vertex if necessary 
  * INOUT: v - Vertex to check and possibly demote. 
  * IN: edgeType - Type of edge being processed. 
  */ 
 CheckDemoteOneVertex(INOUT VERTEX v, IN GUID edgeType) 
 { 
     IF v.Color = COLOR.WHITE 
         RETURN 
     ENDIF 
      
     IF v.AcceptBlack does not contain edgeType and v.AcceptRedRed does 
     not contain edgeType 
         /* If this vertex accepts neither red-red nor black edges, 
          * then 'demote' it to a WHITE vertex for the purposes of 
          * Phase I. Note that the 'Color' member of the vertex 
          * structure is not changed. */ 
         SET v.ReplInfo.Cost to MAX DWORD 
         SET v.RootID to NULL GUID 
         SET v.Demoted to TRUE 
     ENDIF 
 } 
  
 /**** UndemoteOneVertex ******/ 



 

569 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 /* Clear the demoted state of a vertex 
  * INOUT: v - Vertex to 'undemote'. 
  */ 
 UndemoteOneVertex(INOUT VERTEX v) 
 { 
     IF v.Color = COLOR.WHITE 
         RETURN 
     ENDIF 
      
     SET v.ReplInfo.Cost to 0 
     SET v.RootID to v.ID 
     SET v.Demoted to FALSE 
 } 
  
 /***** ProcessEdge *****/ 
 /* After running Dijkstra's algorithm, this function examines a 
  * multi-edge and adds internal edges between every tree connected by 
  * this edge. 
  * INOUT: g - Site graph. 
  * IN: e - Multi-edge to examine. 
  * INOUT: internalEdges - Sequence to which to add any new internal 
  * edges. 
  */ 
 ProcessEdge(INOUT GRAPH g, IN MULTIEDGE e, 
     INOUT SEQUENCE<INTERNALEDGE> internalEdges) 
 { 
     /* Find the best vertex to be the 'root' of this multi-edge. */ 
     LET vs be a sequence containing each vertex v such that 
     e.VertexIDs contains v.ID 
      
     SORT vs such that RED vertices precede BLACK vertices, a vertex 
     with lower ReplInfo.Cost precedes a vertex with higher 
     ReplInfo.Cost if both vertices have the same Color, and a vertex 
     with a lower ID precedes a vertex with higher ID if both vertices 
     have the same Color and ReplInfo.Cost 
      
     LET bestV be vs[0] 
      
     /* Add to internalEdges an edge from every colored vertex to 
        bestV.*/ 
     FOR each vertex v in g.Vertices such that e.VertexIDs contains v 
         IF v.ComponentID ≠ NULL GUID and v.RootID ≠ NULL GUID 
             Skip v 
         ENDIF 
          
         /* Only add this edge if it is a valid inter-tree edge. 
          * (The two vertices must be reachable from the root vertices, 
          * and in different components.) */ 
         IF bestV.ComponentID ≠ NULL GUID and bestV.RootID ≠ NULL GUID 
         and v.ComponentID ≠ NULL GUID and bestV.RootID ≠ NULL GUID 
         and bestV.ComponentID ≠ v.ComponentID 
             CALL AddIntEdge(g, internalEdges, e, bestV, v) 
         ENDIF 
     ENDFOR 
 } 
  
 /***** AddIntEdge *****/ 
 /* Add an edge to the list of edges that will be processed with 
  * Kruskal's. 
  * The endpoints are in fact the roots of the vertices to pass in, so 
  * the endpoints are always colored vertices. 
  * INOUT: g - Site graph. 
  * INOUT: internalEdges - Sequence to which to add the new internal 
  *      edge. 
  * IN: e - Existing edge being examined. 
  * IN: v1 - Vertex to connect with new internal edge. 
  * IN: v2 - Vertex to connect with new internal edge. 
  */ 
 AddIntEdge(INOUT GRAPH g, INOUT SEQUENCE<INTERNALEDGE> internalEdges, 
     IN MULTIEDGE e, IN VERTEX v1, IN VERTEX v2) 



 

570 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 { 
     /* The edge that is passed on to Kruskal's algorithm actually goes 
      * between the roots of the two shortest-path trees. */ 
     LET root1 be the vertex in g.Vertices such that root1.ID = 
     v1.RootID 
     LET root2 be the vertex in g.Vertices such that root2.ID = 
     v2.RootID 
      
     /* Check if both endpoints will allow this type of edge */ 
     IF root1.Color = COLOR.RED and root2.Color = COLOR.RED 
         LET redRed be TRUE 
     ELSE 
         LET redRed be FALSE 
     ENDIF 
      
     IF redRed = TRUE 
         IF root1.AcceptRedRed does not contain e.Type or 
         root2.AcceptRedRed does not contain e.Type 
             RETURN 
         ENDIF 
     ELSE 
         IF root1.AcceptBlack does not contain e.Type or 
         root2.AcceptBlack does not contain e.Type 
             RETURN 
         ENDIF 
     ENDIF 
      
     /* Combine the schedules of the path from root1 to v1, root2 to 
      * v2, and edge e */ 
     LET ri be an empty REPLINFO 
     LET ri2 be an empty REPLINFO 
     IF CombineReplInfo(g, v1.ReplInfo, v2.ReplInfo, OUT ri) = FALSE 
     or CombineReplInfo(g, ri, e.ReplInfo, OUT ri2) = FALSE 
         RETURN 
     ENDIF 
      
     /* Set up the internal simple edge from root1 to root2 */ 
     LET newIntEdge be an empty INTERNALEDGE     
     SET newIntEdge.V1ID to root1.ID 
     SET newIntEdge.V2ID to root2.ID 
     SET newIntEdge.RedRed to redRed 
     SET newIntEdge.ReplInfo to ri2 
     SET newIntEdge.Type to e.Type 
      
     /* Sort newIntEdge's vertices by ID */ 
     IF newIntEdge.V1ID > newIntEdge.V2ID 
         Swap newIntEdge.V1ID and newIntEdge.V2ID 
     ENDIF 
      
     IF internalEdges does not contain an INTERNALEDGE that is 
     identical to newIntEdge 
         APPEND newIntEdge to internalEdges 
     ENDIF 
 } 
  
 /***** Kruskal *****/ 
 /* Run Kruskal's minimum-cost spanning tree algorithm on the internal 
  * edges (that represent shortest paths in the original graph between 
  * colored vertices).  
  * INOUT: g - Site graph. 
  * INOUT: internalEdges - Edges between trees. 
  * RETURNS: Spanning tree edges for the vertex representing the local 
  *      DC's site.  
  */ 
 Kruskal(INOUT GRAPH g, INOUT SEQUENCE<INTERNALEDGE> internalEdges) 
     : SEQUENCE<MULTIEDGE> 
 { 
     FOR each v in g.Vertices 
         REMOVE all items from v.EdgeIDs 
     ENDFOR 



 

571 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

      
     SORT internalEdges by (descending RedRed, ascending ReplInfo.Cost, 
     descending available time in ReplInfo.Schedule, ascending V1ID, 
     ascending V2ID, ascending Type) 
      
     LET numExpectedTreeEdges be the count of vertices v in g.Vertices 
     such that v.Color = COLOR.RED or v.Color = COLOR.WHITE 
     LET cSTEdges be 0 
     LET outputEdges be an empty sequence of MULTIEDGE 
      
     WHILE internalEdges is not empty and cSTEdges < 
     numExpectedTreeEdges 
         LET e be internalEdges[0] 
          
         /* Cycles in the spanning tree must be prevented. If edge e 
          * is to be added, its endpoints must be in different 
          * components. */ 
         LET comp1 be the return of GetComponentID(g, e.V1ID) 
         LET comp2 be the return of GetComponentID(g, e.V2ID) 
         IF comp1 ≠ comp2 
             /* Add spanning tree edge. */ 
             INCREMENT cSTEdges by 1 
             CALL AddOutEdge(g, outputEdges, e) 
              
             /* Combine the two connected components. */ 
             LET v be the vertex in g.Vertices such that v.ID = comp1 
             SET v.ComponentID to comp2 
         ENDIF 
          
         REMOVE e from internalEdges 
     ENDWHILE 
      
     RETURN outputEdges 
 } 
  
 /***** GetComponentID *****/ 
 /* Returns the id of the component containing vertex v by traversing 
  * the up-tree implied by the component pointers. 
  * INOUT: g - Site graph. 
  * INOUT: v - Vertex for which the component ID is desired. 
  * RETURNS: The component ID of v. 
  */ 
 GetComponentID(INOUT GRAPH g, INOUT VERTEX v) : GUID 
 { 
     /* Find root of the up-tree created by component pointers */ 
     LET u be v 
     WHILE u.ComponentID ≠ u.ID 
         LET id be u.ComponentID 
         SET u to the vertex in g.Vertices such that u.ID = id 
     ENDWHILE 
     LET root be u.ID 
      
     /* Compress the path to the root */ 
     SET u to v 
     WHILE u.ComponentID ≠ u.ID 
         LET id be u.ComponentID 
         LET w be the vertex in g.Vertices such that w.ID = id 
         SET u.ComponentID to root 
         SET u to w 
     ENDWHILE 
      
     RETURN root 
 } 
  
 /***** AddOutEdge *****/ 
 /* A new edge, e, has been found for the spanning tree edge. Add this 
  * edge to the list of output edges. 
  * INOUT: g - Site graph. 
  * INOUT: outputEdges - Sequence to which to add the output edge. 
  * IN: e - Edge to add. 



 

572 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

  */ 
 AddOutEdge(INOUT GRAPH g, INOUT SEQUENCE<MULTIEDGE> outputEdges, 
     IN INTERNALEDGE e) 
 { 
     LET v1 be the vertex in g.Vertices such that v1.ID = e.V1ID 
     LET v2 be the vertex in g.Vertices such that v2.ID = e.V2ID 
      
     /* Create an output multi edge */ 
     LET ee be an empty MULTIEDGE 
     SET ee.Directed to FALSE 
     APPEND v1.ID to ee.VertexIDs 
     APPEND v2.ID to ee.VertexIDs 
     SET ee.Type to e.Type 
     SET ee.ReplInfo to e.ReplInfo 
     APPEND ee to outputEdges 
      
     /* Also add this new spanning-tree edge to the edge lists of 
      * its endpoints. */ 
     APPEND ee to v1.EdgeIDs 
     APPEND ee to v2.EdgeIDs 
 } 
  
 /***** CountComponents *****/ 
 /* Count the number of components. A component is considered to be a 
  * bunch of colored vertices that are connected by the spanning tree. 
  * Vertices whose component id is the same as their vertex id are the 
  * root of a connected component. 
  * 
  * When a root of a component has been found, record its 'component 
  * index'. The component indices are a contiguous sequence of numbers 
  * that uniquely identify a component. 
  * 
  * INOUT: g - Site graph. 
  * RETURNS: Number of components. 
  */ 
 CountComponents(INOUT GRAPH g) : int 
 { 
     LET numComponents be 0 
     FOR each v in g.Vertices 
         IF v.Color = COLOR.WHITE 
             Skip v 
         ENDIF 
          
         LET compId be the result of GetComponentID(g, v) 
         IF compId = v.ID 
             /* It's a component root */ 
             SET v.ComponentIndex to numComponents 
             Increment numComponents by 1 
         ENDIF 
     ENDFOR 
      
     RETURN numComponents 
 } 
  
 /***** CopyOutputEdges *****/ 
 /* Copy all spanning tree edges from outputEdges that contain the 
  * vertex for DCs in the local DC's site. 
  * INOUT: g - Site graph. 
  * IN: outputEdges - All spanning tree edges. 
  * RETURNS: Spanning tree edges for DCs in the local DC's site. 
  */ 
 CopyOutputEdges(INOUT GRAPH g, IN SEQUENCE<MULTIEDGE> outputEdges) 
     : SEQUENCE<MULTIEDGE> 
 { 
     LET s be an empty sequence of MULTIEDGE 
     LET vid be the objectGUID of site object for the local DC's site 
     FOR each e in outputEdges 
         LET v be the vertex in g.Vertices such that v.ID = 
         e.VertexIDs[0] 
         LET w be the vertex in g.Vertices such that w.ID = 



 

573 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

         e.VertexIDs[1] 
          
         IF v.ID = vid or w.ID = vid 
             /* Check if this edge meets the criteria of a 'directed 
              * edge'. */ 
             IF (v.Color = COLOR.BLACK or w.Color = COLOR.BLACK) and  
             v.DistToRed ≠ MAX DWORD 
                 SET e.Directed to TRUE 
                  
                 /* Swap the vertices so that e->vertexNames[0] is 
                  * closer to a red vertex than e->vertexNames[1]. */ 
                 IF w.DistToRed < v.DistToRed 
                     Swap e.VertexIDs[0] and e.VertexIDs[1] 
                 ENDIF 
             ENDIF             
              
             APPEND e to s             
         ENDIF 
     ENDFOR 
      
     RETURN s 
 } 

6.2.2.3.4.5 nTDSConnection Creation 

The following methods create nTDSConnection objects to "imply" the minimum-cost spanning tree 

edges for which no nTDSConnection objects yet exist. 

 /***** CreateConnections *****/ 
 /* Construct an NC replica graph for the NC identified by the given 
  * crossRef, then create any additional nTDSConnection objects 
  * required. 
  * 
  * INOUT: g - Site graph. 
  * IN: cr - crossRef object for NC. 
  * IN: detectFailedDCs - TRUE to detect failed DCs and route 
  *      replication traffic around them, FALSE to assume no DC 
  *      has failed. 
  * INOUT: keepConnections - Sequence to which to add any connections 
  *      deemed to be "in use". 
  * OUT: foundFailedDCs - Set to TRUE if one or more failed DCs 
  *      were detected, otherwise set to FALSE. 
  * RETURNS: TRUE if the resulting NC replica graph connects 
  *      all sites that need to be connected. 
  */ 
 CreateConnections(INOUT GRAPH g, IN crossRef cr, 
     IN bool detectFailedDCs, INOUT SEQUENCE<GUID> keepConnections, 
     OUT bool foundFailedDCs) : bool 
 { 
     LET connected be a bool, initialized to true 
     SET foundFailedDCs to the return of ColorVertices(g, cr, 
     detectFailedDCs) 
  
  
     LET localSiteVertex be the vertex in g.Vertices such that 
     localSiteVertex.ID is the objectGUID of the local DC's site object 
     IF localSiteVertex.Color = COLOR.WHITE 
         /* No NC replicas for this NC in the site of the local DC, 
          * so no nTDSConnection objects need be created. */ 
         return TRUE 
     ENDIF 
  
  
     LET componentCount be an integer 
     LET edges be the sequence of MULTIEDGE returned by 
     LET stEdgeList be the result of GetSpanningTreeEdges(graph, 
         OUT componentCount) 



 

574 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

  
  
     IF componentCount > 1 
         /* Not all sites could be connected by the spanning tree. */ 
         SET connected to false 
     ENDIF 
  
  
     LET partialReplicaOkay be TRUE if and only if 
     localSiteVertex.Color = COLOR.BLACK 
  
  
     FOR each edge e in stEdgeList 
         /* Ignore directed edges not directed to our site. */ 
         IF e.Directed and e.VertexIDs[1] ≠ localSiteVertex.ID 
             Skip e 
         ENDIF 
  
  
         IF e.VertexIDs[0] = localSiteVertex.ID 
             LET otherSiteVertex be the vertex in g.Vertices such that 
             otherSiteVertex.ID = e.VertexIDs[1] 
         ELSE 
             LET otherSiteVertex be the vertex in g.Vertices such that 
             otherSiteVertex.ID = e.VertexIDs[0] 
         ENDIF 
  
  
         LET t be the interSiteTransport object with objectGUID e.Type 
         LET rbh be the result of GetBridgeheadDC(otherSiteVertex.ID, 
         cr, t, partialReplicaOkay, detectFailedDCs) 
         /* RODC acts as an BH for itself */ 
         IF AmIRODC() then 
           LET lbh be the nTDSDSA object of the local DC 
         ELSE 
           LET lbh be the result of GetBridgeheadDC(localSiteVertex.ID, 
           cr, t, partialReplicaOkay, detectFailedDCs) 
         ENDIF 
  
  
         LET sched be a new SCHEDULE such that the first available time 
         is that of e.ReplInfo.Schedule and each subsequent available 
         time is e.ReplInfo.Interval minutes after the previous 
         available time 
          
         CALL CreateConnection(cr, rbh, t, lbh, e.ReplInfo, sched, 
         detectFailedDCs, partialReplicaOkay, keepConnections) 
     ENDFOR 
  
  
     RETURN connected 
 } 
  
  
 /***** CreateConnection *****/ 
 /* Create an nTDSConnection object with the given parameters if one 
  * does not already exist. 
  * IN: cr - crossRef object for the NC to replicate. 
  * IN: rbh - nTDSDSA object for DC to act as the IDL_DRSGetNCChanges 
  *      server (which is in a site other than the local DC's site). 
  * IN: t - interSiteTransport object for the transport to use for 
  *      replication traffic. 
  * IN: lbh - nTDSDSA object for DC to act as the IDL_DRSGetNCChanges 
  *      client (which is in the local DC's site). 
  * IN: ri - Replication parameters (aggregated siteLink options, etc.) 
  * IN: sch - Schedule specifying the times at which to begin 
  *      replicating. 
  * IN: detectFailedDCs - TRUE to detect failed DCs and route 
  *      replication traffic around them, FALSE to assume no DC 
  *      has failed. 



 

575 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

  * IN: partialReplicaOkay - TRUE if bridgehead DCs containing partial 
  *      replicas of the NC are acceptable. 
  * INOUT: keepConnections - Sequence to which to add any connections 
  *      deemed to be "in use". 
  */ 
 CreateConnection(IN crossRef cr, IN nTDSDSA rbh, 
     IN interSiteTransport t, IN nTDSDSA lbh, IN REPLINFO ri, 
     IN SCHEDULE sch, IN bool detectFailedDCs, IN bool partialReplicaOkay,  
     INOUT SEQUENCE<GUID> keepConnections) 
 { 
     LET rsiteGuid be the objectGUID of the site object ancestor of rbh 
     LET lsiteGuid be the objectGUID of the site object ancestor of lbh 
      
     LET rbhsAll be the result of GetAllBridgeheadDCs(rsiteGuid, cr, 
     t, partialReplicaOkay, FALSE) 
     LET lbhsAll be the result of GetAllBridgeheadDCs(lsiteGuid, cr, 
     t, partialReplicaOkay, FALSE) 
      
  
     FOR each nTDSConnection object cn such that the parent of cn is 
     a DC in lbhsAll and cn!fromServer references a DC in rbhsAll 
         IF bit NTDSCONN_OPT_IS_GENERATED is set in cn!options and 
         NTDSCONN_OPT_RODC_TOPOLOGY is clear in cn!options and 
         cn!transportType references t 
             IF bit NTDSCONN_OPT_USER_OWNED_SCHEDULE is clear in 
             cn!options and cn!schedule ≠ sch 
                Perform an originating update to set cn!schedule to sch 
             ENDIF 
             IF bits NTDSCONN_OPT_OVERRIDE_NOTIFY_DEFAULT and 
             NTDSCONN_OPT_USE_NOTIFY are set in cn 
                 IF bit NTDSSITELINK_OPT_USE_NOTIFY is clear in 
                 ri.Options 
                     Perform an originating update to clear bits 
                     NTDSCONN_OPT_OVERRIDE_NOTIFY_DEFAULT and 
                     NTDSCONN_OPT_USE_NOTIFY in cn!options 
                 ENDIF 
             ELSE 
                 IF bit NTDSSITELINK_OPT_USE_NOTIFY is set in 
                 ri.Options 
                     Perform an originating update to set bits 
                     NTDSCONN_OPT_OVERRIDE_NOTIFY_DEFAULT and 
                     NTDSCONN_OPT_USE_NOTIFY in cn!options 
                 ENDIF 
             ENDIF 
             IF bit NTDSCONN_OPT_TWOWAY_SYNC is set in cn!options 
                 IF bit NTDSSITELINK_OPT_TWOWAY_SYNC is clear in 
                 ri.Options 
                     Perform an originating update to clear bit 
                     NTDSCONN_OPT_TWOWAY_SYNC in cn!options 
                 ENDIF 
             ELSE 
                 IF bit NTDSSITELINK_OPT_TWOWAY_SYNC is set in 
                 ri.Options 
                     Perform an originating update to set bit 
                     NTDSCONN_OPT_TWOWAY_SYNC in cn!options 
                 ENDIF 
             ENDIF 
             IF bit NTDSCONN_OPT_DISABLE_INTERSITE_COMPRESSION is set 
             in cn!options 
                 IF bit NTDSSITELINK_OPT_DISABLE_COMPRESSION is clear 
                 in ri.Options 
                     Perform an originating update to clear bit 
                     NTDSCONN_OPT_DISABLE_INTERSITE_COMPRESSION in 
                     cn!options 
                 ENDIF 
             ELSE 
                 IF bit NTDSSITELINK_OPT_DISABLE_COMPRESSION is set in 
                 ri.Options 
                     Perform an originating update to set bit 
                     NTDSCONN_OPT_DISABLE_INTERSITE_COMPRESSION in 



 

576 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

                     cn!options 
                 ENDIF 
             ENDIF 
         ENDIF 
     ENDFOR 
      
     LET cValidConnections be 0 
     FOR each nTDSConnection object cn such that cn!parent is 
     a DC in lbhsAll and cn!fromServer references a DC in rbhsAll 
         IF (bit NTDSCONN_OPT_IS_GENERATED is clear in cn!options or 
             cn!transportType references t) and 
         NTDSCONN_OPT_RODC_TOPOLOGY is clear in cn!options 
             LET rguid be the objectGUID of the nTDSDSA object 
             referenced by cn!fromServer 
             LET lguid be (cn!parent)!objectGUID 
              
             IF BridgeheadDCFailed(rguid, detectFailedDCs) = FALSE and 
             BridgeheadDCFailed(lguid, detectFailedDCs) = FALSE 
                 Increment cValidConnections by 1 
             ENDIF 
         
             IF keepConnections does not contain cn!objectGUID 
                 APPEND cn!objectGUID to keepConnections 
             ENDIF 
         ENDIF 
     ENDFOR 
  
  
     IF cValidConnections = 0 
         LET opt be NTDSCONN_OPT_IS_GENERATED 
         IF bit NTDSSITELINK_OPT_USE_NOTIFY is set in ri.Options 
             SET bits NTDSCONN_OPT_OVERRIDE_NOTIFY_DEFAULT and 
             NTDSCONN_OPT_USE_NOTIFY in opt  
         ENDIF 
         IF bit NTDSSITELINK_OPT_TWOWAY_SYNC is set in ri.Options 
             SET bit NTDSCONN_OPT_TWOWAY_SYNC opt 
         ENDIF 
         IF bit NTDSSITELINK_OPT_DISABLE_COMPRESSION is set in 
         ri.Options 
             SET bit NTDSCONN_OPT_DISABLE_INTERSITE_COMPRESSION in opt 
         ENDIF 
          
         Perform an originating update to create a new nTDSConnection 
         object cn that is a child of lbh, cn!enabledConnection = TRUE, 
         cn!options = opt, cn!transportType is a reference to t, 
         cn!fromServer is a reference to rbh, and cn!schedule = sch 
          
         APPEND cn!objectGUID to keepConnections 
     ENDIF 
 } 

6.2.2.4 (Updated Section) Removing Unnecessary Connections 

This task deletes nTDSConnection objects that are not needed to imply edges in any NC replica graph. 

Given an nTDSConnection object cn, if the DC with the nTDSDSA object dc that is the parent object of 

cn and the DC with the nTDSDA object referenced by cn!fromServer are in the same site, the KCC on 
dc deletes cn if all of the following are trueTRUE: 

▪ Bit NTDSCONN_OPT_IS_GENERATED is set in cn!options. 

▪ No site settings object s exists for the local DC's site, or bit 
NTDSSETTINGS_OPT_IS_TOPL_CLEANUP_DISABLED is clear in s!options. 

▪ Another nTDSConnection object cn2 exists such that cn and cn2 have the same parent object, 

cn!fromServer = cn2!fromServer, and either 



 

577 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ cn!whenCreated < cn2!whenCreated 

▪ cn!whenCreated = cn2!whenCreated and cn!objectGUID < cn2!objectGUID 

▪ Bit NTDSCONN_OPT_RODC_TOPOLOGY is clear in cn!options 

Given an nTDSConnection object cn, if the DC with the nTDSDSA object dc that is the parent object of 

cn and the DC with the nTDSDSA object referenced by cn!fromServer are in different sites, a KCC 
acting as an ISTG in dc's site deletes cn if all of the following are trueTRUE: 

▪ Bit NTDSCONN_OPT_IS_GENERATED is set in cn!options. 

▪ cn!fromServer references an nTDSDSA object for a DC in a site other than the local DC's site. 

▪ The keepConnections sequence returned by CreateIntersiteConnections() does not contain 
cn!objectGUID, or cn is "superseded by" (see below) another nTDSConnection cn2 and 
keepConnections contains cn2!objectGUID. 

▪ The return value of CreateIntersiteConnections() was trueTRUE. 

▪ Bit NTDSCONN_OPT_RODC_TOPOLOGY is clear in cn!options 

An nTDSConnection cn is said to be "superseded by" another nTDSConnection cn2 if both of the 
following are trueTRUE: 

▪ If cn implies a tuple in r!repsFrom, cn2 also implies a tuple in r!repsFrom. 

▪ If s is (cn!fromServer)!objectGUID and t is (cn!parent)!objectGUID, BridgeheadDCFailed(s, true) = 

falseTRUE) = FALSE and BridgeheadDCFailed(t, true) = falseTRUE) = FALSE.  

6.2.2.5 (Updated Section) Connection Translation 

This task adjusts values of repsFrom abstract attributes of NC replicas on the local DC to match those 
"implied" by nTDSConnection objects. 

If the NTDSDSA_OPT_DISABLE_NTDSCONN_XLATE bit is set in the value of the options attribute of 
the local DC's nTDSDSA object, the KCC skips this task. 

First, the KCC inspects n!repsFrom for each NC replica n that "is present" or "shouldSHOULD be 
present" on the local DC. If n is not an NC replica that "shouldSHOULD be present" on the local DC, 
the KCC calls IDL_DRSReplicaDel to remove all tuples from n!repsFrom and to remove n. 

Otherwise, for each tuple t in n!repsFrom, let s be the nTDSDSA object such that s!objectGUID = 

t.uuidDsa. Let cn be the nTDSConnection object such that cn is a child of the local DC's nTDSDSA 
object and cn!fromServer = s and cn!options does not contain NTDSCONN_OPT_RODC_TOPOLOGY, or 
NULL if no such cn exists. The KCC calls IDL_DRSReplicaDel to remove t from n!repsFrom if any of the 
following is trueTRUE: 

▪ cn = NULL. 

▪ No NC replica of the NC "is present" on s. 

▪ A writable replica of the NC "shouldSHOULD be present" on the local DC, but a partial replica "is 

present" on s. 

If the KCC did not remove t from n!repsFrom, it updates t if necessary to satisfy the following 
requirements. Such updates are typically required when the IDL_DRSGetNCChanges server has 
moved from one site to another—for example, to enable compression when the server is moved from 
the client's site to another site. 

▪ t.schedule = cn!schedule 



 

578 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Bit DRS_PER_SYNC is set in t.replicaFlags if and only if cn!schedule has a value v that specifies 
scheduled replication is to be performed at least once per week. 

▪ Bit DRS_INIT_SYNC is set in t.replicaFlags if and only if s and the local DC's nTDSDSA object are 
in the same site or s is the FSMO role owner of one or more FSMO roles in the NC replica. 

▪ If bit NTDSCONN_OPT_OVERRIDE_NOTIFY_DEFAULT is set in cn!options, bit DRS_NEVER_NOTIFY 
is set in t.replicaFlags if and only if bit NTDSCONN_OPT_USE_NOTIFY is clear in cn!options. 
Otherwise, bit DRS_NEVER_NOTIFY is set in t.replicaFlags if and only if s and the local DC's 
nTDSDSA object are in different sites. 

▪ Bit DRS_USE_COMPRESSION is set in t.replicaFlags if and only if s and the local DC's nTDSDSA 
object are not in the same site and the NTDSCONN_OPT_DISABLE_INTERSITE_COMPRESSION bit 
is clear in cn!options. 

▪ Bit DRS_TWOWAY_SYNC is set in t.replicaFlags if and only if bit NTDSCONN_OPT_TWOWAY_SYNC 
is set in cn!options. 

▪ Bits DRS_DISABLE_AUTO_SYNC and DRS_DISABLE_PERIODIC_SYNC are set in t.replicaFlags if 
and only if cn!enabledConnection = falseFALSE. 

▪ If s and the local DC's nTDSDSA object are in the same site, cn!transportType has no value, or the 
RDN of cn!transportType is CN=IP: 

▪ Bit DRS_MAIL_REP in t.replicaFlags is clear. 

▪ t.uuidTransport = NULL GUID. 

▪ t.uuidDsa = s!objectGUID 

▪ Otherwise: 

▪ Bit DRS_MAIL_REP in t.replicaFlags is set. 

▪ If x is the object with dsname cn!transportType, t.uuidTransport = x!objectGUID. 

▪ Let a be the attribute identified by x!transportAddressAttribute. If a is the dNSHostName 

attribute, t.uuidDsa = s!objectGUID. Otherwise, t.uuidDsa = (s!parent)!objectGUID. 

Finally, the KCC calls IDL_DRSReplicaAdd to add a tuple u to n!repsFrom for each 
IDL_DRSGetNCChanges server "implied" by the nTDSConnection object children of the local DC's 
nTDSDSA object if such a u does not already exist. For each such nTDSConnection cn, a tuple u is 
implied if all of the following are trueTRUE: 

▪ cn!enabledConnection = trueTRUE. 

▪ cn!options does not contain NTDSCONN_OPT_RODC_TOPOLOGY. 

▪ cn!fromServer references an nTDSDSA object. 

▪ An NC replica of the NC "is present" on the DC to which the nTDSDSA object referenced by 

cn!fromServer corresponds. 

▪ An NC replica of the NC "shouldSHOULD be present" on the local DC. 

▪ The NC replica on the DC referenced by cn!fromServer is a writable replica or the NC replica that 
"shouldSHOULD be present" on the local DC is a partial replica. 

▪ The NC is not a domain NC, the NC replica that "shouldSHOULD be present" on the local DC is a 
partial replica, cn!transportType has no value, or cn!transportType has an RDN of CN=IP. 



 

579 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

If tuple u is implied, its fields satisfy each of the criteria defined above for tuple t when t is updated 
using IDL_DRSReplicaModify, plus the following additional criteria: 

▪ u.uuidDsa = the objectGUID of the nTDSDSA object referenced by cn!fromServer. 

▪ u.uuidInvocId, u.usnVec, u.consecutiveFailure, u.timeLastSuccess, u.timeLastAttempt, and 

u.resultLastAttempt are 0. 

If an attempt to contact another DC is made and it fails, the KCC adds a tuple for that DC to the local 
DC's kCCFailedConnections variable. 

6.2.2.6 Remove Unneeded kCCFailedLinks and kCCFailedConnections Tuples 

This task removes tuples from kCCFailedLinks and kCCFailedConnections that are not as inputs to 
future runs. 

For each tuple f in kCCFailedLinks, if f.FailureCount = 0 the KCC removes f. 

For each tuple k in kCCFailedConnections, if no attempt was made in this run to contact the 
corresponding DC (the DC with nTDSDSA object o such that o!objectGUID = k.UUIDDsa) or an 
attempt was made and it was successful, the KCC removes k. 

6.2.2.7 (Updated Section) Updating the RODC NTFRS Connection Object 

This task runs only when the local DC is an RODC. It updates the RODC NTFRS connection object. 

Given an nTDSConnection object cn1, such that cn1!options contains 
NTDSCONN_OPT_RODC_TOPOLOGY, and another nTDSConnection object cn2, such that cn2!options 

does not contain NTDSCONN_OPT_RODC_TOPOLOGY, modify cn1 to ensure that the following is 
trueTRUE: 

▪ cn1!fromServer = cn2!fromServer 

▪ cn1!schedule = cn2!schedule 

If no such cn2 can be found, cn1 is not modified. If no such cn1 can be found, nothing is modified by 
this task. 

6.3 (Updated Section) Publishing and Locating a Domain Controller 

Active Directory is a distributed service, which means that when a client needs Active Directory 
services, it can receive those services from any of a number of equivalent DCs. Clients cannot be 
expected to know in advance the names of all possible suitable DCs. This implies a need for a protocol 

by which clients can dynamically discover which DCs are configured, operational, and reachable such 
that they could supply the needed services, and to choose among those DCs. 

Locating a DC works differently for AD DS than for AD LDS. 

▪ AD DS 

The process of locating AD DS DCs is performed in two separate ways, one based on NetBIOS and 
mailslots, the other based on DNS and LDAP. While the network representations of the two ways 
are radically different, they are functionally very similar. It is worthwhile to explain the conceptual 

similarities and motivations before starting a detailed discussion of the differing implementation 
details. 

The NetBIOS version is required for compatibility with older clients (such as Windows NT 4.0) that 
are not aware of Active Directory. Being based on NetBIOS, however, it is dependent either on 
network broadcasts or on the deployment of a NetBIOS Name Service (NBNS) infrastructure; 



 

580 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

broadcasts cannot be used in a wide area network where they are typically blocked. The DNS-
based version makes no use of broadcasts and includes extra support for determining network 

locality. 

Both versions of the protocol work in two phases. In the first phase, DCs publish data about 

themselves (in DNS, or in NBNS, or by local configuration of the responder to NetBIOS broadcasts, 
depending on which version of publication is being used). In the second phase, clients look up this 
static data to determine a set of possible DCs and then send small messages to some or all of the 
set, examining the responses in order to determine liveness, reachability, and suitability. Given 
their conceptual similarity to an Internet Control Message Protocol (ICMP) ping message, these 
small messages are referred to as "LDAP ping" and "mailslot ping". 

Sections 6.3.1 through 6.3.7 specify the precise details about the data that servers publish about 

themselves. These sections also specify the precise details about the two "ping" protocols. 

▪ AD LDS 

An AD LDS DC does not publish data about itself in name services as in the case of an AD DS DC. 

An AD LDS DC that is joined to an AD DS domain SHOULD publish itself by creating an object in 
AD DS; a client MAY then query AD DS and select an AD LDS DC based on the query results. The 
information that an AD LDS DC publishes about itself is described in section 6.3.8. An AD LDS DC 

that is not joined to an AD DS domain does not publish itself at all; a client mustMUST possess an 
AD LDS server's IP address or host name and port number. This protocol does not provide a 
means for a client to obtain this information. 

6.3.1 Structures and Constants 

6.3.1.1 NETLOGON_NT_VERSION Options Bits 

The following are the NETLOGON_NT_VERSION options bits: 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

V 
G 
C 

V 
L 

V 
I 
P 

V 
P 
D 
C 

X X X V 
N 
T 
4 

X X X X X X X X X X X X X X X X X X X V 
C 
S 

V 
5 
E 
P 

V 
5 
E 
X 

V 
5 

V 
1 

Note  The bits are presented in big-endian byte order. 

V1 (NETLOGON_NT_VERSION_1, 0x00000001): Unless overridden by V5, V5EX, or V5EP, this 

bit instructs the server to respond to LDAP ping (section 6.3.3) and mailslot ping (section 6.3.5) 
using either the NETLOGON_SAM_LOGON_RESPONSE_NT40 structure or the 
NETLOGON_PRIMARY_RESPONSE structure for the PDC. 

V5 (NETLOGON_NT_VERSION_5, 0x00000002): Unless overridden by V5EX or V5EP, this bit 

instructs the server to respond to LDAP ping and mailslot ping using the 
NETLOGON_SAM_LOGON_RESPONSE structure. 

V5EX (NETLOGON_NT_VERSION_5EX, 0x00000004): Unless overridden by V5EP, this bit 

instructs the server to respond to LDAP ping and mailslot ping using the 
NETLOGON_SAM_LOGON_RESPONSE_EX structure. 

V5EP (NETLOGON_NT_VERSION_5EX_WITH_IP, 0x00000008): Instructs the server to respond 
to mailslot ping using the NETLOGON_SAM_LOGON_RESPONSE_EX structure and also to return 
the IP address of the server in the response. 



 

581 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

VCS (NETLOGON_NT_VERSION_WITH_CLOSEST_SITE, 0x00000010): Indicates that the client 
is querying for the closest site information. This flag is interpreted by DCs with DC functional level 

greater than or equal to DS_BEHAVIOR_WIN2008. 

VNT4 (NETLOGON_NT_VERSION_AVOID_NT4EMUL, 0x01000000): Forces the server to 

respond to an LDAP ping and to honor all the NetLOGON_NT_VERSION options that the client 
specifies in the LDAP ping or mailslot ping. The client specifies 
NETLOGON_NT_VERSION_AVOID_NT4EMUL to force the server to respond to an LDAP ping even if 
the server is configured to ignore LDAP ping requests, and to honor all the 
NETLOGON_NT_VERSION options specified by the client in a mailslot ping, even if the server is 
configured to assume NETLOGON_NT_VERSION_1 in mailslot ping requests. 

VPDC (NETLOGON_NT_VERSION_PDC, 0x10000000): Indicates that the client is querying for a 

PDC. 

VIP (NETLOGON_NT_VERSION_IP, 0x20000000): Obsolete, ignored. 

VL (NETLOGON_NT_VERSION_LOCAL, 0x40000000): Indicates that the client is the local 

machine. 

VGC (NETLOGON_NT_VERSION_GC, 0x80000000): Indicates that the client is querying for a GC. 

X: Reserved for future expansion. The client MUST set it to 0, and the server MUST ignore it. 

6.3.1.2 DS_FLAG Options Bits 

The following are the DS_FLAG options bits: 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

F 
F 

F 
D 
M 

F 
D 
N 
S 

X X X X X X X X X X X X X F 
W 
9 

F 
W 
8 

F 
W 
S 

F 
F 
S 

F 
S 
S 

F 
N 

F 
G 
T 

F 
W 

F 
C 

F 
T 

F 
K 

F 
D 

F 
L 

F 
G 

X F 
P 

Note  The bits are presented in big-endian byte order. 

FP (DS_PDC_FLAG, 0x00000001): The server holds the PDC FSMO role (PdcEmulationMasterRole). 

FSMO roles are defined in section 3.1.1.1.11. Certain updates can be performed only on the holder 
of the PDC FSMO role (see Updates Performed Only on FSMOs (section 3.1.1.5.1.8)). 

FG (DS_GC_FLAG, 0x00000004): The server is a GC server and will accept and process messages 
directed to it on the global catalog ports (see section 3.1.1.3.1.10). 

FL (DS_LDAP_FLAG, 0x00000008): The server is an LDAP server. 

FD (DS_DS_FLAG, 0x00000010): The server is a DC. 

FK (DS_KDC_FLAG, 0x00000020): The server is running the Kerberos Key Distribution Center 

service. 

FT (DS_TIMESERV_FLAG, 0x00000040): The Win32 Time Service, as specified in [MS-W32T], is 
present on the server. 

FC (DS_CLOSEST_FLAG, 0x00000080): The server is in the same site as the client. This is a hint 
to the client that it is well-connected to the server in terms of speed. 



 

582 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

FW (DS_WRITABLE_FLAG, 0x00000100): Indicates that the server is not an RODC. As described 
in section 3.1.1.1.9, all NC replicas hosted on an RODC do not accept originating updates. 

FGT (DS_GOOD_TIMESERV_FLAG, 0x00000200): The server is a reliable time server. 

FN (DS_NDNC_FLAG, 0x00000400): The NC is an application NC. 

FSS (DS_SELECT_SECRET_DOMAIN_6_FLAG, 0x00000800): The server is an RODC. 

FFS (DS_FULL_SECRET_DOMAIN_6_FLAG, 0x00001000): The server is a writable DC, not 
running Windows 2000 Server through Windows Server 2003 R2. 

FWS (DS_WS_FLAG, 0x00002000): The Active Directory Web Service, as specified in [MS-ADDM], 
is present on the server. 

FW8 (DS_DS_8_FLAG, 0x00004000): The server is not running Windows 2000 through Windows 
Server 2008 R2. 

FW9 (DS_DS_9_FLAG, 0x00008000): The server is not running Windows 2000 through Windows 
Server 2012. 

FDNS (DS_DNS_CONTROLLER_FLAG, 0x20000000): The server has a DNS name. 

FDM (DS_DNS_DOMAIN_FLAG, 0x40000000): The NC is a default NC. 

FF (DS_DNS_FOREST_FLAG, 0x80000000): The NC is the forest root. 

X: Reserved for future expansion. The server MUST return zero, and the client MUST ignore. 

6.3.1.3 Operation Code 

Operation code set in the request and response of an LDAP ping (section 6.3.3) or a mailslot ping 
(section 6.3.5). 

Symbolic name Value (Associated packet format) 

LOGON_PRIMARY_QUERY 7 (section 6.3.1.4) 

LOGON_PRIMARY_RESPONSE 12 (section 6.3.1.5) 

LOGON_SAM_LOGON_REQUEST 18 (section 6.3.1.6) 

LOGON_SAM_LOGON_RESPONSE 19 (section 6.3.1.8) 

LOGON_SAM_PAUSE_RESPONSE 20 (section 6.3.1.8) 

LOGON_SAM_USER_UNKNOWN 21 (section 6.3.1.8) 

LOGON_SAM_LOGON_RESPONSE_EX 23 (section 6.3.1.9) 

LOGON_SAM_PAUSE_RESPONSE_EX 24 (section 6.3.1.8) 

LOGON_SAM_USER_UNKNOWN_EX 25 (section 6.3.1.8) 

 

6.3.1.4 NETLOGON_LOGON_QUERY 

The format of a mailslot ping as documented in section 6.3.5. This can be used if a PDC is required. 



 

583 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Opcode ComputerName (variable) 

... 

MailslotName (variable) 

... 

UnicodeComputerName (variable) 

... 

NtVersion 

LmNtToken Lm20Token 

Opcode (2 bytes): Operation code (see section 6.3.1.3). Set to LOGON_PRIMARY_QUERY. 

ComputerName (variable): Null-terminated ASCII value of the NetBIOS name of the client. This 
field SHOULD contain at least one character: the null terminator. 

MailslotName (variable): Null-terminated ASCII value of the name of the mailslot on which the 
client listens. This field is always aligned to an even byte boundary, with padding (bytes of value 
0) to the next even byte boundary as necessary. 

UnicodeComputerName (variable): Null-terminated Unicode value of the NetBIOS name of the 
client. This field SHOULD contain at least one character: the null terminator. Each Unicode value is 

encoded as 2 bytes. 

NtVersion (4 bytes): NETLOGON_NT_VERSION options (see 6.3.1.1). 

LmNtToken (2 bytes): This MUST be set to 0xFFFF. 

Lm20Token (2 bytes): This MUST be set to 0xFFFF. 

Note  All multibyte quantities are represented in little-endian byte order. 

6.3.1.5 NETLOGON_PRIMARY_RESPONSE 

The NETLOGON_PRIMARY_RESPONSE structure is the PDC server's response to a mailslot ping 
(section 6.3.5). 

0 1 2 3 4 5 6 7 8 9 
1 
0 1 2 3 4 5 6 7 8 9 

2 
0 1 2 3 4 5 6 7 8 9 

3 
0 1 

Opcode PrimaryDCName (variable) 

... 

UnicodePrimaryDCName (variable) 



 

584 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

... 

UnicodeDomainName (variable) 

... 

NtVersion 

LmNtToken Lm20Token 

Opcode (2 bytes): Operation code (see section 6.3.1.3). Set to LOGON_PRIMARY_RESPONSE. 

PrimaryDCName (variable): Null-terminated ASCII value of the NetBIOS name of the server. This 
field SHOULD contain at least one character: the null terminator. 

UnicodePrimaryDCName (variable): Null-terminated Unicode value of the NetBIOS name of the 
server. This field SHOULD contain at least one character: the null terminator. Each Unicode value 
is encoded as 2 bytes. This field is always aligned to an even byte boundary, with padding (bytes 
of value 0) to the next even byte boundary as necessary. 

UnicodeDomainName (variable): Null-terminated Unicode value of the NetBIOS name of the NC. 
This field MUST contain at least one character: the null terminator. Each Unicode value is encoded 

as 2 bytes. 

NtVersion (4 bytes): NETLOGON_NT_VERSION Options (see section 6.3.1.1). 

LmNtToken (2 bytes): This MUST be set to 0xFFFF. 

Lm20Token (2 bytes): This MUST be set to 0xFFFF. 

Note  All multibyte quantities are represented in little-endian byte order. 

6.3.1.6 NETLOGON_SAM_LOGON_REQUEST 

The format of a mailslot ping as documented in section 6.3.5. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Opcode RequestCount 

UnicodeComputerName (variable) 

... 

UnicodeUserName (variable) 

... 

MailslotName (variable) 

... 



 

585 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

AllowableAccountControlBits 

DomainSidSize 

DomainSid (variable) 

... 

NtVersion 

LmNtToken Lm20Token 

Opcode (2 bytes): Operation code (see section 6.3.1.3). Set to LOGON_SAM_LOGON_REQUEST. 

RequestCount (2 bytes): A USHORT that contains the number of times the user has repeated this 

request. 

UnicodeComputerName (variable): Null-terminated Unicode value of the NETBIOS name of the 
client. This field MUST contain at least one character: the null terminator. Each Unicode value is 
encoded as 2 bytes.  

UnicodeUserName (variable): Null-terminated Unicode value of the account name of the user being 
queried. This field MUST contain at least one character: the null terminator. Each Unicode value is 
encoded as 2 bytes. 

MailslotName (variable): Null-terminated ASCII value of the name of the mailslot the client listens 
on. 

AllowableAccountControlBits (4 bytes): Represents the userAccountControl attribute of an 
account. 

DomainSidSize (4 bytes): A DWORD that contains the size of the DomainSid field. 

DomainSid (variable): The SID of the domain, specified as a SID structure, which is defined in [MS-
DTYP] section 2.4.2. Its length is defined in the DomainSidSize field. This field is padded as 

necessary so that it is aligned on a DWORD boundary. 

NtVersion (4 bytes): NETLOGON_NT_VERSION Options (see 6.3.1.1). 

LmNtToken (2 bytes): This MUST be set to 0xFFFF. 

Lm20Token (2 bytes): This MUST be set to 0xFFFF. 

Note  Except as noted earlier in this section, there is no padding for alignment. Therefore, except as 
otherwise specified, all fields after MailslotName can occur on odd byte boundaries. 

All multibyte quantities are represented in little-endian byte order. 

6.3.1.7 NETLOGON_SAM_LOGON_RESPONSE_NT40 

The NETLOGON_SAM_LOGON_RESPONSE_NT40 structure is the server's response to an LDAP ping 
(section 6.3.3) or a mailslot ping (section 6.3.5). 



 

586 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Opcode UnicodeLogonServer (variable) 

... 

UnicodeUserName (variable) 

... 

UnicodeDomainName (variable) 

... 

NtVersion 

LmNtToken Lm20Token 

Opcode (2 bytes): Operation code (see section 6.3.1.3). 

UnicodeLogonServer (variable): Null-terminated Unicode value of the NetBIOS name of the server. 
This field MUST contain at least one character: the null terminator. Each Unicode value is encoded 

as 2 bytes. 

UnicodeUserName (variable): Null-terminated Unicode value of the name of the user copied 
directly from the client's request. This field MUST contain at least one character: the null 
terminator. Each Unicode value is encoded as 2 bytes.  

UnicodeDomainName (variable): Null-terminated Unicode value of the NetBIOS name of the NC. 

This field MUST contain at least one character: the null terminator. Each Unicode value is encoded 

as 2 bytes. 

NtVersion (4 bytes): Set to NETLOGON_NT_VERSION_1. 

LmNtToken (2 bytes): This MUST be set to 0xFFFF. 

Lm20Token (2 bytes): This MUST be set to 0xFFFF. 

Note  All multibyte quantities are represented in little-endian byte order. 

6.3.1.8 NETLOGON_SAM_LOGON_RESPONSE 

The NETLOGON_SAM_LOGON_RESPONSE structure is the first extended version of the server's 
response to an LDAP ping (section 6.3.3) or a mailslot ping (section 6.3.5). 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Opcode UnicodeLogonServer (variable) 

... 

UnicodeUserName (variable) 



 

587 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

... 

UnicodeDomainName (variable) 

... 

DomainGuid (16 bytes) 

... 

... 

NullGuid (16 bytes) 

... 

... 

DnsForestName (variable) 

... 

DnsDomainName (variable) 

... 

DnsHostName (variable) 

... 

DcIpAddress 

Flags 

NtVersion 

LmNtToken Lm20Token 

Opcode (2 bytes): Operation code (see section 6.3.1.3). 

UnicodeLogonServer (variable): Null-terminated Unicode value of the NetBIOS name of the server. 

This field always contains at least one character: the null terminator. Each Unicode value is 

encoded as 2 bytes. 

UnicodeUserName (variable): Null-terminated Unicode value of the name of the user copied 
directly from the client's request. This field always contains at least one character: the null 
terminator. Each Unicode value is encoded as 2 bytes. 

UnicodeDomainName (variable): Null-terminated Unicode value of the NetBIOS name of the NC. 
This field always contains at least one character: the null terminator. Each Unicode value is 

encoded as 2 bytes. 



 

588 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

DomainGuid (16 bytes): The value of the NC's GUID attribute specified as a GUID structure, which 
is defined in [MS-DTYP] section 2.3.4. 

NullGuid (16 bytes): A NULL GUID. The GUID structure is defined in [MS-DTYP] section 2.3.4. 
Always set zero values for all fields in the GUID structure. 

DnsForestName (variable): UTF-8 encoded value of the DNS forest name, compressed as specified 
in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7. 

DnsDomainName (variable): UTF-8 encoded value of the DNS NC name, compressed as specified in 
[RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7. 

DnsHostName (variable): UTF-8 encoded value of the DNS server name, compressed as specified in 
[RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7. 

DcIpAddress (4 bytes): The domain controller IP address, as specified in [RFC791]. 

Flags (4 bytes): DS_FLAG Options (see section 6.3.1.2). 

NtVersion (4 bytes): Set to NETLOGON_NT_VERSION_1 | NETLOGON_NT_VERSION_5. 

LmNtToken (2 bytes): This MUST be set to 0xFFFF. 

Lm20Token (2 bytes): This MUST be set to 0xFFFF. 

Note  All multibyte quantities are represented in little-endian byte order. 

6.3.1.9 NETLOGON_SAM_LOGON_RESPONSE_EX 

The NETLOGON_SAM_LOGON_RESPONSE_EX structure is the second extended version of the server's 
response to an LDAP ping (section 6.3.3) or a mailslot ping (section 6.3.5). 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

Opcode Sbz 

Flags 

DomainGuid (16 bytes) 

... 

... 

DnsForestName (variable) 

... 

DnsDomainName (variable) 

... 

DnsHostName (variable) 



 

589 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

... 

NetbiosDomainName (variable) 

... 

NetbiosComputerName (variable) 

... 

UserName (variable) 

... 

DcSiteName (variable) 

... 

ClientSiteName (variable) 

... 

DcSockAddrSize DcSockAddr (16 bytes) 

... 

... 

... NextClosestSiteName (variable) 

... 

NtVersion 

LmNtToken Lm20Token 

Opcode (2 bytes): Operation code (see section 6.3.1.3). 

Sbz (2 bytes): This MUST be set to 0. 

Flags (4 bytes): DS_FLAG Options (see section 6.3.1.2). 

DomainGuid (16 bytes): The value of the NC's GUID attribute specified as a GUID structure, which 
is defined in [MS-DTYP] section 2.3.4. 

DnsForestName (variable): UTF-8 encoded value of the DNS name of the forest, compressed as 
specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7. 

DnsDomainName (variable): UTF-8 encoded value of the DNS name of the NC, compressed as 
specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7. 



 

590 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

DnsHostName (variable): UTF-8 encoded value of the DNS name of the server, compressed as 
specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7. 

NetbiosDomainName (variable): UTF-8 encoded value of the NetBIOS name of the NC, 
compressed as specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 

6.3.7. 

NetbiosComputerName (variable): UTF-8 encoded value of the NetBIOS name of the server, 
compressed as specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 
6.3.7. 

UserName (variable): UTF-8 encoded value of the user specified in the client's request, compressed 
as specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7. 

DcSiteName (variable): UTF-8 encoded value of the site name of the server, compressed as 

specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7. 

ClientSiteName (variable): UTF-8 encoded value of the site name of the client, compressed as 

specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7. 

DcSockAddrSize (1 byte): A CHAR that contains the size of the server's IP address. This field is 
included only if the client specifies NETLOGON_NT_VERSION_5EX_WITH_IP in the request. 

DcSockAddr (16 bytes): The domain controller IPv4 address, structured as shown in the following 

diagram. This field is included only if the client specifies NETLOGON_NT_VERSION_5EX_WITH_IP 
in the request. 

0 1 2 3 4 5 6 7 8 9 

1 

0 1 2 3 4 5 6 7 8 9 

2 

0 1 2 3 4 5 6 7 8 9 

3 

0 1 

sin_family sin_port 

sin_addr 

sin_zero 

... 

sin_family (2 bytes): The socket family, represented in little-endian byte order. The value 
SHOULD always be AF_INET (that is, 2). 

sin_port (2 bytes): The socket port, represented in little-endian byte order. The value SHOULD 
always be zero. 

sin_addr (4 bytes): The socket address, represented in big-endian byte order. The value is an 
IPv4 address. If the domain controller does not have an IPv4 address, this value SHOULD be 
127.0.0.1. 

sin_zero (8 bytes): Reserved. MUST be set to zero when sending and ignored on receipt. 

NextClosestSiteName (variable): This field is included only if the client specifies 
NETLOGON_NT_VERSION_WITH_CLOSEST_SITE in the request, and if the responding DC has DC 

functional level DS_BEHAVIOR_WIN2008 or greater. When included, NextClosestSiteName 
contains the name of the site that is closest by cost to ClientSiteName without being equal to it. 
The site name is UTF-8 encoded, compressed as specified in [RFC1035] section 4.1.4. To get the 
decompressed string, see section 6.3.7. 

NtVersion (4 bytes): NETLOGON_NT_VERSION_1 | NETLOGON_NT_VERSION_5EX. 



 

591 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LmNtToken (2 bytes): This MUST be set to 0xFFFF. 

Lm20Token (2 bytes): This MUST be set to 0xFFFF. 

Note  All multibyte quantities are represented in little-endian byte order. 

6.3.1.10 (Updated Section) DNSRegistrationSettings 

DNSRegistrationSettings is an abstract type containing the following fields. 

PerformDynamicRegistration: A Boolean that indicates whether the DC registers DNS records on a 
periodic basis, as specified by [RFC2136]. Default value of this flag is trueTRUE. If set to 

falseFALSE, the DC does not itself register any DNS records. 

AvoidDNSRecordsList: This is a list of zero or more of the following mnemonics. Presence of a 
specific mnemonic on the list is an instruction to the DC to skip the registration of the associated 
DNS record as part of dynamic DNS registration. By default this list is empty. 

Mnemonic DNS Record Type Associated DNS Record 

LdapIpAddress A <DnsDomainName> 

Ldap SRV _ldap._tcp.<DnsDomainName> 

LdapAtSite SRV _ldap._tcp.<SiteName>._sites.<DnsDomainName> 

Pdc SRV _ldap._tcp.pdc._msdcs.<DnsDomainName> 

Gc SRV _ldap._tcp.gc._msdcs.<DnsForestName> 

GcAtSite SRV _ldap._tcp.<SiteName>._sites.gc._msdcs.<DnsForestName> 

DcByGuid SRV _ldap._tcp.<DomainGuid>.domains._msdcs.<DnsForestName> 

GcIpAddress A _gc._msdcs.<DnsForestName> 

DsaCname CNAME <DsaGuid>._msdcs.<DnsForestName> 

Kdc SRV _kerberos._tcp.dc._msdcs.<DnsDomainName> 

KdcAtSite SRV _kerberos._tcp.dc._msdcs.<SiteName>._sites.<DnsDomainName> 

Dc SRV _ldap._tcp.dc._msdcs.<DnsDomainName> 

DcAtSite SRV _ldap._tcp.<SiteName>._sites.dc._msdcs.<DnsDomainName> 

Rfc1510Kdc SRV _kerberos._tcp.<DnsDomainName> 

Rfc1510KdcAtSite SRV _kerberos._tcp.<SiteName>._sites.<DnsDomainName> 

GenericGc SRV _gc._tcp.<DnsForestName> 

GenericGcAtSite SRV _gc._tcp.<SiteName>._sites.<DnsForestName> 

Rfc1510UdpKdc SRV _kerberos._udp.<DnsDomainName> 

Rfc1510Kpwd SRV _kpasswd._tcp.<DnsDomainName> 

Rfc1510UdpKpwd SRV _kpasswd._udp.<DnsDomainName> 

where 

<DnsDomainName> = FQDN (2) of the default NC of the DC 



 

592 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

<DnsForestName> = FQDN (2) of the forest root domain NC 

<SiteName> = Site for which the record is being registered 

<DsaGuid> = DSA GUID 

<DomainGuid> = objectGuid of the root object of the default NC 

DynamicRegistrationRefreshInterval: The time interval in minutes after which the DC re-registers 
DNS records if dc.dnsRegistrationSettings.PerformDynamicRegistration is trueTRUE. The default 
value is 60. 

SRVRecordWeight: Specifies the value of the Weight field for all DNS SRV records ([RFC2782]) that 
are registered by the DC. The default value is 100. 

SRVRecordPriority: Specifies the value of the Priority field for all DNS SRV records ([RFC2782]) 
that are registered by the DC. The default value is 0. 

DNSRecordTTL: Specifies the value of the TTL field for all DNS records ([RFC2782]) that are 
registered by the DC. The default value is 600 seconds. 

PerformAutoSiteCoverage: A Boolean that indicates whether the DC registers records for any 
additional sites that do not have any DCs in them. Implementations can choose any algorithm to 
determine which DCs cover the sites that don't already have coverage. The choice of algorithm 
does not affect client interoperability.The default value of this flag is trueTRUE. 

SitesForDCRecordsList: A list of site names. This list instructs the DC to register the DNS records 
that are registered for the default NC (see section 6.3.2.3) for all the listed sites. By default this 
list is empty. 

SitesForGCRecordsList: A list of site names. This list instructs the DC to register the DNS records 
that are registered for the GC server (see section 6.3.2.3) for all the listed sites. By default this 
list is empty. 

SitesForNDNCRecordsList: A list of site names. This list instructs the DC to register the DNS records 

that are registered for an application NC (see section 6.3.2.3) for all the listed sites. By default 
this list is empty. 

Each of the above fields can be configured by an implementation-dependent mechanism. On 
applicable Windows Server releases, these can also be configured at the following registry key path: 

 HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Netlogon\Parameters 
  

If a value is present under this key, it takes precedence over any value set by an implementation-
dependent configuration mechanism. The following table describes the name of the registry key value 

for each field, the registry type and the range for each setting: 

Field Registry Value Name RegistryType 
Range/Acceptable 
Values 

PerformDynamicRegistration UseDynamicDns REG_DWORD Enabled = 1, Disabled = 0 

AvoidDNSRecordsList DnsAvoidRegisterRecords REG_SZ List of space delimited 
mnemonics mentioned in 
the table of mnemonics 
above. 

DynamicRegistrationRefreshInterval DnsRefreshInterval REG_DWORD MinValue = 0, MaxValue = 
4294967200 



 

593 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Field Registry Value Name RegistryType 
Range/Acceptable 
Values 

SRVRecordWeight LdapSrvWeight REG_DWORD MinValue = 0, MaxValue = 
65535 

SRVRecordPriority LdapSrvPriority REG_DWORD MinValue = 0, MaxValue = 
65535 

DNSRecordTTL DnsTtl REG_DWORD MinValue = 0, MaxValue = 
2147483647 

PerformAutoSiteCoverage AutoSiteCoverage REG_DWORD Enabled = 1, Disabled = 0 

SitesForDCRecordsList SiteCoverage REG_SZ List of space delimited site 
names. 

SitesForGCRecordsList GcSiteCoverage REG_SZ List of space delimited site 

names. 

SitesForNDNCRecordsList NdncSiteCoverage REG_SZ List of space delimited site 
names. 

 

6.3.2 (Updated Section) DNS Record Registrations 

If dc.dnsRegistrationSettings.PerformDynamicRegistration is trueTRUE, a DC performs dynamic 
registration of DNS records (as specified by [RFC2136]) at a periodic interval (see section 6.3.2.1.1). 
Additionally, a DC performs the DNS record registration on demand when requested by the Netlogon 
Remote Protocol as described in [MS-NRPC] section 3.5.4.9.1.  

6.3.2.1 Timers 

6.3.2.1.1 (Updated Section) Register DNS Records Timer 

This timer controls how often a DC registers DNS records if configured to do so on a periodic basis. If 

dc.dnsRegistrationSettings.PerformDynamicRegistration is trueTRUE, this timer is configured to signal 
an event every dc.dnsRegistrationSettings.DynamicRegistrationRefreshInterval minutes. At each timer 
event, the DC registers the DNS records described in SRV Records (section 6.3.2.3) and Non-SRV 
Records (section 6.3.2.4), unless explicitly excluded via 
dc.dnsRegistrationSettings.AvoidDNSRecordsList. 

6.3.2.2 Non-Timer Events 

There is one non-timer event, Force Register DNS Records, in the Active Directory system (beyond 
those non-timer events specified in the underlying protocol documents). 

6.3.2.2.1 Force Register DNS Records Non-Timer Event 

This event can be triggered by another system to cause the DC to register DNS records. 

When this event occurs, the DC registers the DNS records described in SRV Records (section 6.3.2.3) 
and Non-SRV Records (section 6.3.2.4), unless explicitly excluded via 
dc.dnsRegistrationSettings.AvoidDNSRecordsList. 



 

594 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.3.2.3 (Updated Section) SRV Records 

The SRV DNS Resource Record for specifying the location of services is specified in [RFC2782]. An SRV 
record maps the name of a service to the DNS name of a server that offers that service. 

The creation of DNS Resource Records is specified in [RFC2136]. 

The name of an SRV Resource Record is in the following form: 

▪ Service.Proto.Name TTL Class SRV Priority Weight Port Target 

A client queries for these records by sending a DNS SRV query [RFC2782] to a DNS server.  

Non-RODC server 

If the DC is a non-RODC with default NC X (and NC X's GUID is G) in forest Z, then it registers SRV 
records with Service.Proto.Name equal to the following. 

   _ldap._tcp.X 
   _ldap._tcp.dc._msdcs.X 
   _ldap._tcp.G. domains._msdcs.Z 
   _kerberos._tcp.X 
   _kerberos._udp.X 
   _kerberos._tcp.dc._msdcs.X 
   _kpasswd._tcp.X 
   _kpasswd._udp.X 

In addition, the DC registers site-specific records for the following sites: 

▪ The site that the DC is in (see sections 6.1.1.2.2.1 and 6.1.1.2.2.1.2). 

▪ The sites listed in dc.dnsRegistrationSettings.SitesForDCRecordsList. 

▪ If dc.dnsRegistrationSettings.PerformAutoSiteCoverage is trueTRUE, the additional sites that 

shouldSHOULD be covered by this DC as determined by the implementation's chosen algorithm. 

For each site Yi in the above list of sites, the DC registers SRV records with Service.Proto.Name equal 
to the following. 

   _ldap._tcp.Yi._sites.X 
   _ldap._tcp.Yi._sites.dc._msdcs.X 
   _kerberos._tcp.Yi._sites.X 
   _kerberos._tcp.Yi._sites.dc._msdcs.X 

RODC Server 

If the DC is an RODC with default NC X (and NC X's GUID is G) in site Y and in forest Z, then it 
registers SRV records with Service.Proto.Name equal to the following. 

 _ldap._tcp.Y._sites.X 
 _ldap._tcp.Y._sites.dc._msdcs.X 
 _kerberos._tcp.Y._sites.X 
 _kerberos._tcp.Y._sites.dc._msdcs.X 

Non-RODC GC server 

If the DC is also a non-RODC GC server, then it registers SRV records with Service.Proto.Name equal 
to the following. 



 

595 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 _ldap._tcp.gc._msdcs.Z 
 _gc._tcp.Z 

In addition, the DC registers site specific records for the following sites: 

▪ The site that the DC is in (see sections 6.1.1.2.2.1 and 6.1.1.2.2.1.2). 

▪ The sites listed in dc.dnsRegistrationSettings.SitesForGCRecordsList. 

▪ If dc.dnsRegistrationSettings.PerformAutoSiteCoverage is trueTRUE, the additional sites that 

shouldSHOULD be covered by this domain controller as determined by the implementation's 
chosen algorithm. 

For each site Yi in the above list of sites, the DC registers SRV records with Service.Proto.Name equal 
to the following: 

 _ldap._tcp.Yi._sites.gc._msdcs.Z 
 _gc._tcp.Yi._sites.Z 

RODC GC server 

If the DC is also an RODC GC server, then it registers SRV records with Service.Proto.Name equal to 

the following. 

 _ldap._tcp.Y._sites.gc._msdcs.Z 
 _gc._tcp.Y._sites.Z 

PDC 

If the DC is also holds the PDC Emulator FSMO role for its default NC, then it registers SRV records 
with Service.Proto.Name equal to the following. 

 _ldap._tcp.pdc._msdcs.X 

Application NC host 

If the DC also hosts application NCs, then for each application NC Ai, it registers SRV records with 
Service.Proto.Name equal to the following. 

 _ldap._tcp.Ai 

In addition, the DC also registers site-specific records for the following sites: 

▪ The site that the DC is in (see sections 6.1.1.2.2.1 and 6.1.1.2.2.1.2). 

▪ The sites listed in dc.dnsRegistrationSettings.SitesForNDNCRecordsList. 

▪ If dc.dnsRegistrationSettings.PerformAutoSiteCoverage is trueTRUE, the additional sites that 
shouldSHOULD be covered by this domain controller as determined by the implementation's 
chosen algorithm. 

For each application NC Ai and each site Yi in the above list of sites, the DC registers SRV records with 
Service.Proto.Name equal to the following: 



 

596 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 _ldap._tcp.Yi._sites.Ai 

Example: If a DC with default NC: 

 X = na.fabrikam.com 

is in site: 

 Y = site1 

and forest: 

 Z = fabrikam.com 

and NC X's GUID is: 

 G = 52f6c43b-99ec-4040-a2b0-e9ebf2ec02b8 

then its record of type _ldap._tcp.Y._sites.dc._msdcs.X has: 

 Service.Proto.Name = 
     _ldap._tcp.site1._sites.dc._msdcs.na.fabrikam.com 

and its record of type _ldap._tcp.G.domains._msdcs.Z has: 

 Service.Proto.Name = 
     _ldap._tcp.52f6c43b-99ec-4040-a2b0-e9ebf2ec02b8.domains._msdcs.fabrikam.com 

The following table describes the other fields of each SRV record registered by a server. 

Field Value 

TTL Set to dc.dnsRegistrationSettings.DNSRecordTTL. 

Class Set to IN. 

SRV Set to SRV. 

Priority Set to dc.dnsRegistrationSettings.SRVRecordPriority. 

Weight Set to dc.dnsRegistrationSettings.SRVRecordWeight. 

Port Set to 389 for LDAP service. Set to 3268 for GC service. Set to 88 for Kerberos 
KDC service. Set to 464 for Kerberos Password Change service. 

Target Set to the fully qualified DNS name of the server. 

 



 

597 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6.3.2.4 Non-SRV Records 

In addition to SRV records, a DC also registers CNAME [RFC1034] and type A [RFC1034] DNS records. 

A CNAME record acts as an alias for a DNS hostname and has the following form: 

▪ Name TTL class type RDATA 

A client queries for these records by sending a DNS A, CNAME, or * query [RFC1034] to a DNS server. 

If a server is a DC in forest Z, and its DSA GUID is G, then the server registers a CNAME record with 
Name field set to G._msdcs.Z. This name is called the DC's GUID-based DNS name. 

Example: If a DC is in forest: 

 Z = fabrikam.com 

and its DSA GUID is: 

 G = 52f6c43b-99ec-4040-a2b0-e9ebf2ec02b8 

then it registers a CNAME record with: 

 Name = 
     52f6c43b-99ec-4040-a2b0-e9ebf2ec02b8._msdcs.fabrikam.com 

The following table describes the other fields of each CNAME record registered by a server. 

Field Value 

TTL Set to dc.dnsRegistrationSettings.DNSRecordTTL. 

Class Set to IN. 

Type Set to CNAME. 

RDATA Set to the fully qualified DNS name of the server. 

A type A record associates an IP address with a name and takes the form: 

▪ Name TTL class type RDATA 

A client queries for these records by sending a DNS A or * query [RFC1034] to a DNS server. 

If a server is a DC with default NC X in forest Z, then it publishes a type A record with Name field X. 
If the DC is a GC server, it also publishes a type A record with Name field gc._msdcs.Z. 

Example: If a DC has default NC: 

 X = na.fabrikam.com  

and is in forest: 

 Z = fabrikam.com 



 

598 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

then it registers a type A record with: 

 Name = na.fabrikam.com  

If the DC is a GC server, it registers a type A record with: 

 Name = gc._msdcs.fabrikam.com 

The following table describes the other fields of each type A record registered by a server. 

Field Value 

TTL Set to dc.dnsRegistrationSettings.DNSRecordTTL. 

Class Set to IN. 

Type Set to A. 

RDATA Set to the IP address of the server used for DC functions. 

 

6.3.3 LDAP Ping 

This topic describes the usage of LDAP to verify the aliveness of the domain controller and also check 
whether the domain controller matches a specific set of requirements. This operation is commonly 
referred to as LDAP ping. 

An LDAP rootDSE search (section 3.1.1.3.2) that retrieves the rootDSE attribute 
netlogon (section 3.1.1.3.2.14) triggers the following processing on the server: Syntactic validation of 
the filter as specified in section 6.3.3.1 and construction of a DC response to the search request as 

specified in sections 6.3.3.2 and 6.3.3.3. 

The LDAP search filter included in the SearchRequest is a one-level AND of equalityMatch tests of the 
following elements: 

DnsDomain: The DNS name of an NC (default NC or application NC). 

Host: The NetBIOS name of the client. 

DnsHostName: The fully qualified domain name (FQDN) (1) of the client. 

Note  The DnsHostName element is not sent by Windows clients from Windows 2000 through 
Windows 7 operating system and Windows Server 2008 R2.  

User: The sAMAccountName of an account in the domain specified by DnsDomain, DomainSid, or 
DomainGuid. 

AAC: Represents the userAccountControl attribute of an account. 

DomainSid: The SID of a domain. 

DomainGuid: The GUID of a domain. 

NtVer: NETLOGON_NT_VERSION Options (see section 6.3.1.1). 

Example: 



 

599 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

(&(DnsDomain=abcde.corp.microsoft.com)(Host=abcdefgh-dev)(User=abcdefgh-
dev$)(AAC=\80\00\00\00)(DomainGuid=\3b\b0\21\ca\d3\6d\d1\11\8a\7d\b8\df\b1\56\87\1f)(NtVer

=\06\00\00\00)) 

Network payload: 

 A0 84 00 00 00 A8 A3 84 00 00 00 25 04 09 44    ?...¨£?...%..D 
 6E 73 44 6F 6D 61 69 66 04 18 61 62 63 64 65    nsDomain..abcde 
 2E 63 6F 72 70 2E 6D 69 63 72 6F 73 6F 66 74    .corp.microsoft 
 2E 63 6F 6D A3 84 00 00 00 14 04 04 48 6F 73    .com£?......Hos 
 74 04 0C 61 62 63 64 65 66 67 68 2D 64 65 76    t..abcdefgh-dev 
 A3 84 00 00 00 15 04 04 55 73 65 72 04 0D 61    £?......User..a 
 62 63 64 65 66 67 68 2D 64 65 76 24 A3 84 00    bcdefgh-dev$£?. 
 00 00 0B 04 03 41 41 43 04 04 80 00 00 00 A3    .....AAC..?...£? 
 84 00 00 00 1E 04 0A 44 6F 6D 61 69 6E 47 75    ......DomainGu 
 69 64 04 10 3B B0 21 CA D3 6D D1 11 8A 7D B8    id..;°!ÊÓmÑ.?}¸ 
 DF B1 56 87 1F A3 84 00 00 00 0D 04 05 4E 74    ß±V?.£?......Nt 
 56 65 72 04 04 06 00 00 00 30 84 00 00 00 0A    Ver......0?.... 
 04 08 6E 65 74 6C 6F 67 6F 6E                   ..netlogon 

6.3.3.1 Syntactic Validation of the Filter 

If any of the elements is specified more than once, then the filter is invalid. 

If the value of the string passed with DomainGuid has a different size than the size of GUID ([MS-
DTYP] section 2.3.4), then the filter is invalid. 

If the numeric value of the string passed with AAC is longer than the largest unsigned integer that can 

be represented in a DWORD or has an unsupported bit set, then the filter is invalid. 

If the numeric value of the string passed with NtVer is longer than the largest unsigned integer that 
can be represented in a DWORD or has an unsupported bit set, then the filter is invalid. 

The response of the DC for the invalid filter case is documented in section 6.3.3.3. 

The DC MUST ignore any unrecognized filter elements. 

6.3.3.2 (Updated Section) Domain Controller Response to an LDAP Ping 

Let reqGuidNC be set as follows: 

▪ If the filter does not include the (DomainGuid=domainGuid) clause, reqGuidNC is set to NULL. 

▪ If the filter includes the (DomainGuid=domainGuid) clause: 

▪ If domainGuid is not a valid GUID, the response of the DC is documented in section 6.3.3.3. 

▪ If there is no NC hosted by the server whose GUID is domainGuid, the response of the DC is 
documented in section 6.3.3.3. 

▪ Otherwise, reqGuidNC is set to the NC hosted by the server whose GUID is domainGuid. 

Let reqDnsNC be set as follows: 

▪ If the filter does not include the (DnsDomain=dnsDomain) clause: 

▪ If reqGuidNC is NULL, reqDnsNC is set to the default NC hosted by the server. 

▪ If reqGuidNC is not NULL, reqDnsNC is set to NULL. 

▪ If the filter includes the (DnsDomain=dnsDomain) clause: 



 

600 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If dnsDomain is empty, the response of the DC is documented in section 6.3.3.3. 

▪ If there is no NC hosted by the server whose DNS name is dnsDomain, the response of the DC 
is documented in section 6.3.3.3. 

▪ Otherwise, reqDnsNC is set to the NC hosted by the server whose DNS name is dnsDomain. 

Let reqNCUsed be set as follows: 

▪ If reqGuidNC is NULL, then reqNCUsed is set to reqDnsNC. 

▪ If reqDnsNC is NULL, then reqNCUsed is set to reqGuidNC. 

▪ If neither reqGuidNC nor reqDnsNC are NULL, then reqNCUsed is set to either reqGuidNC or 
reqDnsNC. The protocol does not specify which value is used, nor that a DC is consistent in which 
value is used. 

Let reqSidNC be set as follows: 

▪ If the filter does not include the (DomainSid=domainSid) clause, reqSidNC is set to NULL. 

▪ If the filter includes the (DomainSid=domainSid) clause: 

▪ If domainSid is not a valid sid, the response of the DC is documented in section 6.3.3.3. 

▪ If there is no NC hosted by the server whose Sid is domainSid, the response of the DC is 
documented in section 6.3.3.3. 

▪ If domainSid is not equal to the SID of NC reqNCUsed, the response of the DC is documented 

in section 6.3.3.3. 

▪ Otherwise, reqSidNC is set to the NC hosted by the server whose SID is domainSid. 

Let u be set as follows: 

▪ If the filter does not include the (User=user) clause, then u is set to NULL. 

▪ If filter includes the (User=user) clause, then u is set to the supplied value. 

Let x be as follows: 

▪ Let y be an object in NC reqNCUsed where y!sAMAccountName = u. 

▪ If there is no such object y, then x is set to NULL. 

▪ If there is an object y, x is set as: 

▪ Let aac be set as follows: 

▪ If the filter does not include the (AAC=aac) clause, then aac is set to 0. 

▪ If filter includes the (AAC = aac) clause, then aac is set to the supplied value. 

▪ Let uac be set to y!userAccountControl. 

▪ If uac has the USER_ACCOUNT_DISABLED ([MS-SAMR] section 2.2.1.12) bit set, then 

let x be equal to NULL. 

▪ If (aac & uac & USER_TEMP_DUPLICATE_ACCOUNT | USER_NORMAL_ACCOUNT | 
USER_INTERDOMAIN_TRUST_ACCOUNT | USER_WORKSTATION_TRUST_ACCOUNT | 
USER_SERVER_TRUST_ACCOUNT [MS-SAMR] section 2.2.1.12) is zero, then let x be 
equal to NULL. The effect of doing this is so that the server only checks 



 

601 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

USER_TEMP_DUPLICATE_ACCOUNT | USER_NORMAL_ACCOUNT | 
USER_INTERDOMAIN_TRUST_ACCOUNT | USER_WORKSTATION_TRUST_ACCOUNT | 

USER_SERVER_TRUST_ACCOUNT bits. 

▪ Otherwise, set x to y. 

Let s be set as follows: 

▪ If there is only one site object in the Sites Container (section 6.1.1.2.2), set s to the name of that 
site. 

▪ If there are multiple site objects in the Sites Container, let sno be a subnet object in the Subnets 
Container (section 6.1.1.2.2.2) where sno!name represents the range of IP addresses, which 
includes the client's IP address (see section 6.1.1.2.2.2.1). 

▪ If there is no such object sno, then s is set to NULL. 

▪ If there is an object sno, s is set as follows: 

▪ If sno!siteObject has a value, let so be the site object referred to by this attribute value  
(see section 6.1.1.2.2.2.1). Set s to so!name. 

▪ If sno!siteObject does not contain a value, set s to NULL. 

Note  In Windows, the server computes the client's IP address from the client's socket address. If the 
NtVer filter element has the NETLOGON_NT_VERSION_5EX or 

NETLOGON_NT_VERSION_5EX_WITH_IP bit set, and if the client's site cannot be computed from the 
client's socket address, then the server computes the client's IP address by using either the FQDN (2) 
of the client, which is found in the DnsHostName filter element (if present), or the NetBIOS name of 
the client, which is found in the Host filter element (section 6.3.3). The server then uses the IP 
address to determine the site. 

Let v be the NtVer requested by the client in the search filter. 

▪ If the server is configured to respond to ping requests in the form of a 

NETLOGON_SAM_LOGON_RESPONSE_NT40 structure, and v does not have the 
NETLOGON_NT_VERSION_AVOID_NT4EMUL bit set (section 6.3.1.1), the server uses the 
NETLOGON_SAM_LOGON_RESPONSE_NT40 structure to send the response. 

▪ Else, if v has the NETLOGON_NT_VERSION_5EX or NETLOGON_NT_VERSION_5EX_WITH_IP bit 
set, the server uses the NETLOGON_SAM_LOGON_RESPONSE_EX structure to send the response. 

▪ Else, if v has the NETLOGON_NT_VERSION_5 bit set, the server uses the 
NETLOGON_SAM_LOGON_RESPONSE structure to send the response. 

▪ For all other cases, the server uses the NETLOGON_SAM_LOGON_RESPONSE_NT40 structure to 
send the response. 

Let t be set as follows:  

▪ When the Netlogon service is in a paused state, if v does not have the 

NETLOGON_NT_VERSION_PDC bit set or the server is not a PDC, let t be 1.  

▪ If the value of rootDSE attribute isSynchronized (see section 3.1.1.3) is falseFALSE, let t be 1. 

▪ When the Netlogon RPC server is not initialized, if v does not have the 
NETLOGON_NT_VERSION_LOCAL bit set, let t be 1. 

▪ If the FRS service is in a paused state, let t be 1. 

▪ Otherwise, let t be 0. 



 

602 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

After the preceding processing has occurred, if the server has not responded to an invalid filter (as 
documented in section 6.3.3.3), the server returns an LDAP SearchResultEntry to the client with the 

following form: 

▪ The ObjectName of the SearchResultEntry is NULL and the attribute list contains one attribute. 

This attribute is named "Netlogon" and its value is a little-endian octet string packed in 
NETLOGON_SAM_LOGON_RESPONSE_EX, NETLOGON_SAM_LOGON_RESPONSE, or 
NETLOGON_SAM_LOGON_RESPONSE_NT40, depending on value v. 

▪ If the server uses NETLOGON_SAM_LOGON_RESPONSE_EX to pack the value, it does the 
following:  

OperationCode: Set to LOGON_SAM_PAUSE_RESPONSE_EX if t is equal to 1. Set to 
LOGON_SAM_USER_UNKNOWN_EX if u is not NULL, but x is NULL. Set to 

LOGON_SAM_LOGON_RESPONSE_EX in other cases. 

Flags: 

Bit values are taken from DS_FLAGS in section 6.3.1.2. 

▪ If the server holds the PDC FSMO role (see section 3.1.1.1.11), the DS_PDC_FLAG bit is 
set. 

▪ If the server is a global catalog server, the DS_GC_FLAG bit is set. This bit is set if and 

only if the isGlobalCatalogReady attribute on the rootDSE is trueTRUE (see section 
3.1.1.3.2.10). 

▪ If the server is a KDC, the DS_KDC_FLAG bit is set. 

▪ If the server is running the Win32 Time Service, as specified in [MS-W32T] and indicated 
by bit field A in the ServiceBits flag in the NetLogon Remote Protocol ([MS-NRPC] section 
3.5.1), the DS_TIMESERV_FLAG bit is set. 

▪ If the server is in the same site as the client, the DS_CLOSEST_FLAG bit is set. 

▪ If the server is not an RODC, the DS_WRITABLE_FLAG bit is set. [MS-DRSR] section 5.7, 
AmIRODC, explains how to determine if a DC is an RODC. 

▪ If the server is configured to be a reliable time source (the way in which the configuration 
can be done is outside the scope of the state model and is implementation-dependent) as 
indicated by bit field B in the ServiceBits flag in the NetLogon Remote Protocol ([MS-NRPC] 
section 3.5.1), the DS_GOOD_TIMESERV_FLAG bit is set. 

▪ If the DnsDomain value specified in the search filter is an application NC, the 

DS_NDNC_FLAG bit is set. 

▪ If the server is an RODC, the DS_SELECT_SECRET_DOMAIN_6_FLAG bit is set. 

▪ If the server is a writable DC and not running Windows 2000 Server, Windows Server 
2003, or Windows Server 2003 R2, the DS_FULL_SECRET_DOMAIN_6_FLAG bit is set. 

▪ If the server is running the Active Directory Web Service, as specified in [MS-ADDM] and 
indicated by the bit field C in the ServiceBits flag in the Netlogon Remote Protocol ([MS-

NRPC] section 3.5.1), the DS_WS_FLAG bit is set. 

▪ If the server is running Windows Server 2012 or later, the DS_DS_8_FLAG bit is set. 

▪ If the server is running Windows Server 2012 R2 or later, the DS_DS_9_FLAG bit is set. 

▪ Always set the DS_LDAP_FLAG and DS_DS_FLAG bits. 



 

603 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ All the other bits of DS_FLAG are set to 0. 

DomainGuid: Set to the GUID of NC reqNCUsed. 

DnsForestName: Set to the DNS name of the forest. 

DnsDomainName: Set to the DNS name of the NC reqNCUsed. 

DnsHostName: Set to the DNS name of the server. 

NetbiosDomainName: Set to the NetBIOS name of the NC reqNCUsed. 

NetbiosComputerName: Set to the NetBIOS name of the server. 

UserName: Set to u. 

DcSiteName: Set to the site name of the server. 

ClientSiteName: Set to the site s. 

DcSockAddrSize: Set to the size of the server's IP address. 

SockAddr: Set to the IP address of the server. 

NextClosestSiteName: If v has NETLOGON_NT_VERSION_WITH_CLOSEST_SITE and the DC 
has DC functional level DS_BEHAVIOR_WIN2008 or greater, use IDL_DRSQuerySitesByCost 
([MS-DRSR] section 4.1.16) to find the site C that is closest to ClientSiteName but not equal 
to ClientSiteName, and set this field to C. Otherwise omit this field. 

NtVersion: If the NextClosestSiteName field is set, set this field to 

{NETLOGON_NT_VERSION_1, NETLOGON_NT_VERSION_WITH_CLOSEST_SITE, 
NETLOGON_NT_VERSION_5EX}; otherwise set this field to {NETLOGON_NT_VERSION_1, 
NETLOGON_NT_VERSION_5EX}. 

LmNtToken: Always set to 0xFFFF. 

Lm20Token: Always set to 0xFFFF. 

▪ If the server uses NETLOGON_SAM_LOGON_RESPONSE to pack the value, it does the 
following: 

OperationCode: Set to LOGON_SAM_PAUSE_RESPONSE if t is equal to 1. Set to 
LOGON_SAM_USER_UNKNOWN if u is not NULL, but x is NULL. Set to 
LOGON_SAM_LOGON_RESPONSE in other cases. 

UnicodeLogonServer: Set to the NetBIOS name of the server. 

UnicodeUserName: Set to u. 

UnicodeDomainName: Set to the NetBIOS name of the domain. 

DomainGuid: Set to the GUID of the domain. 

SiteGuid: Always set to NULL GUID. 

DnsForestName: Set to the DNS name of the forest. 

DnsDomainName: Set to the DNS name of the domain. 

DnsHostName: Set to the DNS name of the server. 

DcIpAddress: Set to the IP address of the server. 



 

604 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Flags: If the server is a PDC, bit DS_PDC_FLAG is set; bit DS_DS_FLAG is always set; all the 
other bits of DS_FLAG are set to 0. 

NtVersion: Set to NETLOGON_NT_VERSION_1 | NETLOGON_NT_VERSION_5. 

LmNtToken: Always set to 0xFFFF. 

Lm20Token: Always set to 0xFFFF. 

▪ If the server uses NETLOGON_SAM_LOGON_RESPONSE_NT40 to pack the value, it does the 
following: 

OperationCode: If t is 1, set to LOGON_SAM_PAUSE_RESPONSE. Else, if u is not NULL, but x 
is NULL, set to LOGON_SAM_USER_UNKNOWN. If none of the preceding conditions are met, 
set to LOGON_SAM_LOGON_RESPONSE. 

UnicodeLogonServer: Set to the NetBIOS name of the server. 

UnicodeUserName: Set to u. 

UnicodeDomainName: Set to the NetBIOS name of the domain. 

NtVersion: Set to NETLOGON_NT_VERSION_1. 

LmNtToken: Always set to 0xFFFF.  

Lm20Token: Always set to 0xFFFF. 

LdapResult of SearchResultDone entry is set to 0 (success). 

6.3.3.3 Response to Invalid Filter 

If the filter is not syntactically valid for any of the cases specified in the preceding sections, the server 
returns an LDAP SearchResultEntry with the following form: 

The ObjectName of the SearchResultEntry is NULL. Attribute of SearchResultEntry is NULL. And 

LdapResult of SearchResultDone entry is set to 0 (success). 

6.3.4 NetBIOS Broadcast and NBNS Background 

If a server is in a domain whose NetBIOS name is d, it registers <d>[1C] records, and <d>[1B] 

records if it is a PDC, to the NBNS(WINS) server. A client can retrieve those records by either 
broadcasting or querying against NBNS(WINS) directly. 

For more information, see [RFC1001] and [RFC1002]. 

6.3.5 (Updated Section) Mailslot Ping 

This section describes the usage of mailslot messages to verify the aliveness of the DC and also to 

check whether that DC matches a specific set of requirements. This operation is commonly referred to 
as a mailslot ping. 

The server creates a mailslot (as specified in [MS-MAIL] section 3.2.4.1) with the name 
\\mailslot\net\netlogon and listens to this mailslot [MS-MAIL] section 3.2.4.2. If the opcode of the 
mailslot message (hereafter in this section referred to simply as "message") is set to 
LOGON_PRIMARY_QUERY, it interprets the message as a NETLOGON_LOGON_QUERY structure; 

otherwise, it interprets the message as a NETLOGON_SAM_LOGON_REQUEST. 

The server then completes the following processing: 



 

605 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

If the opcode is set to LOGON_PRIMARY_QUERY and the server is not the PDC, the DC ignores the 
message without sending a response back to the client. If the opcode is set to 

LOGON_SAM_LOGON_REQUEST and NtVer is not NETLOGON_NT_VERSION_5, the DC ignores the 
message without sending a response back to the client. The server determines whether or not it is the 

PDC by calling the IsEffectiveRoleOwner(roleObject(Default NC, PdcEmulationMasterRole)) function. If 
the function returns trueTRUE, the server is the PDC, otherwise it is not. See section 3.1.1.5.1.8 for 
more information. 

If DomainSidSize is not zero, it checks whether the default NC has the same SID; if it does not, the 
server ignores the message without sending a response back to the client. 

If UnicodeUserName is specified, it is processed in the same way as the User value in section 
6.3.3.2. 

Let v be the NtVer requested by the client. 

▪ If dc.nt4EmulatorEnabled is TRUE, and v does not have the 
NETLOGON_NT_VERSION_AVOID_NT4EMUL bit set, the server uses the 

NETLOGON_SAM_LOGON_RESPONSE_NT40 structure to send the response. 

▪ Else, if v has the NETLOGON_NT_VERSION_5EX or NETLOGON_NT_VERSION_5EX_WITH_IP bit 
set, the server uses the NETLOGON_SAM_LOGON_RESPONSE_EX structure to send the response. 

▪ Else, if v has the NETLOGON_NT_VERSION_5 bit set, the server uses the 
NETLOGON_SAM_LOGON_RESPONSE structure to send the response. 

▪ Else, if v has the NETLOGON_NT_VERSION_PDC bit set, the server uses the 
NETLOGON_PRIMARY_RESPONSE structure to send the response. 

▪ For all other cases, the server uses the NETLOGON_SAM_LOGON_RESPONSE_NT40 structure to 
send the response. 

Let t be 0. 

▪ When the Netlogon service is in a paused state, if v does not have the 
NETLOGON_NT_VERSION_PDC bit set or server is not a PDC, let t be 1. 

▪ If the value of rootDSE attributes isSynchronized (see section 3.1.1.3) is falseFALSE, let t be 1. 

▪ When the Netlogon RPC server is not initialized, if v does not have the 
NETLOGON_NT_VERSION_LOCAL bit set, let t be 1. 

▪ If the FRS is in a paused state, let t be 1. 

Then, the server sends a response back to the mailslot named in the client's request. The response 

message is packed in the NETLOGON_SAM_LOGON_RESPONSE structure, the 
NETLOGON_PRIMARY_RESPONSE structure, or the NETLOGON_SAM_LOGON_RESPONSE_NT40 
structure, depending on the value of v. 

▪ If the server uses NETLOGON_SAM_LOGON_RESPONSE to pack the value, it does the following: 

OperationCode: Set to LOGON_SAM_PAUSE_RESPONSE if t is equal to 1. Set to 
LOGON_SAM_USER_UNKNOWN if UnicodeUserName is not NULL, but x is NULL. Set to 

LOGON_SAM_LOGON_RESPONSE in other cases. 

UnicodeLogonServer: Set to the NetBIOS name of the server. 

UnicodeUserName: Set to UnicodeUserName filed in the request 
NETLOGON_SAM_LOGON_REQUEST message. 

UnicodeDomainName: Set to the NetBIOS name of the domain. 



 

606 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

DomainGuid: Set to the GUID of the domain. 

SiteGuid: Always set to NULL GUID. 

DnsForestName: Set to the DNS name of the forest. 

DnsDomainName: Set to the DNS name of the domain. 

DnsHostName: Set to the DNS name of the server. 

DcIpAddress: Set to the IP address of the server. 

Flags: If the server is a PDC, bit DS_PDC_FLAG is set; bit DS_DS_FLAG is always set; all the 
other bits of DS_FLAG are set to 0. 

NtVersion: Set to NETLOGON_NT_VERSION_1 | NETLOGON_NT_VERSION_5.  

LmNtToken: Always set to 0xFFFF.  

Lm20Token: Always set to 0xFFFF. 

▪ If the server uses NETLOGON_SAM_LOGON_RESPONSE_NT40 to pack the value, it does the 
following: 

OperationCode: If t is 1, set to LOGON_SAM_PAUSE_RESPONSE. Else, if UnicodeUserName is 
not NULL, but x is NULL, set to LOGON_SAM_USER_UNKNOWN. If none of the preceding 
conditions are met, set to LOGON_SAM_LOGON_RESPONSE. 

UnicodeLogonServer: Set to the NetBIOS name of the server. 

UnicodeUserName: Set to UnicodeUserName filed in the request 
NETLOGON_SAM_LOGON_REQUEST message. 

UnicodeDomainName: Set to the NetBIOS name of the domain. 

NtVersion: Set to NETLOGON_NT_VERSION_1.  

LmNtToken: Always set to 0xFFFF.  

Lm20Token: Always set to 0xFFFF. 

▪ If the server uses NETLOGON_PRIMARY_RESPONSE to pack the value, it does the following: 

OperationCode: If t is 1, set to LOGON_SAM_PAUSE_RESPONSE. Else, if UnicodeUserName is 
not NULL, but x is NULL, set to LOGON_SAM_USER_UNKNOWN. If none of the preceding 
conditions are met, set to LOGON_PRIMARY_RESPONSE. 

PrimaryDCName: Set to the ASCII value of the NetBIOS name of the server. 

UnicodePrimaryDCName: Set to the Unicode value of the NetBIOS name of the server. 

UnicodeDomainName: Set to the NetBIOS name of the domain. 

NtVersion: Set to NETLOGON_NT_VERSION_1. 

LmNtToken: Always set to 0xFFFF. 

Lm20Token: Always set to 0xFFFF.  

▪ If the server uses NETLOGON_SAM_LOGON_RESPONSE_EX to pack the value, it does the 
following: 



 

607 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

OperationCode: Set to LOGON_SAM_PAUSE_RESPONSE if t is equal to 1. Set to 
LOGON_SAM_USER_UNKNOWN if UnicodeUserName is not NULL, but x is NULL. Set to 

LOGON_SAM_LOGON_RESPONSE_EX in other cases. 

Sbz: Always set to 0x0. 

Flags: Set to the value produced for the Flags value in section 6.3.3.2. 

DomainGuid: Set to the GUID of the domain. 

DnsForestName: Set to the DNS name of the forest. 

DnsDomainName: Set to the DNS name of the domain. 

NetbiosDomainName: Set to the NetBIOS name of the domain. 

NetbiosComputerName: Set to the NetBIOS name of the server. 

UserName: Set to UnicodeUserName field in the request NETLOGON_SAM_LOGON_REQUEST 

message. 

DcSiteName: Set to the site name of the server. 

ClientSiteName: Set to the site name of the client as produced by the algorithm in section 
6.3.3.2. 

DcSockAddrSize: If v has the NETLOGON_NT_VERSION_5EX_WITH_IP bit set, set to the size of 
the server's IP address. 

DcSockAddr: If v has the NETLOGON_NT_VERSION_5EX_WITH_IP bit set, set to the IP address 
of the server. 

NextClosestSiteName: If v has NETLOGON_NT_VERSION_WITH_CLOSEST_SITE and the DC has 
DC functional level DS_BEHAVIOR_WIN2008 or greater, use IDL_DRSQuerySitesByCost ([MS-
DRSR] section 4.1.16) to find the site C that is closest to ClientSiteName but not equal to 

ClientSiteName, and set this field to C. Otherwise omit this field. 

NtVersion: If the NextClosestSiteName field is set and the DcSockAddr field is not set, set 

this field to {NETLOGON_NT_VERSION_1, NETLOGON_NT_VERSION_WITH_CLOSEST_SITE, 
NETLOGON_NT_VERSION_5EX}; if the NextClosestSiteName field is not set and the 
DcSockAddr field is set, set this field to {NETLOGON_NT_VERSION_1, 
NETLOGON_NT_VERSION_5EX, NETLOGON_NT_VERSION_5EX_WITH_IP}; if the 
NextClosestSiteName field is set and the DcSockAddr field is set, set this field to 
{NETLOGON_NT_VERSION_1, NETLOGON_NT_VERSION_WITH_CLOSEST_SITE, 
NETLOGON_NT_VERSION_5EX, NETLOGON_NT_VERSION_5EX_WITH_IP};otherwise set this field 

to {NETLOGON_NT_VERSION_1, NETLOGON_NT_VERSION_5EX}. 

LmNtToken: Always set to 0xFFFF. 

Lm20Token: Always set to 0xFFFF. 

6.3.6 Locating a Domain Controller 

There are two ways to locate a domain controller: DNS-based discovery and NetBIOS-based 
discovery. 

6.3.6.1 DNS-Based Discovery 

For DNS-based discovery, the client machine can issue the following DNS queries: 



 

608 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ To locate an LDAP server hosting NC N, the client machine issues a DNS query for the SRV record 
_ldap._tcp.N, constructed from the NC name (N). 

▪ To locate an LDAP server hosting NC N in site Y, the client machine issues a DNS query for the 
SRV record _ldap._tcp.Y._sites.N, constructed from the NC name (N) and the site name (Y). 

▪ To locate domain controller (DC) hosting NC N, the client machine issues a DNS query for the SRV 
record _ldap._tcp.dc._msdcs.N, constructed from the NC name (N). 

▪ To locate a DC hosting NC N in site Y, the client machine issues a DNS query for the SRV record 
_ldap._tcp.Y._sites.dc._msdcs.N, constructed from the NC name (N) and the site name (Y). 

▪ To locate a DC hosting default NC X whose GUID is G in forest Z, the client machine issues a DNS 
query for the SRV record _ldap._tcp.G.domains._msdcs.Z, constructed from the default NC's GUID 
(G) and the forest name (Z). 

▪ To locate a DC that is hosting default NC X and that is also a PDC, the client machine issues a DNS 
query for the SRV record _ldap._tcp.pdc._msdcs.X, constructed from the NC name (X). 

▪ To locate a DC in forest Z that is a GC server, the client machine issues a DNS query for the SRV 
record _gc._tcp.Z, constructed from the forest name (Z). 

▪ To locate DC in forest Z, site Y that is a GC server, the client machine issues a DNS query for the 
SRV record _gc._tcp.Y._sites.Z, constructed from the forest name (Z) and the site name (Y). 

▪ To locate a server that is running the Kerberos Key Distribution Center service over TCP for default 
NC X, the client machine issues a DNS query for the SRV record _kerberos._tcp.X, constructed 
from the default NC name (X). 

▪ To locate a server that is running the Kerberos Key Distribution Center service over UDP for 
default NC X, the client machine issues a DNS query for the SRV record _kerberos._udp.X, 
constructed from the default NC name (X). 

▪ To locate a server in site Y that is running the Kerberos Key Distribution Center service over TCP 

for default NC X, the client machine issues a DNS query for the SRV record 
_kerberos._tcp.Y._sites.X, constructed from the default NC name (X) and the site name (Y). 

▪ To locate a DC that is running the Kerberos Key Distribution Center service over TCP and that also 
hosts default NC X, the client machine issues a DNS query for the SRV record 
_kerberos.tcp.dc._msdcs.X, constructed from the default NC name (X). 

▪ To locate a DC in site Y that is running the Kerberos Key Distribution Center service over TCP and 
that also hosts default NC X, the client machine issues a DNS query for the SRV record 

_kerberos.tcp.Y._sites.dc._msdcs.X, constructed from the default NC name (X) and the site name 
(Y). 

▪ To locate a server that is running the Kerberos Password Change service over TCP for default NC 
X, the client machine issues a DNS query for the SRV record _kpasswd._tcp.X, constructed from 
the default NC name (X). 

▪ To locate a server that is running the Kerberos Password Change service over UDP for default NC 

X, the client machine issues a DNS query for the SRV record _kpasswd._udp.X, constructed from 
the default NC name (X). 

The DNS query returns a list of SRV records that match this query. The target field of the SRV record 
contains the FQDN (2) of the server. 

Upon receiving the DNS query results, the client machine retrieves the IP addresses corresponding to 
each server (via DNS A/AAAA queries) and sends an LDAP ping to the retrieved addresses in weighted 
random order [RFC2782]. If a server has multiple IP addresses, the client pings all of them before 



 

609 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

pinging the next server in the weighted random order. The client attempts the intended protocol 
request to the first server address that responds to the ping. 

6.3.6.2 NetBIOS-Based Discovery 

To locate a domain controller using NetBIOS-based discovery, the client either queries a Windows 
Internet Name Service (WINS) server or performs broadcasting. To find a domain controller in domain 
fabrikam, the client either sends a NetBIOS name query for <fabrikam>[1C] to the WINS server or 
broadcasts for <fabrikam>[1C] record. And if the client wants to find a primary domain controller, it 

issues a name query for <fabrikam>[1B] to the WINS server or broadcasts for <fabrikam>[1B] 
record. 

Upon receiving the list of matching records from WINS or broadcasting, the client either contacts 
servers (attempts the intended protocol request) or sends a mailslot ping (section 6.3.5) to servers 
first, and then attempts the intended protocol request to a server that responded to the ping. 

6.3.7 Name Compression and Decompression 

The server can choose any compression algorithm, as long as the compressed stream can be 
decompressed using the following name decompression algorithm. When the server compresses the 
names for the LDAP ping response, if compression fails, the response of the server is documented in 
"Response to Invalid filter" (section 6.3.3.3). When the server compresses the names for the mailslot 
ping response, if compression fails, the server does not send any response back to the client. 

Name Decompression Algorithm 

 -- 
 --  On Entry: InputBuffer - a buffer of compressed data, treated as  
 --                bytes 
 --            InputBufferSize - The number of bytes in the InputBuffer 
 --            StringCount - number of strings needed to be  
 --                decompressed from InputBuffer 
 --            Current – Index into the buffer that contains the first  
 --                byte of the compressed strings 
 -- 
 --  On Exit:  OutputBuffers - an array of decompressed strings 
 --            Success -  Set to TRUE if decompression succeeds, set to 
 --                FALSE if decompression fails. 
 --            Current – Index of the byte in the message succeeding the last 
 --                byte of the compressed string block 
  
  
  
  
  
 SET deCompressedCount = 0 
 SET localCurrent = 0 
 FOR i = 1 to StringCount 
     SET dnsNameLen = 0 
     SET firstLabel = 0 
     allocate a buffer s[InputBufferSize] 
     WHILE Current < InputBufferSize 
         SET labelSize = InputBuffer[Current] 
         IF labelSize == '\0' THEN                            
             s[dnsNameLen] = '\0' 
             OutputBuffers[deCompressedCount] = s 
             deCompressedCount++ 
             Current++ 
             BREAK 
         ELSE IF (labelSize & 0xC0) != 0 THEN 
             Current++ 
             localCurrent = Current + 1 
             labelSize = InputBuffer[Current] 



 

610 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

             IF labelSize > InputBufferSize THEN 
                 Success = FALSE   
                 RETURN         
             END IF 
             Current = labelSize 
             CONTINUE 
         ELSE 
             IF (labelSize + Current) >= InputBufferSize THEN 
                 Success = FALSE   
                 RETURN 
             END IF 
             IF firstLabel == 0 THEN 
                 firstLabel = 1 
             ELSE 
                 s[dnsNameLen] = '.' 
                 dnsNameLen++ 
             ENDIF 
  
  
             Append 
               substring InputBuffer[Current + 1, Current + labelSize] 
                 to s 
             dnsNameLen += labelSize        
             IF localCurrent != 0 THEN 
                 Current = localCurrent 
                 localCurrent = 0        
             ELSE 
                 Current = Current + 1 + labelSize      
             END IF 
         END IF                                     
     END WHILE 
     If i <> deCompressedCount THEN 
         Success = FALSE 
         RETURN 
     ENDIF 
 END FOR 
 Success = TRUE 
 RETURN 

6.3.8 (Updated Section) AD LDS DC Publication 

If an AD LDS DC is running on a computer joined to an AD DS domain, the AD LDS DC SHOULD (if 
certain conditions are met, as described later in this section) create a serviceConnectionPoint object in 
the AD DS forest of the domain to which it is joined. Clients MAY use this serviceConnectionPoint 

object to locate this AD LDS DC. 

Let O be the msDS-ServiceConnectionPointPublicationService object in the AD LDS forest whose DN is 
"CN=SCP Publication Service" relative to the nTDSService object in the config NC (the DN of the 
nTDSService object is "CN=Directory Service, CN=Windows NT, CN=Services" relative to the root of 
the config NC). 

An AD LDS DC SHOULD create (or update, if the object already exists) a serviceConnectionPoint object 
unless one of the following conditions is trueTRUE: 

▪ O (the msDS-ServiceConnectionPointPublicationService object defined previously) exists and 
O!Enabled = falseFALSE. 

▪ O exists and O!msDS-DisableForInstances contains the DN of the nTDSDSA object of the replica. 

If the LDAP add or modify operation to create or update the serviceConnectionPoint object fails for any 
reason, including lack of permission to create or update the serviceConnectionPoint object, the AD LDS 
DC SHOULD retry periodically until the operation succeeds. 

The created (or updated) serviceConnectionPoint object S satisfies the following: 



 

611 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If O exists and O!msDS-SCPContainer is non-null, then the DN of S is "CN={dsaGuid}" relative to 
O!msDS-SCPContainer, where dsaGuid is the DC's DSA GUID. Otherwise, the DN of S is 

"CN={dsaGuid}" relative to the computer object of the machine running AD LDS. 

▪ S!serviceDNSNameType = "A" 

▪ S!serviceClassName = "LDAP" 

▪ S!serviceDNSName is the DNS name of the computer on which the AD LDS DC is running. 

▪ S!serviceBindingInformation contains two values, "ldap://dnsName:ldapPort" and 
"ldaps://dnsName:ldapsPort", where dnsName is the DNS name of the computer on which the 
AD LDS DC is running, ldapPort is the port on which the AD LDS DC is listening for LDAP 
requests, and ldapsPort is the port on which the AD LDS DC is listening for SSL/TLS-protected 
LDAPS requests. 

▪ S!keywords contains the following values: 

▪ The DSA GUID. 

▪ For each value of the supportedCapabilities attribute of the rootDSE, a string containing that 
value. 

▪ The string "site:siteName" where siteName is the name of the site in which the AD LDS DC 
is located. 

▪ The string "instance:instanceName" where instanceName is a name configured for this AD 
LDS DC, unique among all AD LDS DCs on the machine running the DC. 

▪ If this AD LDS DC has the Schema Master FSMO role, the string "fsmo:schema". 

▪ If the AD LDS DC has the Domain Naming FSMO role, the string "fsmo:naming". 

▪ For each NC-replica on the AD LDS DC, excluding the NC-replica of the schema NC: 

▪ The string "partition:ncName" where ncName is the DN of the NC. 

▪ The NC GUID (that is, the value of the objectGUID attribute for the root of the NC). 

▪ If O exists, the values (if any) present on O!keywords. (See section 6.1.1.2.4.1.5.) 

For example, suppose an AD LDS replica is running on a computer whose DNS name is "adlds-
01.fabrikam.com", has a DSA GUID of {d07c66ed-b55e-4472-b09c-1ae35980}, possesses both FSMO 
roles, and has a single application NC whose name is "CN=FirstAppNC" and whose GUID is {32079ab-
9e49-4c4e-ad36-0f2b8a63f12b}. Further assume that it is listening on ports 50000 and 50001 for 
LDAP and LDAPS traffic, respectively, is located in a site named "Default-First-Site-Name", has an 
instance name of "TestInstance", and there are no keywords on O!keywords. The resulting 

serviceConnectionPoint object could be as follows (depending on the DN and GUID of the config NC). 

 S!serviceDnsNameType = "A" 
 S!serviceClassName = "LDAP" 
 S!serviceDNSName = "adlds-01.fabrikam.com" 
 S!serviceBindingInformation = { 
     "ldap://adlds-01.fabrikam.com:50000",  
     "ldaps://adlds-01.fabrikam.com:50001" 
     } 
 S!keywords = { 
     "d07c66ed-b55e-4472-b09c-1ae35980", 
     "1.2.840.113556.1.4.1851", 
     "1.2.840.113556.1.4.1791", 
     "site:Default-First-Site-Name", 
     "instance:TestInstance", 
     "fsmo:schema", 



 

612 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

     "fsmo:naming", 
     "partition:CN=FirstAppNC", 
     "32079ab-9e49-4c4e-ad36-0f2b8a63f12b", 
     "partition:CN=Configuration,CN={FD783EE9-0216-4B83-8A2A- 
         60E45AECCB81}", 
     "23b65d43-a701-44b9-9e04-a6555df722eb" 
     } 

6.4 Domain Join 

A machine is said to be "joined to a domain" if certain state exists on the machine and in the domain 
NC. The necessary state is specified in the remainder of this section. The state enables the machine 
and the domain to mutually authenticate using various protocols (for example, [MS-NRPC]). 

6.4.1 State of a Machine Joined to a Domain 

The following variables are part of the state of any machine joined to a domain: 

▪ domain-secret: An even-numbered sequence of bytes, with no embedded zero values, containing 
the secret shared between the machine and the domain. There are no minimum or maximum 
length constraints imposed on domain-secret; implementations MUST NOT assume any such 

limitations. 

▪ machine-account-name: The sAMAccountName of the machine's computer object within the 
domain. 

▪ domain-name: A tuple containing: 

▪ netbios: The NetBIOS name of the domain 

▪ dns: The fully qualified DNS name of the domain 

If the domain has a DNS name, domain-name.dns contains it. If the domain has a NetBIOS name, 

domain-name.netbios contains it. The value of at least one of these variables is not NULL. 

▪ domain-locator: Implementation-specific state sufficient to locate a domain controller of the 
domain. If the implementation is capable of locating a domain controller given domain-name, then 
domain-locator can be NULL. 

▪ supported-encryption-types: A set of encryption algorithms that can be used by the Key 
Distribution Center (KDC) to generate tickets for the machine account. This value can be NULL if 

the machine supports default encryption types used by a given implementation of the KDC.  

The specific choices made in implementing a machine joined to a domain (for example, for 
representing these variables and for generating names) are outside the state model. For Windows, 
machine-account-name equals the machine name (result of GetComputerName) with "$" appended, 
and domain-locator is NULL. 

6.4.2 State in an Active Directory Domain 

A machine m that is a member of an Active Directory domain d has a corresponding object o in d's 
domain NC. The object o is called the machine account of the joined machine m. The objectClass 
attribute of o contains the class computer. In addition to objectClass, the following attributes of o are 
significant to the membership of m in d: 

▪ userAccountControl 

▪ sAMAccountName 



 

613 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ unicodePwd 

▪ dNSHostName 

▪ servicePrincipalName 

▪ msDs-supportedEncryptionTypes 

The syntax and other details of these attributes are documented in [MS-ADA1], [MS-ADA2], and [MS-
ADA3]. 

The following predicates are satisfied by the joined machine m's state and the state of object o: 

▪ the domain d's NetBIOS name equals m.domain-name.netbios 

▪ the domain d's fully qualified DNS name equals m.domain-name.dns 

▪ o!userAccountControl & ADS_UF_WORKSTATION_TRUST_ACCOUNT ≠ 0 

▪ o!sAMAccountName equals m.machine-account-name 

▪ o!unicodePwd equals m.domain-secret 

▪ o!msDs-supportedEncryptionTypes equals m.supported-encryption-types, in the format specified 
in [MS-KILE] section 2.2.7. Note that the msDs-supportedEncryptionTypes attribute is not 
supported on all products. In such cases, m.supported-encryption-types is set to NULL.  

Section 6.1.1.2.1.1.4 specifies the representation of a domain's NetBIOS name. A domain's fully 
qualified DNS name is derived from the DN of its root object, as specified in section 3.1.1.1.5. 

The specific choices made in implementing a machine joined to a domain (for example, for 
maintaining these variables) are outside the state model. Windows might periodically update 
m.domain-secret on the client machine and o.domain-secret in the Windows Active Directory. This 
behavior is not required for a functional domain join. 

6.4.3 Relationship to Protocols 

A joined machine's domain-secret can be used by the Netlogon, NTLM, and Kerberos authentication 
protocols as a parameter for machine authentication to the domain. A joined machine's supported-
encryption-types can be used by the Netlogon and Kerberos authentication protocol as a parameter 
for machine authentication to the domain. Further Netlogon, NTLM, and Kerberos authentication 
protocol documentation can be found in [MS-NRPC], [MS-NLMP], and [MS-KILE], respectively. 

6.5 Unicode String Comparison 

This section specifies how the Unicode sort methods specified in [MS-UCODEREF] are utilized to 
perform comparisons of Unicode strings. 

6.5.1 (Updated Section) String Comparison by Using Sort Keys 

To compare strings, the implementer needs to get a "sort key" for each string. A binary comparison of 
the sort keys can then be used to arrange the strings in any desired order. 

This section utilizes the GetWindowsSortKey and CompareSortKeys procedures, which are specified in 
[MS-UCODEREF]. 

The flags that need to be passed to GetWindowsSortKey depend on the comparison being performed. 
This is specified in the following table. 



 

614 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Comparison being performed Flags (from [MS-UCODEREF]) 

UnicodeString Comparison Rule (section 3.1.1.2.2.4.13) 

LDAP_SERVER_SORT_OID sorting (section 3.1.1.3.4.1.13), 
except for phonetic display name sort 

NORM_IGNORECASE | NORM_IGNOREKANATYPE | 
NORM_IGNORENONSPACE | 
NORM_IGNOREWIDTH 

Phonetic display name sort (section 3.1.1.3.4.1.13) NORM_IGNORECASE | NORM_IGNORENONSPACE 

In order to compare two strings, StringA and StringB, the following procedure is used. The value of 
flags is as specified in the table above. The value of LCID is the locale identifier (section 2.2.1) for the 

locale being used to compare the strings. To determine what value to pass for LCID, see sections 
3.1.1.2.2.4.13 and 3.1.1.3.4.1.13. Note that when performing phonetic display name sort, LCID 
mustMUST be set equal to "1.2.840.113556.1.4.1538" (the Japanese sort order). 

 set SortKeyA to call GetWindowsSortKey(StringA, LCID, flags) 
 set SortKeyB to call GetWindowsSortKey(StringB, LCID, flags) 
 set Result to call CompareSortKeys(SortKeyA, SortKeyB) 
 if Result is "SortKeyA is equal to SortKeyB" 
  StringA is considered equal to StringB 
 else if Result is "SortKeyA is less than SortKeyB" 
  StringA is sorted prior to StringB 
 else 
  assert Result must be "SortKeyA is greater than SortKeyB" 
  StringA is sorted after StringB 
 endif 

Any sorting mechanism can be used to arrange these strings by comparing their sort keys.  

6.6 Claims.idl 

For ease of implementation, the full IDL for the data types used for claims is provided as follows, 
where "ms-dtyp.idl" is the IDL found in [MS-DTYP] Appendix A. 

 import "ms-dtyp.idl"; 
  
 [ uuid (BBA9CB76-EB0C-462C-AA1B-5D8C34415701), 
   version(1.0), 
   pointer_default(unique) 
 ] 
 interface Claims 
 { 
     typedef [string] wchar_t *CLAIM_ID; 
     typedef [string] wchar_t **PCLAIM_ID; 
  
     typedef enum _CLAIM_TYPE 
     { 
         CLAIM_TYPE_INT64 = 1, 
         CLAIM_TYPE_UINT64 = 2, 
         CLAIM_TYPE_STRING = 3, 
         CLAIM_TYPE_BOOLEAN = 6 
  
     } CLAIM_TYPE, *PCLAIM_TYPE; 
  
     typedef enum _CLAIMS_SOURCE_TYPE 
     { 
         CLAIMS_SOURCE_TYPE_AD = 1, 
         CLAIMS_SOURCE_TYPE_CERTIFICATE 
     } CLAIMS_SOURCE_TYPE; 
  
     typedef enum _CLAIMS_COMPRESSION_FORMAT 
     { 
         COMPRESSION_FORMAT_NONE = 0, 



 

615 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

         COMPRESSION_FORMAT_LZNT1 = 2, 
         COMPRESSION_FORMAT_XPRESS = 3, 
         COMPRESSION_FORMAT_XPRESS_HUFF = 4 
     } CLAIMS_COMPRESSION_FORMAT; 
  
     typedef struct _CLAIM_ENTRY 
     { 
       CLAIM_ID Id; 
       CLAIM_TYPE Type; 
       [switch_is(Type), switch_type(CLAIM_TYPE)]  
         union 
         { 
         [case(CLAIM_TYPE_INT64)]  
           struct 
           { 
             [range(1, 10*1024*1024)] ULONG ValueCount; 
             [size_is(ValueCount)] LONG64* Int64Values; 
           }; 
         [case(CLAIM_TYPE_UINT64)]  
           struct 
           { 
             [range(1, 10*1024*1024)] ULONG ValueCount; 
             [size_is(ValueCount)] ULONG64* Uint64Values; 
           }; 
         [case(CLAIM_TYPE_STRING)]  
           struct 
           { 
             [range(1, 10*1024*1024)] ULONG ValueCount; 
             [size_is(ValueCount), string] LPWSTR* StringValues; 
           }; 
         [case(CLAIM_TYPE_BOOLEAN)]  
           struct 
           { 
             [range(1, 10*1024*1024)] ULONG ValueCount; 
             [size_is(ValueCount)] ULONG64* BooleanValues; 
           }; 
         [default] 
           ; 
       } Values; 
     } CLAIM_ENTRY,  
      *PCLAIM_ENTRY; 
  
     typedef struct _CLAIMS_ARRAY 
     { 
         CLAIMS_SOURCE_TYPE                          usClaimsSourceType; 
         ULONG                                       ulClaimsCount; 
         [size_is(ulClaimsCount)] PCLAIM_ENTRY       ClaimEntries; 
     } CLAIMS_ARRAY, *PCLAIMS_ARRAY; 
  
     typedef struct _CLAIMS_SET 
     { 
         ULONG                                           ulClaimsArrayCount; 
         [size_is(ulClaimsArrayCount)] PCLAIMS_ARRAY     ClaimsArrays; 
         USHORT                                          usReservedType; 
         ULONG                                           ulReservedFieldSize; 
         [size_is(ulReservedFieldSize)]  BYTE            *ReservedField; 
     } CLAIMS_SET, *PCLAIMS_SET; 
  
     typedef struct _CLAIMS_SET_METADATA 
     { 
         ULONG                           ulClaimsSetSize; 
         [size_is(ulClaimsSetSize)] BYTE *ClaimsSet; 
         CLAIMS_COMPRESSION_FORMAT       usCompressionFormat; 
         ULONG                           ulUncompressedClaimsSetSize; 
         USHORT                          usReservedType; 
         ULONG                           ulReservedFieldSize; 
         [size_is(ulReservedFieldSize)]  BYTE  *ReservedField; 
     } CLAIMS_SET_METADATA, *PCLAIMS_SET_METADATA; 
 } 



 

616 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

7 Communication Details for Active Directory Connections 

The protocols used by Active Directory connections can operate on more than one transport. However, 
not all transports are considered equivalent. In these cases, the client is either encouraged or required 
to choose a specific transport when performing an operation using the protocol. This section 
documents these constraints. For information on the transports used by Active Directory connections, 
see section 7.8. 

Windows uses LDAP as defined in [RFC1777] for LDAP version 2, and [RFC3377] and [RFC2251] for 
LDAP version 3. Clients authenticated to an Active Directory server using the GSS-SPNEGO SASL 
authentication mechanism (section 5.1.1.1.2, SASL Authentication) observe LDAP version 3 compliant 
semantics, with the extensions and deviations documented in section 3.1.1.3.1, LDAP Conformance. 
Unauthenticated clients and clients authenticated under a different authentication mechanism observe 
LDAP behavior compliant with the requested LDAP version. Windows clients authenticate to the Active 

Directory server using the GSS-SPNEGO SASL authentication mechanism.  

While the Active Directory system supports both TCP and UDP transports for LDAP versions 2 and 3, 

TCP is the preferred transport. LDAP over the UDP transport does not have a mechanism by which 
clients can authenticate to the directory service and so clients can only perform two specific 
anonymous operations. These anonymous operations are rootDSE search and LDAP abandon. The UDP 
transport is primarily intended for use by LDAP ping requests used for the AD DS domain controller 
location mechanism described in section 6.3, Publishing and Locating a Domain Controller. LDAP over 

TCP is described in sections 7.1 through 7.6, while LDAP over UDP is described in section 7.7. 

7.1 (Updated Section) Connection Resolution of LDAP Clients 

Lightweight Directory Access Protocol (LDAP) client establishes an LDAP connection to the directory 
server based on the given server information. The server information can be NULL (indicates that the 

joined domain name shouldSHOULD be used), domain name (DNS/NetBIOS), server host name, or 
server IP address. Below is the connection resolution logic for the given server information: 

▪ NULL (indicates that the joined domain name shouldSHOULD be used) 

▪ LDAP client uses the DC Location algorithm, as described in section 7.6.2.2 (Connecting to a 
Directory Server), to locate a server for the joined domain name. 

▪ Domain name (DNS/NetBIOS) 

▪ LDAP client uses the DC Location algorithm, as described in section 7.6.2.2 (Connecting to a 
Directory Server), to locate a server for the given domain name. 

▪ Server host name 

▪ LDAP client uses the given server host name to establish an LDAP connection. 

▪ Server IP address 

▪ LDAP client uses the given server IP address to establish an LDAP connection. 

7.2 ADConnection Overview 

Windows uses LDAP over TCP as defined in [RFC1777] for LDAP version 2, and [RFC3377] and 
[RFC2251] for LDAP version 3. The following sections describe only the additional behaviors of the 
Microsoft LDAP client which are not specified by these RFCs.  

For LDAP over TCP, an ADConnection manages the TCP connections that are used for communication 

between the client and Active Directory servers. The typical sequence of use of an ADConnection is: 



 

617 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

1. Initialize an ADConnection, which creates the ADConnection but does not yet connect to the Active 
Directory server. 

2. Set options on the ADConnection as outlined in section 7.6.1.2. 

3. Establish the ADConnection to an Active Directory server, which establishes the TCP connection 

with the server ([RFC2251] section 5.2.1, Transmission Control Protocol (TCP)). 

4. Perform an LDAP bind ([RFC2251] section 4.2, Bind Operation) on the ADConnection, which 
authenticates the client to the Active Directory service. 

5. Perform one or more LDAP operations such as search ([RFC2251] section 4.5, Search Operation), 
modify ([RFC2251] section 4.6, Modify Operation), or delete ([RFC2251] section 4.8, Delete 
Operation) on the ADConnection. An LDAP operation will consist of an LDAP request and the 
resulting LDAP response(s). 

6. Perform an LDAP unbind ([RFC2251] section 4.3, Unbind Operation) on the ADConnection. 

This sequence is shown in the following Client Activity diagram. 



 

618 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

 

Figure 6: Client activity diagram 

An ADConnection allows a client to use the connectivity to an Active Directory server for multiple LDAP 
operations, thereby reducing both client- and server-side processing costs and reducing the serialized 
time delays of TCP connection establishment and LDAP bind authentications. The ADConnection 
abstraction allows a client application to perform an LDAP operation with an Active Directory server, 

and automatically follow any LDAP referrals ([RFC2251] section 4.1.11, Referral) and continuation 
references ([RFC2251] section 4.5.3, Continuation References in the Search Result). In the case of 

referrals and continuation references, the client establishes an additional TCP connection to the 
directory server specified in each referral (or continuation reference) and sends a request as directed 
by that referral or reference. 

The ADConnection can also attempt to maintain connectivity to the directory service in the event a 
directory server becomes unresponsive or unreachable by attempting to reconnect to the directory 
service and resending pending requests. 



 

619 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

7.3 (Updated Section) ADConnection Abstract Data Model 

This section describes a conceptual model of a possible data organization that an implementation 
maintains. The described organization is provided to facilitate the explanation of how the client 

behaves. This document does not mandate that implementations adhere to this model as long as their 
external behavior is consistent with that described in this document. 

The data model defines a set of structures that a client operates on, and also an element which lists all 
active ADConnection objects. The primary structure is ADConnection, with two supporting structures 
LDAPRequest and ConnectionInfo. These structures and others are described below. 

ComputerRole: An abstract variable of type DSROLE_MACHINE_ROLE ([MS-DSSP] section 2.2.2) 
that indicates the current domain membership role of the machine on which the LDAP client is 

executing, as described in [MS-DSSP] section 3.2.1, Abstract Data Model. 

ADCList: A list of ADConnection objects. It is initialized to the empty list. 

ADConnection: A structure that tracks a connection to an Active Directory server. Sub-elements with 

names of the form LDAP_OPT_<rest of name> are ADM elements that can be set by the Setting an 
LDAP Option on an ADConnection (section 7.6.1.2) task. It has the following elements: 

LDAP_OPT_REFERRAL_HOP_LIMIT: An unsigned integer indicating the limit on the number of 

referrals or continuation references that the client will follow for a single LDAP request. The 
default value is 32. A value of zero indicates no limit. 

LDAP_OPT_REFERRALS: An enumeration indicating whether the client is to automatically follow 
referrals and continuation references. Valid values are: 

▪ ON: The default value. The client automatically follows both referrals and continuation 
references. 

▪ OFF: The client does not follow either referrals or continuation references automatically. 

▪ LDAP_CHASE_CONTINUATION_REFERENCES: The client follows only continuation 

references automatically. 

▪ LDAP_CHASE_REFERRALS: The client follows only referrals automatically. 

LDAP_OPT_TIMELIMIT: An unsigned integer indicating the maximum time in seconds the client 
will wait for a response to an LDAP request. A value of 0 indicates a limit of 120 seconds for 
LDAP bind requests and no time limit for all other requests. The default value is 0. This ADM 
element can be overridden if a value for the time limit is specified in the parameters of the 

Performing an LDAP Operation on an ADConnection (section 7.6.1.6) task. 

LDAP_OPT_SIZELIMIT: An unsigned integer indicating the maximum number of results the 
client will request the directory server to send for a given search request. The valid range is 
from 0 to 2^32 -1. A value of 0 indicates that there is no limit. The default value is 0. This 
ADM element can be overridden if a value for the size limit is specified in the parameters of 
the Performing an LDAP Operation on an ADConnection (section 7.6.1.6) task. 

LDAP_OPT_AREC_EXCLUSIVE: A Boolean flag indicating whether the client is to skip the DC 
Location processing (described in section 7.6.2.2) during host resolution. A value of TRUE 
indicates that DC Location will be skipped. The default value is FALSE. 

LDAP_OPT_DNSDOMAIN_NAME: A null-terminated string used in constructing a service 
principal name (SPN) (2) when performing an LDAP bind. 

LDAP_OPT_GETDSNAME_FLAGS: An unsigned integer indicating the flags to be passed when 
invoking DsrGetDcNameEx2 to perform DC location. For more information, see [MS-NRPC] 

section 3.5.4.3.1, DsrGetDcNameEx2 (Opnum 34). By default, the value is 0. 



 

620 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

LDAP_OPT_AUTO_RECONNECT: A Boolean flag indicating whether the client will attempt to 
automatically reconnect to a server when an existing connection is lost. The default value is 

TRUE. 

LDAP_OPT_PING_KEEP_ALIVE: An unsigned integer indicating the maximum time in seconds 

the client will allow a connection to be idle (that is, receiving no responses) while waiting on 
outstanding requests on the connection before sending the directory server a sequence of 
PING requests. The valid range is 5 seconds to 2^32-1 seconds. The default value is 120 
seconds. 

LDAP_OPT_PING_WAIT_TIME: An unsigned integer indicating the time in milliseconds (ms) 
the client will wait for a response to a PING request. The valid range is 10 ms to 60000 ms. 
The default value is 2000 ms. 

LDAP_OPT_PING_LIMIT: An unsigned integer indicating the maximum number of consecutive 
PINGs the client will send without getting an ICMP echo response ([RFC792]) before triggering 
the Processing Network Errors (section 7.6.3.1) event. Valid range is 0 to 2^32-1. A value of 0 
indicates that the client never PINGs the server for an idle connection. The default value is 4. 

LDAP_OPT_ENCRYPT: A Boolean flag indicating whether SASL layer encryption (section 5.1.2.1, 
Using SASL) is enabled on the connection. If a non-default value is desired, this mustMUST be 

set prior to performing an LDAP bind on the connection. The default value is FALSE. 

LDAP_OPT_SIGN: A Boolean flag indicating whether SASL layer signing (section 5.1.2.1, Using 
SASL) is enabled on the connection. If a non-default value is desired, this mustMUST be set 
prior to performing an LDAP bind on the connection. The default value is TRUE. 

LDAP_OPT_TCP_KEEPALIVE: A Boolean flag indicating whether TCP Keep-alives ([RFC1122] 
section 4.2.3.6, TCP Keep-Alives) are enabled on primaryConnection. The default value is 
FALSE. 

LDAP_OPT_AUTH_INFO: An instance of an AuthInfo structure representing the bind method 
and credentials to use when authenticating to the directory server. By default, the 
bindMethod is SASL using the GSS-SPNEGO mechanism, and the name and password are 

those of the identity of the protocol or system using the LDAP client. When attempting to use 
the server in fast bind mode, the bindMethod is set to simple bind prior to performing an 
LDAP bind on the connection. Subsequently, only simple binds can be performed to the server 
as long as the connection is in fast bind mode. See section 5.1.1.1, (Supported Authentication 

Methods) for a list of supported bind methods. 

LDAP_OPT_PROTOCOL_VERSION: An unsigned integer indicating which version of the LDAP 
protocol the connection uses. Valid values are 2 and 3. The default value is 2. If a non-default 
value is desired, this mustMUST be set prior to performing an LDAP bind on the connection. 

primaryConnection: A ConnectionInfo structure representing the TCP connection for the target 
directory server. The target directory server is the directory server specified as a parameter to 

the Initializing an ADConnection (section 7.6.1.1) task. 

referralConnections: A list of ConnectionInfo structures representing the TCP connections to 
directory servers used for following referrals or continuation references. It is initialized to an 

empty list. 

LDAPRequest: A structure that tracks an LDAP request ([RFC1777] section 2, Protocol Model, for 
LDAP version 2 and [RFC2251] section 3.1, Protocol Model, for LDAP version 3). It has the following 
elements: 

requestMessage: An LDAPMessage (as defined in [RFC1777] section 4, Elements of Protocol, for 
LDAP version 2 and [RFC2251] section 4.1.1, Message Envelope, for LDAP version 3) 
representing a request that the client sends to the server. 



 

621 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

resultMessages: A sequence of LDAPMessage (as defined in [RFC1777] section 4, Elements of 
Protocol, for LDAP version 2 and [RFC2251] section 4.1.1, Message Envelope, for LDAP version 

3) representing the results that the client receives in response to requestMessage. 

numReferrals: An unsigned integer indicating the number of consecutive referrals or continuation 

references the client has received when processing a given LDAP response ([RFC1777] section 
2, Message Envelope, for LDAP version 2 and [RFC2251] section 4.1.11, Referral, for LDAP 
version 3). It is initialized to zero. 

requestTimer: A timer with second granularity used to track how long the client has waited for a 
response to requestMessage. 

numResends: An unsigned integer indicating the number of times this request has been resent 
by the Autoreconnecting to a Directory Server (section 7.6.2.7) task. It is initialized to 0. 

ConnectionInfo: A structure that tracks a TCP connection to a directory server. It has the following 
elements: 

networkConnection: An abstract element representing a TCP connection ([RFC793] section 1.5, 
Operation) to the directory server. It is initialized to NULL. 

portNumber: An unsigned integer indicating the TCP port number ([RFC793] section 1.5, 
Operation) to use when connecting to the directory server. 

targetName: A null-terminated string used to locate a directory server. It can be NULL, indicating 
that the directory server for the joined domain shouldSHOULD be located, a domain name 
(DNS/NetBIOS), a host name, or an IP address. 

bindHasHappened: A Boolean flag indicating whether an LDAP bind has been successfully 
performed on this connection. The default value is FALSE. 

pingRetries: An unsigned integer indicating the number of consecutive ICMP echo requests or 
"pings" ([RFC792]) the client has sent to the directory server but for which it has not received 

a response. It is initialized to 0. 

pingKeepaliveTimer: A timer with second granularity used to track how long it has been since 
the client last received a response to any request on this connection. 

pendingRequestList: A list of LDAPRequest elements representing all outstanding requests on 
this connection. It is initialized to NULL. 

AuthInfo: A structure that is used to authenticate to the directory server. It has the following 
elements: 

bindMethod: The bind method that will be used to authenticate to the directory server. See 
section 5.1.1.1 (Supported Authentication Methods) for a list of supported bind methods. 

name: A string containing the user name of the credentials that will be used to authenticate to 
the directory server. When this string is set to NULL or is not set, use the identity of the 
protocol or system that is using the LDAP client. 

password: A string containing the password of the credentials that will be used to authenticate to 

the directory server. When this string is set to NULL or is not set, use the identity of the protocol 
or system that is using the LDAP client. 

7.4 Handling Network Errors 

The LDAP client relies extensively on the underlying TCP/IP implementation to detect network errors 

that indicate that the remote Active Directory server is either unreachable or is unavailable for 
network operations. These errors depend on the local implementation of TCP/IP but include errors 



 

622 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

such as network media is unavailable, host is unreachable, port is unreachable, route is unavailable, 
and TCP keep alive failed. For the purposes of this specification, an error encountered on a network 

read or write will appear as a signaled event, invoking the handler covered in Processing Network 
Errors (section 7.6.3.1). 

7.5 ICMP Pings 

If a client has pending requests on a connection to an Active Directory server but has not received any 
responses to any of those requests for a period of time specified by 

ADConnection.LDAP_OPT_PING_KEEP_ALIVE, as tracked by the pingKeepAliveTimer on the 
ConnectionInfo structure that holds the TCP connection to that server, the client pings the directory 
server by sending an ICMP echo message as described in [RFC792] and waiting up to 
ADConnection.LDAP_OPT_PING_WAIT_TIME milliseconds for any echo reply from the 
corresponding server. If no such reply is received, the client repeats the process of pinging the server 
up to ADConnection.LDAP_OPT_PING_LIMIT times. If the client receives no response after 
sending the maximum number of pings, or receives an error from the underlying network 

implementation during this process, it triggers the Processing Network Errors (section 7.6.3.1) event. 

7.6 Tasks and Events 

The following sections describe tasks and events involved in the management of ADConnections. 
These sections list parameters and results for each task. These represent data passed to an instance 

of the task at the time it is invoked or triggered or the result returned by the task. This information is 
intended to facilitate the reader's conceptual understanding of the specification. While a task's 
processing rules might depend upon associations established by the structure of its parameters, such 
association can be achieved in other ways. Implementations can depart from this abstraction so long 
as their external behavior remains consistent with that described in this document.  



 

623 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The interrelationship between these tasks and events is illustrated in the following Task Relationship 
diagram.

 

Figure 7: Task relationship diagram 

7.6.1 Tasks 

7.6.1.1 (Updated Section) Initializing an ADConnection 

This task initializes an instance of the ADConnection element and returns it to the caller. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputTargetName String(Unicode) A string used to locate a domain controller. It can be 
NULL (which indicates that the joined domain name 

No 



 

624 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Name Type Description Optional 

shouldSHOULD be used), a domain name (DNS/NetBIOS), 
a server host name, or a server IP address. 

TaskInputPortNumber Unsigned 
integer 

The destination TCP port number ([RFC793] section 1.5, 
Operation) to use when connecting to the directory server 
specified by TaskInputTargetName. 

No 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnADConnection ADCONNECTION_HANDLE An ADCONNECTION_HANDLE ([MS-DTYP] section 2.2.2) 
that refers to an instance of the ADConnection ADM 
element. 

The task performs the following actions: 

1. Create an instance of the ADConnection ADM structure and initialize the values in the ADM to 
their default values. This instance is added to the list ADCList. 

2. Invoke the Initializing a Connection to a Directory Server (section 7.6.2.1) task, passing the 
TaskInputTargetName and TaskInputPortNumber parameters provided by the caller of this task. 
The returned TaskReturnConnectionInfo is assigned to ADConnection.primaryConnection. 

3. Using TaskReturnADConnection, return an ADCONNECTION_HANDLE ([MS-DTYP] section 2.2.2) 
that refers to the ADConnection instance to the caller. 

7.6.1.2 Setting an LDAP Option on an ADConnection 

This task sets one of the LDAP_OPT_<optionName> ADM elements on an ADConnection. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputADConnection ADCONNECTION_HANDLE An ADCONNECTION_HANDLE ([MS-DTYP] 
section 2.2.2) that refers to an initialized 
ADConnection on which to set an option. 

No 

TaskInputOptionName String(Unicode) The name of the LDAP_OPT ADM element 

to set. 

No 

TaskInputOptionValue MUST match the type of the 
ADM element specified by 
TaskInputOptionName. 

The value to assign to the specified ADM 
element. 

No 

This task does not return any results. 

The task performs the following actions: 

1. Let adConnection be the ADConnection instance in ADCList referred to by 

TaskInputADConnection. 

2. Set the ADM element from adConnection with name TaskInputOptionName to the value 
TaskInputOptionValue. 



 

625 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

7.6.1.3 Establishing an ADConnection 

This task establishes a TCP connection to an Active Directory server specified by the elements of an 
input ADConnection instance. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputADConnection ADCONNECTION_HANDLE An ADCONNECTION_HANDLE ([MS-DTYP] 
section 2.2.2) that refers to an initialized 
ADConnection for which a TCP connection 
to the directory server will be established. 

No 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnStatus Boolean Returns TRUE if a TCP connection was successfully established and FALSE 
otherwise. 

The task performs the following actions: 

1. Let adConnection be the ADConnection instance in ADCList referred to by 
TaskInputADConnection. 

2. Invoke the Connecting to a Directory Server (section 7.6.2.2) task, passing 
adConnection.primaryConnection as the TaskInputConnectionInfo parameter. The return value of 
the invocation is returned to the caller as TaskReturnStatus. 

7.6.1.4 Performing an LDAP Bind on an ADConnection 

This task authenticates the client to an Active Directory server specified by the elements of an input 

ADConnection instance. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputADConnection ADCONNECTION_HANDLE An ADCONNECTION_HANDLE ([MS-DTYP] 
section 2.2.2) that refers to an initialized 
ADConnection on which to perform an 
LDAP bind. 

No 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnStatus Unsigned 
integer 

The LDAP resultCode ([RFC2251] section 4.1.10, Result Message) 
returned from the directory server in response to the bind request or an 
error indicating that the directory server could not be contacted. 

The task performs the following actions: 

1. Let adConnection be the ADConnection instance in ADCList referred to by 
TaskInputADConnection. 



 

626 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

2. Invoke the Performing an LDAP Bind Against a Directory Server (section 7.6.2.3) task with the 
following parameters: TaskInputConnectionInfo is set to adConnection.primaryConnection. This 

task returns the resulting TaskReturnStatus. 

7.6.1.5 Performing an LDAP Unbind on an ADConnection 

This task closes an ADConnection's primaryConnection and any referralConnections. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputADConnection ADCONNECTION_HANDLE An ADCONNECTION_HANDLE ([MS-DTYP] 
section 2.2.2) that refers to an initialized 
ADConnection that the client will close. 

No 

This task does not return any results. 

The task performs the following actions: 

1. Let adConnection be the ADConnection instance in ADCList referred to by 
TaskInputADConnection. 

2. Invoke the Performing an LDAP Unbind Against a Directory Server (section 7.6.2.4) task with the 
following parameters: TaskInputConnectionInfo is set to adConnection.primaryConnection. 

3. For each connectionInfo in adConnection.referralConnections: 

▪ Invoke the Performing an LDAP Unbind Against a Directory Server (section 7.6.2.4) task with 
the following parameters: TaskInputConnectionInfo is set to connectionInfo. 

4. Set adConnection.primaryConnection to NULL. 

5. Set adConnection.referralConnections to NULL. 

6. Remove adConnection from ADCList. 

7.6.1.6 Performing an LDAP Operation on an ADConnection 

This task sends an LDAP request to an Active Directory server. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputADConnection ADCONNECTION_HANDLE An ADCONNECTION_HANDLE ([MS-
DTYP] section 2.2.2) that refers to an 
initialized ADConnection on which the 
LDAP request will be sent. 

No 

TaskInputRequestMessage LDAPMessage The request to send to the directory 
server. 

No 

TaskOutputResultMessages List of LDAPMessage The response from the directory server. No 

The task returns the following results to the caller: 



 

627 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Name Type Description 

TaskReturnStatus Unsigned 
integer 

The LDAP resultCode ([RFC2251] section 4.1.10, Result Message) 
returned from the directory server in response to the request or an error 
indicating that the directory server could not be contacted or a timeout 
has occurred. 

The task performs the following actions: 

1. Let adConnection be the ADConnection instance in ADCList referred to by 
TaskInputADConnection.  

2. Let ldapRequest be a freshly constructed instance of the LDAPRequest ADM structure type 

defined in section 7.3, ADConnection Abstract Data Model, initialized with default values as 
specified in that section. 

3. ldapRequest.requestMessage is set to TaskInputRequestMessage, an input parameter to the 
current task that indicates the request to be sent to the directory server.  

4. The current task invokes the task, Performing an LDAP Operation Against a Directory 
Server (section 7.6.2.5), with the following parameters: TaskInputConnectionInfo is set to 
adConnection.primaryConnection and TaskInputRequestMessage is set to ldapRequest. 

5. The current task waits for responses to arrive on ldapRequest.resultMessages. When the 
responses for the request have been received (see Getting an LDAP Response from a Directory 
Server (section 7.6.3.2)), TaskOutputResultMessages is set to ldapRequest.resultMessages. If no 
error is encountered, the LDAP resultCode of the last message in TaskOutputResultMessages is 
returned to the caller. Otherwise the error is returned. 

7.6.2 Internal Tasks 

The tasks described in the following sections are supporting tasks for the management of 
ADConnections and are internal to this document; they are invoked only by the other tasks and 

events described in subsections under section 7.6. 

7.6.2.1 (Updated Section) Initializing a Connection to a Directory Server 

This task initializes an instance of the ConnectionInfo element. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputTargetName String(Unicode) A string used to locate a domain controller. It can be 
NULL (which indicates that the joined domain name 
shouldSHOULD be used), the domain name 
(DNS/NetBIOS), the server host name, or the server IP 
address. 

No 

TaskInputPortNumber Unsigned 
integer 

The destination TCP port number ([RFC793] section 
1.5, Operation) to use when connecting to the directory 
server specified by TaskInputTargetName. 

No 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnConnectionInfo ConnectionInfo An instance of the ConnectionInfo ADM element. 



 

628 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The task performs the following actions: 

1. An instance of the ConnectionInfo ADM element is created and the values in the ADM are 
initialized to their default values. The default value of ConnectionInfo.networkConnection 
causes a new TCP connection to be used that is not associated with an existing ADConnection. 

2. ConnectionInfo.targetName is set to the input parameter TaskInputTargetName. 

3. ConnectionInfo.portNumber is set to the input parameter TaskInputPortNumber. 

4. The ConnectionInfo instance is returned to the caller as TaskReturnConnectionInfo. 

7.6.2.2 Connecting to a Directory Server 

This task establishes a TCP connection to an Active Directory server specified by the elements of an 
input ConnectionInfo instance.  

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputConnectionInfo ConnectionInfo An initialized ConnectionInfo on which to perform 
an LDAP bind. 

No 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnStatus Boolean This task returns TRUE if a TCP connection was successfully established, 
FALSE otherwise. 

The task performs the following actions: 

1. Let connectionSuccessful be a Boolean initialized to FALSE. 

2. Let dcAddress be a Unicode string initialized to NULL. 

3. Let containingADConnection be the ADConnection instance contained in ADCList for which 
containingADConnection.primaryConnection is set to TaskInputConnectionInfo or for which the 
containingADConnection.referralConnections list contains TaskInputConnectionInfo. Note that 
these conditions are mutually exclusive and there is exactly one ADConnection which satisfies 
these conditions. 

4. If TaskInputConnectionInfo.targetName is NULL: 

▪ If ComputerRole is DSRole_RoleBackupDomainController or 

DsRole_RolePrimaryDomainController, then set dcAddress to "localhost" and go to step 8; 
otherwise go to step 7.  

5. If TaskInputConnectionInfo.targetName is an IP address, then go to step 9. 

6. If containingADConnection.LDAP_OPT_AREC_EXCLUSIVE is set to TRUE, then go to step 8, 
skipping the DC location process described in step 7. 

7. Assume that TaskInputConnectionInfo.targetName represents a domain name and attempt to 
locate a domain controller in the specified domain: 

1. Let domainControllerInfo be an instance of the DOMAIN_CONTROLLER_INFOW structure 
([MS-NRPC] section 2.2.1.2.1, DOMAIN_CONTROLLER_INFOW).  



 

629 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

2. Let addedFlags be an unsigned integer. If TaskInputConnectionInfo.portNumber is 3268 or 
3269, addedFlags is set to the bitwise OR of the D, M, and R flags defined for the Flags 

parameter in [MS-NRPC] section 3.5.4.3.1, DsrGetDcNameEx2. Otherwise addedFlags is set to 
the bitwise OR of the M and R flags. 

3. The DsrGetDcName method ([MS-NRPC] section 3.5.4.3.3, DsrGetDcName) is invoked with 
the following parameters: 

▪ ComputerName is NULL. 

▪ DomainName is TaskInputConnectionInfo.targetName. 

▪ DomainGuid is NULL. 

▪ SiteGuid is NULL. 

▪ Flags is the bitwise OR of containingADConnection.LDAP_OPT_GETDSNAME_FLAGS and 

addedFlags. 

▪ DomainControllerInfo is a pointer to the domainControllerInfo structure. 

4. If the invocation of DsrGetDcName listed in step 3 returned 0 (Success), then: 

▪ TaskInputConnectionInfo.targetName specified a domain name and 
domainControllerInfo.DomainControllerAddress now identifies a domain controller in the 
specified domain; if domainControllerInfo.DomainControllerAddress is an IP address, set 

dcAddress to domainControllerInfo.DomainControllerAddress with the "\\" prefix omitted. 

5. If the invocation of DsrGetDcName listed in step 3 returned a non-zero value and 
TaskInputConnectionInfo.targetName is NULL, then this task returns FALSE. 

8. If dcAddress is NULL, then assume that TaskInputConnectionInfo.targetName is a host name, and 
set dcAddress to TaskInputConnectionInfo.targetName. 

9. A TCP connection is established to the server whose host name or IP address is specified by 

dcAddress, with destination port set to TaskInputConnectionInfo.portNumber. If dcAddress is a 

host name, gethostbyname (see the note shown below) is invoked and each of the returned IP 
addresses is tried in parallel until a connection returns successfully or all IP addresses returned by 
gethostbyname have been exhausted. If a TCP connection is successfully established, the client 
sets TaskInputConnectionInfo.networkConnection to the TCP connection and connectionSuccessful 
is set to TRUE. 

Note  gethostbyname is a well-known, standards-based API call that is a POSIX-compliant method 
to retrieve information about hosts. For one example of an implementation of this API, see 

[MSDN-gethostbyname]. 

10. If connectionSuccessful is TRUE: 

1. If containingADConnection.LDAP_OPT_TCP_KEEPALIVE is TRUE, the client enables TCP Keep-
alives ([RFC1122] section 4.2.3.6, TCP Keep-Alives) on the TCP connection represented by 

TaskInputConnectionInfo.networkConnection. 

2. This task returns TRUE. 

11. If connectionSuccessful is FALSE, this task returns FALSE. 

In addition to the above, if the LDAP client is unable to establish a TCP connection to an IP address 
obtained from DC Location (step 7), it will retry DC Location once, this time including the "A" flag in 
the Flags parameter passed to DsrGetDcName (in addition to whichever flags were passed in during 
the first DC Location attempt). It will then try establishing a TCP connection to the IP address 
obtained. If this fails, the task will return FALSE. 



 

630 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

7.6.2.3 Performing an LDAP Bind Against a Directory Server 

This task authenticates the client to an Active Directory server. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputConnectionInfo ConnectionInfo An initialized ConnectionInfo on which an LDAP 
bind is to be performed. The ConnectionInfo 
could have been used already to connect or bind to 
a directory server. 

No 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnStatus Unsigned 
integer 

The LDAP resultCode ([RFC2251] section 4.1.10, Result Message) 
returned from the directory server in response to the bind request or an 
error indicating that the directory server failed to respond to the request 
due to network errors or timer expiration. 

The task performs the following actions: 

1. Let bindRequestMessage be an LDAPMessage with protocolOp of type BindRequest as described in 
[RFC2251] section 4.2, Bind Operation. 

2. Let containingADConnection be the ADConnection instance contained in ADCList for which 
containingADConnection.primaryConnection is set to TaskInputConnectionInfo or for which the 
containingADConnection.referralConnections list contains TaskInputConnectionInfo. 

3. If TaskInputConnectionInfo.networkConnection is NULL, the task Connecting to a Directory 
Server (section 7.6.2.2) is invoked with the following parameters: TaskInputConnectionInfo is set 
to the TaskInputConnectionInfo that was passed into this task. If the TaskReturnStatus returned 

by the invocation of Connecting to a Directory Server is FALSE, this task returns the error code 81 
indicating the directory server could not be contacted. 

4. Construct bindRequestMessage from containingADConnection.LDAP_OPT_AUTH_INFO, according 
to section 5.1.1, Authentication. 

5. If the bind method specified by containingADConnection.LDAP_OPT_AUTH_INFO is SASL: 

1. Set containingADConnection.LDAP_OPT_PROTOCOL_VERSION to 3. 

2. If containingADConnection.LDAP_OPT_SIGN is TRUE, set bindRequestMessage to request 
SASL-layer integrity. See section 5.1.2.1, Using SASL. 

3. If containingADConnection.LDAP_OPT_ENCRYPT is TRUE, set bindRequestMessage to request 
SASL-layer confidentiality. See section 5.1.2.1, Using SASL. 

4. If containingADConnection.LDAP_OPT_DNSDOMAIN_NAME is not NULL, then the client uses 

containingADConnection.LDAP_OPT_DNSDOMAIN_NAME as the 3rd part of the 3-part Service 
Principal Name (SPN) (2) supplied to the security packages that authenticate the client with 
the Active Directory server ([RFC2251] and section 5.1.1, Authentication). 

5. The Bind LDAP processing will invoke security packages to authenticate the client with the 
Active Directory server ([RFC2251] and section 5.1.1, Authentication). Those security 
packages will take the security identity of the current thread of execution as the identity. 



 

631 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

6. Let ldapRequest be a freshly constructed instance of the LDAPRequest ADM structure with the 
values in the ADM initialized to their default values. 

7. ldapRequest.requestMessage is set to bindRequestMessage. 

8. The client invokes the Performing an LDAP Operation Against a Directory Server (section 7.6.2.5) 

task with the following parameters: TaskIputRequestMessage is set to ldapRequest and 
TaskInputConnectionInfo is set to the TaskInputConnectionInfo that was passed to this task. 

9. The task waits for responses to arrive on ldapRequest.resultMessages. When the responses for the 
request have been received (see task: Getting an LDAP Response from a Directory 
Server (section 7.6.3.2)), if the responses indicate success, 
TaskInputConnectionInfo.bindHasHappened is set to TRUE. This task returns the LDAP resultCode 
from the last response. 

7.6.2.4 Performing an LDAP Unbind Against a Directory Server 

This task closes an ADConnection's primaryConnection and any referralConnections. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputConnectionInfo ConnectionInfo An initialized ConnectionInfo that the client will 
close. 

No 

This task does not return any results. 

The task performs the following actions: 

1. Let unbindRequest be an LDAPMessage for an unbind request. See [RFC2251] section 4.3, Unbind 
Operation. 

2. Let ldapRequest be a freshly constructed instance of the LDAPRequest ADM structure with the 
values in the ADM initialized to their default values. 

3. ldapRequest.requestMessage is set to unbindRequest. 

4. Invoke the Performing an LDAP Operation Against a Directory Server (section 7.6.2.5) task with 
the following parameters: TaskInputConnectionInfo is set to the TaskInputConnectionInfo that was 
passed to this task and TaskInputRequestMessage is set to ldapRequest. 

5. The client closes the TCP connection TaskInputConnectionInfo.networkConnection. 

7.6.2.5 Performing an LDAP Operation Against a Directory Server 

This task sends an LDAP request to an Active Directory server. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputConnectionInfo ConnectionInfo An initialized ConnectionInfo on which to send 
the LDAP request. 

No 

TaskInputRequestMessage LDAPRequest The request to send to the directory server, 
including any ExtendedRequest as documented 
in section 3.1.1.3.4.2, LDAP Extended Operations. 

No 



 

632 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnStatus Boolean This task returns TRUE if the client successfully sends the request to the 
directory server. Otherwise, it returns FALSE. 

The task performs the following actions: 

1. Let ldapRequest be the LDAPRequest instance received in TaskInputRequestMessage. 

2. Let containingADConnection be the ADConnection instance contained in ADCList for which 
containingADConnection.primaryConnection is set to TaskInputConnectionInfo or for which the 

containingADConnection.referralConnections list contains TaskInputConnectionInfo. 

3. Let operationTimeout be an unsigned integer initialized to the value of 
containingADConnection.LDAP_OPT_TIMELIMIT. 

4. If operationTimeout is 0 and TaskInputRequestMessage.requestMessage.protocolOp is of type 
BindRequest, set operationTimeout to 120. 

5. If TaskInputRequestMessage.requestMessage.protocolOp is of type SearchRequest: 

1. If TaskInputRequestMessage.requestMessage.protocolOp.sizeLimit was not specified, then it is 
set to containingADConnection.LDAP_OPT_SIZELIMIT. 

2. If TaskInputRequestMessage.requestMessage.protocolOp.timeLimit was not specified, then it 
is set to operationTimeout. 

6. ldapRequest.requestMessage.messageID is set, as described in [RFC2251] section 4.1.1.1, 
Message ID. 

7. The client sends ldapRequest to the directory server through the TCP connection represented by 

TaskInputConnectionInfo.networkConnection. 

If the send is successful: 

1. ldapRequest.requestTimer is set to operationTimeout and begins counting down. 

2. ldapRequest is appended to TaskInputConnectionInfo.pendingRequestList, if not already 
present. 

3. This task returns TRUE. 

If the send is not successful, this task returns FALSE. 

7.6.2.6 Following an LDAP Referral or Continuation Reference 

This task follows an LDAP referral or continuation reference ([RFC2251] sections 4.1.11, Referral, and 
4.5.3, Continuation References in the Search Result, and section 3.1.1.3.1.4, Referrals in LDAPv2 and 

LDAPv3).  

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputLdapRequest LDAPRequest The request that originally generated this referral or 
continuation reference. 

No 

TaskInputReferralUrl LDAP URL An LDAP URL (see [RFC2255]) that was returned by the No 



 

633 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Name Type Description Optional 

server. 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnStatus Boolean This task returns TRUE if the client successfully sends the referral request 
to the directory server. Otherwise, it returns FALSE. 

The task performs the following actions: 

1. Let containingConnectionInfo be the ConnectionInfo instance for which 
containingConnectionInfo.pendingRequestList contains TaskInputLdapRequest. 

2. Let containingADConnection be the ADConnection instance contained in ADCList for which 

containingADConnection.primaryConnection is set to containingConnectionInfo or for which the 
containingADConnection.referralConnections list contains containingConnectionInfo. 

3. If TaskInputLdapRequest.numReferrals is greater than or equal to 
containingADConnection.LDAP_OPT_REFERRAL_HOP_LIMIT, return FALSE. 

4. Let newServer be a string initialized to the host portion of the hostport element of 
TaskInputReferralUrl, or NULL if there is no host portion. See [RFC2255]. 

5. Let newPort be an unsigned integer initialized to the port portion of the hostport element of 

TaskInputReferralUrl, or 389 if there is no port portion. See [RFC2255]. 

6. Let newConnectionInfo be the result of invoking the Initializing a Connection to a Directory 
Server (section 7.6.2.1) task with the following parameters: TaskInputTargetName is set to 
newServer and TaskInputPortNumber is set to newPort. 

7. Append newConnectionInfo to containingADConnection.referralConnections. 

8. Invoke the Connecting to a Directory Server (section 7.6.2.2) task with the following parameter: 
TaskInputConnectionInfo is set to newConnectionInfo. If the invocation returns FALSE, remove 

newConnectionInfo from containingADConnection.referralConnections and this task returns FALSE. 

9. If containingConnectionInfo.bindHasHappened is TRUE: 

▪ Invoke the Performing an LDAP Bind Against a Directory Server (section 7.6.2.3) task with the 
following parameter: TaskInputConnectionInfo is set to newConnectionInfo. If this invocation 
returns FALSE, newConnectionInfo is removed from 
containingADConnection.referralConnections and this task returns FALSE. 

10. The fields of TaskInputLdapRequest.requestMessage are modified, for example setting the dn or 
filter, based on TaskInputReferralUrl according to the rules in [RFC2255] section 5, URL 
Processing, and [RFC2251] sections 4.1.1, Message Envelope, and 4.5.3, Continuation References 
in the Search Result. 

11. Invoke the Performing an LDAP Operation Against a Directory Server (section 7.6.2.5) task with 
the following parameters: TaskInputConnectionInfo is set to newConnectionInfo and 
TaskInputRequestMessage is set to the TaskInputLdapRequest parameter of this task. 

12. Invoke the Performing an LDAP Unbind Against a Directory Server (section 7.6.2.4) task with the 
following parameter: TaskInputConnectionInfo is set to newConnectionInfo. 

13. Remove newConnectionInfo from containingADConnection.referralConnections. 



 

634 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

14. If the invocation of Performing an LDAP Operation Against a Directory Server (section 7.6.2.5) 
task in step 11 returned TRUE, then TaskInputLdapRequest.numReferrals is incremented and this 

task returns TRUE. Otherwise this task returns FALSE. 

7.6.2.7 Autoreconnecting to a Directory Server 

This task reconnects to a directory server when network errors are encountered on a connection.  

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputConnectionInfo ConnectionInfo An initialized ConnectionInfo on which an 
autoreconnect is to be performed. 

No 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnStatus Boolean This task returns TRUE if the client successfully reconnects to a directory 
server. Otherwise, it returns FALSE. 

The task performs the following actions: 

1. Let wasBound be a Boolean set equal to the value of TaskInputConnectionInfo.bindHasHappened. 

2. Set TaskInputConnectionInfo.bindHasHappened to FALSE. 

3. Invoke the Connecting to a Directory Server (section 7.6.2.2) task with the following parameters: 
TaskInputConnectionInfo is set to the passed-in TaskInputConnectionInfo. If this invocation 
returns FALSE, then return FALSE from this task. 

4. If wasBound is TRUE, then invoke the Performing an LDAP Bind Against a Directory 

Server (section 7.6.2.3) task with the following parameters: TaskInputConnectionInfo is set to the 

passed-in TaskInputConnectionInfo. If this invocation returns an error, then return FALSE from 
this task. 

5. For each LDAPRequest lrq in TaskInputConnectionInfo.pendingRequestList for which 
lrq.resultMessages is empty: 

1. Increment lrq.numResends by 1. 

2. If lrq.numResends is greater than 20 or if lrq.requestMessage is a SearchRequest ([RFC2251] 
section 4.5.1, Search Request) containing the LDAP_SERVER_NOTIFICATION_OID control 

(section 3.1.1.3.4.1.9, LDAP_SERVER_NOTIFICATION_OID), then construct an LDAPMessage, 
lm, containing an LDAPResult, lr, representing a response for lrq.requestMessage, indicating 
that the directory server was unreachable: 

▪ Set lm.messageID to lrq.requestMessage.messageID. 

▪ Set lr.resultCode to a local implementation-specific error code indicating that the directory 
server was unreachable, using an error code value reserved for APIs as specified in 
[RFC2251] section 4.1.10, Result Message. 

Note  The Microsoft implementation of LDAP client sets the resultCode of LDAPResult to 
LDAP_SERVER_DOWN (0x51) when the directory server is unreachable ([MS-ERREF] 
section 2.4, LDAP error to Win32 mapping). 

▪ Set lr.errorMessage and lr.matchedDN to a zero-length string. 



 

635 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Insert the LDAPMessage lm into lrq.resultMessages. 

3. Otherwise: 

1. Invoke the Performing an LDAP Operation Against a Directory Server (section 7.6.2.5) 
task with the following parameters: TaskInputConnectionInfo is the passed-in 

TaskInputConnectionInfo, and TaskInputRequestMessage is lrq. 

2. If the above invocation returns FALSE, then construct an LDAPMessage, lm, containing an 
LDAPResult, lr, representing a response for lrq.requestMessage, indicating that the 
directory server was unreachable: 

▪ Set lm.messageID to lrq.requestMessage.messageID. 

▪ Set lr.resultCode to a local implementation-specific error code indicating that the 
directory server was unreachable, using an error code value reserved for APIs as 

specified in [RFC2251] section 4.1.10, Result Message. 

Note  The Microsoft implementation of LDAP client sets the resultCode of LDAPResult 
to LDAP_SERVER_DOWN (0x51) when the directory server is unreachable ([MS-
ERREF] section 2.4, LDAP error to Win32 mapping). 

▪ Set lr.errorMessage and lr.matchedDN to a zero-length string. 

▪ Insert the LDAPMessage lm into lrq.resultMessages. 

6. Return TRUE. 

7.6.3 External Triggered Events 

7.6.3.1 Processing Network Errors 

This event is triggered, as described in sections 7.4 and 7.5, when a network read or write returns an 

error code indicating an underlying network failure such as media disconnection, host unreachable, 
route unavailable, or the TCP keepalive failed, or when there is no response to too many consecutive 
ICMP echo requests.  

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputConnectionInfo ConnectionInfo The ConnectionInfo on which the error occurred. No 

This task does not return any results. 

The task performs the following actions: 

1. Let containingADConnection be the ADConnection instance contained in ADCList for which 
containingADConnection.primaryConnection is set to TaskInputConnectionInfo or for which the 

containingADConnection.referralConnections list contains TaskInputConnectionInfo. 

2. Close the TCP connection represented by TaskInputConnectionInfo.networkConnection. 

3. If containingADConnection.LDAP_OPT_AUTO_RECONNECT is FALSE, then for each LDAPRequest 

lrq in TaskInputConnectionInfo.pendingRequestList that is awaiting a response: 

▪ Construct an LDAPMessage, lm, containing an LDAPResult, lr, representing a response for 
lrq.requestMessage, indicating that the directory server was unreachable: 



 

636 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Set lm.messageID to lrq.requestMessage.messageID. 

▪ Set lr.resultCode to a local implementation-specific error code indicating that the directory 
server was unreachable, using an error code value reserved for APIs as specified in 
[RFC2251] section 4.1.10, Result Message. 

Note  The Microsoft implementation of LDAP client sets the resultCode of LDAPResult to 
LDAP_SERVER_DOWN (0x51) when the directory server is unreachable ([MS-ERREF] 
section 2.4, LDAP error to Win32 mapping). 

▪ Set lr.errorMessage and lr.matchedDN to a zero-length string. 

▪ Insert the LDAPMessage lm into lrq.resultMessages.  

4. If containingADConnection.LDAP_OPT_AUTO_RECONNECT is TRUE, then invoke the 
Autoreconnecting to a Directory Server (section 7.6.2.7) task on TaskInputConnectionInfo. 

7.6.3.2 Getting an LDAP Response from a Directory Server 

This event occurs when the client receives an LDAPMessage from a directory server. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputLdapResultMessage LDAPMessage The LDAPMessage received from the directory 
server. 

No 

This task does not return any results. 

The task performs the following actions: 

1. Let originalRequest be the LDAPRequest instance for which 

originalRequest.requestMessage.messageID is equal to TaskInputLdapResultMessage.messageID. 
If there is no such match because of a timeout (see section 7.6.4.1), the task ends. 

2. Let containingConnectionInfo be the ConnectionInfo instance for which 
containingConnectionInfo.pendingRequestList contains originalRequest. 

3. Let containingADConnection be the ADConnection instance contained in ADCList for which 
containingADConnection.primaryConnection is set to containingConnectionInfo or for which the 
containingADConnection.referralConnections list contains containingConnectionInfo. Because there 
is a unique networkConnection, and therefore a TCP connection, associated with each 
ADConnection, there will be only one ADConnection that matches the criteria in this step. 

4. If TaskInputLdapResultMessage.protocolOp is an LDAPResult and 
TaskInputLdapResultMessage.protocolOp.resultCode is referral ([RFC2251] section 4.1.10 in the 

case of LDAP v3) or is the value 9 (section 3.1.1.3.1.4, Referrals in LDAPv2 and LDAPv3, in the 
case of LDAP v2) and containingADConnection.LDAP_OPT_REFERRALS is "ON" or 

"LDAP_CHASE_REFERRALS": 

1. Let urlList be a list of LDAP URLs ([RFC2255]) contained in 
TaskInputLdapResultMessage.protocolOp.referral ([RFC2251] section 4.1.10, Result Message, 
in the case of LDAP v3) or in TaskInputLdapResultMessage.protocolOp.errorMessage (section 
3.1.1.3.1.4, Referrals in LDAPv2 and LDAPv3, in the case of LDAP v2). 

2. For each ldapUrl in urlList: 



 

637 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Invoke the task Following an LDAP Referral or Continuation Reference (section 7.6.2.6) 
with the following parameters: TaskInputLdapRequest is set to originalRequest and 

TaskInputReferralUrl is set to ldapUrl. If this invocation returns TRUE, this task returns. 

5. If TaskInputLdapResultMessage.protocolOp is a SearchResultReference and 

containingADConnection.LDAP_OPT_REFERRALS is "ON" or 
"LDAP_CHASE_CONTINUATION_REFERENCES": 

1. Let urlList be a list of LDAP URLs ([RFC2255]) contained in 
TaskInputLdapResultMessage.protocolOp. 

2. For each ldapUrl in urlList: 

▪ Invoke the task Following an LDAP Referral or Continuation Reference (section 7.6.2.6) 
with the following parameters: TaskInputLdapRequest is set to originalRequest and 

TaskInputReferralUrl is set to ldapUrl. If this invocation returns TRUE, this task returns. 

6. Append TaskInputLdapResultMessage to originalRequest.resultMessages. 

7. At this point there is either an LDAPResult or the next search response. If 
TaskInputLdapResultMessage.protocolOp is an LDAPResult, then originalRequest is removed from 
containingConnectionInfo.pendingRequestList and any tasks waiting on results for 
originalRequest proceed. Otherwise these tasks continue to wait for additional responses. 

7.6.4 Timer Triggered Events 

7.6.4.1 Timer Expiry on RequestTimer 

This event occurs whenever the requestTimer on an instance of an LDAPRequest expires. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputLdapRequest LDAPRequest The LDAPRequest instance on which the 
requestTimer has expired. 

No 

This task does not return any results. 

The task performs the following actions: 

1. For each containingADConnection in ADCList: 

1. If TaskInputLdapRequest is present in 

containingADConnection.primaryConnection.pendingRequestList, remove 
TaskInputLdapRequest from containingADConnection.primaryConnection.pendingRequestList. 

2. For each containingConnectionInfo in containingADConnection.referralConnections: 

▪ If TaskInputLdapRequest is present in containingConnectionInfo.pendingRequestList, 
remove TaskInputLdapRequest from containingConnectionInfo.pendingRequestList. 

2. Construct an LDAPMessage, lm, containing an LDAPResult, lr, representing a response for 
TaskInputLdapRequest.requestMessage, indicating that the request has timed out: 

▪ Set lm.messageID to TaskInputLdapRequest.requestMessage.messageID. 



 

638 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ Set lr.resultCode to a local implementation-specific error code indicating a timeout has 
occurred, using an error code value reserved for APIs as specified in [RFC2251] section 

4.1.10, Result Message. 

Note  The Microsoft implementation of LDAP client sets the resultCode of LDAPResult to 

LDAP_TIMEOUT (0x55) on timer expiration ([MS-ERREF] section 2.4, LDAP error to Win32 
mapping). 

▪ Set lr.errorMessage and lr.matchedDN to a zero-length string. 

▪ Insert the LDAPMessage lm into TaskInputLdapRequest.resultMessages. 

Any tasks waiting on results for TaskInputLdapRequest receive the LDAPMessage lm in 
TaskInputLdapRequest.resultMessages, indicating that the request has timed out. 

7.7 LDAP Over UDP 

Windows uses LDAP over UDP as defined in [RFC1798] for LDAP versions 2 and 3. The following 

sections describe only the additional behaviors of the Microsoft LDAP client that are not specified by 
[RFC1798]. 

7.7.1 ADUDPHandle Overview 

For LDAP over UDP, an ADUDPHandle represents the parameters used for communication between 
the client and Active Directory servers. The typical sequence of use of an ADUDPHandle is: 

1. Initialize an ADUDPHandle, which allocates an ADUDPHandle. This step does not perform any 

network operations. 

2. Perform one LDAP operation, which is either a rootDSE search or an LDAP abandon operation, on 
the ADUDPHandle. An LDAP operation will consist of an LDAP request and the resulting LDAP 
response. 

The only tasks that use the ADUDPHandle type are those described in section 7.7.3.1, Initializing an 
ADUDPHandle, and section 7.7.3.2, Performing an LDAP Operation on an ADUDPHandle. 

7.7.2 (Updated Section) ADUDPHandle Abstract Data Model 

This section describes a conceptual model of a possible data organization that an implementation 
maintains. The described organization is provided to facilitate the explanation of how the client 
behaves. This document does not mandate that implementations adhere to this model as long as their 

external behavior is consistent with that described in this document. 

The data model defines a primary structure ADUDPHandle that the client operates on. 

ComputerRole: An abstract variable of type DSROLE_MACHINE_ROLE ([MS-DSSP] section 2.2.2) 
that indicates the current domain membership role of the machine on which the LDAP client is 
executing, as described in [MS-DSSP] section 3.2.1, Abstract Data Model. 

ADUDPHandle: A structure that holds the information necessary to communicate with an Active 
Directory server over the UDP protocol. 

▪ protocolVersion: An unsigned integer indicating which version of the LDAP protocol the 
connection uses. Valid values are 2 and 3. The default value is 3. 

▪ portNumber: An unsigned integer indicating the UDP destination port number to use (see 
[RFC768]). 



 

639 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ targetName: A null-terminated string used to locate a directory server. It can be NULL, indicating 
that the directory server for the joined domain shouldSHOULD be located, a domain name 

(DNS/NetBIOS), a host name, or an IP address. 

7.7.3 Tasks 

7.7.3.1 (Updated Section) Initializing an ADUDPHandle 

This task initializes an instance of ADUDPHandle and returns it to the caller. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputTargetName String(Unicode) A string used to locate a domain controller. It can 
be NULL (which indicates that the joined domain 
name shouldSHOULD be used), a domain name 
(DNS/NetBIOS), a server host name, or a server IP 
address. 

No 

TaskInputPortNumber Unsigned 
integer 

The destination UDP port number ([RFC768]) to use 
when connecting to the directory server specified by 
TaskInputTargetName. 

No 

TaskInputProtocolVersion Unsigned 
integer 

Version of the LDAP protocol used. Valid values are 
2 and 3. The default value is 3. 

Yes 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnADUDPHandle LDAP_UDP_HANDLE ([MS-DTYP] 
section 2.2.24) 

A void pointer that refers to an instance of the 
ADUDPHandle. 

The task performs the following actions: 

1. Create an instance adUDPHandle of the ADUDPHandle ADM structure and initialize the values in 
the ADM to their default values. 

2. Set the adUDPHandle.portNumber field to TaskInputPortNumber, the 
adUDPHandle.protocolVersion field to TaskInputProtocolVersion, and the 

adUDPHandle.targetName to TaskInputTargetName. 

3. Return an LDAP_UDP_HANDLE referring to the ADUDPHandle instance to the caller as 
TaskReturnADUDPHandle. 

7.7.3.2 Performing an LDAP Operation on an ADUDPHandle 

This task sends an LDAP request to an Active Directory server and returns the response returned by 
the server. 

The parameters for this task are as follows: 

Name Type Description Optional 

TaskInputADUDPHandle LDAP_UDP_HANDLE 
([MS-DTYP] section 
2.2.24) 

Refers to an initialized ADUDPHandle used 
to send the LDAP request. 

No 



 

640 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Name Type Description Optional 

TaskInputRequestMessage LDAPMessage The request to send to the directory server. No 

TaskOutputResultMessages LDAPMessage list A sequence of LDAPMessage (as defined in 
[RFC1777] section 4 for LDAP version 2 and 
[RFC2251] section 4.1.1 for LDAP version 3) 
representing the results that the client 
receives in response to 
TaskInputRequestMessage. 

No 

TaskInputRequestTimeout Unsigned integer Time in milliseconds the client waits to 
receive the response from the server. Value 0 
indicates that there is no time limit. 

No 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnStatus Unsigned 

integer 

The LDAP resultCode ([RFC2251] section 4.1.10) returned from the directory 

server in response to the request, or an error indicating that the directory 
server could not be contacted or that a timeout has occurred. 

The task performs the following actions: 

1. Let adUDPHandle be the ADUDPHandle instance referred to by TaskInputADUDPHandle. 

2. Let dcAddress be a Unicode string initialized to NULL. 

3. If TaskInputADUDPHandle.targetName is NULL: 

▪ If ComputerRole is DSRole_RoleBackupDomainController or 

DsRole_RolePrimaryDomainController, then set dcAddress to "localhost" and go to step 6; 
otherwise go to step 5.  

4. If TaskInputADUDPHandle.targetName is an IP address, then go to step 6. 

5. Assume TaskInputADUDPHandle.targetName represents a domain name and attempt to locate a 
domain controller in the specified domain. 

1. Let domainControllerInfo be an instance of the DOMAIN_CONTROLLER_INFOW structure 
([MS-NRPC] section 2.2.1.2.1, DOMAIN_CONTROLLER_INFOW). 

2. Let addedFlags be an unsigned integer. It is set to the bitwise OR of the M and R flags defined 
for the Flags parameter in [MS-NRPC] section 3.5.4.3.1, DsrGetDcNameEx2. 

3. The DsrGetDcName method ([MS-NRPC] section 3.5.4.3.3, DsrGetDcName) is invoked with 
the following parameters: 

▪ ComputerName is NULL. 

▪ DomainName is TaskInputADUDPHandle.targetName. 

▪ DomainGuid is NULL. 

▪ SiteGuid is NULL. 

▪ Flags is set to addedFlags. 

▪ DomainControllerInfo is a pointer to the domainControllerInfo structure. 

4. If the invocation of the DsrGetDcName method listed in step 3 returned 0 (Success), then: 



 

641 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ TaskInputADUDPHandle.targetName specified a domain name and 
domainControllerInfo.DomainControllerAddress now identifies a domain controller in the 

specified domain; if domainControllerInfo.DomainControllerAddress is an IP address, set 
dcAddress to domainControllerInfo.DomainControllerAddress with the "\\" prefix omitted 

and go to step 6. 

5. If the invocation of DsrGetDcName listed in step 3 returned a nonzero value and 
TaskInputADUDPHandle.targetName is NULL, then this task returns a local implementation-
specific error code indicating that the directory server was unreachable, using an error code 
value reserved for APIs as specified in [RFC2251] section 4.1.10, Result Message. 

Note  The Microsoft implementation of LDAP client sets the resultCode of LDAPResult to 
LDAP_SERVER_DOWN (0x51) when the directory server is unreachable ([MS-ERREF] section 

2.4, LDAP error to Win32 mapping). 

6. If dcAddress is NULL, then assume that TaskInputADUDPHandle.targetName is a host name, and 
set dcAddress to TaskInputADUDPHandle.targetName. 

7. Let ldapRequest be set to TaskInputRequestMessage. 

8. ldapRequest.messageID is set as described in [RFC2251] section 4.1.1.1. 

9. Let ipAddress be a Unicode string initialized to NULL. If dcAddress is a host name, gethostbyname 

(see the note shown below) is invoked and ipAddress is set to the first address returned. 
Otherwise, assume that dcAddress is an IP address and set ipAddress to dcAddress. 

Note  gethostbyname is a well-known, standards-based API call that is a POSIX-compliant method 
to retrieve information about hosts. For one example of an implementation of this API, see 
[MSDN-gethostbyname]. 

10. Let networkUDPHandle be an abstract element representing the UDP handle used to perform UDP 
operations (see [RFC768] sections "User Interface" and "IP interface"). The networkUDPHandle is 

created using ipAddress and the TaskInputADUDPHandle.portNumber parameter.  

11. The client sends ldapRequest to the directory server indicated by ipAddress using 
networkUDPHandle. 

12. The client creates a timer for the duration specified by TaskInputRequestTimeout and begins 
counting down. 

13. The client then waits for either the UDP response to arrive or the timer to expire. 

14. If the timer expires and no response has been received from the directory server: 

▪ Let ldapResponse be a freshly constructed LDAPMessage containing an LDAPResult ldapResult. 

▪ Set ldapResponse.messageID to ldapRequest.messageID. 

▪ Set ldapResult.resultCode to a local implementation-specific error code indicating a timeout 
has occurred, using an error code value reserved for APIs as specified in [RFC2251] section 

4.1.10, Result Message. 

Note  The Microsoft implementation of LDAP client sets the resultCode of LDAPResult to 

LDAP_TIMEOUT (0x55) on timer expiration ([MS-ERREF] section 2.4, LDAP error to Win32 
mapping). 

▪ Insert the ldapResponse into TaskOutputResultMessages. 

15. Otherwise, the timer is canceled, and for each LDAPMessage lm in the response received from the 
directory server: 



 

642 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

▪ If lm.messageID equals TaskInputRequestMessage.messageID, append lm to the 
TaskOutputResultMessages. 

16. Return the resultCode of the last message in TaskOutputResultMessages. 

7.8 Transport Requirements 

For information on transport of LDAP, see section 2.1. For information on how messages are protected 
when sent over these transports, see section 7.10. 

7.9 Security Elements 

Directory objects are protected by security descriptors that contain access control lists that grant or 
deny permissions to security principals (either directly or through group membership) to read, update, 
or otherwise manipulate the object, as described in section 5.1.3, Authorization. In the Active 
Directory system, LDAP performs access checks as described in that section. 

When performing an access check, the identity of the requestor, represented as a SID, is compared to 
the permissions required to perform a given operation and the permissions granted to that identity. In 
the Active Directory system, LDAP specifies a means by which a requestor can prove (authenticate) its 
identity to the directory service so that the identity can be used in subsequent access check decisions. 
LDAP also provides mechanisms to digitally-sign requests and responses to prevent them from 
tampering while being transferred over the network, and to encrypt the traffic to prevent 
eavesdropping. See section 7.10. 

7.10 Communications Security 

The Active Directory system relies on messages passed across the network between the client and the 
directory service. The system does not require this network to be fully trusted and allows for the 

possibility that a hostile party might be able to intercept such messages while they are in transit. In 
the Active Directory system, LDAP is designed to protect against two key attacks from such an 
attacker: 

▪ Eavesdropping on the messages to learn information to which the attacker is not intended to have 
access. 

▪ Altering the request or response messages to cause the directory service or client, respectively, to 
take action based on information supplied by the attacker. 

To protect against these attacks, the system uses transport- and message-level security features to 
protect traffic between the clients and the directory service. Transport-level security protects the 
entire transport, effectively creating a protected "tunnel" between the client and directory service 
through which the messages are sent, protecting the confidentially and integrity of the messages sent 
over the tunnel. Message-level security encrypts and/or digitally signs each individual message to 
provide confidentially and integrity of the message, respectively. 

The following table summarizes the security mechanisms used for LDAP and includes references to the 

relevant details. 

Transport- and Message-Level Security Features 

Protocol Mechanisms Reference 

LDAP Transport-level 

Protection is provided by signing and encryption over a Secure 
Sockets Layer/Transport Layer Security (TLS) (SSL/TLS)-protected 
connection. 

Section 5.1.2.2, Using 
SSL/TLS, of this document 



 

643 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Protocol Mechanisms Reference 

Message-level 

Protection is provided by signing and/or encryption using SASL. 

Section 5.1.2.1, Using 
SASL, of this document 

In addition to these mechanisms for protecting desirable traffic between the client and the server, 
LDAP also has mechanisms for rejecting undesirable traffic, that is, traffic that has been judged as 
potentially harmful to the directory service. The following table lists a summary of the mechanisms 
used for LDAP and a reference to further information. Note that these mechanisms are in addition to 
any access checks (section 7.9) that are performed by the protocol. 

Additional Security Mechanisms 

Protocol Mechanisms Reference 

LDAP LDAP Policies: establish limits on the size of the operations that a 
client can request. 

Section 3.1.1.3.4.6, LDAP 
Policies, of this document 

LDAP IP Deny List: provides a configurable list of IPv4 addresses from 
which the directory service will ignore requests. 

Section 3.1.1.3.4.8, LDAP 
IP-Deny List, of this 
document 

 



 

644 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

8 Change Tracking 

This section identifies changes that were made to this document since the last release. Changes are 
classified as Major, Minor, or None.  

The revision class Major means that the technical content in the document was significantly revised. 
Major changes affect protocol interoperability or implementation. Examples of major changes are: 

▪ A document revision that incorporates changes to interoperability requirements. 

▪ A document revision that captures changes to protocol functionality. 

The revision class Minor means that the meaning of the technical content was clarified. Minor changes 
do not affect protocol interoperability or implementation. Examples of minor changes are updates to 
clarify ambiguity at the sentence, paragraph, or table level. 

The revision class None means that no new technical changes were introduced. Minor editorial and 
formatting changes may have been made, but the relevant technical content is identical to the last 

released version. 

The changes made to this document are listed in the following table. For more information, please 
contact dochelp@microsoft.com. 

Section Description 
Revision 
class 

3.1.1.3.4.1 LDAP 
Extended Controls 

9222 : Added note to extended controls table that 
LDAP_SERVER_DIRSYNC_OID and LDAP_SERVER_DIRSYNC_EX_OID 
are mutually exclusive and generate an error if used together. 

Major 

3.1.1.4.5.39 msDS-
ManagedPassword 

11646 : Clarified the steps to convert the TO!msDS-
ManagedPasswordInterval attribute into the rollover interval. 

Major 

3.1.1.4.5.39 msDS-
ManagedPassword 

11678 : Changed what is assigned to CurrentKeyExpirationTime to 
whenCreated. 

Major 



 

645 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

9 Index
A 
 
Abstract data model 91 
ACE ordering rules 517 
Active Directory 
   domain join 612 
   schema overview 117 
AD LDS 
   DC publication 610 
   special objects 354 
Applicability 53 
Attributes 
   special 
      msDS-AuthenticatedAtDC 526 
      msDS-Behavior-Version 
         DC functional level 522 
         domain NC functional level 523 
         forest functional level 524 
      ntMixedDomain 522 
      overview 522 
   trust objects 
      interdomain trust accounts 535 
      trusted domain object (TDO) 530 

Authentication 
   fast bind - using 423 
   mutual 424 
   overview 418 
   principals – supported types 424 
   SSL/TLS - using 422 
   supported methods 418 
Authorization 
   security 
      access 
         checking 437 
         rights 428 
      AD LDS security context construction 442 
      background 427 
      overview 427 
 

B 
 
Background tasks 342 
 

C 
 
Capability negotiation 53 
   generally 53 
   trust objects 529 
Change tracking 644 
CLAIM_ENTRY structure 80 
CLAIM_TYPE enumeration 79 
CLAIMS_ARRAY structure 81 
CLAIMS_BLOB structure 83 
CLAIMS_COMPRESSION_FORMAT enumeration 80 
CLAIMS_SET structure 82 
CLAIMS_SET_METADATA structure 82 
CLAIMS_SOURCE_TYPE enumeration 80 

Communication 616 
Configuration objects 448 
Connections 
   inter-site 554 



 

646 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

   intra-site 552 
   translation 577 
   unnecessary 576 
Critical domain objects 495 
 

D 
 
Data model - abstract 91 
DC 
   existence 514 
Default administrators group 521 
DNS 
   based discovery - locating domain controller 607 
   record registrations 
      non-SRV records 597 
      non-timer events 593 
      overview 593 

      SRV records 594 
DNSRegistrationSettings 591 
Domain 
   controller 
      AD LDS DC publication 610 
      DNS record registrations 
         non-SRV records 597 
         non-timer events 593 
         overview 593 
         SRV records 594 
      LDAP ping 
         filter 
            response to invalid 604 
            syntactic validation 599 
         overview 598 
         response 599 
      locating 
         DNS-based discovery 607 
         DNSRegistrationSettings 591 
         NetBIOS -based discovery 609 
         operation code 582 
         overview 579 
      mailslot ping 604 
      name 
         compression 609 
         decompression 609 
      NBNS background 604 
      NetBIOS broadcast 604 
      publishing 
         DNSRegistrationSettings 591 
         operation code 582 
         overview 579 
   join 
      Active Directory state 612 
      machine state 612 
      overview 612 
      relationship to protocols 613 
   naming master FSMO role 527 
   RID values 75 
DS_REPL_ATTR_META_DATA_BLOB packet 68 
DS_REPL_CURSOR_BLOB packet 67 
DS_REPL_KCC_DSA_FAILUREW_BLOB packet 63 
DS_REPL_NEIGHBORW_BLOB packet 60 
DS_REPL_OPW_BLOB packet 64 
DS_REPL_QUEUE_STATISTICSW_BLOB packet 66 

DS_REPL_VALUE_META_DATA_BLOB packet 69 
DynamicObject requirements 548 
 



 

647 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

E 
 
Examples 417 
 

F 
 
Features 
   optional 355 
   values - optional 78 
Fields - vendor-extensible 53 
   generally 53 
   trust objects 530 

Filter 
   response to invalid 604 
   syntactic validation 599 
Flags 
   group type 73 
   schemaFlagsEx 73 
   search 71 
   security privilege 75 
   system 72 
   userAccountControl bits 76 
Forest requirements 
   DC existence 514 
   introduction 444 
   NC existence 514 
   overview 513 
Format_of_referent_of_pmsgOut_dot_V1_dot_pLog packet 353 
FSMO roles 
   domain naming master 527 
   infrastructure 528 
   overview 526 
   PDC emulator 527 
   RID master 527 
   schema master 526 
 

G 
 
Glossary 25 
Group 
   defaulting rules 521 
   type flags 73 
 

I 
 

Implementers - security - trust objects 548 
Informative references 49 
Infrastructure FSMO role 528 
Inter-site connection creation 554 
Intra-site connection creation 552 
Introduction 23 
 

K 
 
kCCFailedConnections 
   refresh 551 
   remove unneeded 579 
kCCFailedLinks 
   refresh 551 
   remove unneeded 579 
Knowledge consistency checker 
   connections 
      translation 577 
      unnecessary 576 



 

648 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

   inter-site connection creation 554 
   intra-site connection creation 552 
   kCCFailedConnections 
      refresh 551 
      remove unneeded 579 
   kCCFailedLinks 
      refresh 551 
      remove unneeded 579 
   overview (section 6.2 549, section 6.2.2 549) 
   references 549 
   RODC NTFRS connection object 579 
 

L 
 
LCID-Locale Mapping Table 54 
LDAP 
   overview 142 

   ping 
      domain controller response 599 
      filter 
         response to invalid 604 
         syntactic validation 599 
      overview 598 
   security 418 
Locating domain controller 
   DNSRegistrationSettings 591 
   operation code 582 
   overview 579 
LSAPR_AUTH_INFORMATION packet 537 
 

M 
 
Mailslot ping 604 
Messages 
   overview 54 
   security 
      SASL - using 426 
      SSL/TLS - using 426 
   syntax 54 
   transport 54 
msDS_dash_TrustForestTrustInfo_Attribute packet 539 
msDS-AuthenticatedAtDC 526 
msDS-Behavior-Version 
   DC functional level 522 
   domain NC functional level 523 
   forest functional level 524 
MSDS-MANAGEDPASSWORD_BLOB packet 83 
 

N 
 
Name 

   compression 609 
   decompression 609 
NBNS background 604 
NC existence 514 
NetBIOS 
   based discovery - locating domain controller 609 
   broadcast 604 
NETLOGON_LOGON_QUERY packet 582 
NETLOGON_PRIMARY_RESPONSE packet 583 
NETLOGON_SAM_LOGON_REQUEST packet 584 
NETLOGON_SAM_LOGON_RESPONSE packet 586 
NETLOGON_SAM_LOGON_RESPONSE_EX packet 588 
NETLOGON_SAM_LOGON_RESPONSE_NT40 packet 585 
Non-SRV records 597 



 

649 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Non-timer events - DNS record registrations 593 
Normative references 44 
NT4 replication support 348 
ntMixedDomain 522 
 

O 
 
Objects 
   AD LDS special 354 
   configuration 448 
   critical domain 495 
   dynamicObject requirement 548 
   introduction 444 
   naming contexts 444 
   system 507 
   trust 
      attributes 

         interdomain trust accounts 535 
         trusted domain object (TDO) 530 
      capability negotiation 529 
      overview 528 
      preconditions 529 
      prerequisites 529 
      security - implementers 548 
      transport 530 
      vendor-extensible fields 530 
      versioning 529 
   well-known 497 
Operation code 582 
Optional 
   feature values 78 
   features 355 
Overview 
   generally 51 
   knowledge consistency checker 549 
   trust objects 528 
Overview (synopsis) 51 
Owner defaulting rules 521 
 

P 
 
PCLAIM_ENTRY 80 
PCLAIMS_ARRAY 81 
PCLAIMS_BLOB 83 
PCLAIMS_SET 82 
PCLAIMS_SET_METADATA 82 
PDC emulator FSMO role 527 
Ping 
   LDAP 598 
   mailslot 604 
Preconditions 53 
   generally 53 
   trust objects 529 
Prerequisites 53 
   generally 53 
   trust objects 529 
Processing specifics - security descriptor requirements 518 

Publishing domain controller 
   DNSRegistrationSettings 591 
   operation code 582 
   overview 579 
 

R 
 
Reads - overview 262 



 

650 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

Record packet 540 
References 
   informative 49 
   knowledge consistency checker 549 
   normative 44 
Relationship to other protocols 52 
Replication - NT4 support 348 
Revisions 358 
RID master FSMO role 527 
RODC NTFRS connection object - updating 579 
 

S 
 
SCHEDULE packet 525 
SCHEDULE_HEADER packet 525 
Schema 
   Active Directory 117 

   master FSMO role 526 
schemaFlagsEx flags 73 
SD 
   defaulting rules 521 
   flags control 518 
Search flags 71 
Security 
   authentication 
      fast bind - using 423 
      mutual 424 
      overview 418 
      principals – supported types 424 
      SSL/TLS - using 422 
      supported methods 418 
   authorization 
      access 
         checking 437 
         rights 428 
      AD LDS security context construction 442 
      background 427 
      overview 427 
   communications 642 
   considerations 519 
   descriptor requirements 
      ACE ordering rules 517 
      considerations 519 
      default administrators group 521 
      group defaulting rules 521 
      overview 516 
      owner defaulting rules 521 
      processing specifics 518 
      SD 
         defaulting rules 521 
         flags control 518 
   elements 642 
   implementers - trust objects 548 
   LDAP 418 
   messages 
      SASL - using 426 
      SSL/TLS - using 426 
   principals - domain-relative 510 
   privilege flags 75 
Sort keys - Unicode string comparisons 613 
SRV records 594 
Standards assignments 53 

Syntax - messages 54 
System 
   flags 72 



 

651 / 651 

[MS-ADTS-Diff] - v20240129 
Active Directory Technical Specification 
Copyright © 2024 Microsoft Corporation 
Release: January 29, 2024 

   objects 507 
 

T 
 
Tasks - background 342 
Tracking changes 644 
Transport 
   generally 54 
   trust objects 530 
Transport requirements 642 
trustAuthInfo_attributes packet 536 
 

U 
 
Unicode string comparisons 
   overview 613 
   sort keys 613 
userAccountControl bits 76 
 

V 
 
Values 
   domain RID 75 
   optional feature 78 
Vendor-extensible fields 53 
   generally 53 
   trust objects 530 
Versioning 53 
   generally 53 
   trust objects 529 
 

W 
 
Well-known 
   domain-relative security principals 510 
   objects 497 

 


	1 (Updated Section) Introduction
	1.1 Glossary
	1.2 References
	1.2.1 (Updated Section) Normative References
	1.2.2 (Updated Section) Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 LCID-Locale Mapping Table
	2.2.2 DS_REPL_NEIGHBORW_BLOB
	2.2.3 DS_REPL_KCC_DSA_FAILUREW_BLOB
	2.2.4 DS_REPL_OPW_BLOB
	2.2.5 DS_REPL_QUEUE_STATISTICSW_BLOB
	2.2.6 DS_REPL_CURSOR_BLOB
	2.2.7 DS_REPL_ATTR_META_DATA_BLOB
	2.2.8 DS_REPL_VALUE_META_DATA_BLOB
	2.2.9 Search Flags
	2.2.10 System Flags
	2.2.11 schemaFlagsEx Flags
	2.2.12 (Updated Section) Group Type Flags
	2.2.13 Group Security Flags
	2.2.14 Security Privilege Flags
	2.2.15 Domain RID Values
	2.2.16 (Updated Section) userAccountControl Bits
	2.2.17 Optional Feature Values
	2.2.18 Claims Wire Structures
	2.2.18.1 CLAIM_ID
	2.2.18.2 CLAIM_TYPE
	2.2.18.3 CLAIMS_SOURCE_TYPE
	2.2.18.4 CLAIMS_COMPRESSION_FORMAT
	2.2.18.5 CLAIM_ENTRY
	2.2.18.6 CLAIMS_ARRAY
	2.2.18.7 CLAIMS_SET
	2.2.18.8 CLAIMS_SET_METADATA
	2.2.18.9 CLAIMS_BLOB

	2.2.19 (Updated Section) MSDS-MANAGEDPASSWORD_BLOB
	2.2.20 Key Credential Link Structures
	2.2.20.1 Key Credential Link Constants
	2.2.20.2 (Updated Section) KEYCREDENTIALLINK_BLOB
	2.2.20.3 KEYCREDENTIALLINK_ENTRY
	2.2.20.4 (Updated Section) CUSTOM_KEY_INFORMATION
	2.2.20.4.1 (Updated Section) EncodedExtendedCKI

	2.2.20.5 KeyMaterial
	2.2.20.5.1 KEY_USAGE_NGC
	2.2.20.5.2 KEY_USAGE_FIDO
	2.2.20.5.3 KEY_USAGE_FEK

	2.2.20.6 KEYCREDENTIALLINK_ENTRY Identifiers

	2.2.21 Service Principal Name


	3 Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 State Model
	3.1.1.1.1 (Updated Section) Scope
	3.1.1.1.2 State Modeling Primitives and Notational Conventions
	3.1.1.1.3 Basics, objectGUID, and Special Attribute Behavior
	3.1.1.1.4 objectClass, RDN, DN, Constructed Attributes, Secret Attributes
	3.1.1.1.5 (Updated Section) NC, NC Replica
	3.1.1.1.5.1 Tombstone Lifetime and Deleted-Object Lifetime

	3.1.1.1.6 Attribute Syntaxes, Object References, Referential Integrity, and Well-Known Objects
	3.1.1.1.7 (Updated Section) Forest, Canonical Name
	3.1.1.1.8 GC
	3.1.1.1.9 DCs, USN Counters, and the Originating Update Stamp
	3.1.1.1.10 GC Server
	3.1.1.1.11 FSMO Roles
	3.1.1.1.12 Cross-NC Object References
	3.1.1.1.13 NC Replica Graph
	3.1.1.1.14 Scheduled and Event-Driven Replication
	3.1.1.1.15 Replication Latency and Tombstone Lifetime
	3.1.1.1.16 (Updated Section) Delayed Link Processing

	3.1.1.2 (Updated Section) Active Directory Schema
	3.1.1.2.1 (Updated Section) Schema NC
	3.1.1.2.2 Syntaxes
	3.1.1.2.2.1 Introduction
	3.1.1.2.2.2 LDAP Representations
	3.1.1.2.2.2.1 Object(DN-String)
	3.1.1.2.2.2.2 Object(Access-Point)
	3.1.1.2.2.2.3 Object(DN-Binary)
	3.1.1.2.2.2.4 Object(OR-Name)
	3.1.1.2.2.2.5 (Updated Section) String(Case)
	3.1.1.2.2.2.6 String(NT-Sec-Desc)
	3.1.1.2.2.2.7 String(Sid)
	3.1.1.2.2.2.8 String(Teletex)

	3.1.1.2.2.3 Referential Integrity
	3.1.1.2.2.4 Supported Comparison Operations
	3.1.1.2.2.4.1 (Updated Section) Bool Comparison Rule
	3.1.1.2.2.4.2 Integer Comparison Rule
	3.1.1.2.2.4.3 DN-String Comparison Rule
	3.1.1.2.2.4.4 DN-Binary Comparison Rule
	3.1.1.2.2.4.5 DN Comparison Rule
	3.1.1.2.2.4.6 PresentationAddress Comparison Rule
	3.1.1.2.2.4.7 Octet Comparison Rule
	3.1.1.2.2.4.8 CaseString Comparison Rule
	3.1.1.2.2.4.9 SecDesc Comparison Rule
	3.1.1.2.2.4.10 OID Comparison Rule
	3.1.1.2.2.4.11 Sid Comparison Rule
	3.1.1.2.2.4.12 NoCaseString Comparison Rule
	3.1.1.2.2.4.13 UnicodeString Comparison Rule
	3.1.1.2.2.4.14 Time Comparison Rule


	3.1.1.2.3 (Updated Section) Attributes
	3.1.1.2.3.1 Auto-Generated linkID
	3.1.1.2.3.2 Auto-Generated mAPIID
	3.1.1.2.3.3 Property Set
	3.1.1.2.3.4 lDAPDisplayName Generation
	3.1.1.2.3.5 (Updated Section) Flag fRODCFilteredAttribute in Attribute searchFlags

	3.1.1.2.4 Classes
	3.1.1.2.4.1 Class Categories
	3.1.1.2.4.2 Inheritance
	3.1.1.2.4.3 objectClass
	3.1.1.2.4.4 Structure Rules
	3.1.1.2.4.5 Content Rules
	3.1.1.2.4.6 (Updated Section) Auxiliary Class
	3.1.1.2.4.7 RDN Attribute of a Class
	3.1.1.2.4.8 (Updated Section) Class classSchema

	3.1.1.2.5 Schema Modifications
	3.1.1.2.5.1 Consistency and Safety Checks
	3.1.1.2.5.1.1 Consistency Checks
	3.1.1.2.5.1.2 Safety Checks

	3.1.1.2.5.2 (Updated Section) Auto-Generated Attributes
	3.1.1.2.5.3 (Updated Section) Defunct
	3.1.1.2.5.3.1 (Updated Section) Forest Functional Level Less Than WIN2003
	3.1.1.2.5.3.2 (Updated Section) Forest Functional Level WIN2003 or Greater


	3.1.1.2.6 ATTRTYP

	3.1.1.3 LDAP
	3.1.1.3.1 LDAP Conformance
	3.1.1.3.1.1 Schema
	3.1.1.3.1.1.1 (Updated Section) subSchema
	3.1.1.3.1.1.2 Syntaxes
	3.1.1.3.1.1.3 Attributes
	3.1.1.3.1.1.4 Classes
	3.1.1.3.1.1.5 Auxiliary Classes

	3.1.1.3.1.2 Object Naming
	3.1.1.3.1.2.1 (Updated Section) Naming Attributes
	3.1.1.3.1.2.2 NC Naming
	3.1.1.3.1.2.3 Multivalued and Multiple-Attribute RDNs
	3.1.1.3.1.2.4 Alternative Forms of DNs
	3.1.1.3.1.2.5 Alternative Form of SIDs

	3.1.1.3.1.3 Search Operations
	3.1.1.3.1.3.1 (Updated Section) Search Filters
	3.1.1.3.1.3.2 Selection Filters
	3.1.1.3.1.3.3 Range Retrieval of Attribute Values
	3.1.1.3.1.3.4 (Updated Section) Ambiguous Name Resolution
	3.1.1.3.1.3.5 Searches Using the objectCategory Attribute
	3.1.1.3.1.3.6 (Updated Section) Restrictions on rootDSE Searches

	3.1.1.3.1.4 Referrals in LDAPv2 and LDAPv3
	3.1.1.3.1.5 Password Modify Operations
	3.1.1.3.1.5.1 (Updated Section) unicodePwd
	3.1.1.3.1.5.2 (Updated Section) userPassword

	3.1.1.3.1.6 Dynamic Objects
	3.1.1.3.1.7 (Updated Section) Modify DN Operations
	3.1.1.3.1.8 Aliases
	3.1.1.3.1.9 Error Message Strings
	3.1.1.3.1.10 Ports
	3.1.1.3.1.11 LDAP Search Over UDP
	3.1.1.3.1.12 Unbind Operation

	3.1.1.3.2 rootDSE Attributes
	3.1.1.3.2.1 configurationNamingContext
	3.1.1.3.2.2 currentTime
	3.1.1.3.2.3 defaultNamingContext
	3.1.1.3.2.4 dNSHostName
	3.1.1.3.2.5 dsSchemaAttrCount
	3.1.1.3.2.6 dsSchemaClassCount
	3.1.1.3.2.7 dsSchemaPrefixCount
	3.1.1.3.2.8 dsServiceName
	3.1.1.3.2.9 highestCommittedUSN
	3.1.1.3.2.10 (Updated Section) isGlobalCatalogReady
	3.1.1.3.2.11 (Updated Section) isSynchronized
	3.1.1.3.2.12 ldapServiceName
	3.1.1.3.2.13 namingContexts
	3.1.1.3.2.14 netlogon
	3.1.1.3.2.15 pendingPropagations
	3.1.1.3.2.16 rootDomainNamingContext
	3.1.1.3.2.17 schemaNamingContext
	3.1.1.3.2.18 serverName
	3.1.1.3.2.19 subschemaSubentry
	3.1.1.3.2.20 supportedCapabilities
	3.1.1.3.2.21 supportedControl
	3.1.1.3.2.22 supportedLDAPPolicies
	3.1.1.3.2.23 supportedLDAPVersion
	3.1.1.3.2.24 supportedSASLMechanisms
	3.1.1.3.2.25 domainControllerFunctionality
	3.1.1.3.2.26 domainFunctionality
	3.1.1.3.2.27 forestFunctionality
	3.1.1.3.2.28 msDS-ReplAllInboundNeighbors, msDS-ReplConnectionFailures, msDS-ReplLinkFailures, and msDS-ReplPendingOps
	3.1.1.3.2.29 msDS-ReplAllOutboundNeighbors
	3.1.1.3.2.30 msDS-ReplQueueStatistics
	3.1.1.3.2.31 (Updated Section) msDS-TopQuotaUsage
	3.1.1.3.2.32 supportedConfigurableSettings
	3.1.1.3.2.33 supportedExtension
	3.1.1.3.2.34 (Updated Section) validFSMOs
	3.1.1.3.2.35 dsaVersionString
	3.1.1.3.2.36 msDS-PortLDAP
	3.1.1.3.2.37 msDS-PortSSL
	3.1.1.3.2.38 (Updated Section) msDS-PrincipalName
	3.1.1.3.2.39 (Updated Section) serviceAccountInfo
	3.1.1.3.2.40 spnRegistrationResult
	3.1.1.3.2.41 tokenGroups
	3.1.1.3.2.42 usnAtRifm
	3.1.1.3.2.43 approximateHighestInternalObjectID
	3.1.1.3.2.44 databaseGuid
	3.1.1.3.2.45 schemaIndexUpdateState
	3.1.1.3.2.46 dumpLdapNotifications
	3.1.1.3.2.47 msDS-ProcessLinksOperations
	3.1.1.3.2.48 msDS-SegmentCacheInfo
	3.1.1.3.2.49 msDS-ThreadStates
	3.1.1.3.2.50 ConfigurableSettingsEffective
	3.1.1.3.2.51 LDAPPoliciesEffective
	3.1.1.3.2.52 msDS-ArenaInfo
	3.1.1.3.2.53 msDS-Anchor
	3.1.1.3.2.54 msDS-PrefixTable
	3.1.1.3.2.55 msDS-SupportedRootDSEAttributes
	3.1.1.3.2.56 msDS-SupportedRootDSEModifications
	3.1.1.3.2.57 msDS-DiskUsage
	3.1.1.3.2.58 msDS-DatabaseIndices
	3.1.1.3.2.59 msDS-DatabaseIndicesWithSize
	3.1.1.3.2.60 msDS-PriorityBoost

	3.1.1.3.3 (Updated Section) rootDSE Modify Operations
	3.1.1.3.3.1 (Updated Section) becomeDomainMaster
	3.1.1.3.3.2 (Updated Section) becomeInfrastructureMaster
	3.1.1.3.3.3 (Updated Section) becomePdc
	3.1.1.3.3.4 becomePdcWithCheckPoint
	3.1.1.3.3.5 (Updated Section) becomeRidMaster
	3.1.1.3.3.6 (Updated Section) becomeSchemaMaster
	3.1.1.3.3.7 (Updated Section) checkPhantoms
	3.1.1.3.3.8 (Updated Section) doGarbageCollection
	3.1.1.3.3.9 (Updated Section) dumpDatabase
	3.1.1.3.3.10 (Updated Section) fixupInheritance
	3.1.1.3.3.11 (Updated Section) invalidateRidPool
	3.1.1.3.3.12 (Updated Section) recalcHierarchy
	3.1.1.3.3.13 (Updated Section) schemaUpdateNow
	3.1.1.3.3.14 (Updated Section) schemaUpgradeInProgress
	3.1.1.3.3.15 (Updated Section) removeLingeringObject
	3.1.1.3.3.16 (Updated Section) doLinkCleanup
	3.1.1.3.3.17 (Updated Section) doOnlineDefrag
	3.1.1.3.3.18 (Updated Section) replicateSingleObject
	3.1.1.3.3.19 (Updated Section) updateCachedMemberships
	3.1.1.3.3.20 (Updated Section) doGarbageCollectionPhantomsNow
	3.1.1.3.3.21 (Updated Section) invalidateGCConnection
	3.1.1.3.3.22 (Updated Section) renewServerCertificate
	3.1.1.3.3.23 (Updated Section) rODCPurgeAccount
	3.1.1.3.3.24 runSamUpgradeTasks
	3.1.1.3.3.25 (Updated Section) sqmRunOnce
	3.1.1.3.3.26 (Updated Section) runProtectAdminGroupsTask
	3.1.1.3.3.27 (Updated Section) disableOptionalFeature
	3.1.1.3.3.28 (Updated Section) enableOptionalFeature
	3.1.1.3.3.29 (Updated Section) dumpReferences
	3.1.1.3.3.30 (Updated Section) sidCompatibilityVersion
	3.1.1.3.3.31 (Updated Section) dumpLinks
	3.1.1.3.3.32 (Updated Section) schemaUpdateIndicesNow
	3.1.1.3.3.33 null
	3.1.1.3.3.34 (Updated Section) dumpQuota
	3.1.1.3.3.35 (Updated Section) dumpLinksExtended
	3.1.1.3.3.36 (Updated Section) dumpLDAPState
	3.1.1.3.3.37 (Updated Section) msDS-ProcessLinksAbandonOperation
	3.1.1.3.3.38 (Updated Section) msDS-ProcessLinksScheduleOperation
	3.1.1.3.3.39 stopService
	3.1.1.3.3.40 (Updated Section) msDS-RunDeletedPhantomsWithLinksTask
	3.1.1.3.3.41 (Updated Section) dumpDatabaseExtended
	3.1.1.3.3.42 (Updated Section) setPriorityBoost

	3.1.1.3.4 LDAP Extensions
	3.1.1.3.4.1 (Updated Section) LDAP Extended Controls
	3.1.1.3.4.1.1 LDAP_PAGED_RESULT_OID_STRING
	3.1.1.3.4.1.2 LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID
	3.1.1.3.4.1.3 LDAP_SERVER_DIRSYNC_OID
	3.1.1.3.4.1.4 LDAP_SERVER_DOMAIN_SCOPE_OID
	3.1.1.3.4.1.5 LDAP_SERVER_EXTENDED_DN_OID
	3.1.1.3.4.1.6 LDAP_SERVER_GET_STATS_OID
	3.1.1.3.4.1.7 LDAP_SERVER_LAZY_COMMIT_OID
	3.1.1.3.4.1.8 LDAP_SERVER_PERMISSIVE_MODIFY_OID
	3.1.1.3.4.1.9 LDAP_SERVER_NOTIFICATION_OID
	3.1.1.3.4.1.10 LDAP_SERVER_RANGE_OPTION_OID
	3.1.1.3.4.1.11 LDAP_SERVER_SD_FLAGS_OID
	3.1.1.3.4.1.12 LDAP_SERVER_SEARCH_OPTIONS_OID
	3.1.1.3.4.1.13 LDAP_SERVER_SORT_OID and LDAP_SERVER_RESP_SORT_OID
	3.1.1.3.4.1.14 (Updated Section) LDAP_SERVER_SHOW_DELETED_OID
	3.1.1.3.4.1.15 LDAP_SERVER_TREE_DELETE_OID
	3.1.1.3.4.1.16 LDAP_SERVER_VERIFY_NAME_OID
	3.1.1.3.4.1.17 (Updated Section) LDAP_CONTROL_VLVREQUEST and LDAP_CONTROL_VLVRESPONSE
	3.1.1.3.4.1.18 LDAP_SERVER_ASQ_OID
	3.1.1.3.4.1.19 LDAP_SERVER_QUOTA_CONTROL_OID
	3.1.1.3.4.1.20 LDAP_SERVER_SHUTDOWN_NOTIFY_OID
	3.1.1.3.4.1.21 LDAP_SERVER_FORCE_UPDATE_OID
	3.1.1.3.4.1.22 LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID
	3.1.1.3.4.1.23 LDAP_SERVER_RODC_DCPROMO_OID
	3.1.1.3.4.1.24 LDAP_SERVER_DN_INPUT_OID
	3.1.1.3.4.1.25 LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID
	3.1.1.3.4.1.26 (Updated Section) LDAP_SERVER_SHOW_RECYCLED_OID
	3.1.1.3.4.1.27 LDAP_SERVER_POLICY_HINTS_OID
	3.1.1.3.4.1.28 LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID
	3.1.1.3.4.1.29 LDAP_SERVER_DIRSYNC_EX_OID
	3.1.1.3.4.1.30 LDAP_SERVER_UPDATE_STATS_OID
	3.1.1.3.4.1.30.1 Highest USN Allocated
	3.1.1.3.4.1.30.2 Invocation ID Of Server

	3.1.1.3.4.1.31 LDAP_SERVER_TREE_DELETE_EX_OID
	3.1.1.3.4.1.32 LDAP_SERVER_SEARCH_HINTS_OID
	3.1.1.3.4.1.32.1 (Updated Section) Require Sort Index
	3.1.1.3.4.1.32.2 Soft Size Limit

	3.1.1.3.4.1.33 LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID
	3.1.1.3.4.1.34 LDAP_SERVER_SET_OWNER_OID
	3.1.1.3.4.1.35 LDAP_SERVER_BYPASS_QUOTA_OID
	3.1.1.3.4.1.36 LDAP_SERVER_LINK_TTL_OID
	3.1.1.3.4.1.37 LDAP_SERVER_SET_CORRELATION_ID_OID
	3.1.1.3.4.1.38 LDAP_SERVER_THREAD_TRACE_OVERRIDE_OID

	3.1.1.3.4.2 LDAP Extended Operations
	3.1.1.3.4.2.1 LDAP_SERVER_FAST_BIND_OID
	3.1.1.3.4.2.2 LDAP_SERVER_START_TLS_OID
	3.1.1.3.4.2.3 LDAP_TTL_REFRESH_OID
	3.1.1.3.4.2.4 LDAP_SERVER_WHO_AM_I_OID
	3.1.1.3.4.2.5 (Updated Section) LDAP_SERVER_BATCH_REQUEST_OID

	3.1.1.3.4.3 LDAP Capabilities
	3.1.1.3.4.3.1 LDAP_CAP_ACTIVE_DIRECTORY_OID
	3.1.1.3.4.3.2 LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID
	3.1.1.3.4.3.3 LDAP_CAP_ACTIVE_DIRECTORY_V51_OID
	3.1.1.3.4.3.4 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_DIGEST_OID
	3.1.1.3.4.3.5 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_OID
	3.1.1.3.4.3.6 LDAP_CAP_ACTIVE_DIRECTORY_PARTIAL_SECRETS_OID
	3.1.1.3.4.3.7 LDAP_CAP_ACTIVE_DIRECTORY_V60_OID
	3.1.1.3.4.3.8 LDAP_CAP_ACTIVE_DIRECTORY_V61_R2_OID
	3.1.1.3.4.3.9 LDAP_CAP_ACTIVE_DIRECTORY_W8_OID

	3.1.1.3.4.4 LDAP Matching Rules (extensibleMatch)
	3.1.1.3.4.4.1 LDAP_MATCHING_RULE_BIT_AND
	3.1.1.3.4.4.2 LDAP_MATCHING_RULE_BIT_OR
	3.1.1.3.4.4.3 (Updated Section) LDAP_MATCHING_RULE_TRANSITIVE_EVAL
	3.1.1.3.4.4.4 (Updated Section) LDAP_MATCHING_RULE_DN_WITH_DATA

	3.1.1.3.4.5 LDAP SASL Mechanisms
	3.1.1.3.4.5.1 GSSAPI
	3.1.1.3.4.5.2 GSS-SPNEGO
	3.1.1.3.4.5.3 EXTERNAL
	3.1.1.3.4.5.4 DIGEST-MD5

	3.1.1.3.4.6 (Updated Section) LDAP Policies
	3.1.1.3.4.7 LDAP Configurable Settings
	3.1.1.3.4.8 LDAP IP-Deny List


	3.1.1.4 Reads
	3.1.1.4.1 Introduction
	3.1.1.4.2 (Updated Section) Definitions
	3.1.1.4.3 (Updated Section) Access Checks
	3.1.1.4.4 (Updated Section) Extended Access Checks
	3.1.1.4.5 Constructed Attributes
	3.1.1.4.5.1 subSchemaSubEntry
	3.1.1.4.5.2 canonicalName
	3.1.1.4.5.3 allowedChildClasses
	3.1.1.4.5.4 sDRightsEffective
	3.1.1.4.5.5 (Updated Section) allowedChildClassesEffective
	3.1.1.4.5.6 allowedAttributes
	3.1.1.4.5.7 allowedAttributesEffective
	3.1.1.4.5.8 (Updated Section) fromEntry
	3.1.1.4.5.9 createTimeStamp
	3.1.1.4.5.10 modifyTimeStamp
	3.1.1.4.5.11 primaryGroupToken
	3.1.1.4.5.12 entryTTL
	3.1.1.4.5.13 msDS-NCReplInboundNeighbors, msDS-NCReplCursors, msDS-ReplAttributeMetaData, msDS-ReplValueMetaData
	3.1.1.4.5.14 msDS-NCReplOutboundNeighbors
	3.1.1.4.5.15 msDS-Approx-Immed-Subordinates
	3.1.1.4.5.16 (Updated Section) msDS-KeyVersionNumber
	3.1.1.4.5.17 (Updated Section) msDS-User-Account-Control-Computed
	3.1.1.4.5.18 msDS-Auxiliary-Classes
	3.1.1.4.5.19 tokenGroups, tokenGroupsNoGCAcceptable
	3.1.1.4.5.20 tokenGroupsGlobalAndUniversal
	3.1.1.4.5.21 possibleInferiors
	3.1.1.4.5.22 msDS-QuotaEffective
	3.1.1.4.5.23 msDS-QuotaUsed
	3.1.1.4.5.24 msDS-TopQuotaUsage
	3.1.1.4.5.25 (Updated Section) ms-DS-UserAccountAutoLocked
	3.1.1.4.5.26 (Updated Section) msDS-UserPasswordExpired
	3.1.1.4.5.27 msDS-PrincipalName
	3.1.1.4.5.28 parentGUID
	3.1.1.4.5.29 msDS-SiteName
	3.1.1.4.5.30 (Updated Section) msDS-isRODC
	3.1.1.4.5.31 msDS-isGC
	3.1.1.4.5.32 msDS-isUserCachableAtRodc
	3.1.1.4.5.33 msDS-UserPasswordExpiryTimeComputed
	3.1.1.4.5.34 msDS-RevealedList
	3.1.1.4.5.35 msDS-RevealedListBL
	3.1.1.4.5.36 msDS-ResultantPSO
	3.1.1.4.5.37 msDS-LocalEffectiveDeletionTime
	3.1.1.4.5.38 msDS-LocalEffectiveRecycleTime
	3.1.1.4.5.39 (Updated Section) msDS-ManagedPassword
	3.1.1.4.5.40 (Updated Section) msds-memberOfTransitive
	3.1.1.4.5.41 (Updated Section) msds-memberTransitive
	3.1.1.4.5.42 msds-tokenGroupNames, msds-tokenGroupNamesNoGCAcceptable
	3.1.1.4.5.43 msds-tokenGroupNamesGlobalAndUniversal
	3.1.1.4.5.44 (Updated Section) structuralObjectClass

	3.1.1.4.6 (Updated Section) Referrals
	3.1.1.4.7 (Updated Section) Continuations
	3.1.1.4.8 Effects of Defunct Attributes and Classes

	3.1.1.5 Updates
	3.1.1.5.1 General
	3.1.1.5.1.1 (Updated Section) Enforce Schema Constraints
	3.1.1.5.1.2 (Updated Section) Naming Constraints
	3.1.1.5.1.3 (Updated Section) Uniqueness Constraints
	3.1.1.5.1.4 Transactional Semantics
	3.1.1.5.1.5 Stamp Construction
	3.1.1.5.1.6 Replication Notification
	3.1.1.5.1.7 Urgent Replication
	3.1.1.5.1.8 (Updated Section) Updates Performed Only on FSMOs
	3.1.1.5.1.9 Allow Updates Only When They Are Enabled
	3.1.1.5.1.10 Originating Updates Attempted on an RODC
	3.1.1.5.1.11 Constraints and Processing Specifics Defined Elsewhere

	3.1.1.5.2 Add Operation
	3.1.1.5.2.1 (Updated Section) Security Considerations
	3.1.1.5.2.1.1 (Updated Section) Per Attribute Authorization for Add Operation

	3.1.1.5.2.2 (Updated Section) Constraints
	3.1.1.5.2.3 Special Classes and Attributes
	3.1.1.5.2.4 (Updated Section) Processing Specifics
	3.1.1.5.2.5 Quota Calculation
	3.1.1.5.2.6 (Updated Section) NC Requirements
	3.1.1.5.2.7 (Updated Section) crossRef Requirements
	3.1.1.5.2.8 NC-Add Operation
	3.1.1.5.2.8.1 (Updated Section) Constraints
	3.1.1.5.2.8.2 (Updated Section) Security Considerations
	3.1.1.5.2.8.3 (Updated Section) Processing Specifics


	3.1.1.5.3 Modify Operation
	3.1.1.5.3.1 (Updated Section) Security Considerations
	3.1.1.5.3.1.1 Validated Writes
	3.1.1.5.3.1.1.1 (Updated Section) Member
	3.1.1.5.3.1.1.2 (Updated Section) dNSHostName
	3.1.1.5.3.1.1.3 (Updated Section) msDS-AdditionalDnsHostName
	3.1.1.5.3.1.1.4 (Updated Section) servicePrincipalName
	3.1.1.5.3.1.1.5 (Updated Section) msDS-Behavior-Version
	3.1.1.5.3.1.1.6 (Updated Section) msDS-KeyCredentialLink

	3.1.1.5.3.1.2 FSMO Changes

	3.1.1.5.3.2 (Updated Section) Constraints
	3.1.1.5.3.3 Processing Specifics
	3.1.1.5.3.4 BehaviorVersion Updates
	3.1.1.5.3.5 ObjectClass Updates
	3.1.1.5.3.6 (Updated Section) wellKnownObjects Updates
	3.1.1.5.3.7 Undelete Operation
	3.1.1.5.3.7.1 (Updated Section) Undelete Security Considerations
	3.1.1.5.3.7.2 (Updated Section) Undelete Constraints
	3.1.1.5.3.7.3 Undelete Processing Specifics


	3.1.1.5.4 (Updated Section) Modify DN
	3.1.1.5.4.1 (Updated Section) Intra Domain Modify DN
	3.1.1.5.4.1.1 (Updated Section) Security Considerations
	3.1.1.5.4.1.2 (Updated Section) Constraints
	3.1.1.5.4.1.3 Processing Specifics

	3.1.1.5.4.2 (Updated Section) Cross Domain Move
	3.1.1.5.4.2.1 (Updated Section) Security Considerations
	3.1.1.5.4.2.2 (Updated Section) Constraints
	3.1.1.5.4.2.3 Processing Specifics


	3.1.1.5.5 (Updated Section) Delete Operation
	3.1.1.5.5.1 Resultant Object Requirements
	3.1.1.5.5.1.1 (Updated Section) Tombstone Requirements
	3.1.1.5.5.1.2 (Updated Section) Deleted-Object Requirements
	3.1.1.5.5.1.3 (Updated Section) Recycled-Object Requirements

	3.1.1.5.5.2 dynamicObject Requirements
	3.1.1.5.5.3 Protected Objects
	3.1.1.5.5.4 (Updated Section) Security Considerations
	3.1.1.5.5.5 (Updated Section) Constraints
	3.1.1.5.5.6 Processing Specifics
	3.1.1.5.5.6.1 (Updated Section) Transformation into a Tombstone
	3.1.1.5.5.6.2 (Updated Section) Transformation into a Deleted-Object
	3.1.1.5.5.6.3 (Updated Section) Transformation into a Recycled-Object

	3.1.1.5.5.7 Tree-delete Operation
	3.1.1.5.5.7.1 (Updated Section) Tree-delete Security Considerations
	3.1.1.5.5.7.2 (Updated Section) Tree-delete Constraints
	3.1.1.5.5.7.3 Tree-delete Processing Specifics



	3.1.1.6 Background Tasks
	3.1.1.6.1 AdminSDHolder
	3.1.1.6.1.1 Authoritative Security Descriptor
	3.1.1.6.1.2 Protected Objects
	3.1.1.6.1.3 Protection Operation
	3.1.1.6.1.4 Configurable State

	3.1.1.6.2 (Updated Section) Reference Update
	3.1.1.6.3 (Updated Section) Security Descriptor Propagator Update
	3.1.1.6.4 PDC Forest Trust Update
	3.1.1.6.4.1 (Updated Section) Informative Overview
	3.1.1.6.4.2 (Updated Section) Logical Processing


	3.1.1.7 NT4 Replication Support
	3.1.1.7.1 Format of nt4ReplicationState and pdcChangeLog
	3.1.1.7.1.1 nt4ReplicationState
	3.1.1.7.1.2 pdcChangeLog

	3.1.1.7.2 State Changes
	3.1.1.7.2.1 Initialization
	3.1.1.7.2.2 (Updated Section) Directory Updates
	3.1.1.7.2.3 (Updated Section) Acquiring the PDC Role
	3.1.1.7.2.4 Resetting the pdcChangeLog

	3.1.1.7.3 Format of the Referent of pmsgOut.V1.pLog

	3.1.1.8 AD LDS Special Objects
	3.1.1.8.1 AD LDS Users
	3.1.1.8.2 Bind Proxies

	3.1.1.9 Optional Features
	3.1.1.9.1 Recycle Bin Optional Feature
	3.1.1.9.2 Privileged Access Management Optional Feature

	3.1.1.10 Revisions
	3.1.1.10.1 (Updated Section) Forest Revision
	3.1.1.10.2 (Updated Section) RODC Revision
	3.1.1.10.3 (Updated Section) Domain Revision

	3.1.1.11 Claims
	3.1.1.11.1 Informative Overview
	3.1.1.11.1.1 Claim
	3.1.1.11.1.2 Claims Dictionary
	3.1.1.11.1.3 Claim Source
	3.1.1.11.1.4 (Updated Section) Claims Issuance
	3.1.1.11.1.5 Claims Transformation Rules
	3.1.1.11.1.6 Claims Transformation

	3.1.1.11.2 Claims Procedures
	3.1.1.11.2.1 GetClaimsForPrincipal
	3.1.1.11.2.2 GetADSourcedClaims
	3.1.1.11.2.3 GetCertificateSourcedClaims
	3.1.1.11.2.4 GetConstructedClaims
	3.1.1.11.2.5 EncodeClaimsSet
	3.1.1.11.2.6 FillClaimsSetMetadata
	3.1.1.11.2.7 RunCompressionAlgorithm
	3.1.1.11.2.8 NdrEncode
	3.1.1.11.2.9 NdrDecode
	3.1.1.11.2.10 DecodeClaimsSet
	3.1.1.11.2.11 TransformClaimsOnTrustTraversal
	3.1.1.11.2.12 GetClaimsTransformationRulesXml
	3.1.1.11.2.13 GetTransformationRulesText
	3.1.1.11.2.14 GetCTAClaims
	3.1.1.11.2.15 CollapseMultiValuedClaims
	3.1.1.11.2.16 FilterAndPackOutputClaims
	3.1.1.11.2.17 ValidateClaimDefinition
	3.1.1.11.2.18 GetAuthSiloClaim


	3.1.1.12 NC Rename
	3.1.1.12.1 Abstract Data Types
	3.1.1.12.1.1 FlatName
	3.1.1.12.1.2 SPNValue
	3.1.1.12.1.3 ServerDescription
	3.1.1.12.1.4 InterdomainTrustAccountDescription
	3.1.1.12.1.5 TrustedDomainObjectDescription
	3.1.1.12.1.6 NCDescription
	3.1.1.12.1.7 DomainDescriptionElements
	3.1.1.12.1.8 DomainDescription
	3.1.1.12.1.9 NewTrustParentElements
	3.1.1.12.1.10 DomainWithNewTrustParentDescription
	3.1.1.12.1.11 NCRenameDescription

	3.1.1.12.2 Encoding/Decoding Rules
	3.1.1.12.2.1 EBNF-M
	3.1.1.12.2.1.1 Tuples as Parameters to Production Rules
	3.1.1.12.2.1.2 Parameter Fields as Terminal Values
	3.1.1.12.2.1.3 Formatting of Non-String Parameter Fields as Terminal Values
	3.1.1.12.2.1.4 (Updated Section) Parameter Fields as Iterators
	3.1.1.12.2.1.5 Reversed Production Rules

	3.1.1.12.2.2 CodedNCRenameDescription
	3.1.1.12.2.2.1 Expression
	3.1.1.12.2.2.2 Common
	3.1.1.12.2.2.3 Tests
	3.1.1.12.2.2.3.1 TestConfigurationNC
	3.1.1.12.2.2.3.2 TestReplicationEpoch
	3.1.1.12.2.2.3.3 TestAppNCs
	3.1.1.12.2.2.3.4 TestDomains
	3.1.1.12.2.2.3.4.1 TestCrossRef
	3.1.1.12.2.2.3.4.2 TestServersInstantiated
	3.1.1.12.2.2.3.4.3 TestTrustCount
	3.1.1.12.2.2.3.4.4 TestTrustedDomainObjectDescriptions
	3.1.1.12.2.2.3.4.5 TestInterdomainTrustAccountDescriptions
	3.1.1.12.2.2.3.4.6 TestServerDescriptions

	3.1.1.12.2.2.3.5 TestPartitionCounts

	3.1.1.12.2.2.4 Flatten
	3.1.1.12.2.2.5 Rebuild
	3.1.1.12.2.2.6 Trusts
	3.1.1.12.2.2.6.1 DomainTrustSpecifications
	3.1.1.12.2.2.6.2 DomainTrustAccounts

	3.1.1.12.2.2.7 CrossRefs
	3.1.1.12.2.2.7.1 ConfigurationCrossRef
	3.1.1.12.2.2.7.2 SchemaCrossRef
	3.1.1.12.2.2.7.3 AppNCsCrossRefs
	3.1.1.12.2.2.7.4 NCRenameDescriptionRootCrossRef
	3.1.1.12.2.2.7.5 TrustTreeNonRootDomainCrossRefs
	3.1.1.12.2.2.7.6 TrustTreeRootDomainCrossRefs

	3.1.1.12.2.2.8 ReplicationEpoch


	3.1.1.12.3 Decode Operation
	3.1.1.12.4 (Updated Section) Verify Conditions
	3.1.1.12.5 Process Changes

	3.1.1.13 Authentication Information Retrieval
	3.1.1.13.1 Informative Overview
	3.1.1.13.2 ExpandMemberships
	3.1.1.13.3 GetUserLogonInfo
	3.1.1.13.4 GetResourceDomainInfo
	3.1.1.13.5 ExpandShadowPrincipal
	3.1.1.13.6 GetUserLogonInfoByAttribute
	3.1.1.13.7 GetUserLogonInfoByUPNOrAccountName




	4 (Updated Section) Protocol Examples
	5 Security
	5.1 LDAP Security
	5.1.1 Authentication
	5.1.1.1 Supported Authentication Methods
	5.1.1.1.1 Simple Authentication
	5.1.1.1.2 SASL Authentication
	5.1.1.1.3 Sicily Authentication

	5.1.1.2 Using SSL/TLS
	5.1.1.3 Using Fast Bind
	5.1.1.4 Mutual Authentication
	5.1.1.5 (Updated Section) Supported Types of Security Principals
	5.1.1.6 Authentication Expiration

	5.1.2 Message Security
	5.1.2.1 Using SASL
	5.1.2.2 Using SSL/TLS

	5.1.3 (Updated Section) Authorization
	5.1.3.1 Background
	5.1.3.2 (Updated Section) Access Rights
	5.1.3.2.1 Control Access Rights
	5.1.3.2.2 Validated Writes

	5.1.3.3 Checking Access
	5.1.3.3.1 Null vs. Empty DACLs
	5.1.3.3.2 Checking Simple Access
	5.1.3.3.3 Checking Object-Specific Access
	5.1.3.3.4 Checking Control Access Right-Based Access
	5.1.3.3.5 Checking Validated Write-Based Access
	5.1.3.3.6 Checking Object Visibility

	5.1.3.4 AD LDS Security Context Construction



	6 Additional Information
	6.1 Special Objects and Forest Requirements
	6.1.1 Special Objects
	6.1.1.1 Naming Contexts
	6.1.1.1.1 Any NC Root
	6.1.1.1.2 Config NC Root
	6.1.1.1.3 (Updated Section) Schema NC Root
	6.1.1.1.4 (Updated Section) Domain NC Root
	6.1.1.1.5 (Updated Section) Application NC Root

	6.1.1.2 Configuration Objects
	6.1.1.2.1 Cross-Ref-Container Container
	6.1.1.2.1.1 (Updated Section) Cross-Ref Objects
	6.1.1.2.1.1.1 Foreign crossRef Objects
	6.1.1.2.1.1.2 (Updated Section) Configuration crossRef Object
	6.1.1.2.1.1.3 (Updated Section) Schema crossRef Object
	6.1.1.2.1.1.4 (Updated Section) Domain crossRef Object
	6.1.1.2.1.1.5 (Updated Section) Application NC crossRef Object


	6.1.1.2.2 Sites Container
	6.1.1.2.2.1 Site Object
	6.1.1.2.2.1.1 (Updated Section) NTDS Site Settings Object
	6.1.1.2.2.1.2 Servers Container
	6.1.1.2.2.1.2.1 (Updated Section) Server Object
	6.1.1.2.2.1.2.1.1 (Updated Section) nTDSDSA Object
	6.1.1.2.2.1.2.1.2 (Updated Section) Connection Object
	6.1.1.2.2.1.2.1.3 (Updated Section) RODC NTFRS Connection Object



	6.1.1.2.2.2 Subnets Container
	6.1.1.2.2.2.1 (Updated Section) Subnet Object

	6.1.1.2.2.3 Inter-Site Transports Container
	6.1.1.2.2.3.1 IP Transport Container
	6.1.1.2.2.3.2 SMTP Transport Container
	6.1.1.2.2.3.3 (Updated Section) Site Link Object
	6.1.1.2.2.3.4 Site Link Bridge Object


	6.1.1.2.3 Display Specifiers Container
	6.1.1.2.3.1 (Updated Section) Display Specifier Object

	6.1.1.2.4 Services
	6.1.1.2.4.1 Windows NT
	6.1.1.2.4.1.1 Directory Service
	6.1.1.2.4.1.2 (Updated Section) dSHeuristics
	6.1.1.2.4.1.3 Optional Features Container
	6.1.1.2.4.1.3.1 Recycle Bin Feature Object
	6.1.1.2.4.1.3.2 Privileged Access Management Feature Object

	6.1.1.2.4.1.4 Query-Policies
	6.1.1.2.4.1.4.1 Default Query Policy

	6.1.1.2.4.1.5 (Updated Section) SCP Publication Service Object

	6.1.1.2.4.2 Claims Configuration

	6.1.1.2.5 Physical Locations
	6.1.1.2.6 WellKnown Security Principals
	6.1.1.2.6.1 Anonymous Logon
	6.1.1.2.6.2 Authenticated Users
	6.1.1.2.6.3 Batch
	6.1.1.2.6.4 Console Logon
	6.1.1.2.6.5 Creator Group
	6.1.1.2.6.6 Creator Owner
	6.1.1.2.6.7 Dialup
	6.1.1.2.6.8 Digest Authentication
	6.1.1.2.6.9 Enterprise Domain Controllers
	6.1.1.2.6.10 Everyone
	6.1.1.2.6.11 Interactive
	6.1.1.2.6.12 IUSR
	6.1.1.2.6.13 Local Service
	6.1.1.2.6.14 Network
	6.1.1.2.6.15 Network Service
	6.1.1.2.6.16 NTLM Authentication
	6.1.1.2.6.17 Other Organization
	6.1.1.2.6.18 Owner Rights
	6.1.1.2.6.19 Proxy
	6.1.1.2.6.20 Remote Interactive Logon
	6.1.1.2.6.21 Restricted
	6.1.1.2.6.22 SChannel Authentication
	6.1.1.2.6.23 Self
	6.1.1.2.6.24 Service
	6.1.1.2.6.25 System
	6.1.1.2.6.26 Terminal Server User
	6.1.1.2.6.27 This Organization

	6.1.1.2.7 Extended Rights
	6.1.1.2.7.1 controlAccessRight objects
	6.1.1.2.7.2 Change-Rid-Master
	6.1.1.2.7.3 Do-Garbage-Collection
	6.1.1.2.7.4 Recalculate-Hierarchy
	6.1.1.2.7.5 Allocate-Rids
	6.1.1.2.7.6 Change-PDC
	6.1.1.2.7.7 Add-GUID
	6.1.1.2.7.8 Change-Domain-Master
	6.1.1.2.7.9 Public-Information
	6.1.1.2.7.10 msmq-Receive-Dead-Letter
	6.1.1.2.7.11 msmq-Peek-Dead-Letter
	6.1.1.2.7.12 msmq-Receive-computer-Journal
	6.1.1.2.7.13 msmq-Peek-computer-Journal
	6.1.1.2.7.14 msmq-Receive
	6.1.1.2.7.15 msmq-Peek
	6.1.1.2.7.16 msmq-Send
	6.1.1.2.7.17 msmq-Receive-journal
	6.1.1.2.7.18 msmq-Open-Connector
	6.1.1.2.7.19 Apply-Group-Policy
	6.1.1.2.7.20 RAS-Information
	6.1.1.2.7.21 DS-Install-Replica
	6.1.1.2.7.22 Change-Infrastructure-Master
	6.1.1.2.7.23 Update-Schema-Cache
	6.1.1.2.7.24 Recalculate-Security-Inheritance
	6.1.1.2.7.25 DS-Check-Stale-Phantoms
	6.1.1.2.7.26 Certificate-Enrollment
	6.1.1.2.7.27 Self-Membership
	6.1.1.2.7.28 Validated-DNS-Host-Name
	6.1.1.2.7.29 Validated-SPN
	6.1.1.2.7.30 Generate-RSoP-Planning
	6.1.1.2.7.31 Refresh-Group-Cache
	6.1.1.2.7.32 Reload-SSL-Certificate
	6.1.1.2.7.33 SAM-Enumerate-Entire-Domain
	6.1.1.2.7.34 Generate-RSoP-Logging
	6.1.1.2.7.35 Domain-Other-Parameters
	6.1.1.2.7.36 DNS-Host-Name-Attributes
	6.1.1.2.7.37 Create-Inbound-Forest-Trust
	6.1.1.2.7.38 DS-Replication-Get-Changes-All
	6.1.1.2.7.39 Migrate-SID-History
	6.1.1.2.7.40 Reanimate-Tombstones
	6.1.1.2.7.41 Allowed-To-Authenticate
	6.1.1.2.7.42 DS-Execute-Intentions-Script
	6.1.1.2.7.43 DS-Replication-Monitor-Topology
	6.1.1.2.7.44 Update-Password-Not-Required-Bit
	6.1.1.2.7.45 Unexpire-Password
	6.1.1.2.7.46 Enable-Per-User-Reversibly-Encrypted-Password
	6.1.1.2.7.47 DS-Query-Self-Quota
	6.1.1.2.7.48 Private-Information
	6.1.1.2.7.49 MS-TS-GatewayAccess
	6.1.1.2.7.50 Terminal-Server-License-Server
	6.1.1.2.7.51 Domain-Administer-Server
	6.1.1.2.7.52 User-Change-Password
	6.1.1.2.7.53 User-Force-Change-Password
	6.1.1.2.7.54 Send-As
	6.1.1.2.7.55 Receive-As
	6.1.1.2.7.56 Send-To
	6.1.1.2.7.57 Domain-Password
	6.1.1.2.7.58 General-Information
	6.1.1.2.7.59 User-Account-Restrictions
	6.1.1.2.7.60 User-Logon
	6.1.1.2.7.61 Membership
	6.1.1.2.7.62 Open-Address-Book
	6.1.1.2.7.63 Personal-Information
	6.1.1.2.7.64 Email-Information
	6.1.1.2.7.65 Web-Information
	6.1.1.2.7.66 DS-Replication-Get-Changes
	6.1.1.2.7.67 DS-Replication-Synchronize
	6.1.1.2.7.68 DS-Replication-Manage-Topology
	6.1.1.2.7.69 Change-Schema-Master
	6.1.1.2.7.70 DS-Replication-Get-Changes-In-Filtered-Set
	6.1.1.2.7.71 Run-Protect-Admin-Groups-Task
	6.1.1.2.7.72 Manage-Optional-Features
	6.1.1.2.7.73 Read-Only-Replication-Secret-Synchronization
	6.1.1.2.7.74 Validated-MS-DS-Additional-DNS-Host-Name
	6.1.1.2.7.75 Validated-MS-DS-Behavior-Version
	6.1.1.2.7.76 DS-Clone-Domain-Controller
	6.1.1.2.7.77 Certificate-AutoEnrollment
	6.1.1.2.7.78 DS-Read-Partition-Secrets
	6.1.1.2.7.79 DS-Write-Partition-Secrets
	6.1.1.2.7.80 DS-Set-Owner
	6.1.1.2.7.81 DS-Bypass-Quota
	6.1.1.2.7.82 DS-Validated-Write-Computer

	6.1.1.2.8 (Updated Section) Forest Updates Container
	6.1.1.2.8.1 Operations Container
	6.1.1.2.8.2 Windows2003Update Container
	6.1.1.2.8.3 ActiveDirectoryUpdate Container
	6.1.1.2.8.4 ActiveDirectoryRodcUpdate Container


	6.1.1.3 Critical Domain Objects
	6.1.1.3.1 Domain Controller Object
	6.1.1.3.2 Read-Only Domain Controller Object

	6.1.1.4 Well-Known Objects
	6.1.1.4.1 Lost and Found Container
	6.1.1.4.2 (Updated Section) Deleted Objects Container
	6.1.1.4.3 NTDS Quotas Container
	6.1.1.4.4 Infrastructure Object
	6.1.1.4.5 Domain Controllers OU
	6.1.1.4.6 Users Container
	6.1.1.4.7 Computers Container
	6.1.1.4.8 Program Data Container
	6.1.1.4.9 Managed Service Accounts Container
	6.1.1.4.10 Foreign Security Principals Container
	6.1.1.4.11 System Container
	6.1.1.4.11.1 Password Settings Container

	6.1.1.4.12 Builtin Container
	6.1.1.4.12.1 Account Operators Group Object
	6.1.1.4.12.2 Administrators Group Object
	6.1.1.4.12.3 Backup Operators Group Object
	6.1.1.4.12.4 Certificate Service DCOM Access Group Object
	6.1.1.4.12.5 Cryptographic Operators Group Object
	6.1.1.4.12.6 Distributed COM Users Group Object
	6.1.1.4.12.7 Event Log Readers Group Object
	6.1.1.4.12.8 Guests Group Object
	6.1.1.4.12.9 IIS_IUSRS Group Object
	6.1.1.4.12.10 Incoming Forest Trust Builders Group Object
	6.1.1.4.12.11 Network Configuration Operators Group Object
	6.1.1.4.12.12 Performance Log Users Group Object
	6.1.1.4.12.13 Performance Monitor Users Group Object
	6.1.1.4.12.14 Pre-Windows 2000 Compatible Access Group Object
	6.1.1.4.12.15 Print Operators Group Object
	6.1.1.4.12.16 Remote Desktop Users Group Object
	6.1.1.4.12.17 Replicator Group Object
	6.1.1.4.12.18 Server Operators Group Object
	6.1.1.4.12.19 Terminal Server License Servers Group Object
	6.1.1.4.12.20 Users Group Object
	6.1.1.4.12.21 Windows Authorization Access Group Group Object

	6.1.1.4.13 Roles Container
	6.1.1.4.13.1 Administrators Group Object
	6.1.1.4.13.2 Readers Group Object
	6.1.1.4.13.3 Users Group Object
	6.1.1.4.13.4 Instances Group Object


	6.1.1.5 Other System Objects
	6.1.1.5.1 AdminSDHolder Object
	6.1.1.5.2 Default Domain Policy Container
	6.1.1.5.3 Sam Server Object
	6.1.1.5.4 (Updated Section) Domain Updates Container
	6.1.1.5.4.1 Operations Container
	6.1.1.5.4.2 Windows2003Update Container
	6.1.1.5.4.3 ActiveDirectoryUpdate Container


	6.1.1.6 Well-Known Domain-Relative Security Principals
	6.1.1.6.1 Administrator
	6.1.1.6.2 Guest
	6.1.1.6.3 Key Distribution Center Service Account
	6.1.1.6.4 Cert Publishers
	6.1.1.6.5 Domain Administrators
	6.1.1.6.6 Domain Computers
	6.1.1.6.7 Domain Controllers
	6.1.1.6.8 Domain Guests
	6.1.1.6.9 Domain Users
	6.1.1.6.10 Enterprise Administrators
	6.1.1.6.11 Group Policy Creator Owners
	6.1.1.6.12 RAS and IAS Servers
	6.1.1.6.13 Read-Only Domain Controllers
	6.1.1.6.14 Enterprise Read-Only Domain Controllers
	6.1.1.6.15 Schema Admins
	6.1.1.6.16 Allowed RODC Password Replication Group
	6.1.1.6.17 Denied RODC Password Replication Group


	6.1.2 Forest Requirements
	6.1.2.1 (Updated Section) DC Existence
	6.1.2.2 (Updated Section) NC Existence
	6.1.2.3 Hosting Requirements
	6.1.2.3.1 (Updated Section) DC and Application NC Replica
	6.1.2.3.2 (Updated Section) DC and Regular Domain NC Replica
	6.1.2.3.3 (Updated Section) DC and Schema/Config NC Replicas
	6.1.2.3.4 (Updated Section) DC and Partial Replica NCs Replicas


	6.1.3 (Updated Section) Security Descriptor Requirements
	6.1.3.1 ACE Ordering Rules
	6.1.3.2 SD Flags Control
	6.1.3.3 Processing Specifics
	6.1.3.4 (Updated Section) Blocking Implicit Owner Rights
	6.1.3.5 (Updated Section) Security Considerations
	6.1.3.6 SD Defaulting Rules
	6.1.3.7 Owner and Group Defaulting Rules
	6.1.3.8 Default Administrators Group

	6.1.4 Special Attributes
	6.1.4.1 (Updated Section) ntMixedDomain
	6.1.4.2 msDS-Behavior-Version: DC Functional Level
	6.1.4.3 msDS-Behavior-Version: Domain NC Functional Level
	6.1.4.4 msDS-Behavior-Version: Forest Functional Level
	6.1.4.5 Replication Schedule Structures
	6.1.4.5.1 (Updated Section) SCHEDULE_HEADER Structure
	6.1.4.5.2 SCHEDULE Structure
	6.1.4.5.3 REPS_FROM
	6.1.4.5.4 REPS_TO
	6.1.4.5.5 MTX_ADDR Structure
	6.1.4.5.6 REPLTIMES Structure
	6.1.4.5.7 PAS_DATA Structure

	6.1.4.6 msDS-AuthenticatedAtDC

	6.1.5 (Updated Section) FSMO Roles
	6.1.5.1 Schema Master FSMO Role
	6.1.5.2 Domain Naming Master FSMO Role
	6.1.5.3 RID Master FSMO Role
	6.1.5.4 PDC Emulator FSMO Role
	6.1.5.5 (Updated Section) Infrastructure FSMO Role

	6.1.6 Trust Objects
	6.1.6.1 Overview (Synopsis)
	6.1.6.2 Relationship to Other Protocols
	6.1.6.2.1 TDO Replication over DRS
	6.1.6.2.2 TDO Roles in Authentication Protocols over Domain Boundaries
	6.1.6.2.3 (Updated Section) TDO Roles in Authorization over Domain Boundaries

	6.1.6.3 Prerequisites/Preconditions
	6.1.6.4 Versioning and Capability Negotiation
	6.1.6.5 Vendor-Extensible Fields
	6.1.6.6 Transport
	6.1.6.7 Essential Attributes of a Trusted Domain Object
	6.1.6.7.1 flatName
	6.1.6.7.2 (Updated Section) isCriticalSystemObject
	6.1.6.7.3 msDs-supportedEncryptionTypes
	6.1.6.7.4 msDS-TrustForestTrustInfo
	6.1.6.7.5 nTSecurityDescriptor
	6.1.6.7.6 objectCategory
	6.1.6.7.7 objectClass
	6.1.6.7.8 securityIdentifier
	6.1.6.7.9 trustAttributes
	6.1.6.7.10 trustAuthIncoming
	6.1.6.7.11 trustAuthOutgoing
	6.1.6.7.12 trustDirection
	6.1.6.7.13 trustPartner
	6.1.6.7.14 trustPosixOffset
	6.1.6.7.15 trustType

	6.1.6.8 Essential Attributes of Interdomain Trust Accounts
	6.1.6.8.1 cn (RDN)
	6.1.6.8.2 objectClass
	6.1.6.8.3 sAMAccountName
	6.1.6.8.4 sAMAccountType
	6.1.6.8.5 userAccountControl

	6.1.6.9 Details
	6.1.6.9.1 trustAuthInfo Attributes
	6.1.6.9.1.1 LSAPR_AUTH_INFORMATION
	6.1.6.9.1.2 Kerberos Usages of trustAuthInfo Attributes

	6.1.6.9.2 Netlogon Usages of Trust Objects
	6.1.6.9.3 msDS-TrustForestTrustInfo Attribute
	6.1.6.9.3.1 Record
	6.1.6.9.3.2 (Updated Section) Building Well-Formed msDS-TrustForestTrustInfo Messages

	6.1.6.9.4 Computation of trustPosixOffset
	6.1.6.9.5 Mapping Logon SIDs to POSIX Identifiers
	6.1.6.9.6 Timers
	6.1.6.9.6.1 Trust Secret Cycling
	6.1.6.9.6.2 PDC Forest Trust Scanning

	6.1.6.9.7 Initialization

	6.1.6.10 Security Considerations for Implementers

	6.1.7 (Updated Section) DynamicObject Requirements

	6.2 Knowledge Consistency Checker
	6.2.1 References
	6.2.2 (Updated Section) Overview
	6.2.2.1 Refresh kCCFailedLinks and kCCFailedConnections
	6.2.2.2 (Updated Section) Intrasite Connection Creation
	6.2.2.3 (Updated Section) Intersite Connection Creation
	6.2.2.3.1 ISTG Selection
	6.2.2.3.2 Merge of kCCFailedLinks and kCCFailedLinks from Bridgeheads
	6.2.2.3.3 (Updated Section) Site Graph Concepts
	6.2.2.3.4 Connection Creation
	6.2.2.3.4.1 Types
	6.2.2.3.4.2 Main Entry Point
	6.2.2.3.4.3 Site Graph Construction
	6.2.2.3.4.4 Spanning Tree Computation
	6.2.2.3.4.5 nTDSConnection Creation


	6.2.2.4 (Updated Section) Removing Unnecessary Connections
	6.2.2.5 (Updated Section) Connection Translation
	6.2.2.6 Remove Unneeded kCCFailedLinks and kCCFailedConnections Tuples
	6.2.2.7 (Updated Section) Updating the RODC NTFRS Connection Object


	6.3 (Updated Section) Publishing and Locating a Domain Controller
	6.3.1 Structures and Constants
	6.3.1.1 NETLOGON_NT_VERSION Options Bits
	6.3.1.2 DS_FLAG Options Bits
	6.3.1.3 Operation Code
	6.3.1.4 NETLOGON_LOGON_QUERY
	6.3.1.5 NETLOGON_PRIMARY_RESPONSE
	6.3.1.6 NETLOGON_SAM_LOGON_REQUEST
	6.3.1.7 NETLOGON_SAM_LOGON_RESPONSE_NT40
	6.3.1.8 NETLOGON_SAM_LOGON_RESPONSE
	6.3.1.9 NETLOGON_SAM_LOGON_RESPONSE_EX
	6.3.1.10 (Updated Section) DNSRegistrationSettings

	6.3.2 (Updated Section) DNS Record Registrations
	6.3.2.1 Timers
	6.3.2.1.1 (Updated Section) Register DNS Records Timer

	6.3.2.2 Non-Timer Events
	6.3.2.2.1 Force Register DNS Records Non-Timer Event

	6.3.2.3 (Updated Section) SRV Records
	6.3.2.4 Non-SRV Records

	6.3.3 LDAP Ping
	6.3.3.1 Syntactic Validation of the Filter
	6.3.3.2 (Updated Section) Domain Controller Response to an LDAP Ping
	6.3.3.3 Response to Invalid Filter

	6.3.4 NetBIOS Broadcast and NBNS Background
	6.3.5 (Updated Section) Mailslot Ping
	6.3.6 Locating a Domain Controller
	6.3.6.1 DNS-Based Discovery
	6.3.6.2 NetBIOS-Based Discovery

	6.3.7 Name Compression and Decompression
	6.3.8 (Updated Section) AD LDS DC Publication

	6.4 Domain Join
	6.4.1 State of a Machine Joined to a Domain
	6.4.2 State in an Active Directory Domain
	6.4.3 Relationship to Protocols

	6.5 Unicode String Comparison
	6.5.1 (Updated Section) String Comparison by Using Sort Keys

	6.6 Claims.idl

	7 Communication Details for Active Directory Connections
	7.1 (Updated Section) Connection Resolution of LDAP Clients
	7.2 ADConnection Overview
	7.3 (Updated Section) ADConnection Abstract Data Model
	7.4 Handling Network Errors
	7.5 ICMP Pings
	7.6 Tasks and Events
	7.6.1 Tasks
	7.6.1.1 (Updated Section) Initializing an ADConnection
	7.6.1.2 Setting an LDAP Option on an ADConnection
	7.6.1.3 Establishing an ADConnection
	7.6.1.4 Performing an LDAP Bind on an ADConnection
	7.6.1.5 Performing an LDAP Unbind on an ADConnection
	7.6.1.6 Performing an LDAP Operation on an ADConnection

	7.6.2 Internal Tasks
	7.6.2.1 (Updated Section) Initializing a Connection to a Directory Server
	7.6.2.2 Connecting to a Directory Server
	7.6.2.3 Performing an LDAP Bind Against a Directory Server
	7.6.2.4 Performing an LDAP Unbind Against a Directory Server
	7.6.2.5 Performing an LDAP Operation Against a Directory Server
	7.6.2.6 Following an LDAP Referral or Continuation Reference
	7.6.2.7 Autoreconnecting to a Directory Server

	7.6.3 External Triggered Events
	7.6.3.1 Processing Network Errors
	7.6.3.2 Getting an LDAP Response from a Directory Server

	7.6.4 Timer Triggered Events
	7.6.4.1 Timer Expiry on RequestTimer


	7.7 LDAP Over UDP
	7.7.1 ADUDPHandle Overview
	7.7.2 (Updated Section) ADUDPHandle Abstract Data Model
	7.7.3 Tasks
	7.7.3.1 (Updated Section) Initializing an ADUDPHandle
	7.7.3.2 Performing an LDAP Operation on an ADUDPHandle


	7.8 Transport Requirements
	7.9 Security Elements
	7.10 Communications Security

	8 Change Tracking
	9 Index

