[bookmark: _GoBack][MC-SMP]:
Session Multiplex Protocol

Intellectual Property Rights Notice for Open Specifications Documentation
· Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.
· Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.
· No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
· Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
· License Programs. To see all of the protocols in scope under a specific license program and the associated patents, visit the Patent Map.
· Trademarks. The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
· Fictitious Names. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.
Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.
Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.
Support. For questions and support, please contact dochelp@microsoft.com.
Revision Summary
	Date
	Revision History
	Revision Class
	Comments

	8/10/2007
	0.1
	Major
	Initial Availability

	9/28/2007
	0.2
	Minor
	Clarified the meaning of the technical content.

	10/23/2007
	0.2.1
	Editorial
	Changed language and formatting in the technical content.

	11/30/2007
	0.2.2
	Editorial
	Changed language and formatting in the technical content.

	1/25/2008
	0.2.3
	Editorial
	Changed language and formatting in the technical content.

	3/14/2008
	0.2.4
	Editorial
	Changed language and formatting in the technical content.

	5/16/2008
	0.2.5
	Editorial
	Changed language and formatting in the technical content.

	6/20/2008
	0.3
	Minor
	Clarified the meaning of the technical content.

	7/25/2008
	0.3.1
	Editorial
	Changed language and formatting in the technical content.

	8/29/2008
	1.0
	Major
	Updated and revised the technical content.

	10/24/2008
	1.0.1
	Editorial
	Changed language and formatting in the technical content.

	1/16/2009
	1.0.2
	Editorial
	Changed language and formatting in the technical content.

	2/27/2009
	1.0.3
	Editorial
	Changed language and formatting in the technical content.

	4/10/2009
	1.0.4
	Editorial
	Changed language and formatting in the technical content.

	5/22/2009
	2.0
	Major
	Updated and revised the technical content.

	7/2/2009
	2.0.1
	Editorial
	Changed language and formatting in the technical content.

	8/14/2009
	2.0.2
	Editorial
	Changed language and formatting in the technical content.

	9/25/2009
	2.1
	Minor
	Clarified the meaning of the technical content.

	11/6/2009
	3.0
	Major
	Updated and revised the technical content.

	12/18/2009
	3.0.1
	Editorial
	Changed language and formatting in the technical content.

	1/29/2010
	3.1
	Minor
	Clarified the meaning of the technical content.

	3/12/2010
	4.0
	Major
	Updated and revised the technical content.

	4/23/2010
	5.0
	Major
	Updated and revised the technical content.

	6/4/2010
	5.0.1
	Editorial
	Changed language and formatting in the technical content.

	7/16/2010
	5.0.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	8/27/2010
	5.0.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	10/8/2010
	6.0
	Major
	Updated and revised the technical content.

	11/19/2010
	7.0
	Major
	Updated and revised the technical content.

	1/7/2011
	8.0
	Major
	Updated and revised the technical content.

	2/11/2011
	8.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	3/25/2011
	8.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	5/6/2011
	9.0
	Major
	Updated and revised the technical content.

	6/17/2011
	9.1
	Minor
	Clarified the meaning of the technical content.

	9/23/2011
	9.2
	Minor
	Clarified the meaning of the technical content.

	12/16/2011
	10.0
	Major
	Updated and revised the technical content.

	3/30/2012
	10.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	7/12/2012
	10.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	10/25/2012
	10.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	1/31/2013
	10.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	8/8/2013
	11.0
	Major
	Updated and revised the technical content.

	11/14/2013
	11.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	2/13/2014
	12.0
	Major
	Updated and revised the technical content.

	5/15/2014
	12.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	6/30/2015
	13.0
	Major
	Significantly changed the technical content.

	10/16/2015
	13.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	5/10/2016
	14.0
	Major
	Significantly changed the technical content.

	7/14/2016
	14.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	6/1/2017
	14.0
	None
	No changes to the meaning, language, or formatting of the technical content.

Table of Contents
1	Introduction	6
1.1	Glossary	6
1.2	References	6
1.2.1	Normative References	7
1.2.2	Informative References	7
1.3	Overview	7
1.4	Relationship to Other Protocols	8
1.5	Prerequisites/Preconditions	9
1.6	Applicability Statement	9
1.7	Versioning and Capability Negotiation	9
1.8	Vendor-Extensible Fields	9
1.9	Standards Assignments	10
2	Messages	11
2.1	Transport	11
2.2	Message Syntax	11
2.2.1	Header	11
2.2.1.1	Control Flags	12
2.2.2	SYN Packet	12
2.2.3	ACK Packet	13
2.2.4	FIN Packet	13
2.2.5	DATA Packet	14
3	Protocol Details	15
3.1	Common Details	15
3.1.1	Abstract Data Model	15
3.1.1.1	Session-Specific Structures	15
3.1.1.2	Session States	16
3.1.2	Timers	16
3.1.3	Initialization	16
3.1.3.1	Session-Specific Structure	16
3.1.4	Higher-Layer Triggered Events	17
3.1.4.1	Initialize by Higher Layer	17
3.1.4.2	Read by Higher Layer	17
3.1.4.3	Higher Layer Initiates Sending of Data	17
3.1.4.4	Close by Higher Layer	17
3.1.4.5	Shutdown by Higher Layer	18
3.1.5	Message Processing Events and Sequencing Rules	18
3.1.5.1	Receiving a Packet	18
3.1.5.1.1	Receiving a DATA Packet	18
3.1.5.1.2	Receiving an ACK Packet	19
3.1.5.1.3	Receiving a FIN Packet	19
3.1.5.2	Flow Control Algorithm	19
3.1.5.2.1	Session Variable Relationships for the Sender	20
3.1.5.2.2	Session Variable Relationships for the Receiver	20
3.1.5.2.3	Update Sender's HighWaterForSend Variable Using an ACK Packet	20
3.1.6	Timer Events	21
3.1.7	Other Local Events	21
3.2	Server Details	21
3.2.1	Initialization	22
3.2.2	Higher-Layer Triggered Events	23
3.2.2.1	Initialize by Higher Layer	23
3.2.3	Session States	23
3.2.4	Processing Events and Sequencing Rules	23
3.2.4.1	Receiving a SYN Packet	23
3.3	Client Details	23
3.3.1	Initialization	24
3.3.2	Higher-Layer Triggered Events	24
3.3.2.1	Initialize by Higher Layer	24
3.3.2.2	Open by Higher Layer	24
3.3.3	Processing Events and Sequencing Rules	25
3.3.3.1	Receiving a SYN Packet	25
4	Protocol Examples	26
4.1	Opening a Session	26
4.2	Update Window - ACK	26
4.3	First Command in a Session	27
4.4	Closing a Session	27
5	Security	29
5.1	Security Considerations for Implementers	29
5.2	Index of Security Parameters	29
6	Appendix A: Product Behavior	30
7	Change Tracking	32
8	Index	33

[bookmark: section_4d2ef62dd4bb4c7fa0323f7d9eb03654][bookmark: _Toc483457893]Introduction
The Session Multiplex Protocol (SMP) is an application-layer protocol that provides session management capabilities between a database client and a database server. Specifically, SMP enables multiple logical client connections to a single server over a lower-layer transport connection.
Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in this specification are informative.
[bookmark: section_9773bccc82284197a5e4fb7a848b7704][bookmark: _Toc483457894]Glossary
This document uses the following terms:
[bookmark: gt_079478cb-f4c5-4ce5-b72b-2144da5d2ce7]little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in the memory location with the lowest address.
[bookmark: gt_762fe1e3-0979-4402-b963-1e9150de133d]Multiple Active Result Sets (MARS): A feature in Microsoft SQL Server that allows applications to have more than one pending request per connection. For more information, see [MSDN-MARS].
[bookmark: gt_e5d0d91c-9a39-493f-ab1b-f36ce840e6a2]peer: The entity on either end of an established SMP session.
[bookmark: gt_0ff4678e-e7a2-44ae-a29a-0a561d7d3d37]receiver: The entity that is receiving information from its peer. Both client and server can be receivers.
[bookmark: gt_1affeac2-ea55-47a0-aead-780c9e56b11d]recycle: A process in which SMP releases a Session object so that the session identifier (SID) in use is made available again for a new session.
[bookmark: gt_f583c811-dfcc-4e4c-8820-be07cbff3011]sender: The entity that is sending information to its peer. Both client and server can be senders.
[bookmark: gt_0cd96b80-a737-4f06-bca4-cf9efb449d12]session: In Kerberos, an active communication channel established through Kerberos that also has an associated cryptographic key, message counters, and other state.
[bookmark: gt_30df9e90-310a-4ecc-853d-82209772cad0]session identifier (SID): A unique value provided by the SID field of a SYN packet to each session established over an SMP connection.
[bookmark: gt_a1506c7c-c947-4d04-949c-026520096c81]Session object: An instance of SMP created by a SYN packet that corresponds to the SESSION ESTABLISHED state and is designated by a unique session identifier (SID).
[bookmark: gt_e1fbd9e1-8063-4860-b0a4-07c62dcf5413]Session variable: Members of a Session object instance that contain data to facilitate various SMP operations, such as messaging, event processing, and packet flow control.
[bookmark: gt_23294369-8353-4ccc-9088-ea5c1dcd71cb]Tabular Data Stream (TDS): An application-level protocol that is used by SQL Server to facilitate requests and responses between a database server and client as specified in [MS-TDS].
[bookmark: gt_c35909bd-185e-4b60-be82-995a0318873e]Virtual Interface Architecture (VIA): A high-speed interconnect that requires special hardware and drivers that are provided by third parties.
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
[bookmark: section_6e7cc04a69404d32a7c7ab2815ba46a4][bookmark: _Toc483457895]References
Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.
[bookmark: section_69748df1fad4437e93c6ef18f6acac99][bookmark: _Toc483457896]Normative References
We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.
[MS-DTYP] Microsoft Corporation, "Windows Data Types".
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt
[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999, http://www.rfc-editor.org/rfc/rfc2246.txt
[RFC6101] Freier, A., Karlton, P., and Kocher, P., "The Secure Sockets Layer (SSL) Protocol Version 3.0", RFC 6101, August 2011, http://www.rfc-editor.org/rfc/rfc6101.txt
[RFC793] Postel, J., Ed., "Transmission Control Protocol: DARPA Internet Program Protocol Specification", RFC 793, September 1981, http://www.rfc-editor.org/rfc/rfc793.txt
[bookmark: section_21a1fd43091641b89c531831230ab5c2][bookmark: _Toc483457897]Informative References
[MS-TDS] Microsoft Corporation, "Tabular Data Stream Protocol".
[MSDN-MARS] Microsoft Corporation, "Using Multiple Active Result Sets (MARS)", http://msdn.microsoft.com/en-us/library/ms131686.aspx
[MSDN-NP] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en-us/library/aa365590.aspx
[VIA] Intel Corporation, "Intel Virtual Interface (VI) Architecture Developer's Guide", September 1998, http://www.t11.org/ftp/t11/docs/07-159v0.pdf
[bookmark: section_248c87bb73d54c72aaea4ca8b1c1ca81][bookmark: _Toc483457898]Overview
Session Multiplex Protocol (SMP) is an application protocol that facilitates session management by providing a mechanism to create multiple lightweight communication channels (sessions) over a lower-layer transport connection. SMP does this by multiplexing data streams from different sessions on top of a single reliable stream-oriented transport.
SMP is beneficial in situations where database connections from the client and server are synchronous. In this context, "synchronous" means that the client application can only have one outstanding command or transaction per connection. Rather than incur the expense of creating multiple connections to the server, SMP is capable of simultaneously executing multiple database queries over a single connection.
SMP provides the following:
· The ability to interleave data from several different sessions and preserve message boundaries.
· A sliding window-based flow-control mechanism to facilitate fairness among sessions.
Note SMP is defined as a transport-independent mechanism. It relies on an underlying transport mechanism such as Transmission Control Protocol (TCP), as specified in [RFC793], to ensure byte alignment, loss detection and recovery, and reliable in-order delivery. The scheduling algorithm that enforces fairness between sessions is an implementation issue for the application that implements SMP.
The following diagram shows typical SMP communication flow for an arbitrary session.
[image: Example of a communication flow in SMP]
Figure 1: Example of a communication flow in SMP
[bookmark: section_2567f8857c7c46ef9754ddc8e7d33367][bookmark: _Toc483457899]Relationship to Other Protocols
Session Multiplex Protocol (SMP) depends on an underlying reliable stream-oriented network transport. Optionally, Transport Layer Security (TLS)/Secure Sockets Layer (SSL) [RFC2246] [RFC6101] can be inserted between SMP and the transport layer to provide data protection.
The Tabular Data Stream (TDS) protocol, as specified in [MS-TDS], depends on SMP when the Multiple Active Result Sets (MARS) [MSDN-MARS] feature is specified. TDS is an example of a higher-layer protocol for SMP. This dependency is illustrated in the following diagram.
[image: Protocol relationship]
Figure 2: Protocol relationship
[bookmark: section_8c929b033c31457a8d40f8b041988bbc][bookmark: _Toc483457900]Prerequisites/Preconditions
It is assumed throughout this document that the client has already discovered the server and established a network transport connection.
[bookmark: section_634fe0caf99e475f959cb43b0915facb][bookmark: _Toc483457901]Applicability Statement
Session Multiplex Protocol (SMP) is used appropriately to facilitate the multiplexing of several sessions over a single reliable lower-layer transport connection where network or local connectivity is available.
[bookmark: section_3042f62855fd4afdb8551a3af72ff823][bookmark: _Toc483457902]Versioning and Capability Negotiation
No version of Session Multiplex Protocol (SMP) exists other than the version that is described in this specification. Additional details follow.
Supported transports: SMP can be implemented on top of any reliable transport mechanism, as specified in section 2.1.
Protocol versions: SMP supports the SMP 1.0 version, as defined in section 2.2, which is the only version of SMP that is available.
Security and authentication methods: SMP does not provide or support any security or authentication methods.
Localization: SMP does not provide any localization-specific features.
Capability negotiation: SMP does not support capability negotiation.
[bookmark: section_99475458fb8046f09fb9e36da6cf4901][bookmark: _Toc483457903]Vendor-Extensible Fields
There are no vendor-extensible fields.
[bookmark: section_0c55edcef90b4474b4ffb7a70cc85966][bookmark: _Toc483457904]Standards Assignments
There are no standards assignments for SMP.
[bookmark: section_ce304c0e52994b1cae609a14d7e86d8d][bookmark: _Toc483457905]Messages
All integer fields are represented in little-endian byte order. This protocol references commonly used data types as defined in [MS-DTYP].
[bookmark: section_41b665f83221462a8b7701ca873a66fd][bookmark: _Toc483457906]Transport
[bookmark: Appendix_A_Target_1]Session Multiplex Protocol (SMP) is a simple protocol that is layered above existing reliable transport mechanisms, such as TCP [RFC793], named pipes [MSDN-NP], or Virtual Interface Architecture [VIA].<1> SMP enables the creation of multiple sessions over a single connection. SMP is defined as a transport-independent mechanism.
[bookmark: section_0ea4a57c35384cc3b52929feece2cda4][bookmark: _Toc483457907]Message Syntax
All SMP packets consist of a 16-byte header followed by an optional data payload, depending on the packet type.
[bookmark: section_4ada62f733c245bb980cf566f5a6c11a][bookmark: _Toc483457908]Header
The 16-byte SMP header has the following format.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	SMID
	FLAGS
	SID

	LENGTH

	SEQNUM

	WNDW

SMID (1 byte): This unsigned integer is the SMP packet identifier and MUST always be assigned the value 0x53. This field indicates that the packet is an SMP packet, which helps to distinguish it from other protocol packets.
FLAGS (1 byte): This unsigned integer value contains the control flags, as defined in section 2.2.1.1.
SID (2 bytes): This unsigned integer is the session identifier. This value is a unique identifier for each session that is multiplexed over this connection.
LENGTH (4 bytes): This unsigned integer specifies the length, in bytes (including the header), of the SMP packet.
SEQNUM (4 bytes): This unsigned integer is the SMP sequence number for this packet in the session. The first DATA packet in each session MUST have a SEQNUM value of 0x00000001. For every DATA packet thereafter, this integer MUST monotonically increase by a value of 1 up to 0xffffffff, and then wraps back to a starting value of 0x00000000. Sequence numbers MUST only be incremented for DATA packets. For the ACK packet type, the sequence number MUST remain stable. For the FIN packet type, the sequence number SHOULD remain stable. For the SYN packet type, the sequence number SHOULD be 0x00000000.
WNDW (4 bytes): This unsigned integer indicates the maximum SEQNUM value permitted for a receive packet.
Note The difference between the values of the WNDW field of a received packet and the SEQNUM field of the last sent packet is the available send window size. Any subsequent packets that are sent MUST NOT contain a SEQNUM value that is greater than the value of the WNDW field of the last received packet.
[bookmark: section_7fe3827739de459288cb19709d998569][bookmark: _Toc483457909]Control Flags
The control flag is 1 byte after the SMID field and indicates the type of the packet. Only DATA packets have payload data. The sender MUST NOT send a combination of flags in the same packet. For example, a FLAGS field value of 0x06 (ACK plus FIN) is an invalid value.
	Value
	Meaning

	SYN
0x01
	Indicates that a new connection is to be established (see SYN packet). The session ID for the session is the number that is stored in the SID field.

	ACK
0x02
	Informs the peer about a change in window size when consecutive unanswered DATA packets are received (see ACK packet).

	FIN
0x04
	Indicates that the sending entity will no longer use the session to send data.

	DATA
0x08
	Indicates that the packet carries user data after the header (see DATA packet).

[bookmark: section_4d0300be8a4b427baf3fcb2299307b78][bookmark: _Toc483457910]SYN Packet
The SYN packet is sent to indicate that a new connection is to be established. The ID for the session is the number that is stored in the SID field of the SYN packet.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	SMID
	FLAGS
	SID

	LENGTH

	SEQNUM

	WNDW

SMID (1 byte): See section 2.2.1 for a description of the SMID field.
FLAGS (1 byte): This unsigned integer contains control flags that identify this packet as a SYN packet. The value of the FLAGS field MUST be 0x01. See section 2.2.1.1 for details.
SID (2 bytes): All subsequent packets in this session MUST use this identifier. See section 2.2.1 for a description of the SID field.
LENGTH (4 bytes): The value of this field MUST be 0x00000010. See section 2.2.1 for a description of the LENGTH field.
SEQNUM (4 bytes): The value of this field SHOULD be 0x00000000. See section 2.2.1 for a description of the SEQNUM field.
WNDW (4 bytes): See section 2.2.1 for a description of the WNDW field.
[bookmark: section_e1138e43ba114c44917309fb765890c2][bookmark: _Toc483457911]ACK Packet
The ACK packet updates the peer by changing the peer's send window size when several consecutive unanswered DATA packets are received. For example, with a send window size of 4 (the value of the WNDW field of the sender's last received packet is equal to 0x00000004, and the value of the SEQNUM field of the sender's next sent packet will be equal to 0x00000001), if the sender has 5 packets to pass to the receiver for a single request, then after 4 packets the sender will wait until it receives an ACK packet with an updated value for the WNDW field before it can transmit additional packets. After the receiver has processed at least one of the packets, the receiver can send the sender an ACK packet containing an updated WNDW field value, which allows the sender to send the final packet and complete the request.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	SMID
	FLAGS
	SID

	LENGTH

	SEQNUM

	WNDW

SMID (1 byte): See section 2.2.1 for a description of the SMID field.
FLAGS (1 byte): This unsigned integer contains control flags that identify this packet as an ACK packet. The value of the FLAGS field value MUST be 0x02.
SID (2 bytes): See section 2.2.1 for a description of the SID field. This MUST be the value that was set in the SYN packet (when the session was opened).
LENGTH (4 bytes): See section 2.2.1 for a description of the LENGTH field. The value of this field MUST be 0x00000010.
SEQNUM (4 bytes): See section 2.2.1 for a description of the SEQNUM field.
WNDW (4 bytes): See section 2.2.1 for a description of the WNDW field.
[bookmark: section_a86e11e6f75a4835b31b12e52f930b07][bookmark: _Toc483457912]FIN Packet
The FIN packet is sent to indicate that the sending entity will no longer use the session to send or receive data.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	SMID
	FLAGS
	SID

	LENGTH

	SEQNUM

	WNDW

SMID (1 byte): See section 2.2.1 for a description of the SMID field.
FLAGS (1 byte): This unsigned integer contains control flags that identify this packet as a FIN packet. The value of the FLAGS field MUST be 0x04.
SID (2 bytes): The SID field MUST be set to the value that was set when the session was opened. See section 2.2.1 for a description of the SID field.
LENGTH (4 bytes): The value of the LENGTH field MUST be 0x00000010. See section 2.2.1 for a description of the LENGTH field.
SEQNUM (4 bytes): See section 2.2.1 for a description of the SEQNUM field.
WNDW (4 bytes): See section 2.2.1 for a description of the WNDW field.
[bookmark: section_6797c9a3e1de4c4ebc3acc5cd0b6efcf][bookmark: _Toc483457913]DATA Packet
The DATA packet carries data in the DATA field, which follows the Header. The length of the DATA field is the total SMP packet length minus the SMP packet header length.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	SMID
	FLAGS
	SID

	LENGTH

	SEQNUM

	WNDW

	DATA (variable)

	...

SMID (1 byte): See section 2.2.1 for a description of the SMID field.
FLAGS (1 byte): This unsigned integer contains control flags that identify this packet as a DATA packet. The value of the FLAGS field MUST be 0x08.
SID (2 bytes): The SID field MUST be set to the value that was set when the session was opened. See section 2.2.1 for a description of the SID field.
LENGTH (4 bytes): The value of the LENGTH field MUST be at least 0x00000010. See section 2.2.1 for a description of the LENGTH field.
SEQNUM (4 bytes): See section 2.2.1 for a description of the SEQNUM field.
WNDW (4 bytes): See section 2.2.1 for a description of the WNDW field.
DATA (variable): The DATA field contains the user data of the DATA packet. The size of the DATA field can be determined by subtracting the length of the Header (16 bytes) from the value of the LENGTH field. For example, a LENGTH value of 0x00000025 means the user data will be 21 bytes long.
[bookmark: section_78264b4aa6d943a4b93a68c7640f5e01][bookmark: _Toc483457914]Protocol Details
This section describes the important elements of the client and server software necessary to support SMP.
SMP is largely a symmetric protocol that obeys the same rules and semantics on both the client and the server. Therefore, descriptions of the client and server roles are both contained in section 3.1, where section 3.3.2.2 applies only to the client and section 3.2.4.1 applies only to the server.
[bookmark: section_d3f229184fb246bc857bb0085e7c36d1][bookmark: _Toc483457915]Common Details
[bookmark: Appendix_A_Target_2]Session Multiplex Protocol (SMP) is layered on top of a reliable, in-order, connection-oriented transport layer such as TCP [RFC793], named pipes [MSDN-NP], or Virtual Interface Architecture (VIA) [VIA].<2>
After the transport connection is established, SMP initiation is negotiated through other protocols, such as the Tabular Data Stream (TDS) protocol [MS-TDS]. SMP has to be successfully initiated on both end points before SMP operations can begin. The shutdown sequence can be triggered either by the higher layer or by fatal events internal to SMP. The peer is notified of the shutdown when the transport connection is closed.
SMP incorporates the concept of a client and a server interacting during session establishment. A session has to be initiated by the client (section 3.3.2.2). After SMP enters the SESSION ESTABLISHED state, both endpoints of the session can be used by the higher layer to send and receive data symmetrically, and therefore each can act as a sender and as a receiver. Either the client or the server can initiate connection termination by sending a FIN packet.
[bookmark: section_9519befc4b3e40da8497423dde82f6de][bookmark: _Toc483457916]Abstract Data Model
This section describes a conceptual model of possible data organization that an implementation maintains to participate in this protocol. The described organization is provided to facilitate the explanation of how the protocol behaves. This document does not mandate that implementations adhere to this model as long as their external behavior is consistent with what is described in this document.
[bookmark: section_acd93529895a407d817dd9aec2867db0][bookmark: _Toc483457917]Session-Specific Structures
The following structures are required per SMP session. These structures are needed to implement the flow control algorithm and for connection management:
Note The dotted notation of the following list items indicates the structures of a Session object instance. For example, Session.SeqNumForSend refers to the SeqNumForSend variable of the Session object.
· Session.SeqNumForSend: A 32-bit unsigned integer that monotonically increases for every session DATA packet that is sent.
· Session.HighWaterForSend: A 32-bit unsigned integer that tracks the peer window that is obtained through the WNDW field in the received packet header.
· Session.SeqNumForRecv: A 32-bit unsigned integer that tracks the peer session sequence number obtained from the SEQNUM field in the DATA packet header. This number is used for comparison with the received packet.
· Session.HighWaterForRecv: A 32-bit unsigned integer that tracks the receiver's high-water mark of the receiver buffer window. It is used to set the value of the WNDW field of each sent packet.
· Session.LastHighWaterForRecv: A 32-bit unsigned integer that tracks the value of the WNDW field of the last sent packet. It is used to implement a selective ACK algorithm and is optional.
· Session.ReceivePacketQueue: A queue that buffers received packets.
[bookmark: section_ec82eb5d3818405893cab9172c0899dd][bookmark: _Toc483457918]Session States
The state of an SMP session has to be maintained. An SMP session can be in any one of several states, which are described here and in the "Server Details" and "Client Details" sections.
SESSION ESTABLISHED: The session is successfully established and both session endpoints can send and receive data. The SESSION ESTABLISHED state is reached as specified in section 3.3.2.2.
FIN RECEIVED: The client or server has received a FIN packet from its peer, indicating a request to close this session.
FIN SENT: The client or server has sent a FIN packet to its peer after the session is closed by the higher layer. The sending entity will also receive a FIN packet from its peer before entering the CLOSED state (section 3.1.4.4). However, if the transport connection will also be closed by the sending entity, it is unnecessary to wait to receive the FIN packet acknowledgement.
CLOSED: The session has been closed by the higher layer, either by closing the SMP session (section 3.1.4.4) or by shutting down the SMP connection (section 3.1.4.5), at which point data can no longer be sent or received.
[bookmark: section_ae0304c2171b4b428547b3d81f74fac9][bookmark: _Toc483457919]Timers
In SMP, there are no timers. SMP assumes a reliable transport and the eventual delivery of messages. In the event of an error from the transport connection, SMP recycles all Session objects associated with the failed transport connection. Idle sessions are kept open until the higher layer closes them or an error in the transport connection occurs.
[bookmark: section_163f7811dcb74e1e8ea294f05555d89c][bookmark: _Toc483457920]Initialization
[bookmark: section_4338058c56f348b3bd6e662d7a35f481][bookmark: _Toc483457921]Session-Specific Structure
Session-specific structures are initialized with the values described in the table that follows.
Note The dotted notation in the table indicates the structures of a Session object instance. For example, Session.SeqNumForSend refers to the SeqNumForSend variable of the Session object.
	Variable
	Value

	Session.SeqNumForSend
	0

	Session.HighWaterForSend
	4

	Session.SeqNumForRecv
	0

	Session.HighWaterForRecv
	4

	Session.ReceivePacketQueue
	Empty

If the delayed acknowledgment algorithm is used, as specified in section 3.1.5.2.3, Session.LastHighWaterforRecv will have a value of 4. Otherwise, the Session.LastHighWaterForRecv variable is not used.
[bookmark: section_d0f5a602c1e145a4a976cc5f2f74ecdd][bookmark: _Toc483457922]Higher-Layer Triggered Events
[bookmark: section_60fe89e5d4b64f9bb8c5f15ad254c170][bookmark: _Toc483457923]Initialize by Higher Layer
The higher layer on both the client and server have to initialize SMP on each end of the lower-layer transport connection before SMP can operate. After initialization, the client enters a CLOSED state and the server enters a LISTENING state.
[bookmark: section_85d544eaf9c641288d16c2cb96b175e0][bookmark: _Toc483457924]Read by Higher Layer
The Read by Higher Layer event is triggered when the higher layer chooses to perform a read operation on arriving DATA packets. The SMP layer performs one of the following, depending upon the status of ReceivePacketQueue variable of the Session object:
· If the ReceivePacketQueue variable of the Session object is empty, the SMP layer notifies the higher layer once a DATA packet arrives, as described in section 3.1.5.1.1.
· If the ReceivePacketQueue variable of the Session object is not empty, the SMP layer retrieves only one packet from the ReceivePacketQueue and passes it to the higher layer. After the SMP layer passes the data to the higher layer, the HighWaterForRecv variable of the Session object is incremented by 1 and the SMP layer can send an ACK packet to the peer, as specified in section 3.1.5.2.3.
[bookmark: section_1b05bf9667e442db8833f2154c6ab1c5][bookmark: _Toc483457925]Higher Layer Initiates Sending of Data
This event is triggered when the higher layer initiates the sending of data over an SMP session.
Any packet that is sent MUST NOT contain a SEQNUM value higher than the value of the HighWaterForSend variable.
If a DATA packet cannot be sent to its peer because the value of the SeqNumForSend variable of the Session object is equal to the value of the HighWaterForSend variable of the Session object, the SMP layer performs one of the following two actions:
· Buffer the DATA packet in a local buffer and send it at a later time according to the flow control algorithm described in section 3.1.5.2.
· Block the higher layer until the DATA packet is sent according to the flow control algorithm described in section 3.1.5.2.
If the value of SeqNumForSend is less than that of HighWaterForSend, the SMP layer of the sender sends the DATA packet according to the flow control algorithm described in section 3.1.5.2.
[bookmark: section_b223831bbb69406d8ec93fcbde008dfe][bookmark: _Toc483457926]Close by Higher Layer
The Close by Higher Layer event is triggered when the upper layer closes a session. When this happens, the following MUST occur:
· If SMP is in the SESSION ESTABLISHED state, send the FIN packet and then enter the FIN SENT state.
· If SMP is in the FIN RECEIVED state, send the FIN packet to the peer, recycle the Session object, and then enter the CLOSED state.
Note The Session object cannot be recycled and the CLOSED state ought not be entered until the SMP layer receives a FIN packet from its peer, as described in section 3.1.5.1.3. It is also important to both receive and send a FIN packet (the order does not matter) before entering the CLOSED state to prevent a new session from attempting to use an existing session identifier (SID). See section 2.2.1 for a description of the SID field.
[bookmark: section_1eb26445f92b4d6980d75d222ddb626d][bookmark: _Toc483457927]Shutdown by Higher Layer
The Shutdown by Higher Layer event is triggered when the upper layer shuts down the SMP connection. When this occurs, all sessions move from the CLOSED state to the END state and all associated data structures is released.
[bookmark: section_ed88b29986bb4da88f50313caf188b81][bookmark: _Toc483457928]Message Processing Events and Sequencing Rules
[bookmark: section_6d816d11d6914e1989d9c84619de0ac3][bookmark: _Toc483457929]Receiving a Packet
The client or server MUST do the following when receiving a packet:
· Parse the header of the received packet to get the value of the SID field.
· If the Session object corresponding to the value of the SID field of the received packet does not exist and the value of the FLAGS field of the packet is not equal to 0x01 (a SYN packet), an error is raised to the higher layer and the underlying transport connection is closed.
· If the Session object is located, an error is raised to the higher layer and the underlying transport connection is closed if any of the following conditions are not met:
· The value of the FLAGS field in the received packet is equal to 0x02 (ACK packet), 0x04 (FIN packet), or 0x08 (DATA packet).
· The value of the WNDW field of the received packet is greater than or equal to the value of the HighWaterForSend variable of the Session object.
· The SID field of the received packet matches the session identifier (SID) of the Session object.
· The value of the SEQNUM field is less than or equal to the value of the HighWaterForRecv variable of the Session object.
· If the value of the FLAGS field is equal to 0x08 (a DATA packet), parse the packet to get the user data (DATA field) while using the value of the LENGTH field of the packet to facilitate the parse.
Note The length of the DATA field will be equal to the overall packet LENGTH minus the length of the Header (16 bytes).
The sections that follow describe the processing of received DATA, ACK, and FIN packets. Processing of received SYN packets is covered in the server- and client-specific sections.
[bookmark: section_c59cde099a634be2a955b1f9b5bd7eb0][bookmark: _Toc483457930]Receiving a DATA Packet
When a DATA packet is received in the SESSION ESTABLISHED state:
· If a higher layer posted a receive, finish that receive with the data in the packet; otherwise, buffer the packet in the ReceivePacketQueue variable of the Session object.
· If the value of the WNDW field of the DATA packet is greater than the value of the HighWaterForSend variable of the Session object, the receiver of the DATA packet MUST do the following:
· If there are any packets waiting to be sent (section 3.1.4.3), the SMP layer sends the packets to its peer, up to and including the value of the packet number defined by the WNDW field.
· Set the value of the HighWaterForSend variable of the Session object equal to the value of the WNDW field of the DATA packet.
· If the value of the SEQNUM field of the DATA packet is not equal to the value of the SeqNumForRecv variable of the Session object plus 1, an error is raised to the higher layer and the underlying transport layer is closed.
Note When a DATA packet is received in the FIN SENT state, the packet is ignored.
Note When a DATA packet is received in the FIN RECEIVED state, an error SHOULD be raised to the higher layer and the underlying transport connection SHOULD be closed.
[bookmark: section_73f55e789c644ebaa590c49a6de84a32][bookmark: _Toc483457931]Receiving an ACK Packet
When an ACK packet is received, the following applies:
· If the value of the WNDW field of the ACK packet is greater than the value of the HighWaterForSend variable of the Session object, the receiver of the ACK packet MUST do the following:
· If there are any packets waiting to be sent, as specified in section 3.1.4.3, the SMP layer sends the packets to its peer, up to and including the value defined by the WNDW field.
· Set the value of the HighWaterForSend variable to that of the WNDW field.
· If an ACK packet is received in the FIN RECEIVED state, an error SHOULD be raised to the higher layer and the underlying transport connection SHOULD be closed.
· If the value of the SEQNUM field of the ACK packet is not equal to the value of the SeqNumForRecv variable of the Session object, an error is raised to the higher layer and the underlying transport connection is closed.
[bookmark: section_a238eeb35e5148fb8aaae592c96e9097][bookmark: _Toc483457932]Receiving a FIN Packet
When a FIN packet is received, the following applies:
· If SMP is in the SESSION ESTABLISHED state, then move into the FIN RECEIVED state.
· If SMP is in the FIN SENT state, then recycle the Session object and move into the CLOSED state.
When a FIN packet is received in the FIN RECEIVED state, an error SHOULD be raised to the higher layer and the underlying transport connection SHOULD be closed.
If the value of the SEQNUM field of the FIN packet is not equal to the value of the SeqNumForRecv variable of the Session object, an error MAY be raised to the higher layer and the underlying transport connection MAY be closed.
[bookmark: section_2c8a1328d2e0434ba0e88a72bbb5505a][bookmark: _Toc483457933]Flow Control Algorithm
SMP provides a means for the receiver to govern the amount of data sent by the sender. This is achieved by returning a window with every ACK or DATA packet. The returned window indicates a range of acceptable sequence numbers beyond the last DATA packet that is successfully received. The window indicates an allowed number of DATA packets that the sender can transmit before receiving further permission.
Flow control involves the use of the following sender variables:
· Session.SeqNumForSend
· Session.HighWaterForSend
Flow control also involves the use of the following receiver variables:
· Session.SeqNumForRecv
· Session.HighWaterForRecv
· LastHighWaterForRecv
The sections that follow show the relationships of these variables in the sequence number space. The sequence number is a 32-bit unsigned integer that is allowed to wrap.
[bookmark: section_a210b73f01234ba1be09895b0bd899ef][bookmark: _Toc483457934]Session Variable Relationships for the Sender
· The DATA packet MUST NOT be sent if the value of the SeqNumForSend variable of the Session object is equivalent to the value of the HighWaterForSend variable of the Session object.
· Otherwise, the value of the SEQNUM field of the DATA packet is set to the value of the SeqNumForSend variable plus 1, the DATA packet is sent, and the value of the SeqNumForSend variable is incremented by 1.
· Upon receiving a packet, the value of the HighWaterForSend variable isset to the value of the WNDW field of the received packet.
Note The value of the send window size equals the value of the HighWaterForSend variable minus the value of the SeqNumForSend variable. The send window is considered closed when the value of the send window size is 0. The maximum send window size for the implementation described in this document is 4.
[bookmark: section_f50d83801ef248be80c136d36ae61bd2][bookmark: _Toc483457935]Session Variable Relationships for the Receiver
· When the higher layer retrieves a DATA packet from a session endpoint, the HighWaterForRecv variable of the Session object is incremented by 1.
· When sending a DATA packet, the value of the WNDW field of the packet is set to the value of the HighWaterForRecv variable.
· When receiving a DATA packet with a SEQNUM field value equivalent to the value of the SeqNumForRecv variable of the Session object plus 1 (and that value is less than or equal to the value of the HighWaterForRecv variable of the Session object), the value of the SeqNumForRecv variable is set to the value of the SEQNUM field of the received DATA packet.
· When receiving a DATA packet with a SEQNUM field that does not satisfy the condition specified above, an error is raised to the higher layer.
· When receiving a packet other than a DATA packet, the SeqNumForRecv variable is not changed.
Note The algorithm described above ensures that, at any time, the value of the SeqNumForRecv variable is less than or equal to the value of the HighWaterForRecv variable. The receive window size equals the value of HighWaterForRecv minus the value of SeqNumForRecv.
[bookmark: section_5191ff9217e34ef285b79de9ba526619][bookmark: _Toc483457936]Update Sender's HighWaterForSend Variable Using an ACK Packet
[bookmark: Appendix_A_Target_3]The ADM variable HighWaterForSend of the Session object is updated by receiving either a DATA packet or an ACK packet from the peer. The SMP layer MUST send ACK packets to facilitate flow control. There are several possible algorithms that can be used for sending ACK packets. This is an implementation choice. One example is to send an ACK packet for each DATA packet retrieved by the higher layer.<3>
[bookmark: section_a817a65984cf40a9b09667fb7a0437a7][bookmark: _Toc483457937]Timer Events
There is no timer in SMP.
[bookmark: section_fd41f4def2cf49c4b3e1bff5ff4a04db][bookmark: _Toc483457938]Other Local Events
In case of the following events, SMP closes the lower layer transport connection and an error is raised to the higher layer:
· The lower-layer transport disconnects.
· A packet is received by a peer and does not follow the specifications outlined in section 2.
[bookmark: section_01bc5586e99c4406ad65f3a37f48dd26][bookmark: _Toc483457939]Server Details
The following state diagram illustrates the progress of a session during the lifetime of the server. The diagram is only a summary and does not represent the total specification; for example, it does not include error events and state changes within an established state.
[image: Session Multiplex Protocol server state machine]
Figure 3: Session Multiplex Protocol server state machine
[bookmark: section_daec2d9ec7da47c1b0469bd511a76ef7][bookmark: _Toc483457940]Initialization
On the server side, initialization of the Abstract Data Model described in the Common Details is performed when the upper layer makes a request to begin listening.
[bookmark: section_2c24936dab1f45bc929c65056fd9a9ac][bookmark: _Toc483457941]Higher-Layer Triggered Events
[bookmark: section_97afb7a3ccaa407a910f39d7629fd385][bookmark: _Toc483457942]Initialize by Higher Layer
The higher layer on the server MUST initialize SMP on each end of the lower-layer transport connection before SMP can operate. After initialization, the server enters a LISTENING state.
[bookmark: section_527bba72cd84422cab861e479fa8fce0][bookmark: _Toc483457943]Session States
In addition to the states specified in the Common Details, a Server Session can also be in the following state:
Listening: The server is ready for client connections.
[bookmark: section_505570ea7e1e47a787178a53a894e88d][bookmark: _Toc483457944]Processing Events and Sequencing Rules
[bookmark: section_6f1133f1fe95475fb027034845bf1441][bookmark: _Toc483457945]Receiving a SYN Packet
The following logic applies to the server only when receiving a SYN packet.
· Create a Session object using the value of the SID field of the received SYN packet and enter the SESSION ESTABLISHED state.
· If the value of the SEQNUM field of the SYN packet is not equal to the value of the SeqNumForRecv variable of the Session object, an error MAY be raised to the higher layer and the underlying transport connection MAY be closed.
Note If a SYN packet is received in the FIN RECEIVED state, an error SHOULD be raised to the higher layer and the underlying transport connection SHOULD be closed.
[bookmark: section_2e8b8070ec4d493e83aedca5f8ee0e37][bookmark: _Toc483457946]Client Details
The following state diagram illustrates the progress of a session during the lifetime of the client. The diagram is only a summary and does not represent the total specification; for example, it does not include error events and state changes within an established state.
[image: Session Multiplex Protocol client state machine]
Figure 4: Session Multiplex Protocol client state machine
[bookmark: section_77f3ed24f0b54188b4b160d50350a691][bookmark: _Toc483457947]Initialization
On the client side, initialization of the Abstract Data Model described in the Common Details is performed when the upper layer makes a request for a new SMP session.
[bookmark: section_bdbd75bb9fdf493a8017c28f5049c790][bookmark: _Toc483457948]Higher-Layer Triggered Events
[bookmark: section_bc6a87aa5cb64f2ca43e4a9e4b80e0c0][bookmark: _Toc483457949]Initialize by Higher Layer
The higher layer on the client MUST initialize SMP on each end of the lower-layer transport connection before SMP can operate. After initialization, the client enters a CLOSED state.
[bookmark: section_6cfc6ad637814add9c035acc2d806a67][bookmark: _Toc483457950]Open by Higher Layer
The Open by Higher Layer event is triggered from the client side only. When the higher layer triggers this event, the SMP layer MUST:
· Choose a unique session identifier (SID), as specified in section 2.2.1, for each session multiplexed over a lower-layer transport connection.
· Send a SYN packet to the server.
· Note The SYN packet creates a Session object, which is an instance of the SMP protocol containing Session variables that control protocol operation.
· Enter into the SESSION ESTABLISHED state.
[bookmark: section_7601509929f4489c99a8c7ec67a5d928][bookmark: _Toc483457951]Processing Events and Sequencing Rules
[bookmark: section_da7f12ab4e394908af560725b6ec43b8][bookmark: _Toc483457952]Receiving a SYN Packet
If a SYN packet is received by the client, an error SHOULD be raised to the higher layer and the underlying transport connection SHOULD be closed.
[bookmark: section_46a7d0632162448a8bd7146b2534aa20][bookmark: _Toc483457953]Protocol Examples
This section provides examples of SMP packets for various operations being performed.
[bookmark: section_9b282ab157044c8fa45fd1670b1f1323][bookmark: _Toc483457954]Opening a Session
This example illustrates a SYN packet which creates a new session.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	SMID
	FLAGS
	SID

	LENGTH

	SEQNUM

	WNDW

SMID (1 byte): 0x53
FLAGS (1 byte): 0x01 (SYN packet)
SID (2 bytes): 0x0000 (The first SMP session on this connection)
LENGTH (4 bytes): 0x00000010 (The SYN packet does not have any payload)
SEQNUM (4 bytes): 0x00000000 (The initial packet for this session)
WNDW (4 bytes): 0x00000004 (The default of 4 receive buffers posted)
[bookmark: section_42e6a28f638441b1a9c6e06dcd8c5b02][bookmark: _Toc483457955]Update Window - ACK
This example illustrates an ACK packet that updates the peer with a change in window size.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	SMID
	FLAGS
	SID

	LENGTH

	SEQNUM

	WNDW

SMID (1 byte): 0x53
FLAGS (1 byte): 0x02 (ACK packet)
SID (2 bytes): 0x0005 (session identifier (SID) equals 5)
LENGTH (4 bytes): 0x00000010 (The ACK packet does not have a payload)
SEQNUM (4 bytes): 0x00000010
WNDW (4 bytes): 0x00000012
[bookmark: section_7810af690ff64059b3e08bb55a154629][bookmark: _Toc483457956]First Command in a Session
This example illustrates a DATA packet as the first command in a session.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	SMID
	FLAGS
	SID

	LENGTH

	SEQNUM

	WNDW

	DATA (variable)

	...

SMID (1 byte): 0x53
FLAGS (1 byte): 0x08 (DATA packet)
SID (2 bytes): 0x0005 (session identifier (SID) equals 5)
LENGTH (4 bytes): 0x00000060
SEQNUM (4 bytes): 0x0000001
WNDW (4 bytes): 0x0000004
DATA (variable): 0x01 01 00 50 00 00 01 00 16 00 00 00 12 00 00 00 02 00 00 00 00 00 00 00 00 00 01 00 00 00 53 00 45 00 54 00 20 00 51 00 55 00 4F 00 54 00 45 00 44 00 5F 00 49 00 44 00 45 00 4E 00 54 00 49 00 46 00 49 00 45 00 52 00 20 00 4F 00 46 00 46 00 (TDS request)
[bookmark: section_712828b7fbd843849b11533ec5503a3a][bookmark: _Toc483457957]Closing a Session
This example illustrates the FIN packet as the last command in a session.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	SMID
	FLAGS
	SID

	LENGTH

	SEQNUM

	WNDW

SMID (1 byte): 0x53
FLAGS (1 byte): 0x04 (FIN packet)
SID (2 bytes): 0x0005 (session identifier (SID) equals 5)
LENGTH (4 bytes): 0x00000010 (The FIN packet does not have a payload)
SEQNUM (4 bytes): 0x0000023
WNDW (4 bytes): 0x0000013
[bookmark: section_874e98582ef644c6be4d61979ae081dd][bookmark: _Toc483457958]Security
[bookmark: section_c0db6912601e463ab0fe242e7a1cba92][bookmark: _Toc483457959]Security Considerations for Implementers
There are no special security considerations for this protocol.
[bookmark: section_9ea6d39c521446e08d2fbd1922eda8d5][bookmark: _Toc483457960]Index of Security Parameters
None.
[bookmark: section_e3dcac921ca041978147d8ab6114ba98][bookmark: _Toc483457961]Appendix A: Product Behavior
The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include released service packs.
· Microsoft SQL Server 2005
· Microsoft SQL Server 2008
· Microsoft SQL Server 2008 R2
· Microsoft SQL Server 2012
· Microsoft SQL Server 2014
· Microsoft SQL Server 2016
· Windows Vista operating system
· Windows Server 2008 operating system
· Windows 7 operating system
· Windows Server 2008 R2 operating system
· Windows 8 operating system
· Windows Server 2012 operating system
· Windows 8.1 operating system
· Windows Server 2012 R2 operating system
· Windows 10 operating system
· Windows Server 2016 operating system
Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears with the product version, behavior changed in that service pack or QFE. The new behavior also applies to subsequent service packs of the product unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.
Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the product does not follow the prescription.
<1> Section 2.1: Microsoft SQL Server supports TCP and named pipes as transport protocols for the SMP protocol. In addition, SQL Server 2005, SQL Server 2008, and SQL Server 2008 R2 support the VIA protocol as a protocol configuration option that can be used as the underlying transport.
<2> Section 3.1: SQL Server supports TCP and named pipes as transport protocols for the SMP protocol. In addition, SQL Server 2005, SQL Server 2008, and SQL Server 2008 R2 support the VIA protocol as a protocol configuration option that can be used as the underlying transport.
<3> Section 3.1.5.2.3: In Microsoft implementations, when the SMP layer sends a packet, the value of the LastHighWaterForRecv ADM variable is set to the value of the WNDW field of the sent packet.
In Microsoft implementations, a delayed acknowledgement algorithm is implemented by sending an ACK packet after every other DATA packet that is retrieved by the higher layer. In the implementation example provided in section 3.1.5.2.3, an ACK packet is sent if the value of the HighWaterForRecv ADM variable minus the value of the LastHighWaterForRecv ADM variable is greater than or equal to 2.
[bookmark: section_3935e1bdd01e42bfafee2f251273f61f][bookmark: _Toc483457962]Change Tracking
No table of changes is available. The document is either new or has had no changes since its last release.
[bookmark: section_559861e4b22c49ac87efb86d043b9acd][bookmark: _Toc483457963]Index
33 / 34
[MC-SMP] - v20170601
Session Multiplex Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017
A

Abstract data model
 flow control algorithm 19
 overview 15
 session-specific structures 15
ACK packet 13
 receiving 19
ACK Packet message 13
Applicability 9

C

Capability negotiation 9
Change tracking 32
Client
 initialization 24
 overview (section 3.1 15, section 3.3 23)
 Receiving a SYN packet 25
 state diagram 23
Close by Higher Layer event 17
Closing a session example 27
Closing_a_Session packet 27
Common details 15
Control flags 12

D

Data model - abstract
 flow control algorithm 19
 overview 15
 session-specific structures 15
DATA packet 14
 receiving 18
DATA Packet message 14

E

Examples
 DATA packet as first command in session 27
 FIN packet as last command in session 27
 opening a session 26
 overview 26
 updating window 26

F

Fields - vendor-extensible 9
FIN packet 13
 receiving 19
FIN Packet message 13
First command in session example 27
First_Command_in_a_Session packet 27
Flow control algorithm
 overview 19
 session variable relationships
 receiver 20
 sender 20
 updating sender's HighWaterForSend variable 20

G

Glossary 6

H

Header message 11
Header packet 11
Higher Layer Initiates Sending of Data event 17
Higher-layer triggered events
 Close by Higher Layer 17
 Higher Layer Initiates Sending of Data 17
 initializing SMP 17
 client 24
 server 23
 Open by Higher Layer 24
 Read by Higher Layer 17
 Shutdown by Higher Layer 18
HighWaterForSend variable – updating sender's 20

I

Implementer - security considerations 29
Index of security parameters 29
Informative references 7
Initialization
 by higher layer 17
 client 24
 server 23
 client 24
 server 22
 session-specific structure 16
Introduction 6

L

Local events 21

M

Messages
 ACK Packet 13
 DATA Packet 14
 FIN Packet 13
 Header 11
 overview 11
 SYN Packet 12
 syntax 11
 transport 11

N

New session example 26
Normative references 7

O

Open by Higher Layer event 24
Opening_a_Session packet 26
Overview (synopsis) 7

P

Packet
 SYN packet
 client receiving 25
 server receiving 23
Packet - receiving
 ACK packet 19
 DATA packet 18
 FIN packet 19
 overview 18
Parameters - security index 29
Peer (section 2.2.1.1 12, section 2.2.3 13, section 3.1 15, section 3.1.1.1 15, section 3.1.4.2 17, section 3.1.4.3 17, section 3.1.4.4 17, section 3.1.5.1.1 18, section 3.1.5.1.2 19, section 3.1.5.2.3 20, section 3.1.7 21, section 4.2 26)
Preconditions 9
Prerequisites 9
Product behavior 30
Protocol Details
 overview 15

R

Read by Higher Layer event 17
References 6
 informative 7
 normative 7
Relationship to other protocols 8

S

Security
 implementer considerations 29
 parameter index 29
Server
 initialization 22
 overview (section 3.1 15, section 3.2 21)
 Receiving a SYN packet 23
 Session States 23
 state diagram 21
Server Initialization 22
Session States - Listening 23
Session variable relationships
 receiver 20
 sender 20
Session-specific structures (section 3.1.1.1 15, section 3.1.3.1 16)
Shutdown by Higher Layer event 18
Standards assignments 10
SYN packet 12
 client receiving 25
 server receiving 23
SYN Packet message 12
Syntax - message 11

T

Timer events 21
Timers 16
Tracking changes 32
Transport 11
Transport - message 11
Triggered events - higher-layer
 Close by Higher Layer event 17
 Higher Layer Initiates Sending of Data event 17
 initializing SMP 17
 client 24
 server 23
 Open by Higher Layer event 24
 Read by Higher Layer event 17
 Shutdown by Higher Layer event 18

U

Update_Window_ACK packet 26
Updating window example 26

V

Vendor-extensible fields 9
Versioning 9
[bookmark: EndOfDocument_ST]
34 / 34
[MC-SMP] - v20170601
Session Multiplex Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017
image1.bin
Client

Server

image2.bin
s

]
: TLS/ssL
|

Network Transport
(For Example, TCP/IP)

image3.bin
Start

Session EsTABLISHED }

/

5 LSO N
Moot e
AN

Sending of DATA

FIN RECEIVED FIN SENT

Close by
Higher Layer Recelve FIN

cLosep

Shutdown by Higher Layer

b

image4.bin
Start

Initalize by Higher Layer

End

Shutdown by
Higher Layer

Close by Higher Layer

FIN RECEIVED

Receive FIN

Higher Layer Intiates

Open by Higher Layer

SESSION ESTABLISHED

v

‘Sending of DATA

Recelve FIN

FIN SENT

Close by Higher Layer

Recelve DATA or ACK

