[MC-NBFX]:
.NET Binary Format: XML Data Structure

Intellectual Property Rights Notice for Open Specifications Documentation

Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

1/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

Revision Summary

Revision Revision
Date History Class Comments
8/10/2007 0.1 Major Initial Availability
9/28/2007 0.2 Minor Clarified the meaning of the technical content.
10/23/2007 | 0.2.1 Editorial Changed language and formatting in the technical content.
11/30/2007 | 0.3 Minor Clarified the meaning of the technical content.
1/25/2008 0.3.1 Editorial Changed language and formatting in the technical content.
3/14/2008 0.3.2 Editorial Changed language and formatting in the technical content.
5/16/2008 1.0 Major Updated and revised the technical content.
6/20/2008 2.0 Major Updated and revised the technical content.
7/25/2008 2.0.1 Editorial Changed language and formatting in the technical content.
8/29/2008 2.0.2 Editorial Changed language and formatting in the technical content.
10/24/2008 | 2.0.3 Editorial Changed language and formatting in the technical content.
12/5/2008 2.1 Minor Clarified the meaning of the technical content.
1/16/2009 2.1.1 Editorial Changed language and formatting in the technical content.
2/27/2009 2.1.2 Editorial Changed language and formatting in the technical content.
4/10/2009 2.1.3 Editorial Changed language and formatting in the technical content.
5/22/2009 2.2 Minor Clarified the meaning of the technical content.
7/2/2009 2.2.1 Editorial Changed language and formatting in the technical content.
8/14/2009 2.2.2 Editorial Changed language and formatting in the technical content.
9/25/2009 2.3 Minor Clarified the meaning of the technical content.
11/6/2009 2.3.1 Editorial Changed language and formatting in the technical content.
12/18/2009 | 2.3.2 Editorial Changed language and formatting in the technical content.
1/29/2010 2.4 Minor Clarified the meaning of the technical content.
3/12/2010 2.4.1 Editorial Changed language and formatting in the technical content.
4/23/2010 3.0 Major Updated and revised the technical content.
6/4/2010 3.0.1 Editorial Changed language and formatting in the technical content.
7/16/2010 4.0 Major Updated and revised the technical content.
8/27/2010 4.0 None L\lec::r(]::iacg?izr:?em.e meaning, language, or formatting of the
10/8/2010 4.0 None Fe%ﬁ:;g?iirfgem.e meaning, language, or formatting of the
11/19/2010 | 4.0 None No changes to the meaning, language, or formatting of the

technical content.

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

2/57

Revision Revision

Date History Class Comments

1/7/2011 4.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

2/11/2011 4.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

3/25/2011 4.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

5/6/2011 4.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/17/2011 4.1 Minor Clarified the meaning of the technical content.

9/23/2011 4.1 None No ch_anges to the meaning, language, or formatting of the
technical content.

12/16/2011 | 5.0 Major Updated and revised the technical content.

3/30/2012 5.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/12/2012 5.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

10/25/2012 | 5.0 None No ch_anges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

1/31/2013 5.0 None technical content.

8/8/2013 5.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

11/14/2013 | 5.0 None No chgnges to the meaning, language, or formatting of the
technical content.

2/13/2014 50 None No ch_anges to the meaning, language, or formatting of the
technical content.

5/15/2014 50 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/30/2015 6.0 Major Significantly changed the technical content.

10/16/2015 | 6.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/14/2016 6.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

3/16/2017 7.0 Major Significantly changed the technical content.

3/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Table of Contents

B N 112 1o T [T T ot f ' Y 4 6
1.1 [0 T1== 1 PP 6
1.2 3] =T =T g Lol PP 7

1.2.1 NOrMative RefEIENCES . ovii ittt e e e e e e e anans 7

1.2.2 INfOrmMative REFEIENCES .. vttt e e ae e 8
1.3 L Y] Y 8
1.4 Relationship to Protocols and Other Structuresccoiiiiiiiiiiiiic e 8
1.5 Applicability Statemento 8
1.6 Versioning and LoCalizationciiiiiiiiii e 9
1.7 Vendor-EXtensible Fields ... e e e 9

B 01T T o ¥ o= e 10

2.1 ComMMON DEfiNITIONS 1 vttt 10
2.1.1 2T ol] oo PP 10
2.1.2 U] 13V W= L o PP 13

2.1.2.1 MUItIBYEEINt31-(1 BYEE) ceriiiiiiiiiii i e 13
2.1.2.2 MUIEIBYEEINE31-(2 BYLES) triiuiiiiiiiiiiii i et ae e 14
2.1.2.3 MUItiBYEeINt31-(3 BYLES) tuiuiieiiiiiiiii e e 15
2.1.2.4 MUIEIBYEEINE31-(4 BYLES) tuiiuiiiiiiiii i e et e e 16
2.1.2.5 MUItiBYEEINt31-(5 BYLES) triuiiriiiiiiii i e 17
2.1.3 1) o o1 T PPN 18
2.1.4 (D] ot [0] =] V) o o 1 [18
2.2 (=T] o [P 18
2.2.1 =[] g =T oLl 2= Tolo] e = PP 19
2.2.1.1 ShortElement Record (OX40) ..oviueieiiiiiiiiinie e e e 19
2.2.1.2 Element RECOrd (OX4 1) ittt e e e st a e e aeas 19
2.2.1.3 ShortDictionaryElement Record (0X42) ...coviiiiiiiiiiiiiiiiiiinre e 20
2.2.1.4 DictionaryElement Record (OX43) ...couieiriiiiiiiiiiiii e e s 21
2.2.1.5 PrefixDictionaryElement[A-Z] Record (0X44-0X5D)...ccccciiiiiiiiiiiiiiiiiiininennnns 21
2.2.1.6 PrefixElement[A-Z] Record (OX5E-0X77) «.uuiiiiieieieneianeaeeeaenenereeaenenenenes 22
2.2.2 AL DULE RECOIAS .. vttt e e e e e e e enes 22
2.2.2.1 ShortAttribute Record (OX04) ..ouiueiriiiii i 22
2.2.2.2 Attribute Record (0X05) c.uiiiiiiiiiii i e s 23
2.2.2.3 ShortDictionaryAttribute Record (0OX06)ccviviiiiiiiiiiiie e 24
2.2.2.4 DictionaryAttribute Record (OX07) ...ouuueiriiiiiiii e e 24
2.2.2.5 ShortXminsAttribute Record (0X08)iviiiiiiiiiiiiiiii e 25
2.2.2.6 XminsAttribute Record (0X09) ...ciuineiiiiiiii i e 25
2.2.2.7 ShortDictionaryXmlinsAttribute Record (OX0A).....cciiiiiiiiiiiiiiiiiii e 26
2.2.2.8 DictionaryXmlsAttribute Record (OX0B)ouvieiiiiiiiiiiiiiiiiree e 26
2.2.2.9 PrefixDictionaryAttribute[A-Z] Records (OX0C-0X25).....ccviviiiiiiiiiiiiiinininnen. 27
2.2.2.10 PrefixAttribute[A-Z] Records (0X26-0X3F) ...cciiiiiiiiiiiiiii i eeee e 27
2.2.3 L= 2 =Teo] o [PP 28
2.2.3.1 ZeroText RECOrd (OX80) ..uuuiii ittt et e aae s 28
2.2.3.2 OneText RECOrd (OX82) ...t eaes 28
2.2.3.3 FalseText RECOId (OX84) ..uiiuiiiiiiiii i e e et e e e 28
2.2.3.4 TrueTeXt RECOrd (OX86) ...uuuiuiieiiitiiie ittt e e e e e e aeneeeas 28
2.2.3.5 Int8Text RecOrd (OX88) ..cuiuiiiie i e e e e eeaeaes 28
2.2.3.6 Int16Text RECOrd (OXBA) ..ouiiiie it e e e e e e a e aeaeaes 29
2.2.3.7 INt32Text RECOrd (OX8C) 1uuiriuiiiiiiiiiiiti vt ees 29
2.2.3.8 Int64Text RECOrd (OX8E)...ciuiiie i e e 29
2.2.3.9 FloatText Record (OX90) «.viueieiiiiiiiiie et et e e e e e 30
2.2.3.10 DoubleText RECOrd (0X92) ...iuiuiiiiiie i e e aaes 31
2.2.3.11 DecimalText ReCOrd (0X94) ...ouiiiiiiiiie et e e e e 31
2.2.3.12 DateTimeText ReCOrd (0X96)uiiieeieiiiiiiiee e e e e e 32
2.2.3.13 Chars8Text RECOrd (OX98) ...iuiuiiiiiiie i e e e e ae e 33
4/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

2.2.3.13.1 Character ESCAPING ... ucuiuiiieieieieiie e e e e e e e e e e 34
2.2.3.14 Chars16Text ReCOrd (OXOA) .ottt i s e a e eeneanens 35
2.2.3.15 Chars32Text Record (OXOC) ..ouiiiiiiieiiiiiiie i e s asae e 35
2.2.3.16 Bytes8Text ReCOrd (OXOE) . .cciiiiiiiiiii it i et eeneas 35
2.2.3.17 Bytesl16Text ReCOrd (OXAD) ...ieiiiiiiiti i it re e et eaaeaeeneanens 36
2.2.3.18 Bytes32Text ReCOrd (OXA2) ...ciuiiiiiiiiiiiiiieie i ae e 36
2.2.3.19 StartListText / EndListText Records (OXA4, OXAB) ...ccviiiiiiiiiiiiiniineieineanens 36
2.2.3.20 EmptyText Record (OXA8) ...ouiuiiiiiiiiiiiiiie i ae e 37
2.2.3.21 DictionaryText ReCOrd (OXAA) ..ot eneanens 37
2.2.3.22 UniqueldText ReCOrd (OXAC) ...uiiiriiieiiiiiiieiiinare e rs e e s eaaaae e 37
2.2.3.23 TimeSpanText ReCOrd (OXAE) ..uiiuiiiiiiiiii i et aae e eneaaeas 38
2.2.3.24 UuidText Record (OXBO0) . c.ciiiieiitiiii it it i st a e et s e e e ane e eneaaens 39
2.2.3.25 UInt64Text Record (OXB2) ...civiiiiiiiiiiiiiiii e e 40
2.2.3.26 BoolText Record (OXB4) ..c.ciiiiiiiiiiii i e e aeas 40
2.2.3.27 UnicodeChars8Text Record (OXB6)ocivuiiieiiiiiiiiiiiiiii e 41
2.2.3.28 UnicodeChars16Text Record (OXB8) ...ccciiiiiiiiiiiiiiiiiii it ieneene e 41
2.2.3.29 UnicodeChars32TextRecord(OXBA)ciiiiriiiiiiiiiiiiir e e 41
2.2.3.30 QNamebDictionaryTextRecord(OXBC)ccvuiiieiiiiiiiiieiiiniii s eeaneeas 42
2.2.3.31 *TextWithEndElement RECOIASiiiviiiiiiiiiiiiiii e e e 42

3 N TE o= =T =T T8 Eo =T] oo £ PP 43
2.3.1 EndElement Record (OX01) .oiuiiiiiiiiiiiiiii it r e e et s et e reas 43
2.3.2 Comment RECONd (OX02) .ouuiuiieiiieiiii it e e e e e e 43
2.3.3 PN g = VA = Tolo] o B (00 1C 3 T P 44
3 Structure EXamples ...ccieirmieramrmsie s ssssa s s s s sssas s s assan s s ansnnsmsannnsnnsnnnns 46
4 Security Considerations.....c.ccvcririrrirarrrsss s s s 53
5 Appendix A: Product Behaviorcuicverieieriesersessiassrsassssssssasasssssssasasssssssasassnssssnsanns 54
6 Change TracKiNg...cicuiveremrarimreranrssssasanse s s s sasns s s s aasan s sanassansmsanansansmsnnansnnsnnnns 55
72 13 e 1= 56
5/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

1 Introduction

This specification defines the .NET Binary Format: XML Data Structure, which is a binary format that
can represent many XML documents, as specified in [XML1.0].

This purpose of the format is to reduce the processing costs associated with XML documents by
encoding an XML document in fewer bytes than the same document encoded in UTF-8, as specified in

RFC2279].

Sections 1.7 and 2 of this specification are normative. All other sections and examples in this
specification are informative.

1.1 Glossary
This document uses the following terms:

base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is
converted to a sequence of printable ASCII characters, as described in [RFC4648].

Coordinated Universal Time (UTC): A high-precision atomic time standard that approximately
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC-0 (or GMT).

DictionaryString: A structure defined in [MC-NBFX] section 2.1.4 that uses a MultiByteInt31 to
refer to a string.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

MultiByteInt31: A structure defined in [MC-NBFX] section 2.1.2 that encodes small integer values
in fewer bytes than large integer values.

record: The fundamental unit of information in the .NET Binary Format: XML Data Structure
encoded as a variable length series of bytes. [MC-NBFX] section 2 specifies the format for each
type of record.

string: A structure that represents a set of characters ([MC-NBFX] section 2.1.3).

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

UTC (Coordinated Universal Time): A high-precision atomic time standard that approximately
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC-0 (or GMT).

UTF-16: A standard for encoding Unicode characters, defined in the Unicode standard, in which the
most commonly used characters are defined as double-byte characters. Unless specified

6/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=90599
http://go.microsoft.com/fwlink/?LinkId=90331
http://go.microsoft.com/fwlink/?LinkId=90487
%5bMC-NBFX%5d.pdf#Section_94c66ea1e79a4364af881fa7fef2cc33
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=89824

otherwise, this term refers to the UTF-16 encoding form specified in [UNICODES5.0.0/2007]
section 3.9.

UTF-8: A byte-oriented standard for encoding Unicode characters, defined in the Unicode standard.
Unless specified otherwise, this term refers to the UTF-8 encoding form specified in
[UNICODES5.0.0/2007] section 3.9.

XML: The Extensible Markup Language, as described in [XML1.0].
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [REC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[IEEE854] Institute of Electrical and Electronics Engineers, "Standard for Binary Floating-Point
Arithmetic", IEEE 854-1987, October 1987,
http://ieeexplore.ieee.org/iel1/2502/1121/00027840.pdf?tp=&arnumber=27840&isnumber=1121

[ISO-8601] International Organization for Standardization, "Data Elements and Interchange Formats -
Information Interchange - Representation of Dates and Times", ISO/IEC 8601:2004, December 2004,
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874&ICS1=1&ICS2=1
40&ICS3=30

Note There is a charge to download the specification.

[MS-OAUT] Microsoft Corporation, "OLE Automation Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2279] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC 2279, January 1998,
http://www.rfc-editor.org/rfc/rfc2279.txt

[RFC2781] Hoffman, P., and Yergeau, F., "UTF-16, an encoding of ISO 10646", RFC 2781, February
2000, http://www.rfc-editor.org/rfc/rfc2781 .txt

[RFC3548] Josefsson, S., Ed., "The Basel6, Base32, and Base64 Data Encodings", RFC 3548, July
2003, http://www.rfc-editor.org/rfc/rfc3548.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, July 2005, http://www.rfc-editor.org/rfc/rfc4122.txt

[UNICODE] The Unicode Consortium, "The Unicode Consortium Home Page", http://www.unicode.org/

[XML1.0] Bray, T., Paoli, J., Sperberg-McQueen, C.M., and Maler, E., "Extensible Markup Language
(XML) 1.0 (Second Edition)", W3C Recommendation, October 2000, http://www.w3.0org/TR/2000/REC-
xml-20001006

7/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=154659
http://go.microsoft.com/fwlink/?LinkId=90599
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=92966
http://go.microsoft.com/fwlink/?LinkId=89920
http://go.microsoft.com/fwlink/?LinkId=89920
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90331
http://go.microsoft.com/fwlink/?LinkId=90380
http://go.microsoft.com/fwlink/?LinkId=90432
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=90550
http://go.microsoft.com/fwlink/?LinkId=90599
http://go.microsoft.com/fwlink/?LinkId=90599

1.2.2 Informative References

[IEEE754] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", IEEE 754-1985, October 1985,
http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[MC-NBFSE] Microsoft Corporation, ".NET Binary Format: SOAP Extension".

[MC-NBFS] Microsoft Corporation, ".NET Binary Format: SOAP Data Structure".

[XML-INFOSET] Cowan, John, and Tobin, Richard, "XML Information Set (Second Edition)", W3C
Recommendation, February 2004, http://www.w3.0rg/TR/2004/REC-xml-infoset-20040204

1.3 Overview

The .NET Binary Format: XML Data Structure is used to efficiently represent XML 1.0 documents, as
specified in [XML1.0].

1.4 Relationship to Protocols and Other Structures

The .NET Binary Format: XML Data Structure is extended by the NET Binary Format: SOAP Data
Structure, as described in [MC-NBFS], and the .NET Binary Format: SOAP Extension, as described in

MC-NBFSE].

1.5 Applicability Statement

The .NET Binary Format: XML Data Structure is a general-purpose way to represent an XML document
that offers many benefits in terms of reduced size and processing costs, but at the expense of human
readability. However, the .NET Binary Format: XML Data Structure is capable of representing only a
subset of information described by an XML information set (infoset), as described in [XML-INFOSET].
It does not represent all syntactic aspects of an XML document encoded textually.

Some constructs have more than one form, of which the .NET Binary Format for XML Data Structure
supports one form. For example, the standard (short) form of an empty element is not supported, but
the more general form (with open and close tags) is supported.

<element/> <!-- Not supported -->
<element></element> <!-- Supported -->

Other constructs are not supported, although a functionally equivalent construct is supported by the
.NET Binary Format for XML Data Structure. For example, a CDATA section cannot be encoded;
however, a semantically equivalent construct can be encoded.

<element><! [CDATA[hello world]]></element> <!-- Not supported -->
<element>hello world</element> <!-- Supported -->

Character references are necessary in textual XML in order to disambiguate document structure from
document content. The .NET Binary Format: XML Data Structure uses records to distinguish between
structure and content, making character references unnecessary.

Insignificant spaces in an element or end element are not supported.

<element a = "value" ></element > <!-- Not supported -->

8/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=89903
%5bMC-NBFSE%5d.pdf#Section_3caf1ffa63334c5f8aa7c06db4748c1b
%5bMC-NBFS%5d.pdf#Section_9567b35067884632aa34a87235e52459
http://go.microsoft.com/fwlink/?LinkId=95109
http://go.microsoft.com/fwlink/?LinkId=90599
%5bMC-NBFS%5d.pdf#Section_9567b35067884632aa34a87235e52459
%5bMC-NBFSE%5d.pdf#Section_3caf1ffa63334c5f8aa7c06db4748c1b
http://go.microsoft.com/fwlink/?LinkId=95109

Processing instructions, data type definitions (DTDs), and declarations are not supported and cannot
be represented by this format.

The following table identifies the items that are not available in the .NET Binary Format for XML Data
Structure.

Unsupported construct Example

Xml Declaration <?xml version="1.0">

Processing Instruction <?pi?>

DTD <!DOCTYPE

Character Reference <element>g&</element>

Empty Element (short form) <element/>

CDATA Section <element><! [CDATA[hello world]]></element>
Insignificant White Space (in or around an element) | < element a = "value" ></element >

1.6 Versioning and Localization

The .NET Binary Format: XML Data Structure has no versioning mechanism. The format contains both
UTF-16 [RFC2781]-encoded and UTF-8 [RFC2279]-encoded strings, and their use is described in
section 2.

1.7 Vendor-Extensible Fields

Records in the .NET Binary Format: XML Data Structure that contain DictionaryString structures
use integers to represent strings. The producer and consumer of a document encoded in this format
have to agree on how to map these integers to strings. This specification does not prescribe how the
producer and consumer agree upon or learn about this mapping. Furthermore, the format does not
provide a way to encode such information. Any specification that defines this mapping is considered a
different format.

9/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=90380
http://go.microsoft.com/fwlink/?LinkId=90331

2 Structures

The .NET Binary Format: XML Data Structure is composed of zero or more records, each of which
represents some characters in the XML document. The complete XML document represented by the
format is simply the concatenation of the characters represented by each of the records. The resulting

document is not necessarily a valid XML document.

Unless otherwise noted, records can appear in any order.

2.1 Common Definitions

This section specifies the basic record structure and commonly used structures within those records.

Unless otherwise noted, all values MUST be encoded in little-endian format.

Unless otherwise noted, the alignment of a record or any of the fields in the record MUST NOT be

assumed to be any particular value. The bit position diagrams are provided to indicate relative

positions and sizes of fields, but do not indicate alignment.

2.1.1 Record

Each record is encoded as follows.

1 2
0({1|2|3(4]|5 8(9(0|1|2(3|4 7/8|9(0(1]2
RecordType Record (variable)

RecordType (1 byte): A single byte that identifies the type of record.

Record (variable): Dependent upon RecordType.

The following table shows the mapping for each RecordType. The RecordType MUST be one of the

values listed in this table. The format for each record is further detailed after the table.

RecordType Record

0x00 Reserved

0x01 EndElement

0x02 Comment

0x03 Array

0x04 ShortAttribute

0x05 Attribute

0x06 ShortDictionaryAttribute
0x07 DictionaryAttribute
0x08 ShortXmlinsAttribute
0x09 XmlnsAttribute

[MC-NBFX] - v20170316

.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation

Release: March 16, 2017

10/ 57

RecordType

Record

0x0A

ShortDictionaryXmlinsAttribute

0x0B

DictionaryXminsAttribute

0x0C 0x0D ... 0x24
0x25

PrefixDictionaryAttributeA PrefixDictionaryAttributeB ... PrefixDictionaryAttributeY
PrefixDictionaryAttributeZ

0x26 0x27 ... Ox3E
Ox3F

PrefixAttributeA PrefixAttributeB ... PrefixAttributeY PrefixAttributezZ

0x40 ShortElement

0x41 Element

0x42 ShortDictionaryElement
0x43 DictionaryElement

0x44 0x45 ... 0x5C
0x5D

PrefixDictionaryElementA PrefixDictionaryElementB ... PrefixDictionaryElementY
PrefixDictionaryElementzZ

Ox5E Ox5F ... 0x76
0x77

PrefixElementA PrefixElementB ... PrefixElementY PrefixElementZ

0x78 0x79 ... OX7E Reserved

Ox7F

0x80 ZeroText

0x81 ZeroTextWithEndElement
0x82 OneText

0x83 OneTextWithEndElement

0x84 FalseText

0x85 FalseTextWithEndElement
0x86 TrueText

0x87 TrueTextWithEndElement

0x88 Int8Text

0x89 Int8TextWithEndElement

Ox8A Int16Text

0x8B Int16TextWithEndElement
0x8C Int32Text

0x8D Int32TextWithEndElement
Ox8E Int64Text

Ox8F Int64TextWithEndElement
0x90 FloatText

0x91 FloatTextWithEndElement

[MC-NBFX] - v20170316

.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation

Release: March 16, 2017

11/57

RecordType Record

0x92 DoubleText

0x93 DoubleTextWithEndElement
0x94 DecimalText

0x95 DecimalTextWithEndElement
0x96 DateTimeText

0x97 DateTimeTextWithEndElement
0x98 Chars8Text

0x99 Chars8TextWithEndElement
0x9A Chars16Text

0x9B Chars16TextWithEndElement
0x9C Chars32Text

0x9D Chars32TextWithEndElement
Ox9E Bytes8Text

Ox9F Bytes8TextWithEndElement
0xA0 Bytes16Text

OxA1l Bytes16TextWithEndElement
0xA2 Bytes32Text

O0xA3 Bytes32TextWithEndElement
0xA4 StartListText

O0xA5 Reserved

0xA6 EndListText

0xA7 Reserved

OxAS8 EmptyText

0xA9 EmptyTextWithEndElement
OxAA DictionaryText

OxAB DictionaryTextWithEndElement
OxAC UniqueldText

OxAD UniqueldTextWithEndElement
OXAE TimeSpanText

OxAF TimeSpanTextWithEndElement
0xBO0 UuidText

0xB1 UuidTextWithEndElement

[MC-NBFX] - v20170316

.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation

Release: March 16, 2017

12/57

RecordType Record

0xB2 UInt64Text

0xB3 UInt64TextWithEndElement

0xB4 BoolText

0xB5 BoolTextWithEndElement

0xB6 UnicodeChars8Text

0xB7 UnicodeChars8Text WithEndElement
0xB8 UnicodeChars16Text

0xB9 UnicodeChars16TextWithEndElement
0xBA UnicodeChars32Text

0xBB UnicodeChars32TextWithEndElement
0xBC QNamebDictionaryText

0xBD QNamebDictionaryTextWithEndElement

OxBE OxBF ... OXFE
OxFF

Reserved

2.1.2 MultiByteInt31

This structure describes an unsigned 31-bit integer value in a variable- length packet. The size of the

number to be stored determines the size of the packet according to the following mapping.

Unsigned integer range Packet size | Packet reference
0x00 to Ox7F 1 byte MultiByteInt31-(1 Byte)
0x0080 to Ox3FFF 2 bytes MultiByteInt31-(2 Bytes)
0x004000 to Ox1FFFFF 3 bytes MultiByteInt31-(3 Bytes)
0x00200000 to OxOFFFFFFF 4 bytes MultiByteInt31-(4 Bytes)
0x0010000000 to OxO07FFFFFFF | 5 bytes MultiByteInt31-(5 Bytes)

2.1.2.1 MultiByteInt31-(1 Byte)

The MultiByteInt31-(1 Byte) packet is used to store unsigned integer values in the range of 0x00 to

Ox7F (decimal 0 to 127) inclusive.

MultiByteInt31 (7 bits encoded in 1 byte)

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

13/57

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

Value_A

Value_A (7 bits): Seven LSB of value

0|1 2| 3| 4|5| 6|7

0 Value_A

Example: decimal 17

Thus, the decimal value 17 is encoded as 1 byte, as in the following example.

0x11

2.1.2.2 MultiByteInt31-(2 Bytes)

The MultiByteInt31-(2 Bytes) packet is used to store unsigned integers in the range of 0x0080 to
Ox3FFF (decimal 128 to 16383) inclusive.

MultiByteInt31 (14 bits encoded in 2 bytes)

1 2 3
0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Value_B Value_A

Value_B (7 bits): Second seven LSB of value

Value_A (7 bits): First seven LSB of value

e

0({1|2|3(4|5|6|7|8|9|0[1|2|3|4]|5

0 Value_B 1 Value_A

Example: decimal 145

14 /57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Encodes as follows.

e

Thus, the decimal value 145 is encoded as 2 bytes, as in the following example.

0x91 0x01

Example: decimal 5521

Encodes as follows.

Thus, the decimal value 5521 is encoded in 2 bytes, as in the following example.

0x91 0x2B

2.1.2.3 MultiByteInt31-(3 Bytes)

The MultiByteInt31-(3 Bytes) packet is used to store unsigned integers in the range of 0x004000 to
Ox1FFFFF (decimal 16384 to 2097151) inclusive.

MultiByteInt31 (21 bits encoded in 3 bytes)

N
w

1
0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

Value_C Value_B Value_A

Value_C (7 bits): Third 7 LSB of value
Value_B (7 bits): Second 7 LSB of value

Value_A (7 bits): First 7 LSB of value

15/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

0(1|/2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9(0(1]|2]|3

0 Value_C 1 Value_B 1 Value_A

Example: decimal 16384

-
N

-
N

Thus, the decimal value 16384 is encoded in 3 bytes, as in the following example.

0x80 0x80 0x01

2.1.2.4 MultiByteInt31-(4 Bytes)

The MultiByteInt31-(4 Bytes) packet is used to store unsigned integers in the range of 0x00200000 to
OxOFFFFFFF (decimal 2097152 to 268435455) inclusive.

MultiByteInt31 (28 bits encoded in 4 bytes)

1 2 3
0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0/(1

Value D Value C Value B Value A

Value D (7 bits): Fourth 7 LSB of value
Value C (7 bits): Third 7 LSB of value
Value B (7 bits): Second 7 LSB of value
Value A (7 bits): First 7 LSB of value

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

0 Value_D 1 Value_C 1 Value_B 1 Value_A

Example: decimal 268435456

16 /57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Encodes as follows.

=
N
w

Thus, the decimal value 268435456 is encoded in 4 bytes, as in the following example.

0x80 0x80 0x80 0x01

2.1.2.5 MultiByteInt31-(5 Bytes)

The MultiByteInt31-(5 Bytes) packet is used to store unsigned integers in the range of 0x010000000
to OXO7FFFFFFF (decimal 268435456 to 2147483647) inclusive.

MultiByteInt31 (31 bits encoded in 5 bytes)

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Value_E Value_D Value_C Value_B Value_A

Value_E (3 bits): First 3 MSB of value
Value_D (7 bits): Fourth 7 LSB of value
Value_C (7 bits): Third 7 LSB of value
Value_B (7 bits): Second 7 LSB of value
Value_A (7 bits): First 7 LSB of value
Example: decimal 268435456

il 2 3
0|1|2|3|4|5|6|7|8|9|0|1(2|3|4|5|6|7(|8|9|0|1|2|3|4|5|6|7|8B|9|0[1|2|3|4|(5]|6]|7|8|9
] 0 Value_E| 1 Value_D 1 Value_C 1 Value_B 1 Value_A

1 2 3

2 8 0 2 4 5] 0 718(9|0]1 3 5
o]0 0 0 olojo 0 0 ojojojo]o ofojo plojojojojo]O]0 gflojofo
Encodes As:

il 2 3
0|12 4|15|6|7|8[9|0|1L|2|3|4|5(6|7|B|9|0 213|4|5]|e|7|B|9]|0 2|13)|14(5]|6|7 9
ojo|0 g|ojoj1j1|Ojo|O|OjO|OjO(L|O(O]|O(0O ojof1 ojoj1jofo 1|jofo]o 0|0

Thus, the decimal value 268435456 is encoded in 5 bytes, as in the following example.

17/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

0x80 0x80 0x80 0x80 0x01

2.1.3 String

The String structure describes a set of characters encoded in UTF-8, as specified in [RFC2279].

=
N
w

0(1|2|3(4|(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

Length (variable)

Bytes (variable)

Length (variable): This is the length in bytes of the string when encoded in UTF-8, as specified in
[RFC2279], and MUST be encoded using MultiByteInt31. For more information on MultiByteInt31
see section 2.1.2.

Bytes (variable): These are the bytes that constitute the string and MUST be encoded in UTF-8, as
specified in [RFC2279].

For example, the string "abc" is encoded as 4 bytes.
0x03 0x61 0x62 0x63
This specification places no restrictions on the set of characters that can be encoded here.

2.1.4 DictionaryString

The DictionaryString structure describes a reference to a set of characters.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

Value (variable)

Value (variable): An integer value encoded using MultiByteInt31. For more information on
MultiByteInt31 see section 2.1.2. The string that the integer refers to is determined by the
producer and consumer of the document.

This specification places no restrictions on the set of characters that can be referenced.

2.2 Records

This section describes the format of each of the records noted earlier, and the characters they
represent. The character representations of records are case sensitive and MUST use the exact casing
depicted.

18/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=90331

Records can largely be grouped into four categories:

= Element Records

= Attribute Records

= Text Records

= Miscellaneous Records

For reference, the record type is shown in hex following each record.

2.2.1 Element Records
This section describes the different kinds of element records. An element record is any record with a

record type. See the following tables from 0x40 to 0x77 inclusive. Element records represent different
kinds of elements in the XML document.

2.2.1.1 ShortElement Record (0x40)

This structure represents an element without a prefix.

—
N
w

0[{1(2|3|4|5|6|7|8|9|(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Name (variable)

Attributes (variable)

Name (variable): The name of the element encoded using String. The length of this String MUST be
nonzero. The name MUST NOT be "xmIns".

Attributes (variable): Zero or more attribute records.

For example, if name refers to the string "element" and attributes refers to {
xmins="http://tempuri.org" }, this record is interpreted as the following characters.

<element xmlns="http://tempuri.org">

Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.1.2 Element Record (0x41)

This structure represents an element with a prefix.

—
N
w

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

Prefix (variable)

19/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Name (variable)

Attributes (variable)

Prefix (variable): The prefix of the element encoded using String. The length of this String MUST be
nonzero. The name MUST NOT be "xmlins".

Name (variable): The name of the element encoded using String. The length of this String MUST be
nonzero. The name MUST NOT be "xmlns".

Attributes (variable): Zero or more attribute records.

For example, if prefix refers to the string "prefix", name refers to the string "element", and attributes
refers to { xmlins:prefix="http://tempuri.org" }, this record is interpreted as the following characters.

<prefix:element xmlns:prefix="http://tempuri.org">
Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.1.3 ShortDictionaryElement Record (0x42)

This structure represents an element without a prefix.

-
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0/(1

Name (variable)

Attributes (variable)

Name (variable): The name of the element encoded using DictionaryString. The length of this
String MUST be nonzero. The name MUST NOT be "xmlIns".

Attributes (variable): Zero or more attribute records.

For example, if name refers to the String "element" and attributes refers to {
xmlns="http://tempuri.org" }, this record is interpreted as the following characters.

<element xmlns="http://tempuri.org">

Note that the underscore is intended to represent a single ASCII white-space character (32).

20/ 57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

2.2.1.4 DictionaryElement Record (0x43)

This structure represents an element with a prefix.

=
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

Prefix (variable)

Name (variable)

Attributes (variable)

Prefix (variable): The prefix of the element encoded using String. The length of this String MUST be
nonzero. The name MUST NOT be "xmlns".

Name (variable): The name of the element encoded using Dictionary. The length of this String
MUST be nonzero. The name MUST NOT be "xmlns".

Attributes (variable): Zero or more attribute records.

For example, if prefix refers to the string "prefix", name refers to the string "element", and attributes
refers to { xmlins:prefix="http://tempuri.org" }, this record is interpreted as the following characters.

<prefix:element xmlns:prefix="http://tempuri.org">
Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.1.5 PrefixDictionaryElement[A-Z] Record (0x44-0x5D)

This structure represents an element with a single lowercase letter prefix.

-
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Name (variable)

Attributes (variable)

Name (variable): The name of the element encoded using DictionaryString. The length of this
String MUST be nonzero. The name MUST NOT be "xmins".

Attributes (variable): Zero or more attribute records.

21/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

The prefix for this attribute is determined by the record type.

For example, if the record type is PrefixDictionaryElementB, name refers to the string "element”, and
attributes refers to { xmiIns:b="http://tempuri.org" }, this record is interpreted as the following
characters.

<b:element xmlns:b="http://tempuri.org">

Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.1.6 PrefixElement[A-Z] Record (Ox5E-0x77)

This structure represents an element with a single lowercase letter prefix.

-
N
w

0(1|2|3(4|(5|6(7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

Name (variable)

Attributes (variable)

Name (variable): The name of the element encoded using String. The length of this String MUST be
nonzero. The name MUST NOT be "xmlns".

Attributes (variable): Zero or more attribute records.
The prefix for this attribute is determined by the record type.

For example, if the record type is PrefixElementB, name refers to the string "element", and attributes
refers to { xmlIns:b="http://tempuri.org" }, this record is interpreted as the following characters.

<b:element xmlns:b="http://tempuri.org">

Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.2 Attribute Records

This section describes the different kinds of attribute records. An attribute record is any record with a
record type (see Table 1) from 0x04 to 0x3F inclusive. An attribute record MUST follow another
attribute record or an element record. Attribute records represent different kinds of attributes in the
XML document.

2.2.2.1 ShortAttribute Record (0x04)

This structure represents an attribute without a prefix.

22 /57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

Name (variable)

Value (variable)

Name (variable): The name of the attribute encoded using String. The length of this String MUST be
nonzero. The name MUST NOT be "xmlns".

Value (variable): The value of the attribute encoded using a text record.

For example, if name refers to the string "attr" and value refers to the text "value", this record is
interpreted as the following characters.

_attr="value"
Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.2.2 Attribute Record (0x05)

This structure represents an attribute with a prefix.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7(8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Prefix (variable)

Name (variable)

Value (variable)

Prefix (variable): The prefix of the attribute encoded using String. The length of this String MUST
be nonzero. The prefix MUST NOT be "xmlns".

Name (variable): The name of the attribute encoded using String. The length of this String MUST be
nonzero. The name MUST NOT be "xmlns".

Value (variable): The value of the attribute encoded using a single text record (Text Records).

For example, if prefix refers to the string "prefix", and the name refers to the string "attr", and value
refers to the text "value", this record is interpreted as the following characters.

23/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

_prefix:attr="value"

Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.2.3 ShortDictionaryAttribute Record (0x06)

This structure represents an attribute without a prefix.

-
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Name (variable)

Value (variable)

Name (variable): The name of the attribute encoded using DictionaryString. The length of this
String MUST be nonzero. The name MUST NOT be "xmlns".

Value (variable): The value of the attribute encoded using a text record.

For example if name refers to the string "attr" and value refers to the text "value", this record is
interpreted as the following attribute.

_attr="value"
Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.2.4 DictionaryAttribute Record (0x07)

This structure represents an attribute with a prefix.

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

Prefix (variable)

Name (variable)

Value (variable)

24 /57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Prefix (variable): The prefix of the attribute encoded using String. The length of this String MUST
be nonzero. The prefix MUST NOT be "xmlns".

Name (variable): The name of the attribute encoded using DictionaryString. The length of this
String MUST be nonzero. The name MUST NOT be "xmlns".

Value (variable): The value of the attribute encoded using a text record.

For example, if prefix refers to the string "prefix", name refers to the string "attr", and value refers to
the text "value", this record is interpreted as the following characters.

_prefix:attr="value"
Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.2.5 ShortXminsAttribute Record (0x08)

This structure represents an xmlns attribute without a prefix.

0[{1(2|3|4|5|6|7|8|9|(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[|7(8]|9|0]|1

Value (variable)

Value (variable): The value of the attribute encoded using String.

For example, if value refers to the string "http://tempuri.org", this record is interpreted as the
following characters.

_xmlns="http://tempuri.org"
Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.2.6 XminsAttribute Record (0x09)

This structure represents an xmlns attribute with a prefix.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Prefix (variable)

Value (variable)

Prefix (variable): The prefix of the attribute encoded using String. The length of this String MUST
be nonzero. The prefix MUST NOT be "xmlns".

25/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Value (variable): The value of the attribute encoded using String.

For example, if prefix refers to the string "ENV" and value refers to the string "http://tempuri.org",
this record is interpreted as the following characters.

_xmlns:ENV="http://tempuri.org"

Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.2.7 ShortDictionaryXminsAttribute Record (0x0A)

This structure represents an xmlns attribute without a prefix.

=
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Value (variable)

Value (variable): The value of the attribute encoded using DictionaryString.

For example, if value refers to the text "value", this record is interpreted as the following characters.

_xmlns="value"

Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.2.8 DictionaryXmlisAttribute Record (0x0B)

This structure represents an xmlns attribute with a prefix.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Prefix (variable)

Value (variable)

Prefix (variable): The prefix of the attribute encoded using String. The length of this String MUST
be nonzero. The prefix MUST NOT be "xmlns".

Value (variable): The value of the attribute encoded using DictionaryString.

For example, if prefix refers to the string "ENV" and value refers to the string "http://tempuri.org"”,
this record is interpreted as the following characters.

_xmlns:ENV="http://tempuri.org"

26/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.2.9 PrefixDictionaryAttribute[A-Z] Records (0x0C-0x25)

This structure represents an attribute with a single lowercase letter prefix.

=
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Name (variable)

Value (variable)

Name (variable): The name of the attribute encoded using DictionaryString. The length of this
String MUST be nonzero. The name MUST NOT be "xmlns".

Value (variable): The value of the attribute encoded using a text record.

2.2.2.10 PrefixAttribute[A-Z] Records (0x26-0x3F)

This structure represents an attribute with a single lowercase letter prefix.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Name (variable)

Value (variable)

Name (variable): The name of the attribute encoded using String. The length of this String MUST be
nonzero. The name MUST NOT be "xmlins".

Value (variable): The value of the attribute encoded using text record.
The prefix for this attribute is determined by the record type.

For example, if the record type is PrefixAttributeX, name refers to the string "attr", and value refers to
the text "value", this record is interpreted as the following characters.

_x:attr="value"

Note that the underscore is intended to represent a single ASCII white-space character (32).

27/ 57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

2.2.3 Text Records

This section describes the different kinds of text records. A text record is any record with a record
type (see Table 1) from 0x80 to 0xBD inclusive. Text records are used to represent the attribute or
element content of the XML document.

2.2.3.1 ZeroText Record (0x80)

This structure represents attribute or element content and MUST be interpreted as representing the
following characters.

There are no additional fields for this record.

2.2.3.2 OneText Record (0x82)

This structure represents attribute or element content and MUST be interpreted as representing the
following characters.

There are no additional fields for this record.

2.2.3.3 FalseText Record (0x84)

This structure represents attribute or element content and MUST be interpreted as representing the
following characters.

false

There are no additional fields for this record.

2.2.3.4 TrueText Record (0x86)

This structure represents attribute or element content and MUST be interpreted as representing the
following characters.

true
There are no additional fields for this record.

2.2.3.5 Int8Text Record (0x88)

This structure represents attribute or element content.

—
N
w

Value

28/ 57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Value (1 byte): The signed 8-bit integer value.

This structure MUST be interpreted as representing the characters formed by converting the value to
base 10. The characters MUST be preceded by a minus sign "-" if the value is negative. There MUST
NOT be any leading zeroes or decimal point.

For example, if value is 0x80, this is interpreted as the following characters.

-128

2.2.3.6 Int16Text Record (0x8A)

This structure represents attribute or element content.

=
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

Value

Value (2 bytes): The signed 16-bit integer value.

This structure MUST be interpreted as representing the characters formed by converting the value to
base 10. The characters MUST be preceded by a minus sign "-" if the value is negative. There MUST
NOT be any leading zeroes or decimal point.

For example, if value is 0x8000, this is interpreted as the following characters.

-32768

2.2.3.7 Int32Text Record (0x8C)

This structure represents attribute or element content.

-
N
w

0(1|/2|3(4(5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Value

Value (4 bytes): The signed 32-bit integer value.

This structure MUST be interpreted as representing the characters formed by converting the value to
base 10. The characters MUST be preceded by a minus sign "-" if the value is negative. There MUST
NOT be any leading zeroes or decimal point.

For example, if value is 0x80000000, this is interpreted as the following characters.

-2147483648

2.2.3.8 Int64Text Record (0x8E)

This structure represents attribute or element content.

29/ 57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

Value

Value (8 bytes): The signed 64-bit integer value.

This structure MUST be interpreted as representing the characters formed by converting the value to
base 10. The characters MUST be preceded by a minus sign "-" if the value is negative. There MUST
NOT be any leading zeroes or decimal point.

For example, if value is 0x8000000000000000, this is interpreted as the following characters.

-9223372036854775808

2.2.3.9 FloatText Record (0x90)

This structure represents attribute or element content.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Value

Value (4 bytes): The 32-bit single precision floating point value as described in [IEEE754].

This structure MUST be interpreted as representing the characters formed by converting the value to
base 10. The period "." MUST be used as the decimal point only if a fractional component exists. The
least number of digits that exactly reproduces the IEEE representation MUST be used. There MUST
NOT be any unnecessary leading or trailing zeroes, except when a decimal point is the first character,
in which case a single zero "0" MUST precede the decimal point. Exponential notation MUST be used
when the position of the decimal point is outside the range of significant digits. When exponential
notation is used, the character "E" MUST be used, and MUST be followed by a plus sign "+" or minus
sign "-", and MUST be followed by the magnitude of the exponent.

Furthermore, special values have special characters that MUST be used.

Value Characters

Infinity INF

Negative infinity | -INF

Nan NaN

Negative zero -0

For example, if value is 0x3F8CCCCD, this is interpreted as the following characters.

30/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=89903

2.2.3.10 DoubleText Record (0x92)

This structure represents attribute or element content.

=
N
w

Value

Value (8 bytes): The 64-bit single precision floating point value as specified in [IEEE754].

This structure MUST be interpreted as representing the characters formed by converting the value to
base 10. The period "." MUST be used as the decimal point only if a fractional component exists. The
least number of digits that exactly reproduces the IEEE representation MUST be used. There MUST
NOT be any unnecessary leading or trailing zeroes, except when a decimal point is the first character,
in which case a single zero "0" MUST precede the decimal point. Exponential notation MUST be used
when the position of the decimal point is outside the range of significant digits. When exponential
notation is used, the character "E" MUST be used, and MUST be followed by a plus sign "+" or minus
sign "-", and MUST be followed by the magnitude of the exponent.

Furthermore, special values have special characters that MUST be used.

Value Characters

Infinity INF

Negative infinity | -INF

Nan NaN

Negative zero -0

For example, if value is 0x4005BF0A8B145774, this is interpreted as the following characters.

2.7182818284590451

2.2.3.11 DecimalText Record (0x94)

This structure represents attribute or element content.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

Value (16 bytes)

Value (16 bytes): The decimal value encoded in 16-bytes as specified in [MS-OAUT] section 2.2.26.
See also [IEEE854].

31/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
http://go.microsoft.com/fwlink/?LinkId=92966

This structure MUST be interpreted as representing the characters formed by converting the value to
base 10. The period "." MUST be used as the decimal point only if a fractional component exists. The
least number of digits that exactly reproduces the IEEE representation MUST be used. There MUST
NOT be any unnecessary leading or trailing zeros, except when a decimal point is the first character,
in which case a single zero "0" MUST precede the decimal point.

For example, if value is 0x00000000004F2D800000000000060000, this is interpreted as the following
characters.

5.123456

2.2.3.12 DateTimeText Record (0x96)

This structure represents attribute or element content.

=
N
w

Value

TZ

Value (62 bits): The 62-bit unsigned integer value that specifies the number of 100 nanoseconds
that had elapsed since 12:00:00, January 1, 0001. The value can represent time instants in a
granularity of 100 nanoseconds until 23:59:59.9999999, December 31, 9999. The value MUST be
less than the decimal value 3155378976000000000.

TZ (2 bits): A two-bit unsigned integer that contains TimeZone information. This MUST be 0, 1, or 2.

This structure MUST be interpreted as representing the characters formed by converting the value to a
date.

If the hour, minutes, seconds, and fraction of second parts are zero, the date MUST be interpreted as
the following characters.

yyyy-MM-dd

Otherwise, if the fraction of a second part is zero, the date MUST be interpreted as the following
characters.

yyyy-MM-ddTHH:mm: ss

Otherwise, the date MUST be interpreted as the following characters.

yyyy-MM-ddTHH:mm:ss.fffffff

where:
* yyyy is the four-digit representation of the year.

= MM is the two-digit representation of the month starting at "01".

32/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

= dd is the two-digit representation of the day of the month starting at "01".

= HH is the two-digit representation of the hour of the day starting at "00".

= mm is the two-digit representation of the minute of the hour starting at "00".
= ssis the two-digit representation of the second of the minute starting at "00".

= fffffff is up to seven digits representing the fraction of the second. There MUST be no trailing
Zeros.

All other characters are included as shown.

If TZ is one, then the time is in UTC (Coordinated Universal Time), and the date MUST be
interpreted as having a trailing character "Z".

If TZ is two, then the time is a local time, and the date MUST be interpreted as having additional
characters that indicate the UTC offset. The UTC offset MUST be the time zone offset in which the
document is being decoded.

If the UTC offset is positive, the date MUST be interpreted as having the following additional
characters.

+HH : mm

If the UTC offset is negative, the date MUST be interpreted as having the following additional
characters.

—HH :mm

where:

= HH is the two-digit representation of the absolute value of the hour UTC offset starting at "00".

= mm is the two-digit representation of the absolute value of the minute UTC offset starting at "00".
All other characters are included as shown.

If TZ is zero, the time is not specified as either UTC or a local time and nothing further is added.

The interpreted format of a DateTimeText record is [ISO-8601] compliant.

2.2.3.13 Chars8Text Record (0x98)

This structure represents attribute or element content.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Length Bytes (variable)

Length (1 byte): This is the length in bytes of the UTF-8 [RFC2279]-encoded string and is
represented as UINTS.

33/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=89920
http://go.microsoft.com/fwlink/?LinkId=90331

Bytes (variable): The string encoded as UTF-8 [RFC2279] bytes.

For example, if length is 3 and bytes = { 0x41, 0x42, 0x43 }, this record is interpreted as the
following characters.

abc

UTF-8 [RFC2279]-encoded sequences MUST be fully formed. There MUST not be any partial UTF-8
[RFC2279] sequences within a record. UTF-8 [RFC2279] sequences that expand to a low surrogate
character MUST be paired with a high surrogate character. (For more information on surrogate
characters, see [UNICODE].)

2.2.3.13.1 Character Escaping

Characters MUST be interpreted as minimally escaped. This means that a character MUST be
interpreted as escaped only if it is required to be escaped for the character to be legal at this point in
the XML document. Characters considered illegal by XML MUST be considered escaped.

If a character must be interpreted as escaped and it is one of the characters in the first column of the
following table, it MUST be interpreted as the characters in the second column.

Character | Interpret as
" "

& &

< <

> >

! &apos

Otherwise if a character does not fall within the legal character ranges defined in XML, the character
MUST be interpreted as the following characters.

&#digits;
where digits is the value of the character expressed in base 10 characters. There MUST NOT be any

unnecessary leading zeros in this representation.

For example, if length is 6, and bytes = { 0x22, 0x26, 0x3C, 0x3E, 0x27, 0x00 }, and this record is
within an element, this record is interpreted as the following characters.

"samp; &1lt; > '�

The ampersand (&), less than sign (<), and greater than sign (>) are required by XML to be escaped
in element content; quotation marks (") and single quotation marks (') are not required to be
escaped. The zero (0) is invalid in XML, but MUST be interpreted as appearing in its escaped form.

If the same record appeared as an attribute, this record is interpreted as the following characters.

" & &1t;>'�

34 /57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=90550

2.2.3.14 Chars16Text Record (0x9A)

This structure represents attribute or element content.

=
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

Length Bytes (variable)

Length (2 bytes): This is the length in bytes of the UTF-8 [RFC2279]-encoded string and is
represented as UINT16.

Bytes (variable): The string encoded as UTF-8 [RFC2279] bytes.

See Chars8Text Record for examples.

2.2.3.15 Chars32Text Record (0x9C)

This structure represents attribute or element content.

—
N
w

0[{1(2|3|4|5|6|7|8|9|(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[|7(8]|9|0]|1

Length

Bytes (variable)

Length (4 bytes): This is the length in bytes of the string when encoded in UTF-8, as specified in
RFC2279], and is represented as INT32. The value of Length MUST be positive.

Bytes (variable): The string encoded as UTF-8 [RFC2279] bytes.

See Chars8Text Record for examples.

2.2.3.16 Bytes8Text Record (0x9E)

This structure represents attribute or element content.

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

Length Bytes (variable)

Length (1 byte): This is the length, in bytes, of the binary data and is represented as UINTS.
Bytes (variable): The binary data.

This record MUST be interpreted as the characters obtained by encoding the bytes in base64 as
specified in [RFC3548].

35/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=90331
http://go.microsoft.com/fwlink/?LinkId=90331
http://go.microsoft.com/fwlink/?LinkId=90432

For example, if length is 3 and bytes = { 0x01, 0x02, 0x03 7}, this record is interpreted as the
following characters.

AQID

If length is 1 and bytes = { OxFF }, this record MUST be interpreted as the following characters.

2.2.3.17 Bytes16Text Record (0xA0)

This structure represents attribute or element content.

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

Length Bytes (variable)

Length (2 bytes): This is the length in bytes of the binary data and is represented as UINT16.
Bytes (variable): The binary data.

See Bytes8Text Record for examples.

2.2.3.18 Bytes32Text Record (0xA2)

This structure represents attribute or element content.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Length

Bytes (variable)

Length (4 bytes): This is the length in bytes of the binary data and is represented as INT32. The
value of Length MUST be positive.

Bytes (variable): The binary data.

See Bytes8Text Record for examples.

2.2.3.19 StartListText / EndListText Records (0xA4, 0xA6)

This structure represents attribute or element content. These records identify the start and end of a
list of text records separated by a single whitespace character. They have no additional fields. The
records that they bracket MUST be text records and MUST NOT contain a StartListText or EndListText
record. An EndListText record MUST have a corresponding StartListText record.

36/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

For example, this sequence of records

StartListText
TrueText
FalseText
ZeroText
OneText
EndListText

is interpreted as the following characters.

true false 0 1

Note that the underscore is intended to represent a single ASCII white-space character (32).

2.2.3.20

EmptyText Record (0xA8)

This structure represents a zero-length string. It has no additional fields. It MUST be interpreted as

no characters.

2.2.3.21 DictionaryText Record (0OxAA)

This structure represents attribute or element content.

=

0|1|2]|3

4

5(6

7

89|01

Value (variable)

Value (variable): The value of the string encoded using DictionaryString.

For example, if value refers to the string "hello", this record is interpreted as the following characters.

hello

See Character Escaping for notes on escaping of characters.

2.2.3.22 UniqueldText Record (0xAC)
This structure represents attribute or element content.

1 2 3
0(1|12|3|4|5(/6(7|8|9|0|1|2|3[4(5(6|7|8|9|0|1(2(3|4 6(7|18(9|0]|1
Datal
Data2 Data3
Datad_1 Data4_2 Data4_3 Data4_4

[MC-NBFX] - v20170316

.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation

Release: March 16, 2017

37/57

Data4_5 Data4_6 Data4_7 Data4_8

Datal (4 bytes): The first 4 bytes of the UUID. For more information see [RFC4122].
Data2 (2 bytes): The 5th and 6th bytes of the UUID. For more information see [RFC4122].
Data3 (2 bytes): The 7th and 8th bytes of the UUID. For more information see [RFC4122].
Data4_1 (1 byte): The 9th byte of the UUID. For more information see [RFC4122].
Data4_2 (1 byte): The 10th byte of the UUID. For more information see [RFC4122].
Data4_3 (1 byte): The 11th byte of the UUID. For more information see [RFC4122].
Data4_4 (1 byte): The 12th byte of the UUID. For more information see [RFC4122].
Data4_5 (1 byte): The 13th byte of the UUID. For more information see [RFC4122].
Data4_6 (1 byte): The 14th byte of the UUID. For more information see [RFC4122].
Data4_7 (1 byte): The 15th byte of the UUID. For more information see [RFC4122].
Data4_8 (1 byte): The 16th byte of the UUID. For more information see [RFC4122].

This record MUST be interpreted as the characters representing the UUID prefixed by the characters
"urn:uuid:". The characters in the UUID MUST use lowercase. For example, if Datal = 0x33221100,
Data2 = 0x5544, Data3 = 0x7766, and Datad4 = { 0x88, 0x99, Oxaa, Oxbb, Oxcc, 0xdd, Oxee, Oxff },
this record is interpreted as the following characters.

urn:uuid:33221100-5544-7766-8899-aabbccddeeff

2.2.3.23 TimeSpanText Record (OxAE)

This structure represents attribute or element content.

Value

Value (8 bytes): A 64-bit signed integer value that specifies a duration in 100 nanosecond units. The
values range from -10675199 days, 2 hours, 48 minutes, and 05.4775808 seconds to 10675199
days, 2 hours, 48 minutes, and 05.4775807 seconds.

This structure MUST be interpreted as representing the characters formed by converting the value as
follows:

If the day part is non-zero and the fraction of a second part is zero, then the time MUST be
interpreted as the following characters.

DDDDDDDD.HH:mm: ss

38/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=90460

Otherwise, if the day part is non-zero and the fraction of a second part is non-zero, the time MUST be
interpreted as the following characters.

DDDDDDDD.HH:mm:ss.fffffff

Otherwise, if the day part is zero and the fraction of a second part is zero, then the time MUST be
interpreted as the following characters.

HH:mm:ss

Otherwise, the time MUST be interpreted as the following characters.

HH:mm:ss.fffffff

where:

= DDDDDDDD is up to eight digits representing the number of days.

= HH is the two-digit representation of the hour of the day starting at "00".

= mm is the two-digit representation of the minute of the hour starting at "00".
= ssis the two-digit representation of the second of the hour starting at "00".

= fffffff is up to seven digits representing the fraction of the second. There MUST be no trailing
Zeros.

All other characters are included as shown.

2.2.3.24 UuidText Record (0xB0)

This structure represents attribute or element content.

0|1(2|3(4|5|6|7|8]|9 é 1(2|3|(4|5|6(7|8|9 g 112(3|4[(5|6(7|8(9 g 1
Datal
Data2 Data3
Datad_1 Data4_2 Data4_3 Data4_4
Data4_5 Data4_6 Data4_7 Data4_8

Datal (4 bytes): The first 4 bytes of the UUID. For more information see [RFC4122].

Data2 (2 bytes): The first 5th and 6th bytes of the UUID. For more information see [RFC4122].
Data3 (2 bytes): The first 7th and 8th bytes of the UUID. For more information see [RFC4122].
Data4_1 (1 byte): The 9th byte of the UUID. For more information see [RFC4122].

Data4_2 (1 byte): The 10th byte of the UUID. For more information see [RFC4122].

39/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=90460

Data4_3 (1 byte): The 11th byte of the UUID. For more information see [RFC4122].
Data4_4 (1 byte): The 12th byte of the UUID. For more information see [RFC4122].
Data4_5 (1 byte): The 13th byte of the UUID. For more information see [RFC4122].
Data4_6 (1 byte): The 14th byte of the UUID. For more information see [RFC4122].
Data4_7 (1 byte): The 15th byte of the UUID. For more information see [RFC4122].
Data4_8 (1 byte): The 16th byte of the UUID. For more information see [RFC4122].

This record MUST be interpreted as the characters representing the UUID. The characters in the UUID
MUST use lowercase. For example, if Datal = 0x33221100, Data2 = 0x5544, Data3 = 0x7766, and
Data4 = { 0x88, 0x99, Oxaa, Oxbb, Oxcc, 0xdd, Oxee, Oxff }, this record is interpreted as the following
characters.

33221100-5544-7766-8899-aabbccddeeff

Note that this record differs from the UniqueldText record only by the absence of the characters
"urn:uuid:".

2.2.3.25 UInt64Text Record (0xB2)

This structure represents attribute or element content.

—
N
w

Value

Value (8 bytes): The unsigned 64-bit integer value.

This structure MUST be interpreted as representing the characters formed by converting the value to
base 10. There MUST NOT be any leading zeroes or decimal point.

For example, if value is OxFFFFFFFFFFFFFFFF, this is interpreted as the following characters.

18446744073709551615

2.2.3.26 BoolText Record (0xB4)

This structure represents attribute or element content.

—
N
w

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

Value

Value (1 byte): The Boolean value. This value MUST be 0 or 1.

If the value is 0, this record MUST be interpreted as the following characters.

40/ 57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

false

If value is 1, this record MUST be interpreted as the following characters.

true

2.2.3.27 UnicodeChars8Text Record (0xB6)

This structure represents attribute or element content.

=
N
w

0(1|/2|3(4|(5|6[(7|8|9|0(1|2|3(4|5|6[7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

Length Bytes (variable)

Length (1 byte): The length in bytes of the UTF-16 [RFC2781]-encoded string.
Bytes (variable): The string encoded as UTF-16 [RFC2781] bytes.

For example, if the length is 6 and bytes = { 0x41, 0x00, 0x42, 0x00, 0x43, 0x00 }, this record is
interpreted as the following characters.

abc

See Chars8Text Record for notes on escaping of characters.

2.2.3.28 UnicodeChars16Text Record (0xB8)

This structure represents attribute or element content.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

Length Bytes (variable)

Length (2 bytes): The length in bytes of the UTF-16 [RFC2781] encoded string.
Bytes (variable): The string encoded as UTF-16 [RFC2781] bytes.

See UnicodeChars8Text Record for examples.

2.2.3.29 UnicodeChars32TextRecord(0xBA)

This structure represents attribute or element content.

41/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=90380
http://go.microsoft.com/fwlink/?LinkId=90380

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

Length (variable)

Bytes (variable)

Length (variable): This is the length in bytes of the string when encoded in UTF-16, as specified in
RFC2781], and MUST be encoded using MultiByteInt31.

Bytes (variable): The string encoded as UTF-16 [RFC2781] bytes.

See UnicodeChars8Text Record for examples.

2.2.3.30 QNameDictionaryTextRecord(0xBC)

This structure represents attribute or element content.

2 3
0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

e

Prefix Name

Prefix (1 byte): A value from 0 to 25 inclusive, indicating a single lowercase prefix character.
Name (3 bytes): The name encoded as a DictionaryString.

For example, if prefix is 1 and name refers to the string "name", this record is interpreted as the
following characters.

b:name

2.2.3.31 *TextWithEndElement Records
These records are a simple optimization intended to reduce the size of the document.

XML of the form

<value>123</value>

can be represented by three records in the following format.

ShortElement (name="value")
Chars8Text (value="123")
EndElement

By marking the Text record to indicate that an EndElement follows, the number of records can be
reduced.

42 /57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=90380

ShortElement (name="value")
Chars8TextWithEndElement (value="123")

Any record with the name in the form *TextWithEndElement MUST be interpreted as a sequence of
two records: A *Text record followed by an EndElement record.

For example, the Int32TextWithEndElement record is interpreted as an Int32TextRecord followed by
an EndElement record and must behave identically.

These records MUST NOT be used inside Attribute records.

2.3 Miscellaneous Records

This section lists the few remaining records that are not element, attribute, or text records.

2.3.1 EndElement Record (0x01)

This structure represents an end element. There are no additional fields for this record beyond the
record type.

This record MUST be interpreted as the end element of the most recent open element and there MUST
exist such an element. For example, if the most recent element record corresponded to the following
start element

<ENV:envelope>

then this record is interpreted as the following characters.

</ENV:envelope>

Additionally, this record MUST be interpreted as closing the most recently open element.

2.3.2 Comment Record (0x02)

This structure represents a comment.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

Value (variable)

Value (variable): The text of the comment encoded using String.

For example, if the value field represents the string "comment", this record is interpreted as the
following characters.

<!--comment-->

43/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

2.3.3 Array Record (0x03)

This structure represents a series of repeating elements.

=
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

Element (variable)

End Element Record Type Length (variable)

Data (variable)

Element (variable): An Element record.
End Element (1 byte): An EndElement record.

Record Type (1 byte): The record type of the element content. This MUST be one of the values in
the following table.

Length (variable): The number of elements, encoded with MultiByteInt31. This MUST not be zero.
Data (variable): The values for the elements, encoded according to RecordType.

The size of Data is the Length multiplied by the size of the RecordType according to the following
table.

RecordType | Record DataSize
0xB5 BoolTextWithEndElement 1
0x8B Int16TextWithEndElement 2
0x8D Int32TextWithEndElement 4
Ox8F Int64TextWithEndElement 8
0x91 FloatTextWithEndElement 4
0x93 DoubleTextWithEndElement 8
0x95 DecimalTextWithEndElement 16
0x97 DateTimeTextWithEndElement | 8
OxAF TimeSpanTextWithEndElement | 8
0XB1 UuidTextWithEndElement 16

This record MUST be interpreted as the characters resulting from expanding this record into a series of
records where the Element record is repeated for each value.

For example, if the Element and Attribute records expand to the following

44 /57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

<item xmlns='http://tempuri.org'>

and RecordType is Int32TextWithEndElement, and Length = 3, and Values = { 0x01, 0x00, 0x00,
0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00 3}, this is interpreted as the following
characters.

<item xmlns='http://tempuri.org'>1</item>
<item xmlns='http://tempuri.org'>2</item>
<item xmlns='http://tempuri.org'>3</item>

Since Length is 3 and the size of Int32TextWithEndElement is 4 according to the table, the size of
Data is 12.. Values consist of 3 integer values, each encoded in 4 bytes as demanded by
Int32TextWithEndElement. (As discussed in section 2.2.3.31, this MUST be interpreted as Int32Text
followed by EndElement.)

Note that there is no carriage return or line feed included here, and the line break shown is for
readability only.

45/ 57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

3 Structure Examples

The following table provides an example of almost every record type, and shows the character

interpretations.

The record column shows each of the record types. The Type column shows the value of the record
type, which is taken from Table 1. The Bytes column show a complete XML document encoded in this
format that highlights the use of the record type. Because the record type is not always first, its
location in the sequence of bytes is highlighted. The Chars column shows the same data from the
Bytes column, formatted as characters. The final column, Characters represented, shows the XML
interpretation of the bytes.

Note Records that refer to strings outside the document are shown as "strXXX" where XXX is the

integer value.

Type
Record (hex) Bytes (hex) Chars Characters represented
EndElement 01 40 03 64 6F 63 @.doc. <doc></doc>
01
Comment 02 02 07 63 6F 6D ..comment <!--comment-->
6D 65 6E 74
Array 03 0340036172 .@.arr... <arr>13107</arr>
7201 8B 03 33 33..YY <arr>-30584</arr>
33 88 88 DD DD
<arr>-8739</arr>
ShortAttribute 04 40 03 64 6F 63 @.doc..attr.. <doc attr="false">
04 04 61 74 74 </doc>
72 84 01
Attribute 05 40 03 64 6F 63 @.doc..pre.http://abc..pre. | <doc xmins:
0903707265 attr.. pre="http://abc
0A 68 74 74 70 .) _“ R
3A 2F 2F 61 62 pre:attr="false">
63 05037072 </doc>
6504 61 74 74
72 84 01
ShortDictionary 06 40 03 64 6F 63 @.doc.... <doc str8="true">
Attribute 06 08 86 01 </doc>
DictionaryAttribute 07 40 03 64 6F 63 @.doc..pre.http://abc.. <doc xmlns:pre=
09 03 70 72 65 re... "http://abc"
0A 68 74 74 70 P) P //_" FT,
3A 2F 2F 61 62 re:strO="true">
6307037072 </doc>
65 00 86 01
ShortXmlInsAttribute 08 40 03 64 6F 63 @.doc..http://abc. <doc xmlns="http:
08 0A 68 74 74 //abc">
70 3A 2F 2F 61
62 63 01 </doc>
XminsAttribute 09 40 03 64 6F 63 @.doc..p.http://abc. <doc xmins:p="http:
09 01 70 OA 68 //abc">
74 74 70 3A 2F
2F 61 62 63 01 </doc>
ShortDictionaryXmlins 0A 40 03 64 6F 63 @.doc... <doc xmlins="str4">

[MC-NBFX] - v20170316

.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation

Release: March 16, 2017

46/ 57

Type

Record (hex) Bytes (hex) Chars Characters represented
Attribute 0A 04 01 </doc>
DictionaryXmlns 0B 40 03 64 6F 63 @.doc..p.. <doc xmlns:p="str4">
Attribute 0B 01 70 04 01 </doc>
PrefixDictionary 11 40 03 64 6F 63 @.doc..f. <doc xmlins:f="http:
AttributeF 09 01 66 0A 68 http://abc //abc" f:stri1="hello">

74 74 70 3A 2F

2F 616263 11hello. </dOC>
0B 98 05 68 65

6C 6C 6F 01

PrefixDictionary 23 40 03 64 6F 63 @.doc..x <doc xmlins:x="http://abc

AttributeX 09 01 78 OA 68 .http://abc# " x:str21="world"></doc>
74 74 70 3A 2F
2F 61 62 63 23 .world.
1598 05 77 6F
72 6C 64 01
PrefixAttributeK 30 40 03 64 6F 63 @.doc.. <doc xmlins:k=
R |
k:attr="true"></doc>
04 61747472
86 01
PrefixAttributeZ 3F 40 03 64 6F 63 @.doc..z <doc xmlns:z=
09 01 7A OA 68 .http://abc? "http://abc" z:abc=
74 74 70 3A 2F p:// " F,), /"
2F 61 62 63 3F .abc..XyZ. Xyz >
03 61 62 63 98 </doc>
037879 7A 01
ShortElement 40 40 03 64 6F 63 @.doc. <doc></doc>
01
Element 41 41 03 70 72 65 A.pre.doc <pre:doc xmins:pre=
03 64 6F 63 09 ..pre.http: "http://abc">
03 70 72 65 0A P P P {/
68 74 74 70 3A //abC </pre.dOC>
2F 2F 61 62 63
01

ShortDictionary 42 42 OE 01 B.. <stri4></stri4>
Element
DictionaryElement 43 43 03 70 72 65 C.pre...pre. <pre:stri4 xml

0E 09 0370 72 http://abc. ns:pre="http:

65 0A 68 74 74 b)

70 3A 2F 2F 61 //abc"></pre:stri4>
62 63 01

PrefixDictionary 44 44 0A 09 01 61 D...a.http:// <a:str10 xmins:a=
ElementA 0A 68 74 74 70 abc. "http://abc">

3A 2F 2F 61 62)
63 01 </a:stri0>

PrefixDictionary 56 56 26 09 01 73 V&..s.http: <s:str38 xmins:s=
ElementS 0A 68 7474 70 //abc. "http://abc">

3A 2F 2F 61 62
63 01

</s:str38>

[MC-NBFX] - v20170316

.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation

Release: March 16, 2017

47/ 57

Type

Record (hex) Bytes (hex) Chars Characters represented
PrefixElementA 5E 5E 05 68 65 6C ~.hello..a. <a:hello xmins:a=

6C 6F 09 01 61 http://abc. "http://abc">

0A 68 74 74 70 P/ ?//

3A 2F 2F 61 62 </a:hello>

63 01
PrefixElementS 70 70 09 4D 79 4D p.MyMessage.. <s:MyMessage xmins:s=

6573736167 s.http://abc. "http://abc">

65 09 01 73 OA p:// p://

68 74 74 70 3A </s:MyMessage>

2F 2F 61 62 63

01
ZeroText 80 40 03 64 6F 63 @.doc.y... <doc str416="0">

06 A0 03 80 01 </doc>
ZeroTextWithEnd 81 40 03 61 62 63 @.abc. <abc>0</abc>
Element 81
OneText 82 40 03 64 6F 63 @.doc.... <doc stro="1">

06 00 82 01 </doc>
OneTextWithEnd 83 40 03 61 62 63 @.abc. <abc>1</abc>
Element 83
FalseText 84 40 03 64 6F 63 @.doc.... <doc strO0="false">

06 00 84 01 </doc>
FalseTextWithEnd 85 40 03 61 62 63 @.abc. <abc>false</abc>
Element 85
TrueText 86 40 03 64 6F 63 @.doc.... <doc strO="true">

06 00 86 01 </doc>
TrueTextWithEnd 87 40 03 61 62 63 @.abc. <abc>true</abc>
Element 87
Int8Text 88 40 03 64 6F 63 @.doc.O.._. <doc str236="-34">

06 EC 01 88 DE </doc>

01
Int8TextWithEnd 89 42 9A 01 89 7F B... <str154>127</str154>
Element
Int16Text 8A 40 03 64 6F 63 @.doc...... <doc str236="-32768">

06 EC 01 8A 00 </doc>

80 01
Int16TextWithEnd 8B 42 9A 01 8B FF B...” <str154>32767</str154>
Element 7F
Int32Text 8C 40 03 64 6F 63 @.doc....I] <doc

06 EC 01 8C 15 str236="123456789">

CD 5B 07 01 </doc>
Int32TextWithEnd 8D 42 9A 01 8D FF B...””" <str154>2147483647
Element FF FF 7F </str154>

48 /57

[MC-NBFX] - v20170316

.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation

Release: March 16, 2017

Type

Record (hex) Bytes (hex) Chars Characters represented
Int64Text 8E 40 03 64 6F 63 @.doc.O........... <doc
06 EC 01 8E 00 str236="2147483648">
00 00 80 00 00 </doc>
00 00 01
Int64TextWithEnd 8F 42 9A 01 8F 00 = <str154>1099511627776
Element 0000000001 </str154>
00 00
FloatText 90 40 03 64 6F 63 @.doc..a.Il.?. <doc a="1.1"></doc>
04 01 61 90 CD
CC 8C3F 01
FloatTextWithEnd 91 40 05 50 72 69 @.Price.Il.B <Price>32.45</Price>
Element 63 6591 CD CC
01 42
DoubleText 92 40 03 64 6F 63 @.doc..a.tW...".@. <doc
04 01 6192 74 a="2.71828182845905">
57 14 8B OA BF </doc>
05 40 01
DoubleTextWithEnd 93 40 02 50 49 93 @.PI..-DT-!.@ <PI>3.14159265358979
Element 112D 44 54 FB </PI>
21 09 40
DecimalText 94 40 03 64 6F 63 @.doc..int..... <doc int="5.123456">
0403696E74 | -N </doc>
94 00 00 06 00
0000000080 | v
2D 4E 00 00 00
00 00 01
DecimalTextWithEnd 95 40 08 4D 61 78 @.MaxValue <MaxValue>
Element gg 8(1) 88 gg gg 792281625142643375
FFFFFFFFFFFF | 93543950335
FF FF FF FF FF FF </MaxValue>
DateTimeText 96 40 03 64 6F 63 @.doc.n."?7" <doc str110=
06 6E 96 FF 3F 37 u(E+. "9999-12-
F4 7528 CA 2B 31T23:59:59.9999999" >
01
</doc>
DateTimeTextWithEnd | 97 42 6C 97 00 40 Bl..@.—[GE. <str108>
Element 85 F9 5B 47 C8 2006-05-17T00:00:00
</str108>
Chars8Text 98 40 03 64 6F 63 @.doc..hello. <doc>hello</doc>
98 05 68 65 6C
6C 6F 01
Chars8TextWithEnd 99 40 01 61 99 05 @.a..hello <a>hello
Element 68 65 6C 6C 6F
Chars16Text 9A 40 03 64 6F 63 @.doc...hello. <doc>hello</doc>
9A 05 00 68 65
6C 6C 6F 01
Chars16TextWithEnd 9B 40 01 61 9B 05 @.a...hello <a>hello

[MC-NBFX] - v20170316

.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation

Release: March 16, 2017

49 /57

Record

Type
(hex)

Bytes (hex)

Chars

Characters represented

Element

00 68 65 6C 6C
6F

Chars32Text

9C

40 03 64 6F 63
9C 05 00 00 00
68 65 6C 6C 6F
01

@.doc..... hello.

<doc>hello</doc>

Chars32TextWithEnd
Element

9D

40 01 61 9D 05
00 00 00 68 65
6C 6C 6F

@.a..... hello

<a>hello

Bytes8Text

9E

40 03 64 6F 63
9E 08 00 01 02
03 04 05 06 07
01

<doc>AAECAwWQFBgc=
</doc>

Bytes8TextWithEnd
Element

9F

40 06 42 61 73
65 36 34 9F 08
00 01 02 03 04
05 06 07

<Base64>AAECAWQFBgc=
</Base64>

Bytes16Text

AO

40 03 64 6F 63
A0 08 00 00 01
02 03 04 05 06
07 01

<doc>AAECAwWQFBgc=
</doc>

Bytes16TextWithEnd
Element

Al

40 06 42 61 73
65 36 34 A1 08
00 00 01 02 03
04 05 06 07

<Base64>AAECAwWQFBgc=
</Base64>

Bytes32Text

A2

40 03 64 6F 63
A2 08 00 00 00
00 01 02 03 04
05 06 07 01

<doc>AAECAwWQFBgc=
</doc>

Bytes32TextWithEnd
Element

A3

40 06 42 61 73
65 36 34 A3 08
00 00 00 00 01
02 03 04 05 06
07

<Base64>AAECAWQFBgc=
</Base64>

StartListText

A4

40 03 64 6F 63
04 01 61 A4 88
7B 98 05 68 65
6C 6C 6F 86 A6
01

@.doc..a.{..
hello.Y.

<doc a="123 hello true">
</doc>

EndListText

A6

40 03 64 6F 63
04 01 61 A4 88
7B 98 05 68 65
6C 6C 6F 86 A6
01

@.doc..a.{..
hello.Y.

<doc a="123 hello true">
</doc>

EmptyText

A8

40 03 64 6F 63
04 01 61 A8 01

@.doc..a".

<doc a=""></doc>

EmptyTextWithEnd
Element

A9

40 03 64 6F 63
A9

@.docc

<doc></doc>

[MC-NBFX] - v20170316

.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation

Release: March 16, 2017

50/ 57

Type

00 01 00 01

Record (hex) Bytes (hex) Chars Characters represented
DictionaryText AA 40 03 64 6F 63 @.doc..ns;|8. <doc ns="str56">
04 02 6E 73 AA </doc>
38 01
DictionaryTextWithEnd | AB 40 04 54 79 70 @.Type®2. <Type>str196</Type>
Element 65 AB C4 01
UniqueldText AC 40 03 64 6F 63 @.doca.."3DU <doc>urn:uuid:
22 gg 6161 7272 383 fw.. | IYCE". 33221100-5544-
99 AA BB CC DD 7766-8899-
EE FF 01 aabbccddeeff
</doc>
UniqueldTextWithEnd AD 42 1A AD 00 11 B.-.."3DUfw..] IYE~ <str26>urn:uuid:
Element ;g gg ‘9“9‘ ii 6B% 33221100-5544-
CC DD EE FF 7766-8899-
aabbccddeeff
</str26>
TimeSpanText AE 40 03 64 6F 63 @.docr.Zo2~ """, <doc>-PT5M44S</doc>
AE 00 C4 F5 32
FF FF FF FF 01
TimeSpanTextWithEnd | AF 42 94 07 AF 00 B.._.g.d <str916>PT3H20M
Element BO 8E FO 1B 00 </str916>
00 00
UuidText BO 40 03 64 6F 63 @.docg <doc>03020100-
32 82 8; g; gg’ 0504-0706-0809-
OE OF 01
UuidTextWithEnd Bl 40 02 49 44 B1 @.IDA...... <ID>03020100-
Element 82 8é 8; 8; 8‘9‘ 0504-0706-0809-
OF </ID>
UInt64Text B2 40 03 64 6F 63 @.docy~ """ <doc>18446744
FF FF FF 01
</doc>
UInt64TextWithEnd B3 42 9A 01 B3 FE B..3_"""TTTT <str154>18446744
Element EE FF FF FF FF FF 073709551614
</stri54>
BoolText B4 40 03 64 6F 63 @.doc' <doc>true</doc>
B4 01 01
BoolTextWithEnd B5 0340036172 @.arr.ze...... <arr>true</arr>
Element 7201 B50501 <arr>false</arr>

<arr>true</arr>
<arr>false</arr>
<arr>true</arr>

[MC-NBFX] - v20170316

.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation

Release: March 16, 2017

51/57

Record

Type
(hex)

Bytes (hex)

Chars

Characters represented

UnicodeChars8Text

B6

40 03 64 6F 63
04 01 75 B6 06
75 00 6E 00 69
0001

@.doc..u.u.n.i..

<doc u="uni"></doc>

UnicodeChars8Text
WithEndElement

B7

40 01 55 B7 06
75 00 6E 00 69
00

@.Ud.u.n.i.

<U>uni</U>

UnicodeChars16Text

B8

40 03 64 6F 63
04 03 75 31 36
B8 08 00 75 00
6E 00 69 00 32
0001

@.doc..ul6,..u.n.i.2..

<doc ul6="uni2">
</doc>

UnicodeChars16Text
WithEndElement

B9

40 03 55 31 36
B9 08 00 75 00
6E 00 69 00 32
00

@.U161..u.n.i.2.

<U16>uni2</U16>

UnicodeChars32Text

BA

40 03 64 6F 63
04 03 75 33 32
BA 04 00 00 00
3300320001

@.doc..u328§....3.2..

<doc u32="32">
</doc>

UnicodeChars32Text
WithEndElement

BB

40 03 55 33 32
BB 04 00 00 00
33003200

@.U32"....3.2.

<U32>32</U32>

QNameDictionaryText

BC

40 03 64 6F 63
06 FO 06 BC 08
8E 07 01

@.doc.d.....

<doc str880="i:
str910"></doc>

QNameDictionaryText
WithEndElement

BD

4004 547970
65 BD 12 90 07

@.Typex...

<Type>s:stro12
</Type>

As described in section 2, the document is represented by the concatenation of the characters
represented by the records. No additional characters can be inserted.

For example, if the document consists of the records

ShortElement (name=

element", attributes={})

Int32Text (value=1234)

FalseText
EndElement

then the characters represented by these records are interpreted as the following.

<element>1234false</element>

[MC-NBFX] - v20170316

.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation

Release: March 16, 2017

52/57

4 Security Considerations

Ultimately, this format simply represents a textual XML document. Implementations that process XML
documents represented by this format have to guard against the same kinds of threats that occur
when processing equivalent, textually encoded XML documents.

In many records, the length of the data precedes the data itself. Implementations have to avoid
allocating memory based solely on the length in order to guard against malformed or malicious
records.

53/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

This document specifies version-specific details in the Microsoft .NET Framework. For information
about which versions of .NET Framework are available in each released Windows product or as
supplemental software, see [MS-NETOD] section 4.

* Microsoft .NET Framework 3.0
* Microsoft .NET Framework 3.5
* Microsoft .NET Framework 4.0
* Microsoft .NET Framework 4.5
*= Microsoft .NET Framework 4.6
* Microsoft .NET Framework 4.7

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

54 /57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

http://go.microsoft.com/fwlink/?LinkId=627609

6 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

= A document revision that incorporates changes to interoperability requirements.
= A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last
released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description MO)
class
5 Appendix A: Product Added the latest version of .NET Framework to the product Mai
; P ajor
Behavior applicability list.
55/57

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

mailto:dochelp@microsoft.com

7 Index
A

Applicability 8
ArrayRecord packet 44
Attribute records 22
AttributeRecord packet 23

BoolTextRecord packet 40
Bytes16TextRecord packet 36
Bytes32TextRecord packet 36
Bytes8TextRecord packet 35

C

Change tracking 55
Chars16TextRecord packet 35

Chars32TextRecord packet 35
Chars8TextRecord packet 33
CommentRecord packet 43
Common data types and fields 10

D

Data types and fields - common 10
DateTimeTextRecord packet 32
DecimalTextRecord packet 31
Definitions 10
Details

common data types and fields 10

MultiByteInt31 structure 13
DictionaryAttributeRecord packet 24
DictionaryElementRecord packet 21
DictionaryString packet 18
DictionaryTextRecord packet 37
DictionaryXmlsAttributeRecord packet 26
DoubleTextRecord packet 31

Element records 19
Element Record packet 19
Example 46

Examples 46

F

Fields - vendor-extensible 9
FloatTextRecord packet 30

G

Glossary 6

I

Implementer - security considerations 53
Informative references 8
Int16TextRecord packet 29
Int32TextRecord packet 29

Int64TextRecord packet 29
Int8TextRecord packet 28
Introduction 6

L
Localization 9
M

Miscellaneous records 43
MultiByteInt31 structure 13
MultiByteInt31 1 Byte packet 13
MultiByteInt31 2 Byte packet 14
MultiByteInt31 3 Bytes packet 15
MultiByteInt31 4 Bytes packet 16
MultiByteInt31 5 Bytes packet 17

Normative references 7

(o]

Overview (synopsis) 8

P

PrefixAttributeRecords packet 27
PrefixDictionaryAttributeRecords packet 27

PrefixDictionaryElement A Z Record packet 21
PrefixElement A Z Record packet 22

Product behavior 54

Q

QNameDictionaryTextRecord packet 42

R

Record packet 10
Records

attribute 22
element 19
miscellaneous 43
overview 18
text 28
References 7
informative 8
normative 7
Relationship to protocols and other structures 8

S

Security - implementer considerations 53
ShortAttributeRecord packet 22
ShortDictionaryAttributeRecord packet 24
ShortDictionaryElementRecord packet 20
ShortDictionaryXmlnsAttributeRecord packet 26
ShortElementRecord packet 19
ShortXminsAttributeRecord packet 25

[MC-NBFX] - v20170316
.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation
Release: March 16, 2017

56/57

String packet 18
Structures

MultiByteInt31 13
overview 10

T

Text records 28
TimeSpanTextRecord packet 38
Tracking changes 55

U

UInt64TextRecord packet 40
UnicodeChars16TextRecord packet 41
UnicodeChars32TextRecord packet 41
UnicodeChars8TextRecord packet 41
UnigueldTextRecord packet 37
UuidTextRecord packet 39

\'}

Vendor-extensible fields 9
Versioning 9

X

XmlnsAttributeRecord packet 25

[MC-NBFX] - v20170316

.NET Binary Format: XML Data Structure
Copyright © 2017 Microsoft Corporation

Release: March 16, 2017

57/57

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 Common Definitions
	2.1.1 Record
	2.1.2 MultiByteInt31
	2.1.2.1 MultiByteInt31-(1 Byte)
	2.1.2.2 MultiByteInt31-(2 Bytes)
	2.1.2.3 MultiByteInt31-(3 Bytes)
	2.1.2.4 MultiByteInt31-(4 Bytes)
	2.1.2.5 MultiByteInt31-(5 Bytes)

	2.1.3 String
	2.1.4 DictionaryString

	2.2 Records
	2.2.1 Element Records
	2.2.1.1 ShortElement Record (0x40)
	2.2.1.2 Element Record (0x41)
	2.2.1.3 ShortDictionaryElement Record (0x42)
	2.2.1.4 DictionaryElement Record (0x43)
	2.2.1.5 PrefixDictionaryElement[A-Z] Record (0x44-0x5D)
	2.2.1.6 PrefixElement[A-Z] Record (0x5E-0x77)

	2.2.2 Attribute Records
	2.2.2.1 ShortAttribute Record (0x04)
	2.2.2.2 Attribute Record (0x05)
	2.2.2.3 ShortDictionaryAttribute Record (0x06)
	2.2.2.4 DictionaryAttribute Record (0x07)
	2.2.2.5 ShortXmlnsAttribute Record (0x08)
	2.2.2.6 XmlnsAttribute Record (0x09)
	2.2.2.7 ShortDictionaryXmlnsAttribute Record (0x0A)
	2.2.2.8 DictionaryXmlsAttribute Record (0x0B)
	2.2.2.9 PrefixDictionaryAttribute[A-Z] Records (0x0C-0x25)
	2.2.2.10 PrefixAttribute[A-Z] Records (0x26-0x3F)

	2.2.3 Text Records
	2.2.3.1 ZeroText Record (0x80)
	2.2.3.2 OneText Record (0x82)
	2.2.3.3 FalseText Record (0x84)
	2.2.3.4 TrueText Record (0x86)
	2.2.3.5 Int8Text Record (0x88)
	2.2.3.6 Int16Text Record (0x8A)
	2.2.3.7 Int32Text Record (0x8C)
	2.2.3.8 Int64Text Record (0x8E)
	2.2.3.9 FloatText Record (0x90)
	2.2.3.10 DoubleText Record (0x92)
	2.2.3.11 DecimalText Record (0x94)
	2.2.3.12 DateTimeText Record (0x96)
	2.2.3.13 Chars8Text Record (0x98)
	2.2.3.13.1 Character Escaping

	2.2.3.14 Chars16Text Record (0x9A)
	2.2.3.15 Chars32Text Record (0x9C)
	2.2.3.16 Bytes8Text Record (0x9E)
	2.2.3.17 Bytes16Text Record (0xA0)
	2.2.3.18 Bytes32Text Record (0xA2)
	2.2.3.19 StartListText / EndListText Records (0xA4, 0xA6)
	2.2.3.20 EmptyText Record (0xA8)
	2.2.3.21 DictionaryText Record (0xAA)
	2.2.3.22 UniqueIdText Record (0xAC)
	2.2.3.23 TimeSpanText Record (0xAE)
	2.2.3.24 UuidText Record (0xB0)
	2.2.3.25 UInt64Text Record (0xB2)
	2.2.3.26 BoolText Record (0xB4)
	2.2.3.27 UnicodeChars8Text Record (0xB6)
	2.2.3.28 UnicodeChars16Text Record (0xB8)
	2.2.3.29 UnicodeChars32TextRecord(0xBA)
	2.2.3.30 QNameDictionaryTextRecord(0xBC)
	2.2.3.31 *TextWithEndElement Records

	2.3 Miscellaneous Records
	2.3.1 EndElement Record (0x01)
	2.3.2 Comment Record (0x02)
	2.3.3 Array Record (0x03)

	3 Structure Examples
	4 Security Considerations
	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

