
1 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MC-DPLHP]:

DirectPlay 8 Protocol: Host and Port Enumeration

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

8/10/2007 0.1 Major Initial Availability

9/28/2007 0.2 Minor Clarified the meaning of the technical content.

10/23/2007 0.2.1 Editorial Changed language and formatting in the technical content.

11/30/2007 1.0 Major Updated and revised the technical content.

1/25/2008 2.0 Major Updated and revised the technical content.

3/14/2008 3.0 Major Updated and revised the technical content.

5/16/2008 4.0 Major Updated and revised the technical content.

6/20/2008 5.0 Major Updated and revised the technical content.

7/25/2008 5.1 Minor Clarified the meaning of the technical content.

8/29/2008 5.1.1 Editorial Changed language and formatting in the technical content.

10/24/2008 5.2 Minor Clarified the meaning of the technical content.

12/5/2008 6.0 Major Updated and revised the technical content.

1/16/2009 6.1 Minor Clarified the meaning of the technical content.

2/27/2009 7.0 Major Updated and revised the technical content.

4/10/2009 7.0.1 Editorial Changed language and formatting in the technical content.

5/22/2009 7.1 Minor Clarified the meaning of the technical content.

7/2/2009 7.1.1 Editorial Changed language and formatting in the technical content.

8/14/2009 7.2 Minor Clarified the meaning of the technical content.

9/25/2009 8.0 Major Updated and revised the technical content.

11/6/2009 8.0.1 Editorial Changed language and formatting in the technical content.

12/18/2009 8.0.2 Editorial Changed language and formatting in the technical content.

1/29/2010 9.0 Major Updated and revised the technical content.

3/12/2010 10.0 Major Updated and revised the technical content.

4/23/2010 10.0.1 Editorial Changed language and formatting in the technical content.

6/4/2010 10.0.2 Editorial Changed language and formatting in the technical content.

7/16/2010 10.0.2 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 10.0.2 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 10.0.2 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 10.0.2 None No changes to the meaning, language, or formatting of the

3 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Date
Revision
History

Revision
Class Comments

technical content.

1/7/2011 10.0.2 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 10.0.2 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 10.0.2 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 10.0.2 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 10.1 Minor Clarified the meaning of the technical content.

9/23/2011 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 11.0 Major Updated and revised the technical content.

3/30/2012 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 12.0 Major Updated and revised the technical content.

11/14/2013 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 13.0 Major Significantly changed the technical content.

10/16/2015 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 6

1.2.1 Normative References ... 7
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 8
1.6 Applicability Statement ... 8
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor-Extensible Fields ... 8
1.9 Standards Assignments ... 8

2 Messages ... 10
2.1 Transport .. 10
2.2 Message Syntax ... 10

2.2.1 EnumQuery .. 10
2.2.2 EnumResponse ... 11

3 Protocol Details ... 16
3.1 Server Details .. 16

3.1.1 Abstract Data Model .. 16
3.1.2 Timers .. 16
3.1.3 Initialization ... 16
3.1.4 Higher-Layer Triggered Events ... 17
3.1.5 Processing Events and Sequencing Rules ... 17
3.1.6 Timer Events .. 17
3.1.7 Other Local Events .. 17

3.2 Client Details ... 17
3.2.1 Abstract Data Model .. 17
3.2.2 Timers .. 17
3.2.3 Initialization ... 17
3.2.4 Higher-Layer Triggered Events ... 17
3.2.5 Processing Events and Sequencing Rules ... 17
3.2.6 Timer Events .. 18
3.2.7 Other Local Events .. 18

4 Protocol Examples ... 19

5 Security ... 22
5.1 Security Considerations for Implementers ... 22
5.2 Index of Security Parameters .. 22

6 Appendix A: Product Behavior ... 23

7 Change Tracking .. 24

8 Index ... 25

5 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

This specification pertains to the DirectPlay 8 Protocol and describes the technology available for
enumerating DirectPlay 8 hosts and ports. The enumeration functionality provided by the DirectPlay 8
Protocol allows a DirectPlay 8 Client/Peer to discover one or more DirectPlay 8 Servers/Hosts.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

DirectPlay: A network communication library included with the Microsoft DirectX application

programming interfaces. DirectPlay is a high-level software interface between applications and
communication services that makes it easy to connect games over the Internet, a modem link,
or a network.

DirectPlay 8: A programming library that implements the IDirectPlay8 programming interface.
DirectPlay 8 provides peer-to-peer session-layer services to applications, including session
lifetime management, data management, and media abstraction. DirectPlay 8 first shipped
with the DirectX 8 software development toolkit. Later versions continued to ship up to, and

including, DirectX 9. DirectPlay 8 was subsequently deprecated. The DirectPlay 8 DLL
continues to ship in current versions of Windows operating systems, but the development library
is no longer shipping in Microsoft development tools and Software Development Kits (SDKs).

DirectPlay 8 application: A software process that communicates with one or more software
processes over a communications network by using the DirectPlay 8 family of protocols.

DirectPlay 8 protocol: The DirectPlay 8 protocol is used by multiplayer games to perform low-
latency communication between two or more computers.

DirectPlay 8 service provider: A service provider that may be implemented on top of the

DirectPlay 8 protocol [MC-DPL8R], as described in the DirectPlay 8 Protocol: Core and Service
Providers Specification [MC-DPL8CS]. When a message is passed through for processing, the
protocol [MC-DPLHP] DirectPlay 8 Protocol: Host and Port Enumeration Specification interacts
directly with the DirectPlay 8 service provider.

DirectPlay client: A player in a DirectPlay client/server game session that has a single

established connection with a DirectPlay server and is not performing game session
management duties. It also refers to a potential player that is enumerating available
DirectPlay servers to join.

DirectPlay Name Server (DPNSVR): A forwarding service for enumeration requests that
eliminates problems caused by conflicts between port usages for multiple DirectPlay
applications.

DirectPlay server: The player in a DirectPlay client/server game session that is responsible for

performing game session management duties, such as responding to session enumeration

requests and maintaining the master copy of all the player and group lists for the game. It has
connections to all DirectPlay clients in the game session.

game: An application that uses a DirectPlay protocol to communicate between computers.

game session: The metadata associated with the collection of computers participating in a single
instance of a computer game.

globally unique identifier (GUID): A term used interchangeably with universally unique

identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMC-DPL8CS%5d.pdf#Section_2968b3eba2484281b7188a7d55fd9b36
%5bMC-DPLHP%5d.pdf#Section_1a901a85f85c497caac71e172a894243

6 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

host: In DirectPlay, the computer responsible for responding to DirectPlay game session
enumeration requests and maintaining the master copy of all the player and group lists for the
game. One computer is designated as the host of the DirectPlay game session. All other
participants in the DirectPlay game session are called peers. However, in peer-to-peer mode
the name table entry representing the host of the session is also marked as a peer.

host migration: The protocol-specific procedure that occurs when the DirectPlay peer that is
designated as the host or voice server leaves the DirectPlay game or voice session and

another peer assumes that role.

Internetwork Packet Exchange (IPX): A protocol (see [IPX]) maintained by Novell's NetWare
product that provides connectionless datagram delivery of messages. IPX is based on Xerox
Corporation's Internetwork Packet protocol, XNS.

peer-to-peer: A server-less networking technology that allows several participating network
devices to share resources and communicate directly with each other.

player: A person who is playing a computer game. There can be multiple players on a computer
participating in any given game session. See also name table.

round-trip: A process that imports data and then exports that data without data loss.

round-trip time (RTT): The time that it takes a packet to be sent to a remote partner and for
that partner's acknowledgment to arrive at the original sender. This is a measurement of latency
between partners.

serial link (or serial transport): Running the DXDiag application over a null modem cable

connecting two computers. See also modem link.

server application: The application that listens to the notification URL in [MC-BUP] section

3.2.1.1. This is also called a back-end server.

service provider: A module that abstracts details of underlying transports for generic DirectPlay
message transmission. Each DirectPlay message is transmitted by a DirectPlay service
provider. The service providers that shipped with DirectPlay 4 are modem, serial, IPX, and
TCP/IP.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89914
%5bMC-BUP%5d.pdf#Section_2c2fe5e1f1054264b80b1f31e9e5dc6b
https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx

7 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[IANAPORT] IANA, "Service Name and Transport Protocol Port Number Registry",
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

[MC-DPL8CS] Microsoft Corporation, "DirectPlay 8 Protocol: Core and Service Providers".

[MC-DPL8R] Microsoft Corporation, "DirectPlay 8 Protocol: Reliable".

[MS-DPDX] Microsoft Corporation, "DirectPlay DXDiag Usage Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980, http://www.rfc-
editor.org/rfc/rfc768.txt

1.2.2 Informative References

None.

1.3 Overview

The DirectPlay 8 Protocol: Host and Port Enumeration enables a DirectPlay Client/Peer to discover
DirectPlay Servers/Hosts.

The basic functionality is simple. A DirectPlay Client/Peer sends an EnumQuery message over a

communications network. If the EnumQuery message is received by a DirectPlay Server/Host, and the
DirectPlay Server/Host looks to enable the DirectPlay Client/Peer to connect to the game session that
it is hosting, it replies to the DirectPlay Client/Peer with an EnumResponse message. The
EnumResponse message contains the information required by the DirectPlay Client/Peer to attempt to

connect to the game session being hosted by the DirectPlay Server/Host.

Note that it is possible for one EnumQuery message to be delivered to multiple DirectPlay
Servers/Hosts, each of which might or might not reply with an EnumResponse message. Therefore,
one EnumQuery message can generate zero, one, or more than one EnumResponse messages. The
DirectPlay Client/Peer is not obligated to connect to any of the DirectPlay Servers/Hosts that reply
with an EnumResponse message. On the contrary, one of the purposes of the DirectPlay 8 Protocol:

Host and Port Enumeration process is to allow a DirectPlay Client/Peer to discover multiple game
sessions and to choose which one to join based on application-specific preferences, such as game
modes, latency, number of players, user preferences, and so on.

The EnumQuery and EnumResponse messages are delivered using the User Datagram Protocol (UDP)

[RFC768] or a similar datagram-oriented, connectionless protocol. As a result, both EnumQuery and
EnumResponse messages can be lost. It is therefore expected that a DirectPlay Client/Peer will send
multiple EnumQuery requests while searching for available DirectPlay Servers/Hosts.

It is possible, although not required, for the DirectPlay Client/Peer to note the round-trip latency of
each EnumQuery/EnumResponse pair, and the number of EnumQuery/EnumResponse pairs that are
lost, and use that information to predict the future quality of the network service between itself and
the responding DirectPlay Servers/Hosts.

mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89888
%5bMC-DPL8CS%5d.pdf#Section_2968b3eba2484281b7188a7d55fd9b36
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMS-DPDX%5d.pdf#Section_fa7b2fcb3b4642db9e472d8069741263
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90490
https://go.microsoft.com/fwlink/?LinkId=90490
https://go.microsoft.com/fwlink/?LinkId=90490

8 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1.4 Relationship to Other Protocols

How a DirectPlay Client/Peer connects to the game session being hosted by a DirectPlay Server/Host
that chooses to send an EnumResponse message is specified in [MC-DPL8CS].

The first byte of a valid EnumQuery or EnumResponse message is set to 0x00. This causes the entire
message to be processed as described in this specification. When the lead byte is nonzero, the entire
message including the lead byte is passed through for processing as described in [MC-DPL8R].

A DirectPlay 8 Service Provider allows DirectPlay 8 messages to be layered on top of multiple
different underlying network transport protocols, such as IPv4, IPv6, IPX, and serial links. The
details of the DirectPlay 8 Service Provider are specified in [MC-DPL8CS].

1.5 Prerequisites/Preconditions

The DirectPlay Client/Peer and DirectPlay Server/Host have already agreed upon the application GUID
they will use to identify themselves as instances of the same DirectPlay 8 application.

The DirectPlay Server/Host is hosting a game session before it can participate in the DirectPlay 8

Protocol: Host and Port Enumeration.

1.6 Applicability Statement

The DirectPlay 8 Protocol: Host and Port Enumeration is appropriate for use when a DirectPlay
Client/Peer has to query multiple DirectPlay Servers/Hosts for their current status, to determine

(possibly with the assistance of user input) which DirectPlay Server/Host to connect to, if any.

On IPv4 networks, it is also appropriate to use the DirectPlay 8 Protocol: Host and Port Enumeration
when only the IPv4 address information of a DirectPlay Server/Host is known, and the DirectPlay
Client/Peer has to discover which port the DirectPlay Server/Host is using. In this case, the DirectPlay
Client/Peer sends the EnumQuery (section 2.2.1) message to the DirectPlay 8 server well-known port,
as specified in [IANAPORT]. Note that not all DirectPlay Servers/Hosts will respond to EnumQuery
messages sent to this port. Nor do all implementations of this protocol support the use of the

DirectPlay 8 server well-known port.

1.7 Versioning and Capability Negotiation

The DirectPlay 8 Protocol: Host and Port Enumeration has no versioning or capability negotiation

features. However, the application can use the application-specific fields of the protocol to perform
application-level versioning or capability negotiation.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

DirectPlay 8 uses the following well-known UDP port assignment, as specified in [IANAPORT].

Parameter Value Used by

directplay8 6073/udp DirectPlay 8

In addition to port 6073, a DirectPlay 8 application can also use any other arbitrary port for "in-
game" communication. However, DirectPlay 8 does not mandate that these other ports be numbered

within any particular range or selected according to any particular scheme. In fact, the DirectPlay 8

%5bMC-DPL8CS%5d.pdf#Section_2968b3eba2484281b7188a7d55fd9b36
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
https://go.microsoft.com/fwlink/?LinkId=89888
https://go.microsoft.com/fwlink/?LinkId=89888

9 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Host and Port Enumeration Protocol primarily uses port 6073 to allow for discovery of these other
ports.

The sender of a query message can use any port for the source of the message. The server listening
on port 6073 will reply to the address and port from which it receives a query. While a DirectPlay 8

application might find it convenient to send a query from the port that is being used for "in-game"
communication, the sender is not required to use this port or any other particular port.

Although many DirectPlay 8 applications explicitly specify the port numbers to use for "in-game"
communication, when the application has not specified particular port number(s), the DirectPlay 8
implementation chooses the first available port in the range 2302-2400.

10 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

2.1 Transport

EnumQuery and EnumResponse messages are delivered using the same transport upon which the

DirectPlay 8 Protocol: Reliable [MC-DPL8R] is built, which typically does not provide guaranteed
message delivery. This means that both EnumQuery and EnumResponse messages might be lost.

2.2 Message Syntax

2.2.1 EnumQuery

The EnumQuery message is used to query for instances of a DirectPlay Server/Host that is hosting a
game session.

The size of the variable length field in the EnumQuery message is limited by whatever limit is placed

on the overall message size by the DirectPlay 8 Service Provider that is used to transmit the
message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LeadByte CommandByte EnumPayload

QueryType ApplicationGUID (16 bytes, optional)

...

...

... ApplicationPayload (variable)

...

LeadByte (1 byte): This field is 8 bits in length. It MUST be 0x00.

Note The first byte MUST be 0 for the message to be a valid EnumQuery message. When a
message is received and the first byte is nonzero, the entire message MUST be passed through for

processing as described in [MC-DPL8R].

CommandByte (1 byte): This field is 8 bits in length. It MUST be 0x02.

EnumPayload (2 bytes): This field is 16 bits in length. The EnumPayload is a value selected by the
sender of the EnumQuery message that can be used to match EnumResponse messages to their
corresponding EnumQuery.

QueryType (1 byte): This field is 8 bits in length.

Value Meaning

0x02 Indicates that this EnumQuery message contains no ApplicationGUID field. All DirectPlay
Servers/Hosts that receive this EnumQuery message in valid form SHOULD respond to it.

0x01 Indicates that this query contains an ApplicationGUID field. Only DirectPlay Servers/Hosts that are
identified by the ApplicationGUID SHOULD respond to this EnumQuery message, if it is valid. For more

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14

11 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

information about the GUID type, see [MS-DTYP] section 2.3.4.

ApplicationGUID (16 bytes): The Application GUID. This optional field, when present, is 128 bits in
length.

ApplicationPayload (variable): This variable-length optional field, when present, MUST be a
multiple of 8 bits in length. Note that the receiver is expected to discover the size of the
ApplicationPayload field by examining the total size of the message delivered by the underlying

DirectPlay 8 Service Provider, because this is the only variable-length field in this message. No
explicit-size field is provided. The contents of this field are application-specific and allow the
DirectPlay Client/Peer to send additional application-specific information to the DirectPlay
Server/Host. The server application can then use the information to decide if it will reply to the
EnumQuery, and/or determine what additional information, if any, it SHOULD return in the
EnumResponse message.

2.2.2 EnumResponse

When a valid EnumQuery message is received by a DirectPlay Server/Host, it SHOULD reply with an
EnumResponse message. The DirectPlay Server/Host SHOULD NOT respond to any EnumQuery
messages where the QueryType field is 0x01 and the ApplicationGUID field does not match the

DirectPlay Server/Host GUID.

The EnumResponse message MUST be sent to the address from which the EnumQuery message was
sent. The form of this address will depend on the DirectPlay 8 Service Provider that is being used.
For example, in an IPv4 service provider, the address would consist of an IPv4 style address:port
pair. The response MUST be sent from the address to which the DirectPlay Client/Peer connects if it
chooses to join the game session.

The sizes of the variable-length fields in the EnumQuery message are limited by whatever limit is

placed on the overall message size by the DirectPlay 8 Service Provider that is used to transmit the
message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LeadByte CommandByte EnumPayload

ReplyOffset

ResponseSize

ApplicationDescSize

ApplicationDescFlags

MaxPlayers

CurrentPlayers

SessionNameOffset

SessionNameSize

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

12 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

PasswordOffset

PasswordSize

ReservedDataOffset

ReservedDataSize

ApplicationReservedDataOffset

ApplicationReservedDataSize

ApplicationInstanceGUID (16 bytes)

...

...

ApplicationGUID (16 bytes)

...

...

SessionName (variable)

...

Password (variable)

...

ReservedData (variable)

...

ApplicationReservedData (variable)

...

ApplicationData (variable)

...

LeadByte (1 byte): This field is 8 bits in length. It MUST be 0x00.

Note The first byte MUST be 0 for the message to be a valid EnumResponse message. When a
message is received and the first byte is nonzero, the entire message MUST be passed through for

processing as described in [MC-DPL8R].

CommandByte (1 byte): This field is 8 bits in length. It MUST be 0x03.

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14

13 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

EnumPayload (2 bytes): This field is 16 bits in length. The EnumPayload is a value selected by the
sender of the EnumQuery message that can be used to match EnumResponse messages to their

corresponding EnumQuery.

Each EnumResponse message is generated because an EnumQuery message was received. The

EnumPayload field in the EnumResponse message MUST match the EnumPayload field in the
EnumQuery message that generated this EnumResponse message, so the DirectPlay Client/Peer
can track which EnumQuery message this EnumResponse message is responding to.

ReplyOffset (4 bytes): This field is 32 bits in length. This field contains the zero-based offset, in
bytes, of the ApplicationData field within this EnumResponse message. The zero-based offset of
the ApplicationData field is measured from the start of the ReplyOffset field, that is, the offset
into the EnumResponse message not counting the first 4 bytes. This field will be 0 if no

ApplicationData field is contained in this message.

ResponseSize (4 bytes): This field is 32 bits in length. This field indicates the size, in bytes, of the
ApplicationData field within the EnumResponse message. This field will be 0 if no
ApplicationData field is contained in this message.

ApplicationDescSize (4 bytes): This field is 32 bits in length. Its value MUST be 0x00000050. It
represents the sum of the size of this field plus the ApplicationDescFlags, MaxPlayers,

CurrentPlayers, SessionNameOffset, SessionNameSize, PasswordOffset, PasswordSize,
ReservedDataOffset, ReservedDataSize, ApplicationReservedDataOffset,
ApplicationReservedDataSize, ApplicationInstanceGUID, and ApplicationGUID fields.

ApplicationDescFlags (4 bytes): This field is 32 bits in length and provides the characteristics of
the application game session. It is a combination of the following bit flags.

Value Meaning

DPNSESSION_CLIENT_SERVER

0x00000001

A client/server game session. If clear, a peer-to-peer game session.

DPNSESSION_MIGRATE_HOST

0x00000004

Host migration is allowed.

DPNSESSION_NODPNSVR

0x00000040

Not using DirectPlay Name Server (DPNSVR) (game session is not
enumerable via well-known port 6073).

DPNSESSION_REQUIREPASSWORD

0x00000080

Password required to join game session.

DPNSESSION_NOENUMS

0x00000100

Enumerations are not allowed. This flag will never be set in an
EnumResponse message.

DPNSESSION_FAST_SIGNED

0x00000200

Fast message signing is in use. For details about fast message signing,
see [MC-DPL8R].

DPNSESSION_FULL_SIGNED

0x00000400

Full message signing is in use. For details about full message signing,
see [MC-DPL8R].

Note Flags 0x00000200 and 0x00000400 will never both be set, because a game session MUST

never use both fast message signing and full message signing at the same time.

MaxPlayers (4 bytes): This field is 32 bits in length. It contains the maximum number of players
that can join the game session identified by this EnumResponse message.

CurrentPlayers (4 bytes): This field is 32 bits in length. It contains the number of players currently
in the game session at the time the EnumResponse message was sent by the DirectPlay

14 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Server/Host. Note that by the time the EnumResponse is received by the DirectPlay Client/Peer,
the number of players in the game session might have changed.

SessionNameOffset (4 bytes): A 32-bit field that specifies the offset, in bytes, from the start of the
ReplyOffset field to the SessionName field. If SessionNameOffset is 0, the packet does not

include a game session name.

SessionNameSize (4 bytes): A 32-bit field that contains the size, in bytes, of the SessionName
field within this EnumResponse message. The size includes the termination character. If
SessionNameSize is 0, the packet does not include a game session name.

PasswordOffset (4 bytes): This field is 32 bits in length. A password is never used in the
EnumResponse message; therefore, the PasswordOffset field will always be 0.

PasswordSize (4 bytes): This field is 32 bits in length. A password is never used in the

EnumResponse message; therefore, the PasswordSize field will always be 0.

ReservedDataOffset (4 bytes): A 32-bit field that specifies the offset, in bytes, from the end of the
EnumPayload field to the ReservedData field. If ReservedDataOffset is 0, the packet does not

include any reserved data. The ReservedDataOffset field was intended to be used for future
extensions to the DirectPlay 8 Protocol, but was never used. This field is not used in the
EnumResponse message and will be 0.

ReservedDataSize (4 bytes): A 32-bit field that specifies the size, in bytes, of the ReservedData
field. If the value of the ReservedDataOffset field is 0, then ReservedDataSize MUST be 0. If
ReservedDataOffset is not 0, then ReservedDataSize MUST NOT be 0. This field is not used in
the EnumResponse message and will be 0.

ApplicationReservedDataOffset (4 bytes): This field is 32 bits in length. It contains the zero-
based offset, in bytes, of the ApplicationReservedData field within this EnumResponse
message. The zero-based offset of the ApplicationReservedData field is measured from the

start of the ReplyOffset field, that is, the offset into the EnumResponse message not counting
the first 4 bytes. If no ApplicationReservedData is contained in the EnumResponse message,
this field will be 0.

ApplicationReservedDataSize (4 bytes): This field is 32 bits in length. It contains the size, in
bytes, of the ApplicationReservedData field within this EnumResponse message. If no
ApplicationReservedData is contained in the EnumResponse message, this field will be 0.

ApplicationInstanceGUID (16 bytes): This field is 128 bits in length. It contains the GUID that

identifies the particular instance of the DirectPlay Server/Host that generated this EnumResponse
message. Each instance of a DirectPlay Server/Host generates a new GUID each time it chooses to
host a new game session. Since GUIDs are by definition unique, each game session will have a
unique ApplicationInstanceGUID. For more information about the GUID type, see [MS-DTYP]
section 2.3.4.

ApplicationGUID (16 bytes): This field is 128 bits in length. It contains the GUID that identifies the

DirectPlay Server/Host type that generated this EnumResponse. Each game MUST generate its
own GUID to identify itself, and all DirectPlay Servers/Hosts for that game share the same
ApplicationGUID that identifies the type of the DirectPlay Server/Host.

SessionName (variable): An optional, variable-length field that contains the human-readable name
of the game session in 16-bit Unicode characters. The position of the field within the packet is
determined by the SessionNameOffset field and the size specified in the SessionNameSize
field, in bytes. The field is zero-terminated.

Password (variable): The EnumResponse message will never contain a password; therefore, this
field is unused.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

15 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ReservedData (variable): The ReservedData field was intended to be used for future extensions to
the DirectPlay 8 Protocol, but was never used. This field will never be used since DirectPlay has

been deprecated.

ApplicationReservedData (variable): This optional field is of variable length. Its zero-based offset

within the EnumResponse message is specified in the ApplicationReservedDataOffset field. Its
size, in bytes, is specified in the ApplicationReservedDataSize field. The contents of this field
are determined by the game. This field is intended to represent game-specific data that changes
infrequently. For example, data that is set when the game session is created, but does not change
thereafter, is appropriate for use in this field.

ApplicationData (variable): This optional field is of variable length. Its zero-based offset within the
EnumResponse message is specified in the ReplyOffset field. Its size, in bytes, is specified in the

ResponseSize field. The contents of this field are determined by the game. This field is intended
to represent game-specific data that changes frequently. For example, data that changes as the
game session is used, such as the current state of the game, is appropriate for use in this field.

16 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

3.1 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
specification.

A DirectPlay Server/Host MUST be hosting a game session to be eligible to reply to EnumQuery
messages. A DirectPlay Server/Host that is hosting a game session SHOULD maintain the following
DirectPlay 8 state information to be able to reply to an EnumQuery message:

 ApplicationDescFlags

 MaxPlayers

 CurrentPlayers

 SessionName (if any)

 Password (if any)

Additionally, a game can also maintain additional game specific state as follows:

 ApplicationReservedData

 ApplicationData

For detailed descriptions of each of these items, see the description of the EnumResponse message in

section 2.2.2.

For more details on what it means to host a game session, see [MS-DPDX].

3.1.2 Timers

EnumQuery and EnumResponse messages are delivered by using the DirectPlay 8 service
providers, which do not offer reliable message delivery. Therefore, to achieve a degree of reliability
and to enable the collection of RTT and packet loss data, it is useful for the DirectPlay Client/Peer to
send multiple EnumQuery messages that are spaced over a period of time.

It is appropriate to use a timer to manage the process of sending EnumQuery messages at regular
intervals. The frequency of EnumQuery messages is implementation-defined. The DirectPlay 8
Protocol: Host and Port Enumeration places no restrictions on this frequency or on the number of

EnumQuery messages that are sent.

3.1.3 Initialization

A DirectPlay Server/Host MUST be hosting a game session before it can respond to any

EnumQuery messages.

Note that when using the IPv4 or IPv6 service provider, a DirectPlay Server/Host can specify which
UDP port to use to listen for incoming messages. The DirectPlay Client/Peer MUST be aware of this
port selection in order to direct the EnumQuery message to the correct port. UDP port 6073 has been

%5bMS-DPDX%5d.pdf#Section_fa7b2fcb3b4642db9e472d8069741263

17 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

registered with IANA for use by DirectPlay 8. If the DirectPlay 8 application has no compelling
reason to use a different port, this is a good port to choose on an IPv4 or IPv6 network. Because this

port is registered with IANA (as specified in [IANAPORT]), and is used by multiple games, it increases
the likelihood that some firewalls might be preconfigured to allow traffic on this port. However, a

game can use any port it deems appropriate, according to the rules and customs of the IP networks
that it is using.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Processing Events and Sequencing Rules

When a DirectPlay Server/Host is hosting a game session and it receives an EnumQuery message,
it SHOULD respond to the address from which the EnumQuery message originated with an

EnumResponse message. Note that the DirectPlay Server/Host can choose not to reply to any
particular EnumQuery message for application-specific reasons, such as DirectPlay Server/Host load,

current game state, or any other reason.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Client Details

3.2.1 Abstract Data Model

A DirectPlay Client/Peer can send EnumQuery messages at any time and to any destination. It is
useful for the DirectPlay Client/Peer to keep a record of the EnumQuery messages it has sent in the
recent past so that it can correlate any replies it receives with the original EnumQuery message. This
enables the DirectPlay Client/Peer to measure the round-trip time (RTT) between itself and the
responding DirectPlay Server/Host. It also enables the DirectPlay Client/Peer to notice any packet loss

that might be occurring between itself and any responding DirectPlay Server/Host.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Processing Events and Sequencing Rules

None.

https://go.microsoft.com/fwlink/?LinkId=89888

18 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

19 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

The following diagram shows an example use of the DirectPlay 8 Protocol: Host and Port Enumeration.

Figure 1: DirectPlay 8 Protocol: Host and Port Enumeration

The steps depicted in the diagram example are as follows:

1. The DirectPlay Client/Peer sends an EnumQuery message to the DirectPlay Server/Host. This

EnumQuery message contains an EnumPayload value of 1. The EnumQuery message is sent to
the DirectPlay Server/Host directly via the selected DirectPlay 8 Service Provider, which does
not offer reliable message delivery. Therefore, the EnumQuery message is at risk of being lost in
transit. In this example step, the EnumQuery message is successfully received by the DirectPlay

Server/Host.

2. The DirectPlay Server/Host receives the EnumQuery message. The DirectPlay Server/Host is
hosting a game session. Based on the content of the EnumQuery message and its own internal
state, it responds to the EnumQuery message with an EnumResponse message. It copies the

20 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

EnumPayload value of 1 from the EnumQuery message to the EnumResponse message and
sends the EnumResponse message back to the address that the EnumQuery message came from.

The EnumResponse message is sent directly via the selected DirectPlay 8 Service Provider, which
does not offer reliable message delivery. Therefore, the EnumResponse message is at risk of being

lost in transit. In this example step, the EnumResponse message is successfully received by the
DirectPlay Client/Peer.

3. The DirectPlay Client/Peer receives the EnumResponse message. Based on the content of
EnumResponse message, the DirectPlay Client/Peer has the information it requires to connect to
the game session that is being hosted by the responding DirectPlay Server/Host. By measuring the
elapsed time between sending the EnumQuery message with EnumPayload of 1, and receiving
the EnumResponse message with EnumPayload of 1, the DirectPlay Client/Peer can also estimate

the round-trip message latency between itself and the responding DirectPlay Server/Host. In this
example, the DirectPlay Client/Peer does not immediately connect to the game session identified
in the EnumResponse message. Instead, it continues sending EnumQuery messages at regular
intervals to the DirectPlay Server/Host.

4. After some reasonable time period following step 1, the DirectPlay Client/Peer sends another

EnumQuery message to the DirectPlay Server/Host. This EnumQuery message contains an

EnumPayload value of 2. The EnumQuery message is sent to the DirectPlay Server/Host directly
via the selected DirectPlay 8 Service Provider, which does not offer reliable message delivery.
Therefore, the EnumQuery message is at risk of being lost in transit. In this example step, the
EnumQuery message is successfully received by the DirectPlay Server/Host.

5. The DirectPlay Server/Host receives the EnumQuery message. The DirectPlay Server/Host is
hosting a game session. Based on the content of the EnumQuery message and its own internal
state, it responds to the EnumQuery message with an EnumResponse message. It copies the

EnumPayload value of 2 from the EnumQuery message to the EnumResponse message and
sends the EnumResponse message back to the address that the EnumQuery message came from.
The EnumResponse message is sent directly via the selected DirectPlay 8 Service Provider, which
does not offer reliable message delivery. Therefore the EnumResponse message is at risk of being
lost in transit. In this example step, the EnumResponse message is successfully received by the
DirectPlay Client/Peer.

6. The DirectPlay Client/Peer receives the EnumResponse message. Based on the content of

EnumResponse message, the DirectPlay Client/Peer has the information it requires to connect to
the game session that is being hosted by the responding DirectPlay Server/Host. By measuring the
elapsed time between sending the EnumQuery message with EnumPayload of 2, and receiving
the EnumResponse message with EnumPayload of 2, the DirectPlay Client/Peer can also estimate
the round-trip message latency between itself and the responding DirectPlay Server/Host. The
DirectPlay Client/Peer now has two measurements of this round-trip message latency, and

therefore can make a more accurate prediction of future message latency than it could after
receiving only one EnumResponse message from this DirectPlay Server/Host. This is one of the
benefits of sending multiple EnumQuery messages to the same DirectPlay Server/Host. In this
example, the DirectPlay Client/Peer does not immediately connect to the game session identified
in the EnumResponse message. Instead, it continues sending EnumQuery messages at regular
intervals to the DirectPlay Server/Host.

7. After some reasonable time period following step 4, the DirectPlay Client/Peer sends another

EnumQuery message to the DirectPlay Server/Host. This EnumQuery message contains an
EnumPayload value of 3. The EnumQuery message is sent to the DirectPlay Server/Host directly
via the selected DirectPlay 8 Service Provider, which does not offer reliable message delivery.
Therefore the EnumQuery message is at risk of being lost in transit. In this example step, the
EnumQuery message is lost in transit and is not received by the DirectPlay Server/Host.

8. After some reasonable time period following step 7, the DirectPlay Client/Peer sends another
EnumQuery message to the DirectPlay Server/Host. This EnumQuery message contains an

EnumPayload value of 4. The EnumQuery message is sent to the DirectPlay Server/Host directly
via the selected DirectPlay 8 Service Provider, which does not offer reliable message delivery.

21 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Therefore, the EnumQuery message is at risk of being lost in transit. In this example step, the
EnumQuery message is successfully received by the DirectPlay Server/Host.

9. The DirectPlay Server/Host receives the EnumQuery message. The DirectPlay Server/Host is
hosting a game session. Based on the content of the EnumQuery message and its own internal

state, it responds to the EnumQuery message with an EnumResponse message. It copies the
EnumPayload value of 4 from the EnumQuery message to the EnumResponse message and
sends the EnumResponse message back to the address that the EnumQuery message came from.
The EnumResponse message is sent directly via the selected DirectPlay 8 Service Provider, which
does not offer reliable message delivery. Therefore, the EnumResponse message is at risk of being
lost in transit. In this example step, the EnumResponse message is lost in transit and is not
received by the DirectPlay Client/Peer.

10. After some reasonable time period following step 8, the DirectPlay Client/Peer sends another
EnumQuery message to the DirectPlay Server/Host. This EnumQuery message contains an
EnumPayload value of 5. The EnumQuery message is sent to the DirectPlay Server/Host directly
via the selected DirectPlay 8 Service Provider, which does not offer reliable message delivery.
Therefore, the EnumQuery message is at risk of being lost in transit. In this example step, the

EnumQuery message is successfully received by the DirectPlay Server/Host.

11. The DirectPlay Server/Host receives the EnumQuery message. The DirectPlay Server/Host is
hosting a game session. Based on the content of the EnumQuery message and its own internal
state, it responds to the EnumQuery message with an EnumResponse message. It copies the
EnumPayload value of 5 from the EnumQuery message to the EnumResponse message and
sends the EnumResponse message back to the address that the EnumQuery message came from.
The EnumResponse message is sent directly via the selected DirectPlay 8 Service Provider, which
does not offer reliable message delivery. Therefore, the EnumResponse message is at risk of being

lost in transit. In this example step, the EnumResponse message is successfully received by the
DirectPlay Client/Peer.

12. The DirectPlay Client/Peer receives the EnumResponse message. Based on the content of
EnumResponse message, the DirectPlay Client/Peer has the information it requires to connect to
the game session that is being hosted by the responding DirectPlay Server/Host. By measuring the
elapsed time between sending the EnumQuery message with EnumPayload of 5, and receiving

the EnumResponse message with EnumPayload of 5, the DirectPlay Client/Peer can also estimate

the round-trip message latency between itself and the responding DirectPlay Server/Host. The
DirectPlay Client/Peer now has three measurements of this round-trip message latency, and
therefore can make a more accurate prediction of future message latency than it could after
receiving only two EnumResponse messages from this DirectPlay Server/Host.

This is one of the benefits of sending multiple EnumQuery messages to the same DirectPlay
Server/Host. Depending on the time that has elapsed since sending the EnumQuery messages with

EnumPayload 3 and EnumPayload 4, the DirectPlay Client/Peer can also reasonably conclude that
these EnumQuery messages, or the EnumResponse messages they have generated, have been lost in
transit. With that information, the DirectPlay Client/Peer can also generate an estimate of the possible
future message delivery reliability. At this time, the DirectPlay Client/Peer now has a reasonable
estimate of the future round-trip message latency and reliability. It can also decide to not connect to
the game session identified in the EnumResponse messages, attempt to connect to the game session
identified in the EnumResponse messages, or continue to send additional periodic EnumQuery

messages to obtain more information regarding the message latency and reliability between itself and
the DirectPlay Server/Host.

The DirectPlay Client/Peer might also have been sending EnumQuery messages to another DirectPlay
Server/Host in parallel, and might find one of those other game sessions is better in some application-
specific way. The point at which a DirectPlay Client/Peer stops sending EnumQuery messages to a
particular DirectPlay Server/Host is application-specific. The method that a DirectPlay Client/Peer uses
to determine which game session to attempt to join is application-specific.

22 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

23 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

24 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

25 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Index

A

Abstract data model
 client 17
 server 16
Applicability 8

C

Capability negotiation 8
Change tracking 24
Client
 abstract data model 17
 higher-layer triggered events 17
 initialization 17
 local events 18
 message processing 17
 other local events 18

 sequencing rules 17
 timer events 18
 timers 17

D

Data model - abstract
 client 17
 server 16

E

EnumQuery message 10
EnumQuery packet 10
EnumResponse message 11
EnumResponse packet 11
Examples 19

F

Fields - vendor-extensible 8

G

Glossary 5

H

Higher-layer triggered events
 client 17
 server 17

I

Implementer - security considerations 22
Index of security parameters 22
Informative references 7
Initialization
 client 17
 server 16
Introduction 5

L

Local events
 client 18
 server 17

M

Message processing
 client 17
 server 17
Messages
 EnumQuery 10
 EnumResponse 11
 transport 10
Messages - transport 10

N

Normative references 7

O

Other local events
 client 18
 server 17
Overview (synopsis) 7

P

Parameters - security index 22
Preconditions 8
Prerequisites 8
Product behavior 23

R

References 6
 informative 7
 normative 7
Relationship to other protocols 8

S

Security
 implementer considerations 22
 parameter index 22
Sequencing rules
 client 17
 server 17
Server
 abstract data model 16
 higher-layer triggered events 17
 initialization 16
 local events 17
 message processing 17
 other local events 17
 sequencing rules 17
 timer events 17
 timers 16
Standards assignments 8

T

26 / 26

[MC-DPLHP] - v20170601
DirectPlay 8 Protocol: Host and Port Enumeration
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Timer events
 client 18
 server 17
Timers
 client 17
 server 16
Tracking changes 24
Transport 10
Triggered events - higher-layer
 client 17
 server 17

V

Vendor-extensible fields 8
Versioning 8

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 EnumQuery
	2.2.2 EnumResponse

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Processing Events and Sequencing Rules
	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Processing Events and Sequencing Rules
	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

