[MC -DPLSCS]:

DirectPlay 8 Protocol: Core and Service Providers

Intellectual Property Rights Notice for Open Specifications Documentation

A Technical Documentation. Mi crosoft publishes Open Specifications do
documentationo) for protocols, file formats, data portabi
support. Additionally, overview documents cover inter -protocol relationships and interactions.

A Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any

schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.

Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of

thi s documentation grants any licenses under those patents or any other Microsoft patents.

However, a given Open Specifications document might be covered by the Microsoft Open

Specifications Promi__se or the Microsoft Community Promise . If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Commun ity Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com

License Programs . To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map .

Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses undert hose rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks

A Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, place s, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

> >

>

>

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming

tool s or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjuncti on with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com

1/91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

c
I

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision
Date History Class Comments
8/10/2007 0.1 Major Initial Availability
9/28/2007 0.2 Minor Clarified the meaning of the technical content.
10/23/2007 0.2.1 Editorial Changed language and formatting in the technical content.
11/30/2007 1.0 Major Updated and revised the technical content.
1/25/2008 2.0 Major Updated and revised the technical content.
3/14/2008 3.0 Major Updated and revised the technical cont ent.
5/16/2008 4.0 Major Updated and revised the technical content.
6/20/2008 5.0 Major Updated and revised the technical content.
7125/2008 6.0 Major Updated and revised the technical content.
8/29/2008 7.0 Major Updated and revised the technical content.
10/24/2008 8.0 Major Updated and revised the technical content.
12/5/2008 9.0 Major Updated and revised the technical content.
1/16/2009 10.0 Major Updated and revised the technical content.
2/27/2009 11.0 Major Updated and revised the technical content.
4/10/2009 12.0 Major Updated and revised the technical content.
5/22/2009 121 Minor Clarified the meaning of the technical content.
7/2/2009 13.0 Major Updated and revised the technical content.
8/14/2009 14.0 Major Updated and revised the technical content.
9/25/2009 14.1 Minor Clarified the meaning of the technical content.
11/6/2009 141.1 Editorial Changed language and formatting in the technical content.
12/18/2009 14.1.2 Editorial Changed language and formatting in the technical content.
1/29/2010 15.0 Major Updated and revised the technical content.
3/12/2010 15.0.1 Editorial Changed language and formatting in the technical content.
4/23/2010 16.0 Major Updated and revised the technical content.
6/4/2010 17.0 Major Updated and revised the technical content.
7/16/2010 18.0 Major Updated and revised the technical content.
8/27/2010 18.0 None théc;ﬁr:i;?sgnt?e::-e meaning, language, or formatting of the
10/8/2010 18.0 None tl\elt():r::r:ig?gsnt?em.e meaning, language, or formatting of the
11/19/2010 18.0 None No changes to the meaning, language, or formatting of the

technical content.

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

21/91

Revision Revision

Date History Class Comments

1/7/2011 18.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

2/11/2011 18.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

3/25/2011 18.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

5/6/2011 18.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/17/2011 18.1 Minor Clarified the meaning of the technical content.

9/23/2011 181 None No ch_anges to the meaning, language, or formatting of the
technical content.

12/16/2011 19.0 Major Updated and revised the technical content.

3/30/2012 190 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/12/2012 190 None No ch_anges to the meaning, language, or formatting of the
technical content.

10/25/2012 190 None No ch_anges to the meaning, language, or formatting of the
technical content.

1/31/2013 190 None No ch_anges to the meaning, language, or formatting of the
technical content.

8/8/2013 20.0 Major Updated and revised the technical content.

11/14/2013 20.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

2/13/2014 20.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

5/15/2014 20.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/30/2015 210 Major Significantly changed the technical content.

10/16/2015 21.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/14/2016 21.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/1/2017 21.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

9/15/2017 22.0 Major Significantly changed the technical content.

9/12/2018 23.0 Major Significantly changed the technical content.

4/7/2021 24.0 Major Significantly changed the technical content.

6/25/2021 25.0 Major Significantly changed the technical content.

[MC-DPL8CS] - v20210625
DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3/91

Table of Contents

O 11 Yo [od 1T PR 7
1.1 GlOSSAIY vveiiiciiii i ciiiieis e ervrree e arreaeenans 7
1.2 S =] =] (ot 9

1.2.1 Normative REfErENCES ..ooviiiiiiiiicriiviiiis e e 9
1.2.2 Informative ReferenCes .ot e 9
1.3 L0 Y= T PO 9
131 DirectPlay 8 Protocol: Core and Service Providers Session Management ~ 10
13.2 SeSSION MOAES .ot e 10
1.3.21 ClIENt/SEIVEr oo e 10
1322 Peer-to-Peer (PEer/HOSt) .o e e 10
133 ConNNEecting t0 @ SESSION cociiiiiiiie et e eerrreee e 10
1331 Client/Server CONNECE ..ot e eaeeeeeeas 10
1.3.3.2 Peer-t0-Peer CONNECEcoccciiiiiiiiiiiiiiieiiies et e 10
134 Disconnecting from asS €SSIiON ..ccccccovviiiiiiiiiciiiiie e aeeas 11
1341 Client/Server DISCONNECT oo e iee e eeeees 11
1.3.4.2 Peer-t0-Peer DISCONNECT ...ccccvvvciiiiiiiiiiiiiieies e eeaeeas 11
135 Integrity Check (Peer -t0-Peer) ..ot e 11
1.3.6 Host Migration (Peer -t0-PEEI) ...ccccviiiiiiiiiiiiiiiiies e e 12
1.3.7 GIOUPS oo evereee e eeeenree e e e 12
1371 ClieNt/SErver GrOUPS ovvviieiciiiieiiieniiens e eeeneeenes 12
1.3.7.2 Peer-10-Peer GrOUPS ...ccccviiiiiiiiiiiiriiiees e aeereeeeees 13

1.4 Relationship to Other ProtoCols ..o e e 13
15 PrerequisiteS/Prec ONditioNS ...ccccccovvcviiiiiiiiiiiiins v eeeneeaaees 13
1.6 Applicability StAteMENt oo e e 13
1.7 Versioning and Capability Negotiation ..o e .13
1.8 Vendor -Extensible FieldS ... e e 13
1.9 Standards ASSIGNMENTS ..o e e 13

2 Messagesccoceeeiiiieenn. 14

21 Transport 14

211 Packet SITUCIUIE i e e 14
2.2 Message Syntaxccoccvecreveeninneeens 14
221 Connect Messages 14
2211 DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO ...cccccevveevirerireeen, 14
2212 DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO_EX ..ccccccevieiieeiiieeriiens 17
2213 DN_CONNECT_FAILEDcccceeoiiriieiieeiieenns 21
2214 DN_SEND_CONNECT_INFO22
2215 DN_NAMETABLE_ENTRY_INFO 27
2.2.1.6 DN_NAMETABLE_MEMBERSHIP_INFO ..ccccoiiiiiieiiiiiieeiies eveveriveenea s 29
2217 DN_ADD_PLAYER (Peer -to-Peer Mode ONly)occociiviiiiiiiiiiieiiies e 30
22138 DN_ACK_CONNECT_INFO oo v sieeaieees e 33
2219 DN_INSTRUCT_CONNECT .cciiiciiiiiiiiiirieiiiies e nes e 33
2.2.1.10 DN_SEND_PLAYER_DPNID .cocoiiiiiiiiiiieiiicviiees e eeeeneeene e 33
22111 DN_INSTRUCTED_CONNECT_FAILED ..ccooviviiiivieeiiievieiii eereeesieeeniee e 34
2.21.12 DN_CONNECT_ATTEMPT_FAILED ...oooiiiiiiiiiiiiiiiiiiiiees et enee e 34
222 DiSCONNECt MESSA gES ..vvvvciiiiiieiiiiiiieiiiens e e 35
2221 DN_TERMINATE_SESSION coiiiiiiiiiiiiieiiieviiees e e e neeene e 35
2222 DN_DESTROY_PLAYER ...ccociiiiiiiiiiiiieiiiieeie eeeeeenieenee e sniee e aveneeeenes 35
2223 DN_HOST_MIGRATE e e, 36
2224 DN_NAMETABLE_VERSIONcccciiiiiiiiieiiiiiiiies v eee e e 37
2.2.25 DN_RESYNC_VERSION ... teeeeviniiiiee e avvvainns 37
2226 DN_REQ_INTEGRITY_CHECK ..cociiiiiiiiiiieviieriiiene e . 38
2.2.2.7 DN_INTEGRITY_CHECK ..ottt e vssiiiniee e avvvaiens 38
22238 DN_INTEGRITY_CHECK_RESPONSEccooiiiiiiiiiiiiiiiiiees e 39
2229 DN_REQ NAMETABLE OP ..o e eieeeeees e 39

4/ 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.2.10 DN_ACK_NAMETABLE_OP ...ccociiiiiiiiiiiiiiiiiis et nienee e 40
22211 DN_HOST_MIGRATE_COMPLETE ...cccoiiiiiiiiiiiiiiiis et 41
223 Send/Receive MESSAJES ...cccvvivviiiiiiciiieiiis e e 41
2231 DN_SEND_DATA it et e 41
2232 DN_REQ_PROCESS_COMPLETION ...ccccoiiiiiiiiiiiiiiiiiine eetrieesieesneeie e 42
2233 DN_PROCESS_COMPLETION ...ccciiiiiiiiiiiiiiiiiiies et . 42
2.2.4 Group Messages (Peer -to-Peer Mode Only) ..cocoovviiiiiiiiciiiiies e, 43
2241 DN_REQ_CREATE_GROUPcccccoiiiiiiiiiiiiiiis et nnenee e 43
2242 DN_CREATE_GROUPccciiiiiiiiiiciiiiis et eenreeneenns 44
2243 DN_REQ_ADD_PLAYER_TO_GROUPcccccciiiiiiniiiiiiiies e 45
2244 DN_ADD_PLAYER_TO_GROUP ...ccooiiiiiiiiiiiiiiiiiiens e 45
2245 DN_REQ_DELETE_PLAYER_FROM_GROUPccccoviiiiiiiiiinieies e 46
2246 DN_DELETE_PLAYER_FROM_GROUPccccoooniiiiiiniiiiiies e 47
2247 DN_REQ_DESTROY_GROUPcccoiiiiiiiiiiiiiciieies et . 48
2248 DN_DESTROY_GROUPccciiiiiiniiiiiiiiiies et nes eeveenieas 48
2.25 Update INformation ... e eeear e 49
2251 DN_REQ_UPDATE_INFO 49
2252 DN_UPDATE_INFO ...cooeeiiiiieiiiene 50
226 DN_NAMETABLE ...ooiiiiiiiiiiiiiiiiis et et 52
227 DN_DPNID ccciiiiiiiiiiiiiiiiieiiieiis ettt nie eeeee et . 53
228 DN_ADDRESSING_URL .cccctiiiiiiiiiiiciiiiiiies s aeenneenneenas 53
229 DN_ALTERNATE_ADDRESS (IPVA) oottt et .55
2.2.10 DN_ALTERNATE_ADDR ESS (IPV6) ..cccociiiiiiiiiiiiiiiiies v . 56
3 Protocol Details oo e e s aaaa 57
3.1 Connect ROIE DELAIIS ..cccvieiiciiiiiiieiiciis e eeeeree e 57
311 Abstract Data Model ... s e 61
3.1.2 1T 1= £ PR 61
3.1.3 INILANZALON oo e e 61
3.14 Higher -Layer Triggered EVENES oo v e 61
3.15 Processing Events and Sequencing RUles ... e 62
3.151 Client/Server Connect SEQUENCE ...oocveevieerieienieeiiees 62
3.152 Peer-to-Peer Connect SEqUENCE ccccevcveveeiiieeennns 63
3.1.6 TIMEr EVENLS oo e 65
3.1.7 Other LOCal EVENES .ooviiiiiiiiiiiciiiieiie et sriiee s riee e avteeaesneeeeenneeas 65
3.2 Disconnect Role DetailsS ccccccveviiiiiiiiiiiie e 65
3.21 Abstract Data Model ... e 70
3.2.2 TIMEIS i et ees e eeeeas 70
3.2.3 INGANZALION ooiiiiiiis s e e 71
3.24 Higher -Layer Triggered EVENES oo v e 71
3.25 Processing Event s and Sequencing Rules ccciiiiiiiiiiiiiies e 71
3251 Client/Server DISCONNECt SEQUENCE ioociviiiiieiiciiieiie eeerree et nee e 71
3.25.2 Peer-to - Peer Host DiSCONNECt SEQUENCE oviviviiiiiiiiieiiiiieees e 71
3.253 Peer-to - Peer Integrity Check SEQUENCE ..iiiiiiiiiieis e 72
3.254 Peer-to - Peer Host Disconnect (Possible Host Migration) — ...ooieiiiiieiiinenn. 73
3.2.6 TIMEN EVENES oo ettt e eerreee e e e 74
3.2.7 Other LOCal EVENS ...ooiviiiiiiiiiiciiiiiiie et iee s avteeaestaea e naeeas 74
3.3 Send/Receive Communications Role Details =~oooociiiiiiiiiiies e 74
331 Abstract Data Model ..o e e 75
3.3.2 TIMEIS s et ees e aeaeas 75
3.3.3 Initialization 75
3.34 Higher -Layer Triggered EVENIS .oooiiiiiiiiiiiiiiiiiis e e 75
3.35 Processing Events and Sequencing RUleS i e 76
3.35.1 Client/Server and Peer -to-Peer Send/Receive Communications Sequence . 76
3.3.6 TIMEN EVENES oot ettt etie e eereeee e e 76
3.3.7 Other LOCAl EVENES ..ovviiiiiiciiiiiviiiieiie eeeviee e sniie e vieneesnies avreeeesssaeeesnnees 76
3.4 Groups Role Details ccoeeiiiiiieiiieeee 77
3.4.1 Abstract Data Model 78
5/091

[MC-DPLSCS] -

v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

4
5

6
7
8

3.4.2 TIMEIS i e
3.4.3 Initialization ...
3.4.4 Higher -Layer Triggered Events
3.4.5 Processing Events and Sequencing Rules
3451 Client/Server Group Role
3.452 Peer-to -Peer Group Sequence
3.4.6 Timer EVents ...cccoovvvvvvviiiiiienies e
3.4.7 Other Local Events cccccevvieeeiiineenne
3.5 Update Information Role Details
351 Abstract Data Mo delcccceeeviiiiiiiinenn.
3.5.2 TIMEIS i e
3.5.3 Initialization ccccoeviiiiis
354 Higher -Layer Triggered Events
355 Processing Events and Sequencing Rules
3.551 Update Information Sequence ...
3.5.6 Timer EVents ...cccoovvvvvvviiiiiieiees e
3.5.7 Other Local Events ccccevvcieeeiiinenne
Protocol Examples ... e
SECUMLY ceeviiii e e e
5.1 Security Considerations for Implementers
5.2 Index of Security Parameters cccooceeenen.

Appendix A: Product Behavior
Change Tracking .cccccciviiiniiieeieeiee e,

Index

78
79
79
79

.79

80
80
81
82
82
82
82
82
82
83
83

.84

86
86
86

87

.. 88

89

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

6/ 91

1 Introduction

This specification describ es the core protocol services of the DirectPlay 8 Protocol. The protocol
provides functionality necessary for multiplayer game communication, including the ability to create

and manage game sessions over existing datagram protocols such as User Datagram Protocol
(UDP) . The DirectPlay 8 Protocol: Core and Service Providers relies on the DirectPlay 8 Protocol:
Reliable (as specified in MC -DPL8R]) to manage network connections, to send and receive packets,
and to perform reliable communication.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

11 Glossary

This document uses the following terms:

acknowledgment (ACK) : A signal passed between communicating processes or computers to
signify successful receipt of a transmission as part of a communications protocol.

client/s erver mode : A mode that consists of one server with many client connections (one -to-
many). From the perspective of each client, there is only one connection: the connection to the
server.

data frame (DFRAME) : A DirectPlay 8 frame that exists in the standard connection sequence
space and typically carries application payload data. The total size of the DFRAME header and
payload should be less than the Maximum Transmission Unit (MTU) of the underly ing protocols
and network. For more information, see the DirectPlay 8 Protocol: Reliable Specification (MC -

DPL8R] section 2.2.2). See Also, command frame.

DirectPlay : A networ k communication library included with the Microsoft DirectX application
programming interfaces. DirectPlay is a high -level software interface between applications and
communication services that makes it easy to connect games over the Internet, a modem link,
or a network.

DirectPlay 8 : A programming library that implements the IDirectPlay8 programming interfac e.
DirectPlay 8 provides peer -to-peer session -layer services to applications, including session
lifetime management, data management, and media abstraction. DirectPlay 8 first shipped
with the DirectX 8 software development toolkit. Later versions continued to ship up to, and
including, DirectX 9. DirectPlay 8 was subsequent ly deprecated. The DirectPlay 8 DLL
continues to ship in current versions of Windows operating systems, but the development library
is no longer shipping in Microsoft development tools and Softw are Development Kits (SDKs).

DirectX : Microsoft DirectX is a collection of application programming interfaces for handling tasks
related to multimedia, especially game programming and video, on Microsoft platforms.

DirectX Diagnostic (DXDiag) : DXDiag.exe is an application that uses the DirectPlay DXDiag
Usage Protocol [MS-DPDX] traffic.

DPNID : A 32 -bit identification value assigned to a DirectPlay player as part of its participation in a
DirectPlay game session.

game session : The metadata associated with the collection of computers participating in a single
instance of a computer game.

globally unique identifier (GUID) : A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

7191

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMS-DPDX%5d.pdf#Section_fa7b2fcb3b4642db9e472d8069741263

[REC4122] or [C706] must be used for generating the GUID . See also universally unique
identifier (UUID).

group : Acollectionof players withina game session . Typically, players are placedina group
when they serve a commo n purpose.

host :In DirectPlay |, the computer responsible for responding to DirectPlay game session
enumeration requests and maintaining the master copy of all the player and group lists for the
game. One computer is designated as the host ofthe DirectPlay game session. All other
participants inthe DirectPlay = game session are called peers . However, in peer -to-peer mode
the name table entry representing the host of the session is also marked as a peer .

host migration : The protocol -specific procedure that occurs when the DirectPlay peer that is
designated as the host or voice server leaves the DirectPlay ~ game or voice session and
another peer assumes that role.

HRESULT : An integer value that indicates the result or status of an operatio n. A particular
HRESULT can have different meanings depending on the protocol using it. See MS -ERREF

section 2.1 and specific protocol documents for further details.

Internet Protocol version 4 (IPv4) : An Internet protocol that has 32 - bit source and destination
addresses. IPv4 is the predecessor of IPv6.

Internet Protocol version 6 (IPv6) : A revised version of the Internet Protocol (IP) designed to
address growth on the Intern et. Improvements include a 128 -bit IP address size, expanded
routing capabilities, and support for authentication and privacy.

Internetwork Packet Exchange (IPX) : A protocol that provides connectionless datagram
delivery of messages. See IPX] .

litle -endian : Multiple -byte values that are byte -ordered with the least significant byte stored in
the memory location with the lowest address.

modem link (or modem transport) :Running the DXDiag application over a modem -to-modem
link. See Also, serial link

name table : The list of systems participating in a DXDiag , DirectPlay 4, or DirectPlay 8 session,
as well as any application -created groups.

name table entry : The DN_NAMETABLE_MEMBERSHI P_INFO structure ((MS -DPDX] section
2.2.33) along with associated strings and data buffers for an individual participant in the
DXDiag session. These could be considered players.

network byte or der : The order in which the bytes of a multiple -byte number are transmitted on a
network, most significant byte first (in big -endian storage). This may or may not match the
order in which numbers are normally stored in memory for a particular processor.

payload : The data that is transported to and from the application that is using either the
DirectPlay 4 protocol or DirectPlay 8 protocol.

peer :In DirectPlay , a player within a DirectPlay game se ssion that has an established connection
with every other peer in the game session, and which is not performing game session
management duties. The participant that is managing the game session is called the host.

peer -to -peer : A server -less networking tec hnology that allows several participating network
devices to share resources and communicate directly with each other.

peer -to -peer mode : A game -playing mode that consists of multiple peers. Each peer has a
connection to all other peers in the DirectPlay g ame session. If there are N peers in the game
session, each peer has N T 1 connections.

8/ 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89914

player : A person who is playing a computer game. There can be multiple players on a computer

participating in any given game session. See also name table

serial link (or serial transport) : Running the DXDiag application over a null modem cable
connecting two computers. See also modem link

service provider : A module that abstracts details of underlying transports for generic DirectPlay
message transmission. Each DirectPlay = message is transmitted by a DirectPlay service
provider . The service providers that shipped with DirectPlay 4 are modem, serial, IPX, and
TCP/IP.

User Datagram Protocol (UDP) : The connectionless protocol within TCP/IP that corresponds to

the transport layer in the ISO/OSI reference model.

wide characters : Characters represented by a 2 -byte value that are encoded using Unicode UTF
16. Unless otherwise stated, no range restriction s apply.
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [REC2119] . All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 Refere nces

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@micr _osoft.com . We will
assist you in finding the relevant information.

[MC - DPL8R] Microsoft Corporation, " DirectPlay 8 Protocol: Reliable "

[MS -DPDX] Microsoft Corporation, " DirectPlay DXDiag Usage Protocol "

[MS -DTYP] Microsoft Corporation, " Windows Data Types ".

[MS - ERREF] Mi crosoft Corporation, " Windows Error Codes "

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MC -DPLHP] Microsoft Corporation, " DirectPlay 8 Protocol: Host and Port Enumeration

[MC-DPLVP] Microsoft Corporation, " DirectPlay Voice Protocol "

1.3 Overview

The DirectPlay 8 Protocol: Core and Service Providers enables two or more participants to collectively
communicate multiplayer game sessio n information. The exchange is coordinated by either the
serverora host peer . The protocol depends on the underlying DirectPlay 8 Protocol: Reliable
messaging protocol [MC-DPL8R] to handle connectivity and transport between the clients and the
server or host.

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

9/91

https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMS-DPDX%5d.pdf#Section_fa7b2fcb3b4642db9e472d8069741263
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=90317
%5bMC-DPLHP%5d.pdf#Section_1a901a85f85c497caac71e172a894243
%5bMC-DPLVP%5d.pdf#Section_c422374093f649949c5b35517a95ea38
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14

1.3.1 DirectPlay 8 Protocol: Core and Service Provi ders Session Management

The DirectPlay 8 Protocol: Core and Service Providers is used to manage the list of clients participating
ina DirectPlay game session . A designated server or host peer owns all changes to that list and
coordinates the distribution of information and associated commands to the other clients or peers.

1.3.2 Session Modes

DirectPlay = game sessions are created in one of two modes: client/server or peer -to -peer .

1.3.2.1 Client/Server

Client/server mode consists of one server with many client connections (one -to-many). From the
perspective of each client, there is only one connection: the connection to the server.

1.3.2.2 Peer -to -Peer (Peer/Host)

Peer -to -peer mode consists of multiple peers . Each peer has a connection to all other peers in the
game session . If there are N peers in the game session, each peer has N -1 connections.

During a peer -to -peer game session, one peer in the game session is considered the host . The host
is responsible for the synchronization of all other peers in the game session.
1.3.3 Connecting to a Session

The DirectPlay 8 Protocol: Core and Service Providers requires that clients first be connected through

the DirectPlay 8 Protocol: Reliable (as specified in MC - DPL8R]). After clients are connected through
the DirectPlay 8 Protocol: Reliable, they can then connect to a DirectPlay 8 Protocol: Core and Service
Providers multiplayer game session as described in section 3.1.

1.3.3.1 Client/Server Connect

Clients attempt to connect to a multiplayer game session server by sending a connection request
message to the server.

The server attempts to validate the payload sentin with the connection request message. If the
payload is valid, the server sends a connect information request message. If the server fails to
validate the connection request message, the server sends a connection failed message.

Upon receiving an acknowledgment (ACK) from the server, the client acknowledges the connection
by sending a connection ACK message confirming the connection.
1.3.3.2 Peer -to -Peer Connect

The first peer ina DirectPlay game session is considered the host of the multiplayer game session.
This host peer waits for additional peers to connect to the Direc tPlay game session.

A new peer that wants to connect to the multiplayer game session sends a connection request
message.

The host validates the payload sent in and, if it is valid, the host will respond with connection
information to the peer.

If the host fails to validate the connection request message, the host sends a connection failed
message to the peer.

10/ 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14

If the host has successfully validated the connection package, then at the same time it is responding

to the connecting peer, the host will also send a message to the other connected players indicating
that a new player is joining. This informs each existing client that a new peer has joined the game

session.

When the connecting peer has rece ived confirmation from the host, it acknowledges the connection
by sending a message back to the host.

After the host receives the acknowledgment (ACK) message from the newly connected client pe er, the
host will send a connect instruct message to all existing peers, instructing them to also establish a

connection to the new peer. The existing peers will send their unique identifiers to the newly

connected peer.

It might be the case that existing peers are unable to connect to the new peer. Existing peers that are
unable to connect to the newly connecting peer issue a failure notification back to the host. If the host
receives a failure message from any existing peers, the host sends a connection f ailure message to

the peer that is requesting a connection.
1.3.4 Disconnecting from a Session

1.3.4.1 Client/Server Disconnect

If the server wants to remove a cli ent from the multiplayer game session , it will send a disconnect
message to the client. In response, the client is required to disconnect itself from the DirectPlay 8
Protocol: Reliable [MC-DPL8R] game session.

If a client wants to leave a multiplayer game session, it disconnects itself from the DirectPlay 8
Protocol: Reliable game session.

There are no messages speci fic to the DirectPlay 8 Protocol: Core and Service Providers that a client
uses to disconnect itself from a multiplayer game session.

1.3.4.2 Peer -to -Peer Disconnect

Ifthe host peer wants to remove a peer from the multiplayer ga me session , the host sends a
disconnect message to the peer. In response, the peer disconnects itself from each peer in the

multiplayer game session and then disconnects itself from the DirectPlay 8 Protocol: Reliable MC -
DPL8R] game session.

The host also sends a remove player message to all other peers in the multiplayer game session to
indicate removal of the disco nnecting peer. Peers can receive this message before or after the
disconnecting peer has disconnected itself from the DirectPlay 8 Protocol: Reliable game session (that

is, a peer can receive a remove player message from the host even though the referenced peer has
already disconnected from the game session).

If the disconnecting peer is the game session host, host migration is performed (as specified in
section 1.3.6).

1.3.5 Integrity Check (Peer -to - Peer)

If a client peer detec ts aconnection loss to another peer and has not been notified by the host that
the peer has left, the detecting client peer sends a disconnect notification message to the host to
request thatt he host verify the connection to the possibly disconnected peer.

In response, the host sends an integrity check to the peer that has been reported as disconnected.
This message includes an identifier to the requesting peer (the client peer that detected th e loss of
connection).

11/ 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14

Whenever a client peer receives an integrity check message from the host, it responds to the host by
sending an integrity check response message.

The integrity check that was sent from the host is sent via a reliable message through the protocol. If
the peer in question has dropped, the message will fail to be sent via the protocol, and the player will

be removed from the game session

If the host receives an integrity check response message from the client peer in question, the host will
terminate the requesting peer (the peer that detected a connection loss and questioned the integrity
of the other peer) by send ing a disconnect message to the requesting peer, removing it from the
multiplayer game session.

1.3.6 Host Migration (Peer -to - Peer)

Host migration enables a set of peer -to -peer clientstoelectanew host peer toreplace an
existing host peer that either drops from the game session, cannot be reached, or is otherwise
unavailable. A host peer could become unavailable due to lost connectivity, game session disconnect,

or termination.

Host m igration is not performed in game sessions that are operating in client/server mode. Only peer
to -peer game sessions can perform host migration.

Host migration is initiated when one or more peer -to-peer clients detects a disconnect with the current
host. W hen this occurs, the current name table is referenced to determine the oldest client (the peer
that has been connected to the game s ession for the longest time determined by the name table
version when the player was added to the game session) that is still connected to the game session.

This client becomes the new host cand idate. Note that there might be more than one host candidate if

a game session splits and multiple connections are severed.

The host candidate (or candidates) sends a message to all connected peers. Each peer that receives
the message responds to the candi date with a message to provide the client's name table version to
the host candidate.

If the host candidate detects a peer with a name table that is newer than the candidate's, the
candidate will send a message back to that peer instructing the peer to sen d the name table
operations that are in the peer's name table and not in the candidate's name table.

The peer responds by sending a message back to the host candidate. The message contains the name
table operations that are in the peer's name table but not in the host candidate's hame table. The host
candidate then begins execution against the name table operations that were returned, which in turn
will resynchronize all of the players' name tables in the game session.

Once all name table operations have been executed, the host candidate then sends a message to all
peers informing them that host migration is complete and that the host candidate is now the game
session host.

1.3.7 Groups
When working wit h groups , be aware of considerations related to DirectX Diagnostic (DXDiag)
The DXDiag tool (DxDiag.exe) implementation of this spe cification does not support groups.

1.3.7.1 Client/Server Groups

Although the concept of groups existsina DirectPlay 8 client/server game session , all activity
related to groups is handled by the DirectPlay 8 server. There is no network traffic between the client
and the serv er to indicate the existence of a group.

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

12 / 91

1.3.7.2 Peer -to -Peer Groups

Only the game session host can create or modify ~ groups . These capabilities include creating and
destroying groups along with adding and removing players from groups.

If a non -host peer wants to create a group, i t will issue a message to the host requesting that a new
group be generated. Once the host has created the new group (via a request from a peer or locally), it
issues a message to all the connected peers indicating to them that a new group has been created

If a non -host peer wants to add a new player to an existing group, it will issue a message to the host
requesting that an existing player be added to an existing group. Once the host receives the request
and adds the new player to the group (via a peer o r locally), the host will send a message to all
connected peers indicating to them that a new peer/group matching has been created.

If a non -host peer wants to delete a player from an existing group, it issues a message to the host
requesting that a player be removed. Once the host has received the request and has deleted the
player from the group (via a peer or locally), the host sends a message to all connected peers letting
them know that a peer/group match has been deleted.

If anon -host peerwantstod estroy an existing group, it will issue a request to the host. Once the host
has received the request and has destroyed the group (via a peer or locally), the host will respond to
all connected peers letting them know that a group has been destroyed from t he game session.

1.4 Relationship to Other Protocols

DirectPlay 8 Protocol: Core and Service Providers packets are embedded within DirectPlay 8 Protocol:
Reliable [MC-DPL8R] packets.

15 Prerequisites/Preconditions

The DirectPlay 8 Protocol: Core and Service Providers funct ions only after a DirectPlay 8 Protocol:
Reliable [MC-DPL8R] game session is established. If the DirectPlay 8 Protocol: Reliable game session
is terminated, the DirectPlay 8 Protocol: Core and Service Providers game session is also terminated.

1.6 Applicability Statement

The DirectPlay 8 P rotocol: Core and Service Providers is designed to provide a mechanism for

managing multiplayer =~ game sessions within a DirectPlay 8 Protocol: Reliable MC-DPL8R] game
session.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the followi ng areas:

Supported Transports: This protocol can be implemented on top of the DirectPlay 8 Protocol:

Reliable [MC-DPL8R].

1.8 Vendor -Extensible Fields

This protocol uses HRESULT values as specified in MS -ERREF] section 2.1. Vendors can define their
own HRESULT values, provided they set the C bit (0x20000000) for each vendor -defined value,
indicating that the value is a customer code.

1.9 Standards Assignments

None.

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

13 /91

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

2 Messages

This protocol references commonly used data types as defined in MS -DTYP].

2.1 Transport

The DirectPlay 8 Protocol: Core and Service Providers creates and manages game sessions by using
the DirectPlay 8 Protocol: Reliable MC -DPL8R] . The DirectPlay 8 Protocol: Reliable is responsible for
managing network connections, sending and receiving packets, an d performing reliable

communications. All game session messages are sent reliably through the DirectPlay 8 Protocol:
Reliable.

Network addresses that are passed to the DirectPlay 8 Protocol: Reliable are used to establish
connections viathe DN_ADDRESSING _URL structure (as specified in section 2.2.8).

The data that is passed from the DirectPlay 8 Protocol: Core and Service Providers is passed in the
clear to the DirectPlay 8 Protocol: Reliable.
211 Packet Structure

Inregardtoa DirectPlay 8 game session , all packets are actually embedded within the data frame
(DFRAME) from the protocol. If the bCommand field within the DFRAME has the
PACKET_COMMAND_USER_1 flag set, thi s is a system message that needs to be interpreted.

However, ifthe PACKET_COMMAND_USER_1 or PACKET_COMMAND_USER_2 flags are not set,
this is data that SHOULD be passed directly to the application.

Note PACKET_COMMAND_USER_2 is used specifically for Direc tPlay Voice Protocol [MC-DPLVP].

2.2 Message Syntax

This protocol specification uses curly braced GUID strings as spec ified in [MS-DTYP] section 2.3.4.3.

2.2.1 Connect Messages

2211 DN_INTERNAL_MESSAGE_PLAYER_CO NNECT_INFO
This is the first message passed into a host/server to initiate the connect sequence.

Note DN_INTERNAL_MESSAGE_PLAYER CONNECT_INFO _EX is an extended version of this packet for
DirectPlay 9. If the value of the dwDNETVersion field is 7 or greater, the message is
DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO_EX; otherwise, if it is less than 7, the message is
DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO. The host/server has to recognize both messages,

as clients/peers can send in either type of message depending on the client/peer version.

O123456789(1)123456789(2)12345678931
dwPacketType
dwFlags
dwDNETVersion
dwNameOffset

14 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMC-DPLVP%5d.pdf#Section_c422374093f649949c5b35517a95ea38
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

dwNameSize

dwDataOffset

dwDataSize

dwPasswordOffset

dwPasswordSize

dwConnectDataOffset

dwConnectDataSize

dwURLOffset

dwURLSize

guidlnstance (16 bytes)

guidApplication (16 bytes)

url (variable)

connectData (variable)

Password (variable)

data (variable)

name (variable)

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

15/ 91

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_PLAYER_CONNECT_INFO Sends client/peer connection information to the server/host.

0x000000C1
dwFlags (4 bytes): A 32 -bit field that specifies the connect flags.
Value Meaning

DP_OBECT_TYPE_CLIENT | Connecting application is a client.
0x00000002

DN_OBJECT_TYPE_PEER Connecting application is a peer .

0x00000004
dwDNETVersion (4 bytes): A 32 -bit field that specifies the DirectPlay version.
Value Meaning

0x00000001 DirectX 8.0

0x00000002 DirectX 8.1

0x00000003 PocketPC

0x00000004 Not used

0x00000005 Windows Server 2003 operating system

0x00000006 DirectX 8.2

dwNameOffset (4 bytes): A 32 -bit field that provides the offset from the end of dwPacketType of
the connecting application's name field. If dwNameOffset is 0, the packet does not include name
data.

dwNameSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the data in the name field.

If dwNameOffset issetto 0, dwNameSize SHOULD also be 0. If dwNameOffset is not 0,
dwNameSize SHOULD also not be 0.

dwDataOffset (4 bytes): A 32 -bit field that specifies the offset from the end of dwPacketType of
the data field. If dwNameOffset is 0, the packet does not include application data.

dwDat aSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the data field. If
dwDataOffset issetto 0, dwbDataSize SHOULD also be 0. If dwDataOffset is not O,
dwDataSize = SHOULD also not be 0.

dwPasswordOffset (4 bytes): A 32 -bit field that speci fies the offset from the end of
dwPacketType of the Password field.

dwPasswordSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the Password field. If
dwPasswordOffset issetto 0, dwPasswordSize SHOULD also be 0. If dwPasswordOffset is

not 0, dwPasswordSize SHOULD also not be 0.

dwConnectDataOffset (4 bytes): A 32 -bit field that specifies the offset from the end of
dwPacketType of the connectData field. If dwConnectDataOffset is 0, the packet does not
include connection data.

16 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

dwConnectD ataSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the connectData
field. If dwConnectDataOffset is 0, dwConnectDataSize SHOULD also be 0. If
dwConnectDataOffset isnot 0, dwConnectDataSize SHOULD also not be 0.

dwURLOffset (4 bytes): A 32 -bit field that specifies the offset from the end of dwPacketType to
the url field. If dwURLOffset is 0, the packet does not include the client URL. This URL
represents the address of the client/peer that is connecting to the game session

dwURLSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the url field. If
dwURLOffset is 0, dwURLSize SHOULD also be 0.If dwURLOffset isnot 0, dwURLSize
SHOULD al so not be 0.

guidinstance (16 bytes): A 128 -hit field that contains the GUID that identifies the particular
instance of the server/host application to which the client/peer is attempting to conn ect. Each
instance of a DirectPlay server/host application generates a new unique GUID each time the
application hosts a new game session. In order for the client/peer to connect, the value of
guidinstance MUST match the value of the GUID instance defined on the server/host or the value
MUST be all zeroes. If a different, nonzero GUID instance value is specified, the recipient MUST
send a DN_CONNECT_FAILED message with the result code DPNERR_INVALI DINSTANCE
(0x80158380) and terminate the MC -DPL8R] connection. For information on how a client/peer
retrieves the value of the GUID instance defined on the server/host, see th e description of the
ApplicationinstanceGUID field in the EnumResponse message defined in MC -DPLHP] section
2.2.2.

guidApplication (16 bytes): A 128 -bit field that specifiest he application's assigned GUID. This is
the unique identifier for the specific application, not per instance.

url (variable): A variable -length field that contains a 0 -terminated byte character array that specifies
the client URL. This field's position is determined by dwURLOffset and the size stated in
dwURLSize .Itisdefinedin DN_ADDRESSING_URL .

connectData (variable): A variable -length field that contains a byte array that provides the
connec tion data. This field's position is determined by dwConnectDataOffset and the size stated
in dwConnectDataSize

Password (variable): A variable -length field that contains a 0 -terminated wide cha racter array
that specifies the application password data. This field's position is determined by
dwPasswordOffset and the size stated in ~ dwPasswordSize . This data is passed in clear text to

the protocol layer.

data (variable): Avariable -length field that contains a byte array that specifies the application data.
This field's position is determined by dwDataOffset and the size stated in ~ dwDataSize
name (variable): A variable -length field that contains a 0 -terminated wide character array that
specifies the client/peer name. This field's position is determined by dwNameOffset and the size

stated in dwNameSize

2212 DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO_EX
This is the first message passed into a host/server to initiate the connect sequence.

Note This packet is an extended version of the DN_INTERNAL MESSAGE_PLAYER_CONNECT_INFO
packet for DirectPlay 9 thatincludesthe dwAlternateAddressDataOffset ,
dwAlternateAddressDataSize ,and alternateAddressData fields. If the value of the
dwDNETVersion field is 7 or greater, the message is
DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO_EX; otherwi se, ifitis less than 7, the message is
DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO. The host/server has to recognize both messages,

as clients/peers can send in either type of message depending on the client/peer version.

17 /1 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMC-DPLHP%5d.pdf#Section_1a901a85f85c497caac71e172a894243

0(1|2|3|4|5[6|7[8]9

dwPacketType

dwFlags

dwDNETVersion

dwNameOffset

dwNameSize

dwDataOffset

dwDataSize

dwPasswordOffset

dwPasswordSize

dwConnectDataOffset

dwConnectDataSize

dwURLOffset

dwURLSize

guidinstance (16 bytes)

guidApplication (16 bytes)

dwAlternateAddressDataOffset

dwAlternateAddressDataSize

alternateAddressData (variable)

url (variable)

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

18 / 91

connectData (variable)

Password (variable)

data (variable)

name (variable)

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_PLAYER_CONNECT_INFO Sends client/peer connection information to the

0x000000C1 server/host.
dwFlags (4 bytes): A 32 -bit field that specifies the connect flags.
Value Meaning

DP_OBECT_TYPE_CLIENT | Connecting application is a client.
0x00000002

DN_OBJECT_TYPE_PEER Connecting application is a peer .

0x00000004
dwDNETVersion (4 bytes): A 32 -bit field that specifies the DirectPlay version.
Value Meaning

0x00000007 DirectX 9.0

0x00000008 DirectX 9.0

dwNameOffset (4 bytes): A 32 -bit field that provides the offset from the end of dwPacketType of
the connecting application's name field. If dwNameOffset is 0, the packet does not include name
data.

dwNamesSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the data in the name field.

If dwNameOffset issetto 0, dwNameSize SHOULD also be 0. If dwNameOffset is not 0,
dwNameSize SHOULD also not be 0.

dwDataOffset (4 bytes): A 32 -bit field that specifies the offset from the end of dwPacketType of
the data field. If dwNameOffset is 0, the packet does not include application data.

19 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

dwDataSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the data field. If
dwDataOffset issetto 0, dwDataSize SHOULD also be 0. If dwDataOffset is not O,
dwDataSize = SHOULD also not be 0.

dwPasswordOffset (4 bytes): A 32 -bit field that specifies the offset from the end of
dwPacketType of the Password field.

dwPasswordSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the password. If
dwPasswordOffset issetto 0, dwPasswordSize SHOULD also be 0. If dwPasswordOffset is
not 0, dwPasswordSize SHOULD also not be 0.

dwConnec tDataOffset (4 bytes): A 32 -bit field that specifies the offset from the end of
dwPacketType of the connectData field. If dwConnectDataOffset is 0, the packet does not
include connection data.

dwConnectDataSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the connectData
field. If dwConnectDataOffset is 0, dwConnectDataSize SHOULD also be 0. If
dwConnectDataOffset isnot 0, dwConnectDataSize SHOULD also not be 0.

dwURLOffset (4 bytes): A 32 -bit field that specifies the offset from the end of dwPacketType to
the url field. If dwURLOffset is 0, the packet does not include the client URL. This URL
represents the address of the client/peer that is connecting to the game session

dwURLSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the url field. If
dwURLOffset is 0, dwURLSize SHOULD also be 0.If dwURLOffset isnot 0, dwURLSize
SHOULD also not be 0.

guidinstanc e (16 bytes): A 128 -bit field that contains the GUID that identifies the particular
instance of the server/host application to which the client/peer is attempting to connect. Each
instance of a DirectPlay server/host application generates a new unique GUID each time the
application hosts a new game session. In order for the client/peer to connect, the value of
guidinstance MUST match the value of the GUID instance defined on the server/host or th e
value MUST be all zeroes. If a different, nonzero GUID instance value is specified, the recipient
MUST send a DN_CONNECT_FAILED message with the result code DPNERR_INVALIDINSTANCE
(0x80158380) a nd terminate the MC -DPL8R] connection. For information on how a client/peer
retrieves the value of the GUID instance defined on the server/host, see the description of the
App licationInstanceGUID field in the EnumResponse message defined in MC -DPLHP] section
2.2.2.

guidApplication (16 bytes): A 128 -bit field that specifies the application's assigne d GUID. This is
the unique identifier for the specific application, not per instance.

dwAlternateAddressDataOffset (4 bytes): A 32 -bit field that specifies the offset from the end of
dwPacketType to the alternateAddressData field. If dwAlternateAddressDat aOffset isO,
the packet does not include the alternate address data.

dwAlternateAddressDataSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the
alternateAddressData field. If dwAlternateAddressDataOffset issetto O,
dwAlternateAddress DataSize SHOULD also be 0. If dwAlternateAddressDataOffset is not 0,
dwAlternateAddressDataSize SHOULD also not be 0.

alternateAddressData (variable): A variable -length field that specifies alternative address data
used to connect the client. This field's position is determined by dwAlternateAddressDataOffset
and the size stated in dwAlternateAddressDataSize . The addresses that are passed into the
altern ateAddressData field are formatted via the DN_ALTERNATE_ADDRESS structure. Because
DN_ALTERNATE_ADDRESS contains its own size, multiple alternate addresses can be passed in by
appending the DN_ALT ERNATE_ADDRESS structures together. However, the maximum number of
alternate addresses that can be passed in at a single time is limited to 12.

20 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMC-DPLHP%5d.pdf#Section_1a901a85f85c497caac71e172a894243

url (variable): A variable -length field that contains a 0 -terminated byte character array that specifies
the cli ent URL. This field's position is determined by dwURLOffset and the size stated in
dwURLSize .ltisdefinedin DN_ADDRESSING URL .

connectData (variable): Avariable -length field that contains a by te array that provides the
connection data. This field's position is determined by dwConnectDataOffset and the size stated
in dwConnectDataSize

Password (variable): A variable -length field that contains a 0 -terminated wide character array
that specifies the application password data. This field's position is determined by
dwPasswordOffset and the size stated in ~ dwPasswordSize . This data is passed in clear text to

the protocol layer.

data (variab le): A variable -length field that contains a byte array that specifies the application data.

This field's position is determined by dwDataOffset and the size stated in dwDataSize
name (variable): Avariable -length field that contains a 0 -terminated wide ¢ haracter array that
specifies the client/peer name. This field's position is determined by dwNameOffset and the size

stated in dwNameSize

2213 DN_CONNECT_FAILED

The DN_CONNECT_FAILED packet indicates that a connection attempt fa iled.

0(1(2|3|4|5(6|7(8]|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7|8|9|0]|1

dwPacketType

hResultCode

dwReplyOffset

dwReplySize

reply (variable)

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_CONNECT_FAILED Connection attempt failed.

0x000000C5

hResultCode (4 bytes): A 32 -bit field that contains the failure code.
Value Meaning
DPNERR_ALREADYCLOSING Server/host is closing or host is migrating.
0x80158050
DPNERR_NOTHOST Attempting to connect to an application that is not the
0x80158530 host/server.

21/ 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value

Meaning

DPNERR_INVALIDINTERFACE
0x80158390

Nonclient attempting to connect to a server. Nonpeer attempting
to connect to a host/peer.

DPNERR_INVALIDVERSION
0x80158460

Version passed inisnotavalid DirectPlay version.

DPNERR_INVALIDINSTANCE
0x80158380

Instance GUID is not valid for this game session

DPNERR_INVALIDAPPLICATION
0x80158300

Application GUID is not valid for this application.

DPNERR_INVALIDPASSWORD
0x80158410

Password passed in does not match what is expected.

DPNERR_HOSTREJECTEDCONNECTION

Application declined connection attempt.

0x80158260
DPNERR_GENERIC An undetermined error occurred inside a DirectX subsystem.
0x80004005 This includes uncommon err ors that cannot be generalized.
dwReplyOffset (4 bytes): A 32 -bit field that specifies the offset from the end of dwPacketType to
the reply field. If dwReplyOffset is 0, there is no reply data.
dwReplySize (4 bytes): A 32 -bit field that specifies the siz e, in bytes, of the data in the reply field.
If dwReplyOffset is 0, dwReplySize SHOULD also be 0. If dwReplyOffset is not 0,
dwReplySize SHOULD also not be 0.
reply (variable): A variable -length field that contains an array of bytes that provides a reply
message from the application identifying the connection failure. Reply data is only expected when
the failure typeis DPNERR_HOSTREJECTEDCONNECTION
2214 DN_SEND_CONNECT_INFO
The DN_SEND_CONNECT_INFO packet is sent from the hos t/server indicating to the connecting
peer/client that it has joined the game session
1 2 3
0|1|/2(3|4|5(6|7|8[9|0|1|2|3|4|5(6|7|8(9|0|1(2|3|4|5[(6|7|8[9|0]|1
dwPacketType
dwReplyOffset
dwReplySize
dwSize
dwFlags
dwMaxPlayers
dwCurrentPlayers
22 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

dwSessionNameOffset

dwSessionNameSize

dwPasswordOffset

dwPasswordSize

dwReservedDataOffset

dwReservedDataSize

dwApplicationReservedDataOffset

dwApplicationReservedDataSize

guidApplication (16 bytes)

dwVersionNotUsed

dwEntryCount

dwMembershipCount

DN_NameTable_Entry_Info (variable)

DN_NameTable_Membership_Info (variable)

URL (variable)

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

23 /91

Data (variable)

Name (variable)

ApplicationReservedData (variable)

ReservedData (variable)

Password (variable)

SessionName (variable)

Reply (variable)

dwPacketType (4 bytes): A 32 -bit integer that indicates the packet type.

Value Meaning

DN_MSG_INTERNAL_SEND_CONNECT_INFO The server/host response to a client/peer that contains
0x000000C2 game session information.

dwReplyOffset (4 bytes): A 32 -bit field that specifies the offset in bytes from the end of
dwPacketType ofthe reply field. If dwReplyOffset is 0, the packet does not include a reply.

dwReplySize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the reply field. If
dwReplyOffset issetto 0, dwReplySize MUST be 0. If dwReplyOffset isnot0, dwReplySize
MUST NOT be 0.

dwSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the application description
information. This includes all fields starting with dwSize through guidApplication
dwFlags (4 bytes): A 32 -bit integer that specifies the applicati on flags.
Value Meaning
DPNSESSION_CLIENT_SERVER A client/server game session.
0x00000001
DPNSESSION_MIGRATE_HOST Host migration is allowed.

24 | 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning
0x00000004
DPNSESSION_NODPNSVR The DirectPlay enumeration server is not running.
0x00000040
DPNSESSION_REQUIREPASSWORD Password is REQUIRED.
0x00000080
DPNSESSION_NOENUMS No enumerations are allowed from the game session. This value
0x00000100 is only available in DirectPlay 9.
DPNSESSION_FAST_SIGNED Fast signing is turned on for the game session. Passed to
0x00000200 protocol layer. Cannot be used with
DPNSESSION_FULL_SIGNED . This value is available only in
DirectPlay 9.
DPNSESSION_FULL _SIGNED Full signing turned on for the game session. Passed to protocol
0x00000400 layer. Cannot be used with DPNSESSION_FAST_SIGNED . This
value is available only in DirectPlay 9.
dwMaxPlayers (4 bytes): A 32 -bit integer that specifies the maximum number of clients/peers
allowed in the game session. A value of 0 indicates that the maximum number of players is not
specified.
dwCurrentPlayers (4 bytes): A 32 -bit integer that specifies the current number of clients/peers in

the game session.

dwSessionNameOffset (4 bytes): A 32 -bit field that specifies the offset in bytes from the end of
dwPacketType to the sessionName field. If dwSessionNameOffset is 0, the packet does not
include a game session nam e.

dwSessionNameSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the sessionName
field. If dwSessionNameOffset is 0, dwSessionNameSize MUST be 0. If
dwSessionNameOffset isnot 0, dwSessionNameSize MUST NOT be 0.

dwPasswordOffset (4 byte s): A 32 -bit field that specifies the offset, in bytes, from the end of
dwPacketType to the start of the password. If dwPasswordOffset is 0, the packet does not
include a password.

dwPasswordSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the password. If
dwPasswordOffset is 0, dwPasswordSize MUST be 0. If dwPasswordOffset is not O,
dwPasswordSize MUST NOT be 0.

dwReservedDataOffset (4 bytes): A 32 -bit field that specifies the offset, in bytes, from the end of
dwPacketType to the reservedData field. If dwReservedDataOffset is 0, the packet does not
include reserved data.

dwReservedDataSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the
reservedData field. If dwReserved DataOffset is0, dwReservedDataSize MUST be 0. If
dwReservedDataOffset isnot 0, dwReservedDataSize MUST NOT be 0.
dwApplicationReservedDataOffset (4 bytes): A 32 -bit field that specifies the offset, in bytes, from
the end of dwPacketType tothe applicatio nReservedData field. If
dwApplicationReservedDataOffset is 0, the packet does not include application reserved data.
dwApplicationReservedDataSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the
applicationReservedData field. If dwApplicationReservedDataOffset is 0,
dwApplicationReservedDataSize MUST also be 0. If dwApplicationReservedDataOffset is
not 0, dwApplicationReservedDataSize MUST NOT be 0.

25/ 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

guidinstance (16 bytes): A 128 -bit field that contains the GUID that identifies the particular
instance of the server/host application. The value of this field implicitly SHOULD match the value
of the guidinstance field specified inthe DN_INTERNAL _MESSAGE_PLAYER_CONNECT_INFO or
DN_INTERNAL _MESSAGE_PLAYER_CONNECT_INFO_EX message, unless that field contained all
zeroes, in which case this guidinstance value in forms the receiving client of the actual game
session instance GUID.

guidApplication (16 bytes): The application GUID as defined by the host/server.

dpnid (4 bytes): A 32 -bit integer created by the server/host that provides the identifier for the new
clien t joining the game session. For more information, see DN_DPNID .

dwVersion (4 bytes): A 32 -bit integer that specifies the current name table version.

dwVersionNotUsed (4 bytes): Not used.

dwEntryCount (4 bytes): A 32 -bit integer that provides the number of entries in the name table

contained inthe DN_NAMETABLE_ENTRY_INFO field below. These are in essence players in the
game session.

dwMembershipCount (4 bytes): A 32 -bit integer that provides the number of memberships in the
name table contained in the DN_NAMETABLE_M EMBERSHIP_INFO field below. These are in
essence playerto group combinations.

DN_NameTable_Entry_Info (variable): This field contains a variable -length array of
DN_NAMETABLE_ENTRY_INFO structur es. The length of this array is described above in the
dwEntryCount field. Each entry in this array describes a player or group in the game session. In
peer -to-peer mode, the host MUST transmit entries for all existing participants and the new
participant. In client/server mode , the server MUST transmit only two entries: one for the
server player and one for the new participant.

DN_Nam eTable_Membership_Info (variable): This field contains a variable -length array of
DN_NAMETABLE_MEMBERSHIP_INFO structures. The length of this array is described above in the
dwMembershipCount field. Each entry in this array describes a player/group combina tion.

URL (variable): A variable -length field that contains a 0 -terminated character array that provides the
URL of a user in the game session. This field's position is determined by dwURLOffset and the
size stated in dwURLSize , both fields in the correspo nding DN_NAMETABLE_ENTRY_INFO
structure. There can be multiple instances of the URL field, as defined by the number of
DN_NAMETABLE_ENTRY_INFO sections that are included.

Data (variable): A variable -length field that contains a 0 -terminated character array that specifies
the user data. This field's position is determined by dwDataOffset and the size stated in
dwDataSize , both fields in the corresponding DN_NAMETABLE_ENTRY_INFO structure. There can
be multiple instances of the Data field, as defined by the n umber of DN_NAMETABLE_ENTRY_INFO
sections that are included.

Name (variable): A variable -length field that contains a 0 -terminated wide character array that
contains the client name. This field' s position is determined by dwNameOffset and the size

stated in dwNameSize , both fields in the corresponding DN_NAMETABLE_ENTRY_INFO structure.
There can be multiple instances of the Name field, as defined by the number of
DN_NAMETABLE_ENTRY_INFO sections that are included.

ApplicationReservedData (variable): A variable -length field that contains a 0 -terminated character
array that specifies the application reserved data. This field's position is determined by
dwApplicationReservedDataOffset and the size st ated in dwApplicationReservedDataSize

ReservedData (variable): A variable -length field that contains a byte array that provides the
reserved data. This field's position is determined by dwReservedDataOffset and the size stated
in dwReservedDataSize

26 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Passw ord (variable): A variable -length field that contains a 0 -terminated wide character array that
specifies the application password data. This field's position is determined by dwPasswordOffset
and the size stated in ~ dwPasswordSize . This data is passed in cl ear text to the protocol layer.

SessionName (variable): A variable -length field that contains a 0 -terminated wide character array
that specifies the game session name. This field's position is determined by
dwSessionNameOffset and the size stated in dwSessionNameSize

Reply (variable): A variable -length field that contains a byte array that provides the reply. This
field's position is determined by dwReplyOffset and the size stated in ~ dwReplySize
2215 DN_NAMETABLE_ENTRY_INFO

The DN_NAMETABLE_ENTRY_INFO containsa player or group thatexistsina DirectPlay 8 name
table . This includes all the information that the DirectPlay 8 Protocol: Core and Service Providers

would need about a certain entry.

dpnid

dpnidOwner

dwFlags

dwVersion

dwVersionNotUsed

dwDNETVersion

dwNameOffset

dwNameSize

dwDataOffset
dwDataSize
dwURLOffset
dwURLSize
dpnid (4 bytes): A 32 -bit integer that specifies the DirectPlay identifier (DPNID) of the player or
group that has been defined by the host/server. For more information about DPNIDs, see section
2.2.7.
dpnidOwner (4 bytes): A 32 -bit integer that provides the DirectPlay identifier (DPNID) for the owner
of the player or group. When the DN_NAMETABLE_ENTRY_INFO message represents a g roup, that
is, NAMETABLE_ENTRY_FLAG_GROUP issetinthe dwFlags field, the dpnidOwner field MUST
be nonzero. When DN_NAMETABLE_ENTRY_INFO represents a player, dpnidOwner SHOULD be
set to zero when sending and MUST be ignored on receipt. For more informatio n about DPNIDs,

see section 2.2.7.

27 1 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

dwFlags (4 bytes): A 32 -bit integer that specifies the name table entry flags. Entries are OR'd
together.

Value Meaning
NAMETABLE_ENTRY_FLAG_LOCAL The name table entry is the local player.
0x00000001
NAMETABLE_ENTRY_FLAG_HOST The name table entry is the host.
0x00000002
NAMETABLE_ENTRY_FLAG_ALL_PLAYERS_GROUP The name table entry is the All Players Group.
0x00000004
NAMETABLE_ENTRY_FLAG_GROUP The name table entry is a group.
0x00000010
NAMETABLE_ENTRY_FLAG_GROUP_AUTODESTRUCT | The name table entry supports group autodestruct.
0x00000040
NAMETABLE_ENTRY_FLAG_PEER The name table entry is a peer. In peer -to-peer mode,
0x00000100 the name table entry represe nting the host of the
game session is also marked as a peer.
NAMETABLE_ENTRY_FLAG_CLIENT The name table entry is a client.
0x00000200
NAMETABLE_ENTRY_FLAG_SERVER The name table entry is a server.
0x00000400
NAMETABLE_ENTRY_FLAG_CONNECTING The name table entry is connecting.
0x00001000
NAMETABLE_ENTRY_FLAG_AVAILABLE The name table entry is to make the member
0x00002000 available for use.
NAMETABLE_ENTRY_FLAG_DISCONNECTING The name table entry to indicate disconnecting.
0x00004000
NAMETABLE_ENTRY_FLAG_INDICATED The name table entry to indicate connection to the
0x00010000 application.
NAMETABLE_ENTRY_FLAG_CREATED The name table entry to indicate the application was
0x00020000 given a created player.
NAMETABLE_ENTRY_FLAG_NEED_TO_DESTROY The name table entry to indicate the need to destroy
0x00040000 the player.
NAMETABLE_ENTRY_FLAG_IN_USE The name table entry to indicate that the player is in
0x00080000 use.
dwVersion (4 bytes): A 32 -bit integer that specifies the version number of the name tab le.
dwVersionNotUsed (4 bytes): Not used.
dwDNETVersion (4 bytes): A 32 -bit integer that provides the DirectPlay version.

28 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

0x00000001 DirectX 8.0

0x00000002 DirectX 8.1

0x00000003 PocketPC

0x00000004 Not used.

0x00000005 Windows Server 2003

0x00000006 DirectX 8.2

0x00000007 DirectX 9.0

0x00000008 DirectX 9.0

dwNameOffset (4 bytes): The offset, in bytes, from the end of dwPacketType tothe name field.
(Defined in DN_SEND_CONNECT_INFO). If dwNameOffset is 0, there is not a name.

dwNamesSize (4 bytes): The size, in bytes, of the name field. (Specified in section 2.2.1.4). If
dwNameOffset is 0, dwNameSize SHOULD also be 0. If dwNameOffset isnot 0,
dwNameSize SHOULD also not be 0.

dwDataOffset (4 bytes): The offset, in bytes, from the end of dwPacketType tothe data field. If
dwDataOffset is 0, there is no additional data.

dwDataSize (4 bytes): The size, in byte s, of the data field. If dwDataOffset is 0, dwDataSize
SHOULD also be 0. If dwDataOffset isnot0, dwDataSize SHOULD also not be 0.

dwURLOffset (4 bytes): The offset, in bytes, from the end of dwPacketType tothe url field.
Specified in section 2.2.8).

dwURLSize (4 bytes): The size, in bytes, of the url field.

22.16 DN_NAMETABLE_MEMBERSHIP_INFO

The DN_NAMETABLE_MEMBERSHIP_INFO structure contains information about a name table's group
and player memberships. The number of DN_NAMETABLE_MEMBERSHIP_INFO structures in this
packet is specified in the dwMembershipCount field.

1 2 3
0(1|2|3(4|5|6|7(8(9|0|1(2(3|4|5[(6|7|8|9|0(1|2|3|4|5|6|7|8|9|0]|1
dpnidPlayer
dpnidGroup
dwVersion
dwVersionNotUsed
dpnidPlayer (4 bytes): A 32 -bit integer that specifies the DirectPlay identifier for the user. For

more information, see section 2.2.7 .
dpnidGroup (4 bytes): A 32 -bit integer that provides the DirectPlay identifier for the group. For

more information, see section 2.2.7.

29 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

dwVersion (4 bytes): A 32 -bit integer that specifies the name table version.

dwVersionNotUsed (4 bytes): Not used.

2217 DN_A DD_PLAYER (Peer -to -Peer Mode Only)

The DN_ADD_PLAYER packet is sent from the host andinstructs peers to add a specified peer to the
game session

0(1(2|3|4|5|6|7(8[|9|0(1|2|3|4|5[6[|7|8|9|0]|1|2|3|4[|5|6|7|8|9|0]1

dwPacketType

dpnid

dpnidOwner

dwFlags

dwVersion

dwVersionNotUsed

dwDNETClientVersion

dwNameOffset

dwNameSize

dwDataOffset

dwDataSize

dwURLOffset

dwURLSize

url (variable)

data (variable)

name (variable)

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

30 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

0x000000D0

DN_MSG_INTERNAL_ADD_PLAYER Instructs peers to add the specified peer to the game session.

dpnid (4 bytes): A 32 -bit field that contains the identifier of the peer to add. For more information,

see section 2.2.7 .

dpnidOwner (4 bytes): A 32 -bit field that contains the identifier of the game session owner. For

more information, see section 2.2.7.

dwFlags (4 bytes): A 32 -bit field that contains player flags.

Value

Meaning

NAMETABLE_ENTRY_FLAG_LOCAL
0x00000001

name table entry is the local player.

NAMETABLE_ENTRY_FLAG_HOST
0x00000002

Name table entry is the host.

NAMETABLE_ENTRY_FLAG_ALL_PLAYERS_GROUP
0x00000004

Name table entry is the All Players Group.

NAMETABLE_ENTRY_FLAG_GROUP
0x00000010

Name table entry is a group.

NAMETABLE_ENTRY_FLAG_GROUP_AUTODESTRUCT
0x00000040

Name table entry supports group autodestruct.

NAMETABLE_ENTRY_FLAG_PEER
0x00000100

Name ta ble entry is a peer.

NAMETABLE_ENTRY_FLAG_CLIENT
0x00000200

Name table entry is a client.

NAMETABLE_ENTRY_FLAG_SERVER
0x00000400

Name table entry is a server.

NAMETABLE_ENTRY_FLAG_CONNECTING
0x00001000

Name table entry is connecting.

NAMETABLE_ENTRY_FLAG_AVAILABLE
0x00002000

Name table entry is to make member available for
use.

NAMETABLE_ENTRY_FLAG_DISCONNECTING
0x00004000

Name table entry to indicate disconnecting.

NAMETABLE_ENTRY_FLAG_INDICATED
0x00010000

Name table entry to indic ate connection to an
application.

NAMETABLE_ENTRY_FLAG_CREATED
0x00020000

Name table entry to indicate that the application was
given the created player.

NAMETABLE_ENTRY_FLAG_NEED_TO_DESTROY
0x00040000

Name table entry to indicate that the game session
owner needs to destroy a player.

NAMETABLE_ENTRY_FLAG_IN_USE

Name table entry to indicate that the player is in use.

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

31/091

Value Meaning

0x00080000
dwVersion (4 bytes): A 32 -bit field that specifies the current name table version number.
dwVersionNotUsed (4 bytes): Not used.
dwDNETClientVersion (4 bytes): A 32 -bit field that contains the DirectPlay version of the client

being added to the game session.

Value Meaning

0x00000001 DirectX 8.0

0x00000002 DirectX 8.1

0x00000003 PocketPC

0x00000004 Not used

0x00000005 Windows Server 2003

0x00000006 DirectX 8.2

0x00000007 DirectX 9.0

0x00000008 DirectX 9.0

dwNameOffset (4 bytes): A 32 -bit field that contains the offset from the end of dwPacketType to
the peer name. If this field is 0, the packet does not include the peer name.

dwNamesSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the nam e lf
dwNameOffset is 0, dwNameSize SHOULD also be 0. If dwNameOffset isnot 0,
dwNameSize SHOULD also not be 0.

dwDataOffset (4 bytes): A 32 -bit field that contains the offset from the end of dwPacketType to
peer data. If this field is 0, the packet does not include peer data.
dwDataSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the peer data. If

dwDataOffset is 0, dwDataSize SHOULD also be 0. If dwDataOffset isnot 0, dwDataSize
SHOULD also not be 0.

dwURLOffset (4 bytes): A 32 -bit f ield that contains the offset from the end of dwPacketType to
the peer URL.
dwURLSize (4 bytes): A 32 -bit field that specifies the size, in bytes, of the connecting peer's URL
address.
url (variable): A variable -length field that contains an array of chara cters that specify the client URL.
data (variable): A variable -length field that specifies a byte array of characters that contain user
data.
name (variable): A variable -length field that specifies an array of wide characters that contain the

peer name including the NULL termination character.

32 /091

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.1.8 DN_ACK_CONNECT_INFO

The DN_ACK_CONNECT_INFO packet is sent from the client/pe er to the server/host to acknowledge
the receipt of connection information. This packet contains no user data beyond the packet type field.

0(1(2|3|4|5(6|7(8]|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7|8|9|0]|1

dwPacketType
dwPacketType (4 bytes): A 32 -bit field that contains the packet type.
Value Meaning
DN_MSG_INTERNAL_ACK_CONNECT_INFO Acknowledges (ACK) the receipt of game session information.
0x000000C3

22.19 DN_INSTRUCT_CONNECT

The DN_INSTRUCT_CONNECT packet instructs a peer to connect to a designated peer. This packet
uses the CONNECT and CONNECTED packets defined in MC-DPL8R] sections 2.2.1.1 and 2.2.1.2. For

an example of the message sequence for these packets, see [MC -DPLB8R] section 4.1.

1 2 &
0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6[7|8|9|0|1|2|3|4[(5|6|7|8|9|0]1
dwPacketType
dpnid
dwVersion
dwVersionNotUsed
dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_INSTRUCT_CONNECT Instructs a peer to connect to a designated peer.

0x000000C6
dpnid (4 bytes): A 32 -bit field that contains the identifier of the designated client to which the
connection is being made. For more information, see section 22.7 .
dwVersion (4 bytes): A 32 -bit field that contai ns the current version of the name table
dwVersionNotUsed (4 bytes): Not used.
2.2.1.10 DN_SEND_PLAYER_DPNID
The DN_SEND_PLAYER_DPNID packet is used to send a user ide ntification number to another client.

33/091

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14

0(1(2|3|4|5(6|7(8]|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6(|7|8|9|0]|1

dwPacketType
dpniD
dwPacketType (4 bytes): A 32 -bit field that contains the packet type.
Value Meaning

DN_MSG_INTERNAL_SEND_PLAYER_DNID Sends user identification to another client/peer.
0x000000C4

dpnID (4 bytes): A 32 -bit field that contains the identifier of the client/peer. For more information,
see section 2.2.7 .

22111 DN_INSTRUCTED_CONNECT_FAILED

The DN_INSTRUCTED_CONNECT_FAILED packet is sent from a peer to indicate that it was unable to
carry out a host instruction to connect to a new peer.

0(1(2|3|4|5(6|7(8]|9(0|1|2|3|4|5|6|7|8[9|0(1|2(|3|4(5|6|7|8|9|0]|1

dwPacketType
dpnID

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_INSTRUCTED_CONNECT_FAILED Indicates that a peer was unable to carry out a host's

0x000000C7 instruction to connect to a new peer.
dpniD (4 bytes): A 32 -bit field that contains the identifier for the peer to which the attempted

connection failed. For more information, see section 2.2.7 .
22112 DN_CONNECT_ATTEMPT_FAILED
The DN_CONNECT_ATTEMPT_FAILED packet is sent from the host to aconnecting peer to indicate
that an existing peer in the game session was unable to carry out the host's instruction to connect to
a new peer.
1 2 3

0(1(2|3|4|5(6|7(8]|9(0|1|2|3(4|5|6|7|8[9|0(1|2(3|4(5|6|7|8|9|0]|1

dwPacketType

dpniD

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

34 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

DN_MSG_INTERNAL_CONNECT_ATTEMPT_FAILED Indicates from the host that an existing peer was unable

0x000000C8 to carry out the host's instruction to connect to a new
peer.
dpniD (4 bytes): A 32 -bit field that contains the identifier for the existing peer in the game session
that was unable to connect to the new peer. For more information, see section 2.2.7 .

2.2.2 Disconnect Messages

2221 DN_TERMINATE_SESSION

The DN_TERMINATE_SESSION packet instru cts the client or the peer to disconnect from the game
session

0(1(2|3|4|5|6|7(8|9|0(1|2|3|4|5[(6|7|8|9|0]|1|2|3|4[(5|6|7|8|9|0]1

dwPacketType

dwTerminateDataOffset

dwTerminateDataSize

TerminateData (variable)

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_TERMINATE_SESSION Instructs the client or the peer to close and disconnect itself
0x000000DF from the game session.

dwTerminateDataOffset (4 bytes): A 32 -bit field that contains the offset from the end of
dwPacketType for the data passed from the server/host application that describes why the client
or the peer is being terminated.

dwTerminateDataSize (4 bytes): A 32 -bit field that contains the size, in bytes, of the terminate
data. If dwTerminateDataOffset is 0, dwTerminateDataSize SHOULD also be 0. If
dwTerminateDataOffset isnot 0, dwTerminateDataSize SHOULD also not be 0.

TerminateData (variable): A variable -length field that contains a byte array from the application
that describes why the client or the peer i s being terminated from the game session.

2222 DN_DESTROY_PLAYER

The DN_DESTROY_PLAYER packet instructs the peer to remove a specified user from its name table

35/091

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1({2|3|4|5(6|7|8]|9(0|1|2|3|4|5|6|7|8[9|0(1|2|3|4|5|6(|7|8|9]|0

dwPacketType

dpnidLeaving

dwVersion

dwVersionNotUsed

dwDestroyReason

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_DESTROY_PLAYER Instructs the peer to remove the specified peer from the name

0x000000D1 table.
dpnidLeaving (4 bytes): A 32 -bit field that contains the identifier of the client or server to remove
from the name table. For more information, see section 2.2.7 .
dwVersion (4 bytes): A 32 -bit field that contains the cu rrent name table version number.
dwVersionNotUsed (4 bytes): Not used.
dwDestroyReason (4 bytes): A 32 -bit field that contains the reason for terminating the specified
client or server.
Value Meaning
DPNDESTROYPLAYERREASON_NORMAL Peer/host is leavi ng.
0x0001
DPNDESTROYPLAYERREASON_CONNECTIONLOST Connection to peer was lost.
0x0002
DPNDESTROYPLAYERREASON_SESSIONTERMINATED Game session was terminated.
0x0003
DPNDESTROYPLAYERREASON_HOSTDESTROYEDPLAYER | Host removed the peer.
0x0004

2223 DN_HOST_MIGRATE

The DN_HOST_MIGRATE packet is sent from the new host toall remaining peers inthe game

session to notify them that a migration is taking place.

0(1(2|3|4|5(6|7(8]|9(0|1|2|3|4|5|6|7|8[9|0(1|2(|3|4|5|6(|7|8|9]|0

dwPacketType

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

36 /91

dpnidOldHost

dpnidNewHost
dwPacketType (4 bytes): A 32 -bit field that contains the packet type.
Value Meaning

DN_MSG_INTERNAL_HOST_MIGRATE Notified peers in the game session that the host is currently migrating.

0x000000CD
dpnidOldHost (4 bytes): A 32 -bit field that contains the identifier for the host that has just
disconnected. For more information, see section 2.2.7 .
dpnidNewHost (4 bytes): A 32 -bit field that contains the identifier fo r the newly assigned host that

is in the process of migrating. For more information, see section 2.2.7.

2224 DN_NAMETABLE_VERSION

The DN_NAMETABLE_VERSION packet specifies the version number of the name table
1 2 &
0|1|2(3|4|5|6|7|8|9|0|1|2|3|4|5(6|7|8(9|0|1(2|3|4|5[|6|7|8[9|0]|1
dwPacketType
dwVersion
dwVersionNotUsed

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_NAMETABLE_VERSION Specifies the version number of the name table.

0x000000C9
dwVersion (4 bytes): A 32 -bit field that contains the current name table version number.
dwVersionNotUsed (4 bytes): Not used.

2.2.25 DN_RESYNC_VERSION

The DN_RESYNC_VERSION packet is used to request that the name table version number be
resynchronized to the current version number.

0(1(2|3|4|5(6|7(8]|9(0|1|2|3|4|5|6|7|8[9|0(1|2|3|4(5|6|7|8|9|0]|1

dwPacketType

dwVersion

37 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

dwVersionNotUsed

dwPacketType (4 bytes): A 32 -hit field that contains the packet type.
Value Meaning
DN_MSG_INTERNAL_RESYNC_VERSION Requests that the name table version number be resynchronized
0x000000CA to the current version number.
dwVersion (4 bytes): A 32 -bit field that contains the current name table version number.
dwVersionNotUsed (4 bytes): Not used.

2226 DN_REQ INTEGRITY_CHECK

The DN_REQ_INTEGRITY_CHECK packet requests that a host determine whether a target client is still
inthe game session

0123456789(1)123456789(2)12345678931
dwPacketType
dwReqgContext
dpnidTarget
dwPacketType (4 bytes): A 32 -bit field that contains the packet type.
Value Meaning

DN_MSG_INTERNAL_REQ_INTEGRITY_CHECK Requests that the host ~ determine whether a target peer is
0x000000E2 still in the game session.

dwRegContext (4 bytes): A 32 -bit field that contains the context for the request operation. Values
for the dwReqContext field SHOULD be ignored by the recipient.

dpnidTarget (4 bytes): A 32 -bit field that contains the identifier of the selected target peer for the
host to validate. For more information, see section 2.2.7 .

2227 DN_INTEGRITY_CHECK

The D N_INTEGRITY_CHECK packet is a request from a host to a peer inquiring whether the peer is
still in the game session

0(1(2|3|4|5(6|7(8]|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7|8|9|0]|1

dwPacketType

dpnidRequesting

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

38 /091

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

DN_MSG_INTERNAL_INTEGRITY_CHECK Host is requesting a peer to validate that it is still in the game

0X000000E3 session.
dpnidRequesting (4 bytes): A 32 -bit field that contains the identifier of the peer requesting this
validation. For more information, see section 2.2.7 .

2.2.2.8 DN_INTEGRITY_CHECK_RESPONSE

The DN_INTEGRITY_CHECK_RESPONSE packet is a response from a peer to the host confirming that it
is stillinthe game session

0(1(2|3|4|5(6|7(8]|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7(8|9|0]|1

dwPacketType
dpnidRequesting
dwPacketType (4 bytes): A 32 -bit field that contains the packet type.
Value Meaning

DN_MSG_INTERNAL_INTEGRITY_CHECK Host is requesting a peer to validate that it is still in the game
0x000000E4 session.

dpnidRequesting (4 bytes): Identifier of the peer that requested the validation. For more
information, see section 2.2.7 .

2229 DN_REQ NAMETABLE_OP

The DN_REQ_NAMETABLE_OP packet is sent from the new host toa peer withanewer name table
to request that the peer send back name table operations that have not yet been performed on the
host. If no newer name table exists, t his message is not sent.
1 2 3
0|1|2(3|4|5(6|7|8|9|0|1|2|3|4|5(6|7|8(9|0|1(2|3|4|5[|6|7|8[9|0]|1
dwPacketType
dwVersion
dwVersionNotUsed

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_REQ_NAMETABLE_OP Sent from the host after a migration requesting the name table
0x000000CB from a peer with a newer name table, if any exists.

dwVersion (4 bytes): A 32 -bit field that contains the current name table version number of the host.

39 /091

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

dwVersionNotUsed (4 bytes): Not used.

2.2.2.10 DN_ACK_NAMETABLE_OP
The DN_ACK_NAMETABLE_OP packet is sent from the peer thatis being queried for name table
information back to the new host . It will include all entries missing from the new host's name table.

1 2 &

0(1(2|3|4|5|6|7(8[|9|0(1|2|3|4|5[(6[|7|8|9|0]|1|2|3|4[|5|6|7|8|9|0]1

dwPacketType

dwNumEntries

dwMsgld

dwOpOffset

dwOpSize

op

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_REQ_NAMETABLE_OP Sent from the peer to the new host, acknowledging the new
0x000000CC name table information.

dwNumEntries (4 bytes): A 32 -bit field that contains the number of name table entries included.
The dwMsgld , dwOpOffset , dwOpSize ,and op fields are present in a DN_ACK_NAMETABLE_OP
mess age dwNumEntries times.

dwMsgld (4 bytes): A 32 -bit field that contains the internal message for the given name table
entry
Value Meaning

0x000000C6 | DN_INSTRUCT_CONNECT (section 2.2.1.9)

0x000000D0 DN_ADD_PLAYER (section 2.2.1.7)

0x000000D1 | DN_DESTROY_PLAYER (section 2.2.2.2)

0x000000D7 | DN_CREATE_GROUP (section 2.2.4.2)

0x000000D8 DN_DESTROY_GROUP (section 2.2.4.8)

0x000000D9 | DN_ADD_PLAYER_TO_GROUP (section 2.2.4.4)

0x000000DA | DN_DELETE_PLAYER_FROM_GROUP (section 2.2.4.6)

0x000000DB DN_UPDATE_INFO (section 2.2.5.2)

dwOpOffset (4 bytes): A 32 -bit field that contains the offset from end of dwPacketType for the
given operation buffer.

40 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

dwOpSize (4 bytes): A 32 -bit fie |d that contains the size for the given operation buffer.

op (4 bytes): A variable length field that contains the portion of the packet originally associated with
the name table operation, except for the dwPacketType field, as indicated by the dwMsgld
field. Each operation buffer is atomic to itself. For example, an op value corresponding to a
dwMsgld field value of 0x000000D1 would contain the dpnidLeaving , dwVersion
dwVersionNotUsed ,and dwDestroyReason field information from an original
DN_DESTROY_ PLAYER packet.

22211 DN_HOST_MIGRATE_COMPLETE
The DN_HOST_MIGRATE_COMPLETE packet informs peers that the session -hosting responsibilities
have successfully migra ted from the departing old host .

1 2 3

0(1(2|3|4|5|6|7(8|9|0(1|2|3|4|5[6|7|8|9|0|1|2|3|4[|5|6|7|8|9|0]1

dwPacketType
dwPacketType (4 bytes): A 32 -bit field that contains the packet type.
Value Meaning

DN_MSG_INTERNAL_HOST_MIGRATE_COMPLETE Informs peers that the session -hosting responsibilities
0x000000CE have successfully migrated from the departing old host.

2.2.3 Send/Receive Messages
There are two different types of user sends:

Normal: The sender does not care whether the receiving applica tion actually received the message.
In this case, the DN_SEND_DATA message is used.

Requested Completion: The sender REQUIRES confirmation that the message was delivered to the
receiving applicati on.

Note "Delivered to the receiving application" means that the message has been delivered to the
application layer, not simply obtained by the receiver's machine. In this case, the
DN_REQ PROCESS_COMPLETION message is used.

2.231 DN_SEND_DATA

The DN_SEND_DATA message is sent from one player to another player when the sending player's
application does not require ¢ onfirmation from the receiving player's application that the sent data has
been consumed.

0(1(2|3|4|5(6|7(8]|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6(|7(8|9|0]|1

payload (variable)

41/ 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

payload (variable): A variable -length field that contains the application data that is passed from one
application to another.

2.23.2 DN_REQ_PROCESS_COMPLETION

The DN_REQ_PROCESS_COMPLETION message is sent from one player to another player when the
sending player's application wants confirmation regarding when the sent data has been consumed by
the receiving player's application.

0(1(2|3|4|5|6|7(8[|9|0(1|2|3|4|5[6[|7|8|9|0|1|2|3|4[(5|6|7|8|9|0]1

dwPacketType

dwPacketContext

payload (variable)

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_REQ_PROCESS_COMPLETION Used to inform the receiving application that the sending

0x000000EQ application is requesting delivery verification.
dwPacketContext (4 bytes): A 32 -bit field that contains the system identifier for this action.
DN_PROCESS_COMPLETION needs to respond to this message in the iden tical manner in which it
was passed.
payload (variable): A variable -length field that contains the application data passed from one player
to another.

2233 DN_PROCESS_COMPLETION

The DN_PROCESS_COMPLETION message is returned to the peer that sent the data after the sent
payload has been consumed.

0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5(6|7|8|9|0]|1|2|3|4[|5|6|7|8|9|0]1

dwPacketType
dwPacketContext
dwPacketType (4 bytes): A 32 -bit field that contains the packet type.
Value Meaning

DN_MSG_INTERNAL_PROCESS_COMPLETION Informs the sender that the payload data has been consumed.
0x000000E1

42 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

dwPacketContext (4 bytes): A 32 -bit field that contains the system identifier for this action. The
response to this message SHOULD include this context in the identical manner as it was sent.

2.2.4 Group Messages (Peer -to - Peer Mode Only)

Note When working with groups , be aware of considerations related to DirectX Diagnostic
(DXDiag) . The DXDiag tool (DxDiag.exe) implementation of this specification does not support
groups.

2241 DN_REQ_CREATE_GROUP

The DN_REQ_CREATE_GROUP packet informs the host thata peer is requesting that a new group be
created for the game session

0(1(2|3|4|5|6|7(8[|9|0(1|2|3|4|5[6|7|8|9|0|1|2|3|4[|5|6|7|8|9|0]1

dwPacketType

dwPacketContext

dwGroupFlags

dwinfoFlags

dwNameOffset

dwNameSize

dwDataOffset

dwDateSize

data (variable)

name (variable)

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_REQ_CREATE_GROUP Informs the host that a peer is requesting that a new group
0x000000D2 be created in the game session.

dwPacketContext (4 bytes): A 32 -bit field that contains the system identifier for this action.
DN_CREATE_GROUP (see sec tion 2.2.4.2) SHOULD respond to this message in the identical
manner in which it was passed.

43 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

dwGroupFlags (4 bytes): A 32 -bit field that contains the flags passed in on creation of a group,
indica ting certain behavior.

Value Meaning

DPNGROUP_AUTODESTRUCT | Informs the host that the group SHOULD be deleted once all players have
0x00000001 been removed.

dwinfoFlags (4 bytes): A 32 -bit field that contains the flags passed in specifying the data that is to
be updated with this request.

Value Meaning

DPNINFO_NAME | Indicates whether a name is included with this packet.
0x00000001

DPNINFO_DATA Indicates whether data is included with this packet.
0x00000002

dwNameOffset (4 bytes): A 32 -bit field that contains the offset from the end of dwPacketType of
the name field for the group. If dwNameOffset is 0, the packet does not include name data.

dwNamesSize (4 bytes): A 32 -bit field that contains the size, in bytes, of the data in the name field.
If dwNameOffset issetto 0, dwNameSize SHOULD also be 0. If dwNameOffset is not 0,
dwNameSize SHOULD also not be 0.

dwDataOffset (4 bytes): A 32 -bit field that contains the offset from the end o f dwPacketType of
the data field. If dwDataOffset is 0, the packet does not include application data.

dwDateSize (4 bytes): A 32 -bit field that contains the size, in bytes, of the data field. If
dwDataOffset issetto 0, dwbDataSize SHOULD alsobe 0.If dwD ataOffset is notO0,
dwDataSize =~ SHOULD also not be 0.

data (variable): A variable -length field that contains the byte array that specifies the application
data. This field's position is determined by dwDataOffset and the size stated in dwDataSize

name (var iable): A variable -length field that contains the zero -terminated wide character array

that provides the group name. This field's position is determined by dwNameOffset and the size
stated in dw NameSize

2242 DN_CREATE_GROUP

The DN_CREATE_GROUP packet informs all of the connected peers thatthe new group has been
successfully created for the game session
1 2 3

0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6|7|8|9|0|1|2|3|4[|5|6|7|8|9|0]1

dwPacketType

dpnidRequesting

dwPacketContext
dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

44 | 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

DN_MSG_INTERNAL_CREATE_GROUP Informs the requesting peer that the group has been created.

0x000000D7
dpnidRequesting (4 bytes): A 32 -bit field that contains the DPNID of the peer that has requested
the group to be created. For more information, see section 227 .
dwPacketContext (4 bytes): A 32 -bit field that contains the value sent in with the

DN_REQ_CREATE_GROUP from the requesting peer. The value passed MUST be identical to that
which was passed in.

2243 DN_REQ ADD_PLAYER TO_GROUP

The DN_REQ_ADD_PLAYER_TO_GROUP packet informs the host thata peer isrequesting that a new
player be added to an existing group

0123456789(1)123456789512345678931
dwPacketType
dwPacketContext
dpnidGroup
dpnidPlayer
dwPacketType (4 bytes): A 32 -bit field that contains the packet type.
Value Meaning

DN_MSG_INTERNAL_REQ_ADD_PLAYER_TO_GROUP Informs the host that a peer is requesting to add a
0x000000D3 player to an existing grou p in the game session.

dwPacketContext (4 bytes): A 32 -bit field that contains the context value passed in for this
operation. It MUST be passed in exactly with DN_ADD_PLAYER_TO GROUP .

dpnidGroup (4 bytes): A 32 -bit field that contains the group that the peer is asking the new player
be added to. For more information, see section 2.2.7 .

dpnidPlayer (4 bytes): A 32 -bit field that contains the identifier of the player that is being added to
the existing group. For more information, see section 2.2.7.

2.24.4 DN_ADD_PLAYER TO _GROUP

The DN_ADD_PLAYER_TO_GROUP packet informs the peers thata player has been added to an
existing group .

0(1(2|3|4|5(6|7(8]|9(0|1|2|3|4|5|6|7|8[9|0(1|2(|3|4(5|6|7|8|9|0]|1

dwPacketType

45 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

dpnidGroup

dpnidPlayer

dwVersion

dwVersionNotUsed

dpnidRequesting

dwPacketContext

dwPacketType (4 bytes): A 32 -hit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_ADD_PLAYER_TO_GROUP Informs the peers that the host has added a player in a

0x000000D9 game session to a group.

dpnidGroup (4 bytes): A 32 -bit field that contains the group to which the peer has been added. For
more information, see section 2.2.7 .

dpnidPlayer (4 bytes): A 32 -bit field that contains the identifier of the peer that has been added to
the group. For more information, see section 2.2.7.

dwVersion (4 bytes): A 32 -bit integer that specifies the current name table version.

dwVersionNotUsed (4 bytes): Not used.

dpnidRequesting (4 bytes): A 32 -bit field that contains the identifier of the peer that has requested

the host to add a peer to a group. For more information, see section 2.2.7.

dwPacketContext (4 bytes): A 32 -bit field that contains the context value passed in for this
operation. T he value MUST be passed in exactly as it was received in
DN_REQ_ADD_PLAYER TO GROUP .

2.245 DN_REQ DELETE_PLAYER FROM_GROUP

The DN_REQ_DELETE_PLAYER_FROM_GRO UP packet informs the host thata peer isrequesting a
player beremov ed from an existing group

0123456789(1)123456789212345678931
dwPacketType
dwPacketContext
dpnidGroup
dpnidPlayer
dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

46 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Value Meaning

DN_MSG_INTERNAL_REQ DELETE_PLAYER_FROM_GROUP Informs the host that a peer is requesting to
0x000000D4 add a player in a game session to a group.

dwPacketContext (4 bytes): A 32 -bit field that contains the context value passed in for this
operation. The value MUST be passed in exactly with DN_DELETE_PLAYER_FROM_GROUP.

dpnidGroup (4 bytes): A 32 -bit field that contain s the group from which the peer is asking to have
the player removed. For more information, see section 2.2.7 .

dpnidPlayer (4 bytes): A 32 -bit field that contains the identifier of the player that is being removed

from the group. For more information, see section 2.2.7.

2246 DN_DELETE_PLAYER_FROM_GROUP

The DN_DELETE_PLAYER_FROM_GROUP packet informs the peers thata player has beenremoved

froma group

0(1(2|3|4|5|6|7(8[|9|0(1|2|3|4|5[(6|7|8|9|0]|1|2|3|4[|5|6|7|8|9|0]1

dwPacketType

dpnidGroup

dpnidPlayer

dwVersion

dwVersionNotUsed

dpnidRequesting

dwPacketContext

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_DELETE_PLAYER_FROM_GROUP Informs the peers that the host has removed a

0x000000DA player in a game session from a group.
dpnidGroup (4 bytes): A 32 -bit field that contains the group that has removed the player. For more
information, see section 2.2 .7.
dpnidPlayer (4 bytes): A 32 -bit field that contains the identifier of the player that was removed
from the group. For more information, see section 2.2.7.
dwVersion (4 bytes): A 32 -bit integer that specifies the current name table version.
dwVersionNotUsed (4 bytes): Not used.
dpnidRequesting (4 bytes): A 32 -bit field that contains the identifier of the peer that has requested
the host to remove a player from a g roup. For more information, see section 2.2.7.

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

47 /1 91

dwPacketContext (4 bytes): A 32 -bit field that contains the context value passed in for this
operation. The value MUST be passed in exactly as it was received in
DN_REQ_DELETE_PLAYER_FROM_GROUP.

2.247 DN_REQ DESTROY_GROUP

The DN_REQ_DESTROY_GROUP packet informs the host thata peer isrequestingthata group be
deleted from the game session

0(1(2|3|4|5|6|7(8[|9|0(1|2|3|4|5[6[|7|8|9|0|1|2|3|4[(5|6|7|8|9|0]1

dwPacketType

dwPacketContext

dpnidGroup

dpnidPlayer

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_REQ_DESTROY_GROUP Informs the host that a peer is requesting that a group
0x000000D5 be deleted from the game session.

dwPacketContext (4 bytes): A 32 -bit field that contains the context value passed in for this
operation. The value MUST be passed in exactly with DN_DESTROY_GROUP.

dpnidGroup (4 bytes): A 32 -bit field that contains the group from which the peer is asking to have
the player removed. For more information, see section 2.2.7 .

dpnidPlaye r (4 bytes): A 32 -bit field that contains the identifier of the player that is being removed
from the group. For more information, see section 2.2.7.

2248 DN_DESTROY_GROUP

The DN_DESTROY_GROUP packet informs the peers thata group has beenremoved from a game
session

0(1(2|3|4|5|6|7(8[|9|0(1|2|3|4|5[(6|7|8|9|0]|1|2|3|4[|5|6|7|8|9|0]1

dwPacketType

dpnidGroup

dwVersion

dwVersionNotUsed

dpnidRequesting

48 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

dwPacketContext

dwPacketType (4 bytes): A 32 -hit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_DESTROY_GROUP Informs the peers that the host has removed a group from the

0x000000D8 game session.
dpnidGroup (4 bytes): A 32 -bit field that contains the group that has been destroyed. For more
information, see section 2.2.7 .
dwVersion (4 bytes): A 32 -bit integer that specifies the current name table version.
dwVersionNotUsed (4 bytes): Not used.
dpnidRequesting (4 bytes): A 32 -bit integer identifying the peer that has requested the host to

delete a group. For more information, see section 2.2.7.

dwPacketContext (4 bytes): A 32 -bit field that contains the context value passed in for this

operation. The value MUST be passed in exactly as it was received in DN_REQ DESTROY_GROUP.

2.2.5 Update Information

2251 DN_REQ_UPDATE_INFO

The DN_REQ_UPDATE_INFO message is sent from a peer/client to the host/server to update
information about a specified peer/client in the game session

0(1(2|3|4|5|6|7(8[|9|0(1|2|3|4|5[(6|7|8|9|0]|1|2|3|4[|5|6|7|8|9|0]1

dwPacketType

dwPacketContext

dpnid

dwlinfoFlags

dwNameOffset

dwNameSize

dwDataOffset

dwDataSize

data (variable)

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

49 / 91

name (variable)

dwPacketType (4 bytes): A 32 -hit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_REQ_UPDATE_INFO Update info request from a peer/client to the host/server.
0x000000D6

dwPacketContext (4 bytes): A 32 -hit field that contains the context value passed in for this
operation. The value MUST be passed in exactly with DN_UPDATE_INFO .

dpnid (4 bytes): A 32 -bit field that contains the identifier for the peer/client to have update
information. For more information, see section 2.2.7 .

dwinfoFlags (4 bytes): A 32 -bit field that contains the flags passed in specifying the data fields that
are to be updated with this request.

Value Meaning

DPNINFO_NAME | Indicates whether a name is included with this packet.
0x00000001

DPNINFO_DATA Indicates whether data is included with this packet.
0x00000002

dwNameOffset (4 bytes): A 32 -bit field that contains the offset from the end of dwPacketType of
the name field for the dpnid. If dwNameOffset is 0, the packet does not include name data.

dwNamesSize (4 bytes): A 32 -bit field that contains the size, in bytes, of the data in the name field.
If dwNameOffset issetto 0, dwNameSize SHOULD also be 0. If dwNameOffset is not O,
dwNameSize SHOULD also not be 0.

dwDataOffset (4 bytes): A 32 -bit field that contains the offset from the end of dwPacketType of
the data field. If dwDataOffset is 0, the packet does not include application data.
dwDataSize (4 bytes): A 32 -bit field that contains the size, in bytes, of the data field. If

dwDataOffset issetto 0, dwDataSize SHOULD also be 0. If dwDataOffset is not O,
dwDataSize = SHOULD also not be 0.

data (variable): Avariable -length field that contains a byte array that provides the application data.
This field's position is determined by dwDataOffset and the size stated in dwDataSize

name (variable): A variable -length field that contains a zer o-terminated wide character array that
specifies the player's name. This field's position is determined by dwNameOffset and the size

stated in dwNameSize

2252 DN_UPDATE_INFO

Response from the host/server to a DN_REQ_UPDATE_INFO packet. This packet is sent to all players
with the updated information.

50 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1({2|3|4|5(6|7|8]|9(0|1|2|3|4|5|6|7|8[9|0(1|2|3|4|5|6(|7|8|9]|0

dwPacketType

dwPacketContext

dpnid

dwVersion

dwVersionNotUsed

dwinfoFlags

dwNameOffset

dwNameSize

dwDataOffset

dwDataSize

dpnidRequesting

data (variable)

name (variable)

dwPacketType (4 bytes): A 32 -bit field that contains the packet type.

Value Meaning

DN_MSG_INTERNAL_UPDATE_INFO Update info response from a host/server to a peer/client.
0x000000DB

dwPacketContext (4 bytes): A 32 -bit field that contains the context value passed in for this
operation. This value MUST be passed back exactly as it was passed in with
DN_REQ_UPDATE_INFO (section 2.2.5.1).

dpnid (4 bytes): A 32 -bit field that contains the identifier for the peer/client that was updated. For
more information, see section 2.2.7 .

dwVersion (4 bytes): A 32 -bit integer that specifies the current name table version.
dwVersionNotUsed (4 bytes): Not used.

dwlinfoFlags (4 bytes): A 32 -bit field that contains the passed flags that were updated.

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

51/ 091

Value Meaning

DPNINFO_NAME | Indicates whether a name is included with this packet.
0x00000001

DPNINFO_DATA Indicates whether data is included with this packet.

0x00000002
dwNameOffset (4 bytes): A 32 -bit field that contains the offset from the end of dwPacketType of
the name field forthe DPNID .If dwNameOffset is 0, the packet does not include name data.
dwNamesSize (4 bytes): A 32 -bit field that contains the size, in bytes, of the data in the name field.

If dwNameOffset issetto 0, dwNameSize SHOULD also be 0. If dwNameOffset isnot 0,
dwNameSize SHOULD also not be 0.

dwDataOffset (4 bytes): A 32 -hit field that contains the offset from the end of dwPacketType of
the data field. If dwDataOffset is 0, the packet does not include ap plication data.
dwDataSize (4 bytes): A 32 -bit field that contains the size, in bytes, of the data field. If

dwDataOffset issetto 0, dwbDataSize SHOULD also be 0. If dwDataOffset is not O,
dwDataSize =~ SHOULD also not be 0.

dpnidRequesting (4 bytes): A 32 -bit field that contains the identifier for the player that requested
that this information be updated. For more information, see section 2.2.7.

data (variable): Avariable -length field that contains a byte array that provides the application data.
This fie Id's position is determined by dwDataOffset and the size stated in dwDataSize

name (variable): A variable -length field that contains a zero -terminated wide character array that
specifies the player's name. This field's position is determined by dwNameOffset and the size
stated in dwNameSize

226 DN_NAMETABLE

The name table isaconceptused by DirectPlay to keep all participants in a game session in sync
with the different actions that are being performed.

The name table is really a table of players and groups that are included in the game session. Each
change to the state of the table is a versioned name table operation. Any participant in the game

session who applies these operations will generate a view that is consistent w ith every other players'
name table.

The following table identifies the name table operations that can be performed.

Action Meaning

0x000000C6 DN_INSTRUCT_CONNECT (section 2.2.1.9)

0x000000D0 | DN_ADD_PLAYER (section 2.2.1.7)

0x000000D1 | DN_DESTROY_PLAYER (section 2.2.2.2)

0x000000D7 DN_CREATE_GROUP (section 2.2.4.2)

0x000000D8 DN_DESTROY_GROUP (section 2.2.4.8)

0x000000D9 | DN_ADD_PLAYER_TO_GROUP (section 2.2.4.4)

0x000000DA DN_DELETE_PLAYER_FROM_GROUP (section 2.2.4.6)

52 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Action Meaning

0x000000DB DN _UPDATE_INFO (section 2.2.5.2)

The host/server is responsible for all name table operations, and all peers inthe game session MUST
maintain their own name t able copy for use in host migration . All participants MUST also preserve a
record of all operations that they have performed on the name table that have incremented the

version number used durin g host migration.

The first operation in the name table is set to a version number of 1 and each subsequent operation

increments the version by one. Every time the modulo 4 result of the new version number of the

name table is equal to 0, each non -host pee r SHOULD senda DN_NAMETABLE_VERSION message to
the host reporting the current name table version of the peer. The host SHOULD track the versions

reported by all peers and determine the oldest ver sion number from all reports. When the oldest

version number advances, the host SHOULD send a DN_RESYNC_VERSION message to all participants
indicating the new oldest value. All participants SHOULD then release their records of all name table
operations with versions older than this value, as they will no longer be needed during host migration.

2277 DN_DPNID

The DPNID is a unique identifier created by a DirectPlay host and server for each player and group
included ina game session . A DPNID value is cre ated for a player or group at the time when that

player or group is added to the game session. The DPNID for each player and group in the game

session MUST be unique. The value 0x0 is an invalid value for a DPNID.

The DPNID for a player or group is generat ed in several steps, at the time when the player or group is
added to the game session.

1. The index of the entry in the name table that was used to create the player or group is stored in
the lowest 20 bits of the DPNID. For example, when the index of the entry within the name table
is 5, the index is stored as follows:

OxXNNNOO0005

2. Along with the index, the version of the name table that existed when the entry was created is
also stored. For example, when the name table version is 10 (0x0A), the index is stored as
follows:

0x00A00005

3. This value is then XOR'd with the first 32 bits of the game session instance GUID to obfuscate.
For example, if the instance GUID begins with 0xA1B2C3D4, the DPNID 0x00A00005 value would
be XOR'd with 0OxA1B2C3D4 to obfuscate as follows:

0xA112C3D1

It is important to point out that the DirectPlay host will use the DPNID of a player or group to
determine the location for this entry in the name table.

2.2.8 DN_ADDRESSING_URL

DirectPlay represents addres ses for an application in the form of a URL. The structure of the URL is
as follows:

x-directplay:/keyl=valuel;key2=value2;key3=value3;...

All configuration information for a provider is specified using "key=value" pairs separated by
semicolons.

53 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Note This is the opaque representation of a URL, where a single slash mark "/" is used as a scheme
terminator, not double slash mark "//".The responsibility of data interpretation is placed on the
consumer of the URL and nothing else can be assumed.

A DirectPlay URL has three components: the scheme, the scheme separator, and the URL data:
Scheme : The scheme used for a DirectPlay URL is "x -directplay".

Scheme separator : The scheme separator is simply the string ":/" (a colon followed by a slash
mark), implying tha t the data that follows is "opaque” and does not conform to the Internet standard.
It MUST NOT be ":/I" (a colon followed by two slash marks) because the addition of the second slash

mark implies an Internet standard for the remaining data, and the DirectP lay data does not conform to

the Internet standard. If the second slash mark is detected, DirectPlay will flag the URL as invalid.

URL data : The URL data is a combination of "key=value" strings, where each string is separated by a

semicolon. The semicolon character is reserved by the URL specification as being scheme -specific, and

all of the URL data MUST be in canonicalized form to prevent misinterpretation.

There are no ordering requirements for the "key=value" pairs in the data, except for the "provider”

key that is expected to be first to speed up parsing. All "key" identifiers SHOULD be lower -case and

SHOULD not contain characters that are considered reserved, including the semicolon (;), the slash

mark (/), the question mark (?), the colon (:), the at sign (@), the equals sign (=), the ampersand

(&), and the number sign (#). All "value" strings will be treated as case -sensitive to cover future uses.

The following table identifies the current "keys" and their valid "values".

Key Value

applicationins tance | Text representation of a GUID for an application instance.

baud Any valid baud rate (subject to potential validation). Used by modem and serial links
device Text representation of a device GUID.

flowcontrol "NONE", "XONXOFF", "RTS", "DTR", or "RTSDTR". Used by modem and serial links.
hostname Any valid hostname, used only for IP and Internetwork Packet Exchange (IPX)
parity "NONE", "EVEN", "ODD", "MARK", or "SPACE". Used by modem and serial links.
phonenumber Any valid telephone n umber. Used by modem links.

port Any valid port address, used for IP and IPX, up to the maximum port value of 65535.
program Text representation of the program GUID.

provider Text representation of the service provider GUID.

stopbits "1", "1.5", or "2". Used by modem and serial links.

Note The URL specification reserves the question mark character (?) and the number sign (#) to
represent "extra information” at the end of a URL. DirectPlay reserves the number sign token to
indicate "user data" appended to the end of a URL. The concept of user data is provided as a means to
supply application -specific information in a DNAddress while performing a lobbied launch of that
application.

URL Examp les

IP Address

x- directplay:/

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

54 [/ 91

provider=%7BEBFE7BAO - 628D- 11D2- AEOF 006097B01411%7D;
device=%7BIP ADAPTER GUID%7D;port=0000230034#|PUserData

IPX Address

x- directplay:/
provider=%7B53934290 - 628D- 11D2- AEOF 006097B01411%7D;
device=%7BIPX ADAPTER GUID%7D;por t=00230#IPXUserData

Serial Address

x- directplay:/
provider=%7B743B5D60 - 628D- 11D2- AEOF 006097B01411%7D;
device=%7BCOM PORT GUID%7D;baud=57600;stopbits=1;parity=NONE;
flowcontrol=RTSDTR#SerialUserData

Modem Address

x- directplay:/
provider=%7B6D4A3650 - 628D 11D2- AEOF 006097B01411%7D;
device=%7BMODEM DEVICE GUID%7D;
phonenumber=555 - 1212#ModemUserData

2.29 DN_ALTERNATE_ADDRESS (IPv4)

In DirectPlay 9, the DN_ALTERNATE_ADDRESS structure provides additional options for Internet
Protocol (IP) connectivity. The alternative addresses included in DN_ALTERNATE_ADDRESS are
supplemental to the primary address specified in the DN_ADDRESSING_URL structure.

In the DN_ALTERNATE_ADDRESS structure, the wPort field is derived from its conversion into a 2 -
byte binary value, and the dwAddrin field is derived from its conversion into a 4 -byte binary value.

Bot h of these fields are treated as single binary buffers, and therefore, are not handled in network

byte order . For example, a port value of 2302 would be converted into its 2 - byte binary value of
00001000 11111110, and an IPv4 transport address of 65.52.239.061 would be converted into its 4 -
byte binary IN_ADDR value of 01000001 00110100 11101111 00111101.

The DN_ALTERNATE ADDRESS (IPv6) (section 2.2.10) structure demonstrates the contents of the
same structure when it contains an IPv6 alternative address.

bSize bFamily wPort

dwAddrin

bSize (1 byte): The size of this DN_ALTERNATE_ADDRESS (IPv4) structure excluding the size of this
bSize field.

bFamily (1 byte): The address family for this DN_ALTERNATE_ADDRESS (IPv4) structure, which
MUST be set to 0x02.

wPort (2 bytes): The port value for this DN_ALTERNATE_ADDRESS (IPv4) structure. This field is
treated as a single buffer and is not specified in network byte order.

55 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

dwAddrin (4 bytes): The address of the corresponding IN_ADDR (IPv4) structure for this
DN_ALTERNATE_ADDRESS (IPv4) structure, as described in MS -DPDX] section 2.2.35.1. This
field is treated as a single buffer and is not specified in network byte order.

2.210 DN_ALTERNATE_ADDRESS (IPv6)

The DN_ALTERNATE_ADDRESS structure is described in detail in section 229 .

The following diagram r epresents the contents of the structure when it contains an IPv6 alternative
address. The DN_ALTERNATE_ADDRESS (IPv4) (section 2.2.9) structure demonstrates the contents of
the same structure wh en it containsan IPv4 alternative address.

0(1(2|3|4|5(6|7(8]|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7|8|9|0]|1

bSize bFamily wPort

dwAddrin (16 bytes)

bSize (1 byte): The size of this DN_ALTERNATE_ADDRESS (IPv6) structure excluding the size of this
bSize field.

bFamily (1 byte): The address family for this DN_ALTERNATE_ADDRESS (IPv6) structure, which
MUST be set to Ox17.

wPort (2 bytes): The port value for this DN_ALTER NATE_ADDRESS (IPv6) structure. This field is
treated as a single buffer and is not specified in network byte order

dwAddrin (16 bytes): The address of the corresponding IN6_ADDR (IPv6) structur e for this
DN_ALTERNATE_ADDRESS (IPv6) structure, as described in MS -DPDX] section 2.2.36.1. This
field is treated as a single buffer and is not specified in network byte orde r.

56 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-DPDX%5d.pdf#Section_fa7b2fcb3b4642db9e472d8069741263
%5bMS-DPDX%5d.pdf#Section_fa7b2fcb3b4642db9e472d8069741263

3 Protocol Details

3.1 Connect Role Details

Client
1
Wait for
O—Send CONNECt — - responss Protocol error/timeout Cleanup
Receive Connect Info Message error
Error or Timeout
2
Process
Message Send ACK

Figure 1: Role of a client when joining the client to the session
The role of a client when attempting to connect to the session:

1. Theclientsendsa DN_INTERNAL _MESSAGE_PLAYER_CONNECT_ INFO message (section 2.2.1.1)
to the server and waits for the DN_SEND_CONNECT_INFO message (section 2. 2.1.4) to be sentin
response. If the server does not respond in time, the protocol times out and terminates the
connection.

Note When the client sends the DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO message, it

includes the user -provided password described in section 5.2 . When the server receives the
message, it attempts to verify the password as described in Step 4 of section 3.1.5.1 . If the server
is able to verify the password, it sends a DN_SEND_CONNECT_INFO message to bring the new

client into consistency with regard to the current application description state and player list. The

DN_SEND_CONNECT_INFO message includes the current user password, which is essentially a
redundant echo of the password that was verified by the server. However, if the server is unable

to ve rify the password and validation fails, the server sends a DN_CONNECT_FAILED message
(section 2.2.1.3) with the hResultCode field set to DPNERR_INVALIDPASSWORD or to another
validation failure cod e.

2. When the DN_SEND_CONNECT_INFO message is received from the server, the client processes
the message. After the message is successfully processed, the client MUST send a
DN_ACK_CONNECT_INFO mess age (section 2.2.1.8) to the server. If an error occurs during
message processing, the client performs cleanup and ends the connection attempt.

57 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

server
1

Q—Receive Connect—ims ;Eﬁsﬁzse peee————Packet error——y Cleanup

Send Connect Info

2 Protocol error/timeout
Wait for
Message Message errar Error or Timeout

Receive ACK

3
Process
Message Done

Figure 2: Role of the server when joining the client to the session
The role of the s erver when responding to a request from a client to be joined to the game session:

1. The server receives a DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO message from the client
and begins message processing. If an error occurs during message processing, the messag eis
ignored. Otherwise, the server responds to the client with a DN_SEND_CONNECT_INFO message
that includes the connection data for the game session

2. The server waits fora DN_ACK_CONNECT_INFO message from the client. If the client does not
send the acknowledgment (ACK) in time, the protocol times out and terminates the connection.

3. When the DN_ACK_CONNECT_INFO message from the client is received by the server, the server
processes the ACK. After the ACK is successfully processed, the connection is made and the client
is joined to the game session. If an error occurs during message processing, the server performs
cleanup and ends the co nnection attempt.

58 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Peer

1
Oﬁ Start Connect— gﬁa&iﬁs‘; —Mtﬁ'ei;ﬁgmrm—r Cleanup
Recelve Connect Info Message error

Connect failed

. /

Message Protocol error/timeout

Send ACK

Message error Error or Timeout
3 4 Connect failed

o | Wait for Peer
o Connects
Maore) ‘
DENIDS Receive DPMNIDs
4 ¢
Process Connected

Message

Figure 3: Role of a peer when adding the peer to the session
The role of a peer when attempting to be added to the game session:

1. The nascent peer sends a DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO message to the
host and waits for a response. If the host does not respond in time, the protocol times out and
terminates the con nection.

2. When the DN_SEND_CONNECT_INFO message is received from the host, the nascent peer
processes the message. The peer MUST maintain a copy of the name table information for each
peer in the game session as specified in the DN_NAMETABLE_ENTRY_INFO fiel d of the
message. After the message is successfully processed, the nascent peer MUST send a
DN_ACK_CONNECT_INFO message to the host. If an error occurs during message processing, the
nascent peer performs cleanup and ends the connection attempt.

3. After ackn owledging the connection, the nascent peer waits to receive DN_SEND_PLAYER_DPNID
messages (section 2.2.1.10) from all other connected, established peers in the game session. If all
connected, esta blished peers do not respond in time, the protocol times out and terminates the
connection.

59 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4. When a DN_SEND_PLAYER_DPNID message is received from an established peer, the nascent
peer processes the message. If an established peer is unable to connect to the nascent peer:

A The established peer responds to the host with a DN_INSTRUCTED_CONNECT_FAILED
message (section 2.2.1.11).

A The connection attempt is canceled.

A The hostissuesa DN_CONNECT _ATTEMPT_FAILED message (section 2.2.1.12) to the nascent
peer.

Otherwise, when DN_SEND_PLAYER_DPNID messages have been successfully received from all
other connected, established peers, the nascent peer is connected and added to the game session.

Host
1

Q—RE{EWE Connect—pm ﬁl:;o&-;zsgse l————Message error- » Difﬂc:annnuel;:t-"

Send Cl:lnll'lect Info f

Add Player Protocol
5 error/timeout
Wait for Aa e Error)
Message Ennnegt Failed Error or Timeout
Receive ACK
3
Process
Message Send Connect / Connected

Figure 4: Role of the host when adding a peer to the session
The role of the host when responding to a request from a peer to be added to the game session:

The host receives a DN_INTERNAL _MESSAGE_PLAYER_CONNECT_INFO message from a nascent peer
and begins message processing. If an error occurs during message processing, the message is

ignored. Otherwise, the host responds to the nascent peer with a DN_SEND_CONNECT_INFO message

that includes the connection data for the game session. At the same time, the host sends

DN_ADD_PLAYER messages (section 2.2.1.7) to all connected, established peers in the game session.

1. The peer processes the DN_SEND_CONNECT_INFO message. The peer SHOULD maintain a copy
of the name table information for each peer in the game session as specified in the
DN_NAMETABLE_ENTRY_INFO field of the message. T he host waits for a
DN_ACK_CONNECT_INFO message from the nascent peer. If the nascent peer does not respond in
time, the protocol times out and terminates the connection.

2. When the DN_ACK_CONNECT_INFO message from the nascent peer is received by the host, the
host processes the ACK. If an error occurs during processing of the ACK, the host performs
cleanup and ends the connection attempt. Otherwise, after the ACK is processed, the host sends a
DN_INSTRUCT_CONNECT message (section 2.2.1.9) to all peers (including the nascent peer)

60 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

instructing them to attempt a connection to the nascent peer. If an established peer is unable to
connect to the nas cent peer:

A The established peer responds to the host with a DN_INSTRUCTED_CONNECT_FAILED
message.

A The connection attempt is canceled.
A The host issues a DN_CONNECT_ATTEMPT_FAILED message to the nascent peer.

Otherwise, it is assumed that the established pe ers are able to successfully connect to the nascent
peer, and the nascent peer is added to the game session.

When the nascent peer receives a DN_INSTRUCT_CONNECT message from the host, the message
is used only to synchronize its name table with the establi shed peers.

3.1.1 Abstract Data Model

The connect sequence is initiated by the client or the peer. If there happens to be an error or
disconnect on the server/host, cleanup and disconnect happens with only the client/peer with the
failure. (Remaining clients/peers in the session remain connected.)

A DirectPlay 8 Protocol: Core and Service Providers Protocol implementation MUST maintain t he
following data element:

name table: All participants MUST maintain a name table , as described in section 2.2.6 .In peer -to -
peer mode , the name table state MUST be kept consistent among all participants, and during
connections:

A The host MUST generate a DN_ADD_PLAYER (section 2.2.1.7) name table operation associated
with the connecting peer.

A Existing peers MUST process the DN_ADD_PLAYER name table operation from the host.

A New peers MUST construct the initial name table based on the entries contained in the
DN_SEND_CONNECT_INFO (section 2.2.1.4) message.

In client/server mode, each client only keeps name table entries that represent its player and the
server player. Therefore, only this subset of the name table is synchronized with the server during
connection.

3.1.2 Timers

The connection sequence is event driven via packets sent and received via the Peer, Client, Host, or
Server.

3.1.3 Initialization

None.

3.1.4 Higher -Layer Triggered Events

None.

61 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.1.5 Processing Events and Sequencing Rules

3.1.5.1 Client/Server Connect Sequence

Client Server

DN_ACK_CONNECT INFO

Figure 5: Client/server connect sequence

A server has been launched and is in the process of accepting incoming connections.

1. The client establishes a connection to the server as specified in MC-DPL8R].

2. The client sends a player connect message to the server:
A DN_INTERNAL MESSAGE_PLAYER_CONNECT_INFO
A DN_INTERNAL MESSAGE_PLAYER_CONNECT_INFO_EX (DirectPlay 9)
When the client sends the player connect message, it includes the user -provided password
described in section 5.2, if present. When the server receives the message, it verifi es the client
has specified compatible values; i f a higher | ayer
password string MUST exist and match exactly. If no password is required, the server SHOULD
silently ignore any password string specified b y the client.

3. If the server successfully validates the password and other

DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO information, the server responds to the client:

DN_SEND_CONNECT_INFO

The DN_SEND_C ONNECT_INFO message MUST contain the current game session state and
settings.

Note For client/server, there are only two entries in the DN_NAMETABLE_ENTRY_INFO message
as part of the DN_SEND_CONNECT_INFO packet.

Note If a password was required, the message includes the

DPNSESSION_REQUIREPASSWORD flag and a redundant echo of the password that had been
successfully verified. If no pa ssword was required, the DPNSESSION_REQUIREPASSWORD
SHOULD NOT be included, and the dwPasswordOffset and dwPasswordSize values SHOULD
be 0.

If the server is unable to verify the password and validation fails, the server sends a
DN_CONNECT_FAILED message (section 2.2.1.3) with the hResultCode field set to
DPNERR_INVALIDPASSWORD or to another validation failure code.

62 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

ndi

cat

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14

4,

Upon receipt of the DN_SEND_CONNECT_INFO message from the server, the client acknowl edges
the connection by returning:

DN_ACK_CONNECT_INFO

3.15.2 Peer -to -Peer Connect Sequence

Connecting Connected
Peer Host Peer

E"“‘DN_ INTE

i - Riar

i ~EPNNECT 1y
~INFO g

H e ———
é DON_SEND_CONNECT_INFO PN_app_
-

N
JCK‘CON”ECT_.INFO

I

QUCT_CONNECT —— I PN_INSTR)

 —————DN_INST ~CONNECTR

R__DPNL'D 1
D_P‘LP\TE
o SEN

| Y Y

Figure 6: Peer -to -peer connect sequence

Assuming the first peer has been launched, that peer will be deemed the host of the game session and
will be in the process of accepting incoming connections. (The peer host is responsible for all name

table transactions and synchronization across peers in the game session.)
1. The new peer establishes a connection to the host as specified in MC-DPL8R].
2. The internal player connect message is sent in from the peer to the h ost:

A DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO

A DN_INTERNAL _MESSAGE_PLAYER_CONNECT_INFO _EX (DirectPlay 9)

When the peer sendsthe player connect message, itincludes the user -provided password

described in section 5.2, if present. When the host receives the message, it verifies the peer has

speci fied compatible values; iif a higher | ayer indicated
password string MUST exist and match exactly. If no password is required, the host SHOULD

silently ignore any password string specified by the peer.

If the host fails in validating DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO, the connecting
peer is sent:

63 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

t

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14

DN_CONNECT_FAILED

4. If the host successfully validates DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO, the host
creates anew name table entry for the connecting peer and adds the new
name table. The ho stincreases its name table version by 1 and enters the new version into the
new name table entry. The host then responds to the connecting peer with:

DN_SEND_CONNECT_INFO

The DN_SEND_CONNECT_INFO message MUST contain the current game session state and
settings. The message also contains a copy of the hostos wu

Note The entriesinthe DN_NAMETABLE_ENTRY_INFO message will exist for each player
connected to the game session.

Note If a password was required, the message includes the

DPNSESSION_REQUIREPASSWORD flag and a redundant echo of the pa ssword that had been
successfully verified. If no password was required, the DPNSESSION_REQUIREPASSWORD
SHOULD NOT be included, and the dwPasswordOffset and dwPasswordSize values SHOULD
be 0.

If the host is unable to verify the password and validation fail s, the host sends a
DN_CONNECT_FAILED message (section 2.2.1.3) with the hResultCode field set to
DPNERR_INVALIDPASSWORD or to another validation failure code.

5. Atthe same time as the host is responding to the connecting peer with
DN_SEND_CONNECT_INFO , the host is also issuing a message to the already -connected peers:

DN_ADD_PLAYER

The DN_ADD_PLAYER message contains the new name table entry for the connecting player.

6. Upon receipt ofthe DN_SE ND_CONNECT_INFO message from the host, the connecting peer will
construct its initial name table state based on the entries and version humber sent by the host and
acknowledge the connection by returning:

DN_ACK_CONNECT_INFO

7. After receiving DN_ACK_CONNECT_INFO from the connecting peer, the host instructs all existing
peers to also establish a connection to the connecting peer by sending them the following

message. The host will also send the follo wing message to the connecting peer in order to keep
the name table for the connecting peer in sync with the name tables of the existing peers in the
session:

DN_INSTRUCT_CONNECT

8. Uponreceiving D N_INSTRUCT_CONNECT from the host, the existing peers will issue their DPNIDs
to the new peer being added by sending:

DN_SEND_PLAYER_D PNID

If the modulo 4 result of the new version for the name table is equal to 0, the name tables of the
existing peers are updated as described in section 2.2.6 with:

DN_RESYNC_VERSION

9. If existing peers are unable to successfully send the DN_SEND_PLAYER_DPNID message to the
connecting peer, the existing peers will issue a fail packet back to the host:

DN_INSTRUCTED_CONNECT_FAILED

64 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

10. Upon receiving the DN_INSTRUCTED_CONNECT_FAILED message from any of the existing peers,

the host will send the connecting peer:

DN_CONNECT_ATT EMPT_FAILED

11. Host "removes player from the game session".

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Disconnect Role Detail

S

Client

Q— Receive Disconnect

Process
Disconnect

Server

Issue Disconnect

O

[nvalid Message ——

Response

Cleanup

Error

Remaove/
Cleanup

Disconnectad

Figure 7: Role of a client and the server when disconnecting the client from the session

The role of the client when responding to the instruction to disconnect:

A Theclientreceivesa DN_TERMINATE_SESSION message (section 2.2.2.1) from the server and

begins message processing. If an error occurs during message processing, or the received

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

65 / 91

message is invalid, the client performs cl eanup and the message is ignored. Otherwise, the client
MUST remove itself from the game session.

The role of the server when responding to the instruction to disconnect:

A

Q—Recewe Message—pm ;;z‘;:;sé nvalid Message——s Cleanup

The server sends a DN_TERMINATE_SESSION message to the client and removes the client from
the game session

Peer

Remove / Reponse
/ Rep Disconnected

Host

O Send Terminate/Destroy Player O

Figure 8: Role of a peer and the host when disconnecting the peer from the session

The role of a peer when responding to the instruction to disc onnect:

A

The peer receives a DN_TERMINATE_SESSION message from the host and begins message
processing. If an error occurs during message processing, or the received message is invalid, the
peer performs cleanup and the message is ignored. Otherwise, the pee r MUST disconnect from the

game session.

The role of the host when instructing a peer to disconnect:

The host sends a DN_TERMINATE_SESSION message to the disconnecting peer and sends a
DN_DESTROY_PLAYER message (section 2.2.2.2) to the other connected peers in the game
session. Upon receipt of the DN_DESTROY_PLAYER message from the host, the other connected
peers MUST remove the indicated player (the disconnecting peer) from the game session.

66 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Host
1

O—REQ Integrity—m ;L_ ss: aE gEE:E e Invalid Message— s F&??aﬂte'pr

Send Integrity PFrotocol
error/timmeout

) v
Wait for

MESSEgE Invalid MEESEQE Error or Timeout

Receive ieapﬁnse

Process

Message Send Terminate/Destroy Player

Figure 9: Role of the host when performing a peer integrity check

The role of the host when responding to a request to check the integrity of a peer in the game
session:

1. The host receivesan DN_REQ_INTEGRITY_CHECK message (section 2.2.2.6) from a connected
peer inthe game session and begins message processing. (The peer that is making the request is
asking the host to check the integrity of another peer in the game session.) If an error occurs
during message processing, or the message is invali d, the host performs cleanup and the message
is ignored. Otherwise, the host sends a DN_INTEGRITY_CHECK message (section 2.2.2.7) to the
peer that is to be checked.

2. The hostwaitsfora DN_INTEGRITY_CHECK RESPONSE message (section 2.2.2.8) from the peer
that is being checked. If the peer does not respond in time, the protocol times out and disconnects
the peer that was being checked from t he game session. The host then sends a
DN_DESTROY_PLAYER message to the other connected peers in the game session. Upon receipt of
the DN_DESTROY_PLAYER message from the host, the other connected peers MUST remove the
indicated player (the disconnecting pe er) from the game session.

3. When a DN_INTEGRITY_CHECK_RESPONSE message is received from the peer that is being
checked, the host begins message processing. If an error occurs during message processing, or
the message is invalid, the host performs cleanup an d the message is ignored. Otherwise, the host
sends a DN_TERMINATE_SESSION message to the peer that sent the DN_REQ_INTEGRITY_CHECK
message, and sends a DN_DESTROY_PLAYER message to the other connected peers in the game
session. Upon receipt of the DN_DEST ROY_PLAYER message from the host, the other connected
peers MUST remove the indicated player (the terminated peer) from the game session.

67 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Peer

1
i : Process)
Q—Recewe Migrate—fm- Message ——Invalid Message—— Cleanup
Send Version Protocol
error/timeout
2 v
Wait for Invalid
Message Message
Recsive R
= Protoco
3 error/timeout
Process
Message Trvalid Error or Timeout
Message
Receive
33 Complete
3b Send update
4
Wait for
Message
Receive Complete
5
Process
Message Dane
Figure 10 : Role of a peer during host migration
The role of a peer when responding to a request to perform host migration

1. The peerreceivesa DN_HOST MIGRATE message (section 2.2.2. 3) from the host and begins
message processing. If an error occurs during message processing, or the message is invalid, the
peer performs cleanup and the message is ignored. Otherwise, the peer responds to the host by
sending the name table version of the peer via a DN_NAMETABLE_VERSION message (section
2.2.2.4).

2. The peer waits foran acknowledgment (ACK) from the host. If the host does not respond in
time, the protocol times out and terminates the connection.

3. When the response is received from the host, the peer processes the message.

68 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

1. If the host has responded with a DN_HOST_MIGRATE_COMPLETE message (section 2.2.2.11),
the peer processes the message. If an error occurs during message processing, or the
message is invalid, the peer performs cleanup and the instruction to migrate is ignored.
Otherwise, host migration is complete.

2. If the host has responded with a DN_REQ_NAMETABLE_OP message (section 2.2.2.9) to the
peer, the peer processes the request and sends a DN_ACK_NAMETABLE_OP message (section
2.2.2.10) to the host.

4. The peer waits for a response from the host. If the host does not respond in time, the protocol
times out and terminates the connection.

5. When the response message is received from the host, the peer processes the messages. The
peer MAY receivea DN_RESYNC VERSION message (section 2.2.2.5) and SHOULD receive a
DN_HOST_MI GRATE_COMPLETE message from the host. If an error occurs during message
processing, or these messages are invalid, the peer performs cleanup and the messages are
ignored. Otherwise, host migration is complete.

Mascent Host
1

Oilnitiate Migrate— b_]':"' ei';;;; ——Protocol error/timenut— s T:Ten;%nﬁ

Receive Version Invalid Message
2
Process Protocol
Message error/timeout
Send Req
_ Error or Timeout
Invalid Message
3 Clder Wait for
3 Nametable Message
3b
Receive Update
4
Process
Message Send Complete

Figure 11 :Role of the host during host migration

The role of the host when initiating host migration:

69/ 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

1. The host sends a DN_HOST_MIGRATE message to all connected peers in the game session and
waits to receive a DN_NAMETABLE_VERSION message from each peer. If a peer does not r espond
in time, the protocol times out and terminates the connection for that peer.

2. When the DN_NAMETABLE_VERSION response is received from a peer, the host processes the
message. If the host receives an invalid name table response message, the host perfor ms cleanup
and the message is ignored.

3. Otherwise, the host examines the peer's name table to determine if it is newer than the host's
name table.

1. If the peer's name table is older than the host's name table, the host sends a
DN_HOST_MIGRATE_COMPLETE messag e to that peer.

2. Ifthe peer's name table is newer than the host's name table, the host sends a
DN_REQ_NAMETABLE_OP message to that peer and waits for a response. If the peer does not
respond in time, the connection to that peer is dropped from the game ses sion.

4. When the DN_ACK_NAMETABLE_OP message is received from the peer, the host processes the
message and uses the peer's name table to update it's own name table. The host then MAY send a
DN_RESYNC_VERSION message containing the new name table version to a Il connected peers in
the game session. Finally, the host sends a DN_HOST_MIGRATE_COMPLETE message to all
connected peers in the game session.

3.2.1 Abstract Data Model

If there is an error with the protocol or message on the server/host, cleanup and disconnect happen
with only the client/peer with the failure. (Remaining clients/peers in the session remain connected.)

A DirectP lay 8 Protocol: Core and Service Providers Protocol implementation MUST maintain the
following data element:

name table: All participants MUST maintain a consistent name table , as describedins ection 2.2.6 .
In peer -to - peer mode

A If the host disconnects from the gam e session ,the process of host migration is initiated in
which the remaining peers examine the current state of the name table to identify the player with
the next lowest version number to becom e the new host.

A If a peer disconnects from the game session, the host MUST generate a
DN_DESTROY_PLAYER (section 2.2.2.2) name table operation to remove the disconnecting player
from the name tabl es of all remaining participants.

In client/server mode

A Each client only keeps name table entries that represent its player and the server player, and is
not informed of other clients leaving.

A When a client leaves, the server updates only its own name table.

A If the server disconnects, the game session is terminated.

3.2.2 Timers

The disconnect sequence is event driven via messages sent and re ceived via the Peer, Client, Host, or
Server.

70 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.2.3 Initialization

None.

3.24 Higher -Layer Triggered Events

None.
3.2.5 Processing Events and Sequencing Rules

3.25.1 Client/Server Disconnect Sequence

Client Server

DN TERVINATE SESSON :
- |

Figure 12 : Client/server disconnect sequence
The server is purposefully removing a peer fromthe game session
1. The server issues a packet to the client being removed:

DN_TERMINATE_SESSION

2. When the client receives the DN_TERMINATE_SE SSION message, it is required to disconnect itself

from the game session.

3. Ifaclient wants to leave the game session, it SHOULD issue a disconnect in the protocol to the

server. (No core specific messages.)

3.25.2 Peer -to -Peer Host Disconnect Sequence

Disconnecting

Host Connected Peer
Peer

H

i

&ESON —F—DN Dy,
;‘.DN,TEW“‘NA TE- YPLAYERﬁhg

Figure 13 :Peer -to -peer host disconnect sequence

1. If the host is purposefully removing a peer from the game session, it will issue a p
peer being removed:

DN_TERMINATE_SESSION

acket to the

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

711/ 91

The peer receiving the DN_TERMINATE_SESSION MUST disconnect all connections and leave the
game session.

2. The host also issues a message to the remaining connected peers indicating the removal of the
disconnecting peer:

DN_DESTROY_PLAYER

3.2.5.3 Peer -to -Peer Integrity Check Sequence

Connectead Haost Connectad
Peer Peer
CHECK —

INTEGRITY
K ——— DN_REQ
C
T.NTEGRiT‘f

D,

——DN_ 1,
TEGRITY__ CHECK RESPG
- NSE

)
I"'.I'_TERHIJ"M TE_SESSIDN

R
ON_D ESTRDY _P'LJ-'I\.\'EP\
-

Figure 14 : Peer -to -peer integrity check sequence

1. If a nonhost peer has detected a loss of connection to another peer and has not received a
DN_DESTROY _PLAYER message from the host for that peer, it sends a message notifying the
host:

DN_REQ_INTEGRITY_CHECK

2. The host forwards a packet to the peer in question including the DPNID of the questioning peer:

DN_INTEGRITY_CHECK

3. Upon receiving DN_INTEGRITY_CHECK, the peer responds back to the host:

DN_INTEGRITY_CHECK_RESPONSE

4. Ifthe host receives DN_INTEGRITY_CHECK_RESPONSE, the host will respond to the first peer
terminating it from the game session

DN_TERMINATE_SESSION

5. The host also issues a message to the remaining connected peers indicating the removal of the
disconnecting peer:

DN_DESTROY_PLAYER

72 1 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.2.54 Peer -to -Peer Host Disco nnect (Possible Host Migration)

Peer Host

— :
DN_ACK NAMETABLE op §
——

| DN_RESYNC_VERSION / DN_HOST MIGRATE COMPU

Figure 15: Peer -to -peer host disconnect (pos sible host migration)
The host drops out of the game session

1. Using the version information for each player fromthe name table , the player with the lowest
version number (connected peer) becomes the ex pected host. (This can be split out to more than
one host, if multiple connections are severed when a host leaves.) That new host sends to the
remaining connected peers:

DN_HOST_MIGRATE

2. All peers still in the game session will respond to the new host, providing the host with their name
table versions:

DN_NAMETABLE_VERSION

3. Ifthe host sees that there is a peer with a newer name table, the n ew host will request that peer
to send the entries from its name table that are not contained within the host's name table:

DN_REQ_NAMETABLE_OP

4. Upon receiving DN_REQ_NAMETABLE_OP, the peer will re turn the missing name table entries to
the host:

DN_ACK_NAMETABLE_OP

5. The host installs any missed name table entries and sends any name table operations missed by
its peers as indicated by their r eported name table versions in step 2. When all missing name
table entries have been provided to all players, the host can confirm that all peers have the
current name table version by sending:

DN_RESYNC_VERSION

73 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

6. After the name table has been brought up -to - date, the new host will respond to all connected

peers:

DN_HOST_MIGRATE_COMPLETE

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.3 Send/Receive Communications Role Details

Peer/Host/Client/Server

1

Oﬂem Message—n- rt:ﬂ;;g; f——Fraotocol error/timeou t—pm| Cleanup

Receive Message)
. Error or Timeout
Invalid Message

Frocess Packets Done

Peer/Host/Client/Server

O—R&c\eive Message—m= Process Packet Invalid Packet———p Cleanup

Send Response)
Error or Timeout

Figure 16 : Role of the peer, host, client, and server when sending and receiving messages

The role of the peer , host , client, and server when sending messages (section 2.2.3):

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

74 | 91

1. When any message is sent, if the sender specifies DN_REQ_PROCESS COMPLETION (section
2.2.3.2)to indicate that the receiving application MUST confirm delivery of the sent message, the
sender waits to either receive a DN_PROCESS_COMPLETION response message (section 2.2.3.3),
or to be notified of connection termination by the lower -layer transport that is handling reliable
message delivery [MC-DPL8R]. If the connection is terminated prior to receiving a response, the
sender MUST treat the send operation as having failed in addition to performing standard
disconnect handling as described in section 3.2.

2. Otherwise, when the DN_PROCESS_COMPLETION message is received, the send/receive is
completed.

The role of the peer, host, client, and server when receiving messages (section 2.2.3):

A When any message is received, the message is processed by the r eceiver. If the message is found
to be invalid, the receiver performs cleanup and the message is ignored. Otherwise, when the
message is valid and it contains a DN_REQ_PROCESS_COMPLETION request, a
DN_PROCESS_COMPLETION response message is sent back to the sender. If the message does
not contain a request for process completion, the message is consumed.

3.3.1 Abstract Data Model

lllustrated in this model is a send where the process completion request has been sent. In the non -
process completion case, the messages are just consumed with no retained state.

3.3.2 Timers

The send/receive sequence is event driven via messages sent and received via the Peer, Client, Host,

or Server. The DirectPlay 8 Protocol: Core and Service Providers does not directly im plement timing -
related functionality; instead, it relies on internal timer events described in MC-DPL8R] 3.1.2.5to
provide feedback regarding the state of individual connectio ns. When a connection has been lost, the
DirectPlay 8 Protocol [MC -DPL8R] reports this to its consumers. The DirectPlay 8 Protocol: Core and

Service Providers MUST then handle the disconnect as described in section 3.2.

3.3.3 Initialization

None.

3.34 Higher -Layer Triggered Events

None.

75/ 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14
%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14

3.3.5 Processing Events and Sequencing Rules

3.35.1 Client/Server and Peer -to - Peer Send/Receive Communications Sequence

Client/Peer Server/Host

DN_REQ_PROCESS COMPLETION ————

~—— DN_PROCESS COMPLETION

Figure 17 : Communications Exchange diagram
Data send and receive sequences are identical for client/server and peer -to - peer modes

There are two types of general data sends. One requires notification from the game session that the
user data has been consumed, and the other does not.

To differentiate, on the data frame (DFRAME) that is handed up from the protocol, if the
bCommand field has the PACKET_COMMAND_USER _1 bit set, then this is a system message where
PacketType and PacketContext will be included.

1. If an application sends data to another application and wants a response when that data has been
consumed, then it will send:

DN_REQ_PROCESS_COMPLETION

2. When DN_REQ_PROCESS_COMPLETION is received, it is required that a message be returned
indicating that this payload has been consumed:

DN_PROCESS_COMPLETION

If the bCommand bit does not have the PACKET_COMMAND_USER_1 bit set, the data passed up via
the payload is data that SHOULD be passed directly to the application with no furthe r interpretation.

Note If Packet_Command_User_1 is set in the DFRAME, this indicates that it is a core message with
the first four bytes indicating the PacketType and is always sent reliably.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

76 / 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.4 Groups Role Details

Peer
1

OiSend Message—m :::;E;;L Protocol error/tirmeout—s| Cleanup

Receive Message

Invalid packet Error or Timeout
2
Process
Message Daone
Host

) Process Frotocal
Q—Re::ewe MESE A& —f- Message arror/tim eout_"‘ Cleanup

Send Message
Error ar Timeout

Figure 18 : Role of a peer and the host when sending and receiving Group messages
Therole ofa peer andthe host when se nding Group messages (section 2.2.4):
1. When any of the following messages are sent, the peer waits for a response from the host.

A DN_REQ_ CREATE_GROUP (section 2.2.4.1)

A DN_REQ ADD PLAYER TO_GROUP (section 2.2.4.3)

A DN_REQ DESTROY_GROUP (section 2.2.4.7)

If the host does not respond in time, the protocol times out and the connection is terminated.

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

77 191

2. Otherwise, when the peer receives any of the following messages in response from the host, the
peer processes the message.

A DN_CREATE_GROUP (section 2.2.4.2)

A DN_ADD_PLAYER_TO_GROUP (section 2.2.4.4)

A DN_DESTROY_GROUP (section 2.2.4.8)

If the message is invalid, the peer performs cleanup and the message is ignored. Otherwise, the
message is consumed.

The role of a peer and the host when receiving Group messages:

A When any of the following messages is received from a peer in the session, i tis processed by the
host.

A DN_REQ_CREATE_GROUP
A DN_REQ _ADD_PLAYER_TO_GROUP
A DN_REQ_DESTROY_GROUP

If the message is invalid, the host performs cleanup and the message is ignored. Otherwise, the host
responds with one of the following messages back to the peer:

>

DN_CREATE_GROUP

A DN_ADD_PLAYER_TO_GROUP

A DN_DESTROY_GROUP

Note When working with groups , be aware of considerations related to DirectX Diagnostic
(DXDiag) . The DXDiag tool (DxDiag.exe) implementation of this specification doe S not support
groups.

3.4.1 Abstract Data Model

A DirectPlay 8 Protocol: Core and Service Providers Protocol implementation MUST maintain the
following data element:

name table: All participants MUST maintain a name table , as described in section 2.2.6 . Each group
has an entry in the name table. In peer -to -peer mode ,the host MUST generate
DN_CREATE_GROUP (section 2.2.4.2) , DN_ADD_PLAYER_TO_GROUP (section 2.2.4.4) ,
DN_DELETE_PLAYER_FROM_GROUP (section 2.2.4.6) ,and DN_DESTROY_GROUP (section 2.2.4.8)
name table operations for each corresponding action that modifies the groups or their membership in

the name ta Dble.

In client/server mode, only the server has information pertaining to all players and groups. Therefore,
the server does generate name table operations associated with group management.

3.4.2 Timers

The group sequences are driven via messages sent and received via the Peer, Client, Host, or Server.

3.4.3 Initialization

None.

78 1 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.4.4 Higher -Laye r Triggered Events

None.
3.4.5 Processing Events and Sequencing Rules

3.45.1 Client/Server Group Role

There are no transactions on the wire for game session groups in client/server mode . Game
session groups are used only in peer -to - peer mode.
3.45.2 Peer -to -Peer Group Sequence
Peer Host
—
DN_REQ CREATE GROUp_________—_‘-

Figure 19 :Peer -to -peer group sequence diagram

Only the game session host can create or modify groups . The host can crea

and add and remove players from existing groups.

1. Ifanon -host peer wants to create a group, it MUST issue a message to the host:

DN_REQ_CREATE_GROUP

te and destroy groups

2. Oncethe hosthas created a new group (via request from a peer or locally), it issues a command

to all the connected peers:

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

79/ 91

DN_CREATE_GROUP

3. Ifanon -host peer wants to add a new player to an existing group, it MUST issue a message to the

host:

DN_REQ_ADD_PLAYER_TO_GROUP

4. Once the host has added the new player to the group (via a peer or locally), the host responds to
all connected peers with:

DN_ADD_PLAYER_TO_GROUP

5. Ifanon -host peer wants to delete a player from an existing group, it MUST issue a message to
the host:

DN_REQ_DELETE_PLAYER_FROM_GROUP

6. Once the host has deleted the player from the group (via a peer or locally), the host responds to
all connected peers with:

DN_DELETE PLAYER_FROM_GROUP

7. Ifanon -hostpeerwants to destroy an existing group, it MUST issue a message to the host:

DN_REQ_DESTROY_GROUP

8. Once the host has destroyed a group (via Req or locally), the host responds to all connected peers
with:

DN_DESTROY_GROUP

3.4.6 Timer Events

None.

3.4.7 Other Local Events

None.

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

80 /91

3.5 Update Information Role Details

Peer/Client
1

OiSend Message— Ij':‘:;;;;; Pratocol error/timeout—s| Cleanup

Receive Message

Invalid Message Error aor Timeout

Process Packets Done

Host/Server

O—Re:eive Message—m= Process Packet Invalid Packet——fs| Cleanup

Send Response

Error or Timeout

Figure 20 : Role of a peer/client and the host/server when sending and receiving Update
Information messages

The role of a peer/client when sending Update Inf ormation messages (section 2.25):

1. Whena DN_REQ_UPDATE_INFO message (section 2.2.5.1) is sent, the peer/client waits for a
response fro m the host/server. If the host/server does not respond in time, the protocol times out
and the connection is terminated.

2. Otherwise, when the peer/client receives the response from the host/server, the peer/client
processes the message. If the message is in valid, the peer/client performs cleanup and the
message is ignored. Otherwise, the DN_UPDATE_INFO message (section 2.2.5.2) is consumed.

The role of the host/server when receiving Update Informati on messages:

81/ 091

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

A When a DN_REQ_UPDATE_INFO message is received from a peer/client in the session, the
message is processed by the host/server. If the message is invalid, the host/server performs
cleanup and the message is ignored. Otherwise, the host/server re sponds by sending a
DN_UPDATE_INFO message back to the peer/client.

3.5.1 Abstract Data Model

An update is requested by a peer orclienttoa host or server. The host/server will respond to all
players with the appropriate response.

A DirectPlay 8 Protocol: Core and Service Providers Protocol implementation MUST maintain the
following data element;

name table: All participants MUST maintain a name table , as described in section 2.2.6 .In peer -to -
peer mode ,the nametable state MUST be kept consistent among all participants, and the host MUST

generate a DN_UPDATE_INFO (section 2.2.5.2) name table operation associated with the modified

player information.

In client/server mode , each client only keeps name table entries that represent its player and the
server player, and is not informed of information changes pertaining to other players.

3.5.2 Timers

The update information sequence is event driven via messages sent and received via the Peer, Client,
Host, or Server.

3.5.3 Initialization

None.

3.5.4 Higher -Layer Triggered Events

None.

3,55 Processing Events and Sequencing Rules

3.5.5.1 Update Informat ion Sequence
Client/Peer Server/Host
DN_REQ_UPDATE INFO In
-4 DN_UPDATE_INFO

Figure 21 : Update Information Sequence Diagram
This is used whenever a peer/client needs to update player or group information.

1. The packet is sent to the host/server because the host/server is responsible for updating the
name table and keeping everyone in sync:

82 /091

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

DN_REQ_UPDATE_INFO

2. The host SHOULD respond appropriately to all players with the updated information:

DN_UPDATE_INFO

3.5.6 Timer Events

None.

3.5.7 Other Local Events

None.

83 /091

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4 Protocol Examples

A standard DN_INTERNAL MESSAGE_PLAYER_CONNECT_INFO_EX (section 2.2.1.

Protocol: Core and Service Providers
the packet sent.

game session . This example includes the full

2) for a DirectPlay 8
Ethernet frame for

In little -endian byte order:
A MSGID =0x000000C1
A dwFlags indicates that this is a DN_OBJECT_TYPE_PEER.
A Player Name value of "Test User".
0000 00 0A E4 0327 73 00 0B DB 5C 3F 4508 00 4500 ..4.'s..U \ ?E..E. .
0010 0098 3A4C000080119FB141 34 EF 3D 41 34 . e L. . sNA4dp=A4
0020 EE B1 08 FE 08 FE 00 84 C2 BF 7F 00 01 00 C1 0O
0030 00 00 04 00 00 00 08 00 00 00 60 00 00 00 14 00)
0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0060 00 00 23 81 BE 94 AB A1 FB 48 A2 E7 23 85 9E 65
0070 89 36 DA 80 EF 61 1B 69 47 42 9A DD 1C 7B ED 2B
0080 C1 3E 58 00 00 00 08 00 00 0007 0208 FE 4134 A>X.......... pA4
0090 EF 3D 54 0065007300 7400200055007300 i=T.e.s.t..U.s.
00AO 65 00 72 00 00 00 er...
Upon success, the host will respond with the DN_SEND_CONNECT_INFO (section 2.2.1.4) packet to
the connecting peer . This example includes the full Ethe rnet frame for the packet sent.
In network byte order
A MSGID =0x000000C2
A dwFlags indicates that DPNSESSION_MIGRATE_HOST is allowed.
A dwMaxPlayers is not specified.
A dwCurrentPlayers is set to 2 for the host and connecting peer.
A dpnid for the connecting player value is 0x948E8120.
A Nametable version entry of 0x03.
A dwEntryCount issetto 2.
A dwMembershipCount is 0, indicating no groups in the game session.
A Connecting Peers Name is "Test User".
A Host Peers Name is "Test User".
A Game session Name is "Test Session".
A Player Name value of "Test User".
0000 000B DB5C 3F 45 00 0A E4 0327 7308004500 ..U \ ?E..A.'s..E.
0010 01 94 06 95 00 00 80 11 D2 6C 41 34 EE B1 41 34
0020 EF 3D 08 FE 08 FE 01 80 OD 9F 7F 00 01 02 C2 0O
0030 00000000000000000000500000000400 . P.....
0040 00 00 00 00 00 00 02 00 00 0056 01 0000 1A 00 V...
84 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0050 00 00 0000 000000000000000000000000

0060 00 00O OO OO OO OO OO OO OO OO 23 81 BE 94 AB A1 .
0070 FB48A 2 E7 23 85 9E 65 89 36 DA 80 EF 61 1B 69 BHA- #é1 e
0080 47 42 9A DD 1C 7B ED 2B Cl1 3E 20 81 8E 94 03 00 3Bgh
0090 00 00 OO OO OO OO 0O2 OO OO OO OO OO OO OO 21 81 ..
00AO 9E 94 00 00 00 00 02 01 00 00 02 00 00 00 00 OO T
00BO 00 00 07 00 00 00 42 01 00 00 14 00 00 00 00 00 B.ooo..
00CoO 00 00 00O 00 OO OO OO OO OO OO 00O OO OO OO0 20 81
00DO 8E 94 00 00 00O OO 0O 01 0O OO 03 00 00 0O 00 OO
OOEO O 000 080000002E010000140000000000ccveeveee.
O0FO 00 00 00 00 00 00 CC 00 00 00 62 00 00 00 78 2D -
0100 64 69 72 65 63 74 70 6C 61 79 3A 2F 70 72 6F 76 directplay:/prov
0110 69 64 65 72 3D 25 37 42 45 42 46 45 3742 4130 ider=%7BEBFE7BAQ
0120 2D 36 32 38 44 2D 31 31 44 32 2D 41 45 30 46 2D - 628D- 11D2- AEOF
0130 303036 3039374230313431312537443B 006097B01411%7D;
0140 68 6F 73 74 6E 61 6D 65 3D 36 35 2E 35 32 2E 32 hostname=65.52.2
0150 3339 2E 3631 3B 70 6F 7274 3D 3233303200 39.61;port=2302.
0160 540065007300 74002000550073006500 T.es.t .Us.e.
0170 7200 00 0054 006500 7300740020005500 r..T.es.t..U.
0180 7300 65 00 72 00 00 00 54 00 650073007400 s.er.T.es.t
0190 200053 00 65 00 73 00 73 00 69 00 6F 00 6E 00 .S.e.s.s.i.o.n.
01A0 00 00 .

Given a game session with two connected peers, the following is an example of general data passed

between the peers. The following is the message "Hi there", where the message includes the full 400 -

byte buffer. Everything after the plain text in this example is just random memory. This example

includes the full Ethernet frame for th e packet sent.
0000 00 0A E4 0327 73 00 0B DB 5C 3F 4508 00 4500 ..4.'s..U \ ?E..E.
0010 01 B2 DF CD 00 OO0 80 11 F9 94 41 34 EF 3D 41 34] Cé
0020 EE 32 08 FE 08 FE 01 9E 97 D4 3D&@0.. 05 03 01 00 2.1
0030 4800 49 00 2000540048 00450052004500 H.l..T.H.E.R.E.
0040 00 00 4E 1C 3F 77 64 00 83 00 00O OO OO OO FC 84 N.
0050 41 7E A4 85 41 7E 22 06 2B 00 A6 88 41 7E BF 3D A~YeA-~"
0060 3F 77 48 EF CF 00 D1 88 41 7E A8 1B 60 00 00 00 2WHpeée. s EA~T . . .
0070 00 00 DA 88 41 7E A6 88 41 7E BF 3D 3F 77 00 0O . DPEA-HE
0080 00 00 24 EF CF 00 01 OO OO OO FC EF CF 00 87 D3 .$pc
0090 00 00 78 EF CF 00 90 49 3F 77 20 3E 01 05 C2 00O X MpE
00AO 00 00 00000000 185E 694FBF 3D 3F 77 BF3D NO¢=?w¢,=
00BO 3F 77 00 00 00 00 OD 00 00 00 00 01 00 00 58 5E ?w............ XN
00CO A8 06 BF 3D 3F 77 01 00 00O OO A4 EF CF 00 34 87 La=?w. .
00D0 41 7E 22 06 2B 00 C2 00 00 00 00 00 00 00 18 5E A~".+.A........ n
00EO 69 4F BF 3D 3F 77 CD AB BA DC 00 00 00 00 EQ EF i0¢=2wi«°U....ai
OO0OFO CF 00 BF 3D 3F 77 0C FO CF OO 16 88 41 7E 00 90 . a=s
0100 FD 7F 0OC FO CF 00 5A 88 41 7E CC EF CF 00 2A 88 -
0110 41 7E C2 00 00 00 A8 1B 60 00 BC 1B 60 00 14 00 A~A...". Y. ...
0120 000001 00 000000000000000000001000c....
0130 00 00 OO OO OO OO 30 88 41 7TE OO OO OO OO OO 0O
0140 0000 01 00 00 00 CO EF CF 00 BF 3 D3F775CF2 ... Ail.¢=?w \o
0150 CF 0057 04 44 7E CO F1 CF 00 08 00 00 00 CO F1 1.W.D~Afl.....AR
0160 CF 00 CO F1 CF 00 CO F1 CF OO 30 FO CF 0O 85 38 . é¢9¢.
0170 6A 4F 09 00 00 00 CO F1 CF 00 08 00 00 00 58 5E jO....Afl..... X"
0180 A8 06 48 FO CF 00 2E 3B 6A 4F 58 5E A8 06 08 00 “.H&I..;jOX""...
0190 00 00 08 00 00 00 CO F1 CF 00 64 FO CF 00 A6 3F Anl.dal.l?
01AO0 6A 4F 58 5E A8 06 08 00 00 OO CE 3D 42 7E 8E 13 OX~1 ...
01B0O 00 00 BA B8 41 7E 74 FO CF 00 BE 7A 6A 4F 00 00 ..°, A~t&l.%z]O..

85/ 91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

5 Security

5.1 Security Considerations for Implementers

The DirectPlay 8 Protocol: Core and Service Providers provides no security features beyond those
included in the underlying DirectPlay 8 Protocol: Reliable (MC -DPL8R]). The following are some
security features that implementers might consider including in their implementations:

A Check all packets to ensure that they are of the proper length and contain valid values.

A Ignore malformed messages and messages from unkno wn clients, unless otherwise specified by
the protocol.

5.2 Index of Security Parameters

It is up to the application that is using the DirectPlay 8 Protocol: Core and Service Providers to

implement security. The following table allows only for simple passwords to be passed across game
sessions , but because these are transferred in the free and clear to the protocol, they cannot be used

for robust security.

Direc tPlay allows the application to specify simple passwords defined as a simple method to avoid
unauthorized connections to the game session. Passwords are provided by the users in the game

session as part of the application user interface. If the password pr ovided by a user is not the same
between the client and the host, then the host rejects the connection attempt by the user and returns

an error.

Security

parameter Section

Password DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO ,

(variable) DN_INTERNAL MESSAGE PLAYER_CONNECT_INFO_EX (sections 2.2.1.1 and 2.2.1.2)
Password DN_SEND_CONNECT_INFO (section 2.2.14)

(variable)

86 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMC-DPL8R%5d.pdf#Section_7a35d96cdaca4311bc2bbd6a2f50bf14

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to produ ct versions include updates to those products.

A Windows XP operating system

A Windows Server 2003 operating system

A Windows Vista operating system

A Windows Server 2008 operating system

A Windows 7 operating system

A Windows Server 2008 R2 operating system
A Windows 8 operating system

A Windows Server 2012 operating system

A Windows 8.1 operating system

A Windows Server 2012 R2 operating system
A Windows 10 operating system

A Windows Server 2016 operating system

A Windows Server 2019 operating system

A Windows Server 2022 operatin g system

A Windows 11 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subseque nt updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

87 /91

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A Adocument revision that incorporates changes to interoperability requirements.
A A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes ar e updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identic al to the last
released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com

Section Description Revision class

6 Appendix A: Product Behavior Updated for this version of Windows Client. Major

88 /91

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

mailto:dochelp@microsoft.com

8 Index
A

Abstract data model
connect role 61
disconnect role 70

groups role 78

send/receive communications role 75
update information role 82
Applicability 13
C

Capability negotiation 13
Change tracking _ 88
Client/server

connect sequence _ 62
connecting to session 10
disconnect sequence 71
disconnecting from session 11
group role 79

groups 12
send/receive communications sequence 76

session modes 10
Connect messages 14
Connect role
abstract data model 61
higher -layer triggered events 61
initialization 61
local events 65
message processing
client/server connect sequence 62
peer -to -peer connect sequence 63
overview 57
sequencing rules
client/server connect sequence 62
peer -to - peer connect sequence 63
timer events 65
timers 61
Connecting to session
client/server connect 10
overview 10
peer -to -peer connect 10

D

Data model - abstract
connect role 61
disconnectrole 70
groups role 78
send/receive communications role 75
update information role 82
Disconnect role
abstract data model 70
higher -layer triggered events 71
initialization 71
local events 74
message processing
client/server disconnect sequence 71
peer -to - peer host disconnect sequence (
3.25.2 71, section3.2.5.4 73)
overview 65

sequencing rules

client/server disconnect sequence 71
peer -to - peer host disconnect sequence (section_
3.25.2 71, section3.2.54 73)

timer events 74
timers 70

Disconnecting from session
client/server disconnect 11

peer -to -peer disconnect 11

DN

ACK_CONNECT_IN FO packet 33

DN

ACK NAMETABLE_OP packet 40

DN

ADD_PLAYER packet 30

DN

ADD_PLAYER_TO_GROUP packet 45

DN

ADDRESSING_URL message 53

DN

ADDRESSING_URL structure 53

DN

ALTERNATE_ADDRESS (IPv4) message 55

DN

ALTERNATE_ADDRESS (IPv6) message 56

DN

DN

ALTERNATE_ADDRESS structure (section 2.2.9
55, section 2.2.10 56)
ALTERNATE_ADDRESS IPv4 packet 55

DN

ALTERNATE_ADDRESS_IPv6 packet 56

DN_CONNECT _ATTEMPT_FAILED pa cket 34
DN_CONNECT_FAILED packet 21
DN_CREATE_GROUP packet 44
DN_DELETE_PLAYER_FROM_GROUP packet 47
DN_DESTROY_GROUP packet 48
DN_DESTROY_PLAYER packet 35
DN_DPNID message 53
DN_DPNID structure 53
DN_HOST_ MIGRATE packet 36
DN_HOST MIGRATE _COMPLETE packet 41
DN_INSTRUCT CONNECT packet 33
DN_INSTRUCTED_CONNECT_ FAILED packet 34
DN_INTEGRITY_CHECK packet 38
DN_INTEGRITY_ CHECK_RESPONSE packet 39
DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO
packet 14
DN_INTERNAL_MESSAGE_PLAYER_CONNECT_INFO
EX packet 17
DN_NAMETABLE message 52
DN_NAMETABLE structure 52
DN_NAMETABLE_ENTRY_INFO packet 27
DN_NAMETABLE _MEMBERSHIP_INFO packet 29
DN_NAMETABLE_VERSION packet 37
DN_PROCESS_COMPLETION packet 42
DN_REQ _ADD_PLAYER_TO_GROUP packet 45
DN_REQ_CREATE_GROUP packet 43
DN_REQ DELETE_PLAYER_FROM_GROUP packet 46
DN_REQ DESTROY_GROUP packet 48
DN_REQ_INTEGRITY_CHECK packet 38
DN_REQ_NAMETABLE_OP packet 39
DN_REQ_PROCESS_COMPLETION packet 42
DN_REQ_UPDATE_INFO packet 49
DN_RESYNC_VERSION packet 37
DN_SEND_CONNECT_INFO packet 22
DN_SEND_DATA packet 41
DN_SEND_PLAYER_DPNID packet 33
DN_TERMINATE_SESSION packet 35

DN

UPDATE_INFO packet 50

E

[MC-DPL8CS] - v20210625

DirectPlay 8 Protocol: Core and Service Providers
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

89 /91

