

1 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MC-DPL4CS-Diff]:

DirectPlay 4 Protocol: Core and Service Providers

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
as well as overviews of the interaction among each of these technologiessupport. Additionally,

overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you maycan make copies of it in order to develop implementations of the

technologies that are described in the Open Specifications this documentation and maycan
distribute portions of it in your implementations usingthat use these technologies or in your
documentation as necessary to properly document the implementation. You maycan also distribute

in your implementation, with or without modification, any schema, IDL'sschemas, IDLs, or code
samples that are included in the documentation. This permission also applies to any documents
that are referenced in the Open Specifications. documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that maymight cover your implementations of the technologies
described in the Open Specifications. documentation. Neither this notice nor Microsoft's delivery of
thethis documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specification maySpecifications document might be covered by the
Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a

written license, or if the technologies described in the Open Specificationsthis documentation are
not covered by the Open Specifications Promise or Community Promise, as applicable, patent

licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation maymight
be covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mailemail
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications dodocumentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available
standardstandards specifications and network programming art, and assumes, as such, assume that
the reader either is familiar with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

8/10/2007 0.1 Major Initial Availability

9/28/2007 0.2 Minor Clarified the meaning of the technical content.

10/23/2007 0.2.1 Editorial Changed language and formatting in the technical content.

11/30/2007 1.0 Major Updated and revised the technical content.

1/25/2008 2.0 Major Updated and revised the technical content.

3/14/2008 3.0 Major Updated and revised the technical content.

5/16/2008 3.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 3.1 Minor Clarified the meaning of the technical content.

7/25/2008 4.0 Major Updated and revised the technical content.

8/29/2008 4.0.1 Editorial Changed language and formatting in the technical content.

10/24/2008 4.1 Minor Clarified the meaning of the technical content.

12/5/2008 4.1.1 Editorial Editorial Update.

1/16/2009 4.1.2 Editorial Changed language and formatting in the technical content.

2/27/2009 5.0 Major Updated and revised the technical content.

4/10/2009 5.0.1 Editorial Changed language and formatting in the technical content.

5/22/2009 6.0 Major Updated and revised the technical content.

7/2/2009 7.0 Major Updated and revised the technical content.

8/14/2009 7.0.1 Editorial Changed language and formatting in the technical content.

9/25/2009 8.0 Major Updated and revised the technical content.

11/6/2009 8.0.1 Editorial Changed language and formatting in the technical content.

12/18/2009 8.0.2 Editorial Changed language and formatting in the technical content.

1/29/2010 9.0 Major Updated and revised the technical content.

3/12/2010 9.0.1 Editorial Changed language and formatting in the technical content.

4/23/2010 9.0.2 Editorial Changed language and formatting in the technical content.

6/4/2010 10.0 Major Updated and revised the technical content.

7/16/2010 11.0 Major Updated and revised the technical content.

8/27/2010 12.0 Major Updated and revised the technical content.

10/8/2010 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

1/7/2011 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 12.1 Minor Clarified the meaning of the technical content.

9/23/2011 12.1 None
No changes to the meaning, language, or formatting of the

technical content.

12/16/2011 13.0 Major Updated and revised the technical content.

3/30/2012 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 14.0 Major Updated and revised the technical content.

11/14/2013 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 15.0 Major Significantly changed the technical content.

10/16/2015 15.0
No
ChangeNone

No changes to the meaning, language, or formatting of the
technical content.

4 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 8
1.1 Glossary ... 8
1.2 References .. 10

1.2.1 Normative References ... 10
1.2.2 Informative References ... 11

1.3 Overview .. 12
1.4 Relationship to Other Protocols .. 15
1.5 Prerequisites/Preconditions ... 15
1.6 Applicability Statement ... 15
1.7 Versioning and Capability Negotiation ... 15
1.8 Vendor-Extensible Fields ... 15
1.9 Standards Assignments ... 16

2 Messages ... 17
2.1 Transport .. 17
2.2 Message Syntax ... 17

2.2.1 SOCKADDR_IN ... 17
2.2.2 DPLAYI_PACKEDPLAYER .. 17
2.2.3 DPLAYI_SUPERPACKEDPLAYER ... 20
2.2.4 DPSECURITYDESC .. 24
2.2.5 DPSESSIONDESC2 .. 25
2.2.6 DPSP_MSG_HEADER ... 28
2.2.7 DPSP_MSG_ACCESSGRANTED .. 30
2.2.8 DPSP_MSG_ADDFORWARD .. 31
2.2.9 DPSP_MSG_ADDFORWARDACK .. 32
2.2.10 DPSP_MSG_ADDFORWARDREPLY ... 32
2.2.11 DPSP_MSG_ADDFORWARDREQUEST ... 32
2.2.12 DPSP_MSG_ADDPLAYERTOGROUP .. 34
2.2.13 DPSP_MSG_ADDSHORTCUTTOGROUP ... 34
2.2.14 DPSP_MSG_ASK4MULTICAST ... 35
2.2.15 DPSP_MSG_ASK4MULTICASTGUARANTEED .. 36
2.2.16 DPSP_MSG_AUTHERROR ... 36
2.2.17 DPSP_MSG_CHALLENGE .. 37
2.2.18 DPSP_MSG_CHALLENGERESPONSE ... 38
2.2.19 DPSP_MSG_CHAT ... 38
2.2.20 DPSP_MSG_CREATEGROUP .. 39
2.2.21 DPSP_MSG_CREATEPLAYER ... 40
2.2.22 DPSP_MSG_CREATEPLAYERVERIFY ... 41
2.2.23 DPSP_MSG_DELETEGROUP .. 43
2.2.24 DPSP_MSG_DELETEGROUPFROMGROUP .. 43
2.2.25 DPSP_MSG_DELETEPLAYER ... 44
2.2.26 DPSP_MSG_DELETEPLAYERFROMGROUP ... 45
2.2.27 DPSP_MSG_ENUMPLAYER .. 45
2.2.28 DPSP_MSG_ENUMPLAYERSREPLY ... 46
2.2.29 DPSP_MSG_ENUMSESSIONS .. 47
2.2.30 DPSP_MSG_ENUMSESSIONSREPLY ... 48
2.2.31 DPSP_MSG_GROUPDATACHANGED ... 49
2.2.32 DPSP_MSG_GROUPNAMECHANGED ... 50
2.2.33 DPSP_MSG_IAMNAMESERVER .. 51
2.2.34 DPSP_MSG_KEYEXCHANGE .. 52
2.2.35 DPSP_MSG_KEYEXCHANGEREPLY ... 53
2.2.36 DPSP_MSG_LOGONDENIED ... 54
2.2.37 DPSP_MSG_MULTICASTDELIVERY .. 54
2.2.38 DPSP_MSG_NEGOTIATE .. 55
2.2.39 DPSP_MSG_PACKET .. 55

5 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.40 DPSP_MSG_PACKET2_ACK .. 56
2.2.41 DPSP_MSG_PACKET2_DATA ... 57
2.2.42 DPSP_MSG_PING .. 58
2.2.43 DPSP_MSG_PINGREPLY ... 59
2.2.44 DPSP_MSG_PLAYERDATACHANGED .. 59
2.2.45 DPSP_MSG_PLAYERMESSAGE .. 60
2.2.46 DPSP_MSG_PLAYERNAMECHANGED .. 61
2.2.47 DPSP_MSG_PLAYERWRAPPER .. 62
2.2.48 DPSP_MSG_REQUESTGROUPID .. 62
2.2.49 DPSP_MSG_REQUESTPLAYERID .. 63
2.2.50 DPSP_MSG_REQUESTPLAYERREPLY .. 64
2.2.51 DPSP_MSG_SESSIONDESCCHANGED .. 65
2.2.52 DPSP_MSG_SIGNED ... 66
2.2.53 DPSP_MSG_SUPERENUMPLAYERSREPLY .. 67
2.2.54 DPSP_MSG_VOICE .. 69
2.2.55 DPSP_MSG_YOUAREDEAD ... 69

3 Protocol Details ... 71
3.1 DirectPlay Client Details .. 71

3.1.1 Abstract Data Model .. 71
3.1.2 Timers .. 73

3.1.2.1 Session Enumeration Timer .. 73
3.1.2.2 Reliable API Timer ... 74
3.1.2.3 Logon Timer ... 74
3.1.2.4 Packetize Timer .. 74
3.1.2.5 Ping Timer ... 74

3.1.3 Initialization ... 74
3.1.4 Higher-Layer Triggered Events ... 74

3.1.4.1 Enumerate Sessions .. 74
3.1.4.2 Join Session ... 75
3.1.4.3 Enumerate Players or Groups ... 75
3.1.4.4 Create Player.. 75
3.1.4.5 Delete Player .. 75
3.1.4.6 Create Group .. 75
3.1.4.7 Remove Group.. 76
3.1.4.8 Set Group Data ... 76
3.1.4.9 Set Group Name ... 76
3.1.4.10 Set Player Data... 76
3.1.4.11 Set Player Name ... 76
3.1.4.12 Add Player to Group .. 77
3.1.4.13 Remove Player from Group .. 77
3.1.4.14 Add Group to Group .. 77
3.1.4.15 Remove Group from Group... 77
3.1.4.16 Send Application Data ... 77

3.1.4.16.1 Sending Encrypted/Signed Data .. 78
3.1.4.16.2 Sending Unencrypted/Unsigned Data ... 78

3.1.4.17 Send Chat .. 78
3.1.4.18 Large Messages .. 79

3.1.5 Processing Events and Sequencing Rules ... 79
3.1.5.1 DPSP_MSG_REQUESTPLAYERREPLY ... 79
3.1.5.2 DPSP_MSG_CHALLENGE .. 80
3.1.5.3 DPSP_MSG_ACCESSGRANTED .. 80
3.1.5.4 DPSP_MSG_AUTHERROR.. 80
3.1.5.5 DPSP_MSG_LOGONDENIED .. 80
3.1.5.6 DPSP_MSG_KEYEXCHANGEREPLY ... 80
3.1.5.7 DPSP_MSG_SUPERENUMPLAYERSREPLY .. 81
3.1.5.8 DPSP_MSG_ADDFORWARDREPLY .. 81
3.1.5.9 DPSP_MSG_SIGNED .. 81

6 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.10 DPSP_MSG_ADDFORWARD .. 81
3.1.5.11 DPSP_MSG_CREATEGROUP .. 81
3.1.5.12 DPSP_MSG_CREATEPLAYER ... 82
3.1.5.13 DPSP_MSG_CREATEPLAYERVERIFY ... 82
3.1.5.14 DPSP_MSG_DELETEPLAYER .. 82
3.1.5.15 DPSP_MSG_DELETEGROUP .. 82
3.1.5.16 DPSP_MSG_GROUPDATACHANGED ... 82
3.1.5.17 DPSP_MSG_GROUPNAMECHANGED ... 82
3.1.5.18 DPSP_MSG_PLAYERNAMECHANGED .. 83
3.1.5.19 DPSP_MSG_PLAYERDATACHANGED ... 83
3.1.5.20 DPSP_MSG_ADDPLAYERTOGROUP .. 83
3.1.5.21 DPSP_MSG_DELETEPLAYERFROMGROUP .. 83
3.1.5.22 DPSP_MSG_SESSIONDESCCHANGED .. 83
3.1.5.23 DPSP_MSG_ADDSHORTCUTTOGROUP ... 83
3.1.5.24 DPSP_MSG_DELETEGROUPFROMGROUP .. 83
3.1.5.25 DPSP_MSG_VOICE .. 84
3.1.5.26 DPSP_MSG_CHAT ... 84
3.1.5.27 DPSP_MSG_PACKET .. 84
3.1.5.28 DPSP_MSG_PACKET2_DATA ... 84
3.1.5.29 DPSP_MSG_PACKET2_ACK ... 84
3.1.5.30 DPSP_MSG_PING .. 84
3.1.5.31 DPSP_MSG_PINGREPLY ... 85
3.1.5.32 DPSP_MSG_YOUAREDEAD.. 85

3.1.6 Timer Events .. 85
3.1.6.1 Packetize Timer .. 85
3.1.6.2 Ping Timer ... 85

3.1.7 Other Local Events .. 85
3.1.7.1 Host Migration .. 85

3.2 Game Host Details ... 86
3.2.1 Abstract Data Model .. 87
3.2.2 Timers .. 87

3.2.2.1 Name Table Population Timer ... 87
3.2.2.2 Ping Timer ... 87

3.2.3 Initialization ... 87
3.2.4 Higher-Layer Triggered Events ... 87
3.2.5 Processing Events and Sequencing Rules ... 87

3.2.5.1 DPSP_MSG_ASK4MULTICAST ... 87
3.2.5.2 DPSP_MSG_ASK4MULTICASTGUARANTEED .. 88
3.2.5.3 DPSP_MSG_ENUMSESSIONS .. 88
3.2.5.4 DPSP_MSG_REQUESTPLAYERID .. 88
3.2.5.5 DPSP_MSG_ADDFORWARDREQUEST ... 89
3.2.5.6 DPSP_MSG_ADDFORWARDACK ... 89
3.2.5.7 DPSP_MSG_NEGOTIATE ... 90
3.2.5.8 DPSP_MSG_CHALLENGERESPONSE ... 90
3.2.5.9 DPSP_MSG_KEYEXCHANGE .. 90
3.2.5.10 DPSP_MSG_PING .. 90
3.2.5.11 DPSP_MSG_PINGREPLY ... 90

3.2.6 Timer Events .. 91
3.2.6.1 Name Table Population Timer ... 91
3.2.6.2 Ping Timer ... 91

3.2.7 Other Local Events .. 91

4 Protocol Examples ... 92
4.1 DirectPlay4EnumSessionsRequest .. 92
4.2 DirectPlay4 EnumSessionsReply ... 92
4.3 Joining a Game .. 93

5 Security ... 95
5.1 Security Considerations for Implementers ... 95

7 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5.2 Index of Security Parameters .. 95

6 Appendix A: Product Behavior ... 96

7 Change Tracking .. 100

8 Index ... 101

8 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

This specification describes the core protocol services of the DirectPlay 4 Protocol. The DirectPlay 4
Protocol facilitates communication between computer games for which a host computer manages the
metadata of multiple computer game instances supporting multiple players. The protocol enables the
implementation of functions to enumerate hosted game sessions and players, to add and remove
game players, and to interchange data between game instances.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative and can contain the terms MAY,
SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

TheThis document uses the following terms are specific to this document:

acknowledgment (ACK): A signal passed between communicating processes or computers to
signify successful receipt of a transmission as part of a communications protocol.

application identifier: A globally unique identifier (GUID) that uniquely identifies a game.

DirectPlay: A network communication library included with the Microsoft DirectX application

programming interfaces. DirectPlay is a high-level software interface between applications and
communication services that makes it easy to connect games over the Internet, a modem link,
or a network.

DirectPlay 4: A programming library that implements the IDirectPlay4 programming interface.
DirectPlay 4 provides peer-to-peer session-layer services to applications, including session
lifetime management, data management, and media abstraction. DirectPlay 4 first shipped
with the DirectX 6 multimedia toolkit. Later versions continued to ship up to, and including,

DirectX 9. DirectPlay 4 was subsequently deprecated. The DirectPlay 4 DLL continues to ship
in current versions of Windows operating systems, but the development library is no longer

shipping in Microsoft development tools and software development kits (SDKs).

DirectPlay 8: A programming library that implements the IDirectPlay8 programming interface.
DirectPlay 8 provides peer-to-peer session-layer services to applications, including session
lifetime management, data management, and media abstraction. DirectPlay 8 first shipped

with the DirectX 8 software development toolkit. Later versions continued to ship up to, and
including, DirectX 9. DirectPlay 8 was subsequently deprecated. The DirectPlay 8 DLL
continues to ship in current versions of Windows operating systems, but the development library
is no longer shipping in Microsoft development tools and Software Development Kits (SDKs).

DirectPlay client: A player in a DirectPlay client/server game session that has a single
established connection with a DirectPlay server and is not performing game session
management duties. It also refers to a potential player that is enumerating available DirectPlay

servers to join.

DirectPlay host: The player in a DirectPlay peer-to-peer game session that is responsible for

performing game session management duties, such as responding to game session enumeration
requests and maintaining the master copy of all the player and group lists for the game. It has
connections to all DirectPlay peers in the game session.

DirectX: Microsoft DirectX is a collection of application programming interfaces for handling tasks
related to multimedia, especially game programming and video, on Microsoft platforms.

DirectX runtime: A set of libraries created for the family of Windows operating systems that
provide interfaces to ease the development of video games.

9 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DirectX Software Development Kit (DirectX SDK): A set of libraries, called the DirectX
runtime, and supporting infrastructure for building applications for those libraries.

game: An application that uses a DirectPlay protocol to communicate between computers.

game session: The metadata associated with the collection of computers participating in a single

instance of a computer game.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

group: A collection of players within a game session. Typically, players are placed in a group
when they serve a common purpose.

group ID: A 32-bit integer that uniquely represents a group.

host: In DirectPlay, the computer responsible for responding to DirectPlay game session
enumeration requests and maintaining the master copy of all the player and group lists for the
game. One computer is designated as the host of the DirectPlay game session. All other

participants in the DirectPlay game session are called peers. However, in peer-to-peer mode
the name table entry representing the host of the session is also marked as a peer.

host migration: The protocol-specific procedure that occurs when the DirectPlay peer that is
designated as the host or voice server leaves the DirectPlay game or voice session and
another peer assumes that role.

HRESULT: An integer value that indicates the result or status of an operation. A particular
HRESULT can have different meanings depending on the protocol using it. See [MS-ERREF]

section 2.1 and specific protocol documents for further details.

instance: A specific occurrence of a game running in a game session. A game application

process or module may be created more than one time on a single computer system, or on
separate computer systems. Each time a game application process or module is created, the
occurrence is considered to be a separate instance.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

maximum transmission unit (MTU): The size, in bytes, of the largest packet that a given layer
of a communications protocol can pass onward.

name table: The list of systems participating in a DXDiag, DirectPlay 4, or DirectPlay 8 session,
as well as any application-created groups.

payload: The data that is transported to and from the application that is using either the
DirectPlay 4 protocol or DirectPlay 8 protocol.

peer: In DirectPlay, a player within a DirectPlay game session that has an established connection
with every other peer in the game session, and which is not performing game session
management duties. The participant that is managing the game session is called the host.

peer-to-peer: A server-less networking technology that allows several participating network
devices to share resources and communicate directly with each other.

player: A person who is playing a computer game. There maycan be multiple players on a
computer participating in any given game session. See also name table.

10 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

player ID: A 32-bit integer that uniquely represents a player.

round-trip: A process that imports data and then exports that data without data loss.

Security Support Provider Interface (SSPI): A Windows-specific API implementation that
provides the means for connected applications to call one of several security providers to

establish authenticated connections and to exchange data securely over those connections. This
is the Windows equivalent of Generic Security Services (GSS)-API, and the two families of APIs
are on-the-wire compatible.

service provider: A module that abstracts details of underlying transports for generic DirectPlay
message transmission. Each DirectPlay message is transmitted by a DirectPlay service
provider. The service providers that shipped with DirectPlay 4 are modem, serial, IPX, and
TCP/IP.

shortcut: The name given to a child group contained in a parent group.

system message: A message sent by one instance of DirectPlay to another instance of
DirectPlay for the purposes of game session management.

system player: A specially designated player in a game session that receives system messages,
including single messages that should be redistributed to one or more standard players in the
game. Each game session has exactly one system player.

tick count: In DirectPlay, the count from when the system was booted, in milliseconds.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]

provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

user message: A message that is sent between instances of an application using the DirectPlay
network library as a transport.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

11 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[FIPS197] FIPS PUBS, "Advanced Encryption Standard (AES)", FIPS PUB 197, November 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[FIPS46-2] FIPS PUBS, "Data Encryption Standard (DES)", FIPS PUB 46-2, December 1993,
http://www.itl.nist.gov/fipspubs/fip46-2.htm

[FIPS46-3] FIPS PUBS, "Data Encryption Standard (DES)", FIPS PUB 46-3, October 1999,
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[IANAPORT] IANA, "Service Name and Transport Protocol Port Number Registry", November 2006,
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

[MC-DPL4R] Microsoft Corporation, "DirectPlay 4 Protocol: Reliable".

[MC-DPLVP] Microsoft Corporation, "DirectPlay Voice Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MSDN-CAPI] Microsoft Corporation, "Cryptography", http://msdn.microsoft.com/en-
us/library/aa380255.aspx

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2268] Rivest, R., "A Description of the RC2(r) Encryption Algorithm", RFC 2268, March 1998,
http://www.rfc-editor.org/rfc/rfc2268.txt

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980,
http://www.ietf.org/rfc/rfc768.txt

[RFC791] Postel, J., Ed., "Internet Protocol: DARPA Internet Program Protocol Specification", RFC 791,

September 1981, http://www.rfc-editor.org/rfc/rfc791.txt

[RFC793] Postel, J., Ed., "Transmission Control Protocol: DARPA Internet Program Protocol
Specification", RFC 793, September 1981, http://www.rfc-editor.org/rfc/rfc793.txt

[TDEA] National Institute of Standards and Technology, "Recommendation for the Triple Data
Encryption Algorithm (TDEA) Block Cipher", Special Publication 800-67, May 2004,
http://nvlpubs.nist.gov/nistpubs/sp/2004/SP800_67.pdf

1.2.2 Informative References

[MSDN-ALG_ID] Microsoft Corporation, "ALG_ID Data Type", http://msdn.microsoft.com/en-
us/library/aa375549.aspx

[MSDN-CRYPTO] Microsoft Corporation, "Cryptography Reference", http://msdn.microsoft.com/en-

us/library/aa380256.aspx

[RC4] RSA Data Security, Inc., "The RC4 Encryption Algorithm",
http://www.rsa.com/node.aspx?id=1204

[SOCKADDR] Microsoft Corporation, "Sockaddr", http://msdn.microsoft.com/en-
us/library/ms740496.aspx

12 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.3 Overview

The DirectPlay 4 Protocol is a peer-to-peer protocol intended to allow computer games to manage
metadata associated with many multiplayer computer games. It provides functionality that allows the

game to:

 Enumerate the hosted game sessions of the game.

 Connect to a game hosted on another computer.

 Enumerate the players and groups of players in an established game instance.

 Send data from one established instance of the game to another established instance of the game.

 Add and remove players from the game.

Because this is a peer-to-peer protocol, applications that participate in the protocol are typically not

clients or servers; instead, each application participating in the protocol maintains its own version of
the state of the protocol.

The first computer that started the game is designated as the host computer. The host computer
holds the master set of game metadata and responds to requests to enumerate the game sessions
and add players and groups.

When a game application decides to host a game, it configures the DirectPlay 4 game session using

the following options.

DirectPlay flag Behavior

DPSESSION_NEWPLAYERSDISABLED

0x00000001

The DirectPlay 4 host disables the creation of new players. Groups
can continue to be added and managed.

Note This flag is dynamic.

DPSESSION_MIGRATEHOST

0x00000004

If the DirectPlay 4 host computer fails, the DirectPlay 4 Protocol
will migrate the host computer to another machine. See section
3.1.6.2 for more information.

DPSESSION_NOMESSAGEID

0x00000008

If this option is set, the DirectPlay 4 Protocol will not include the
PlayerTo and PlayerFrom field in player management messages
(DPSP_MSG_PLAYERMESSAGE, DPSP_MSG_DELETEPLAYER,
DPSP_MSG_DELETEGROUP,
DPSP_MSG_ADDPLAYERTOGROUP,
DPSP_MSG_DELETEPLAYERFROMGROUP).

DPSESSION_NOPLAYERMGMT

0x00000010

The DirectPlay 4 client will not generate player management
messages (DPSP_MSG_PLAYERMESSAGE,
DPSP_MSG_DELETEPLAYER, DPSP_MSG_DELETEGROUP,
DPSP_MSG_ADDPLAYERTOGROUP,
DPSP_MSG_DELETEPLAYERFROMGROUP).

DPSESSION_JOINDISABLED

0x00000020

The DirectPlay 4 Protocol will no longer allow computers to join
the game session. Players and groups can continue to be added by
computers already in the game session.

Note This flag is dynamic.

DPSESSION_KEEPALIVE

0x00000040

The DirectPlay 4 Protocol will periodically send DPSP_MSG_PING
(section 2.2.42) messages to ensure that all computers in the game
session are still functioning.

DPSESSION_NODATAMESSAGES

0x00000080

The DirectPlay 4 Protocol will not send
DPSP_MSG_PLAYERDATACHANGED (section 2.2.44) messages.

13 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DirectPlay flag Behavior

DPSESSION_SECURESERVER

0x00000100

The DirectPlay 4 host computer will require all DirectPlay 4 clients
connecting to the computer to authenticate, as specified in sections
3.1.5.1 and 3.2.5.7. Players in the game session maycan then sign
and/or encrypt application data.

Note This option is incompatible with the
DPSESSION_MIGRATEHOST option.

DPSESSION_PRIVATE

0x00000200

Established instances of the game that require computers to join
should ensure the user has entered the desired password prior to
initiating the connection.

DPSESSION_PASSWORDREQUIRED

0x00000400

The game host will reply only to DPSP_MSG_ENUMSESSIONS
(section 2.2.29) messages whose password matches the password of

the game session.

DPSESSION_MULTICASTSERVER

0x00000800

The DirectPlay 4 client will transmit all game messages through the
game host, which will then retransmit them to the various game
clients.

Note This flag is incompatible with the DPSESSION_MIGRATEHOST
option.

DPSESSION_CLIENTSERVER

0x00001000

When joining a game session, the game host will transmit
information only about the system players on all the joined
machines, not about the normal players.

Note This flag is incompatible with the DPSESSION_MIGRATEHOST
option.

DPSESSION_DIRECTPLAYPROTOCOL

0x00002000

The DirectPlay 4 client will use the DirectPlay 4 Reliable Protocol
[MC-DPL4R] for communication from the DirectPlay client to the
game host and other DirectPlay 4 clients.

DPSESSION_NOPRESERVEORDER

0x00004000

When this option is set, the DirectPlay 4 client will not ensure that
packets are passed to the higher-level protocol in the order in which
they were received.

DPSESSION_OPTIMIZELATENCY

0x00008000

Tells the DirectPlay 4 Protocol to optimize for latency.

DPSESSION_NOSESSIONDESCMESSAGES

0x00020000

When a game on the DirectPlay 4 host updates game session
information, the DirectPlay 4 host will not send a
DPSP_MSG_SESSIONDESCCHANGED (section 2.2.51) message.

As other nascent game instances start on other computers, these instances use the DirectPlay 4
Protocol to enumerate established game sessions on the local network (a nascent game instance

might ask the user to specify a specific game host and enumerate the list of game sessions explicitly
from that host).

14 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 1: Diagram of session enumeration request and response

After enumerating the available game sessions, the game maycan choose one game session (typically
after consulting with the user playing the game), and attempt to join the game session by requesting
that the game host create a system player.

Once the system player for the client has been created, the game host will transmit the current set of
game data to the joining nascent game instance and will notify all established game instances about
the nascent game instance.

Figure 2: Diagram of a nascent game instance joining a game host and a third, established
game instance

Once a nascent game instance has joined a game session, it becomes an established game instance.
Any established game instance can add players or groups by requesting a player ID from the game
host and transmitting information about the player to all of the established game instances, as shown
in the following figure.

15 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 3: Diagram of an established game instance creating a non-system player

1.4 Relationship to Other Protocols

The DirectPlay 4 Core and Service Providers Protocol is transmitted via both the Transmission
Control Protocol (TCP) [RFC793] and the User Datagram Protocol (UDP) [RFC768] protocols, as
specified in [RFC791]. In addition, at the discretion of the game, all of the messages listed in this
protocol maymight be transmitted via the DirectPlay 4 Reliable Protocol, as specified in [MC-DPL4R].

1.5 Prerequisites/Preconditions

The DirectPlay 4 Protocol requires the DirectX 6 runtime.<1>

1.6 Applicability Statement

The DirectPlay 4 Protocol is used when a game requires communication with other games. All of the
functionality present in the DirectPlay 4 Protocol has been superseded by the DirectPlay 8
Protocol and, as such, the DirectPlay 4 Protocol is only to be used when the game has a
requirement to interoperate with other DirectPlay 4 games.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

 Protocol Versions: The DirectPlay 4 Core and Service Provider Protocol supports the following
explicit dialects: "DX6VERSION", "DX61VERSION", "DX61AVERSION", "DX71VERSION",
"DX8VERSION", and "DX9VERSION". These dialects are defined in section 2.2.3 and are backward

compatible.<2>

 Capability Negotiation: When joining a game session, each client creates a "system player" and
reports the DirectPlay dialect supported by that client. The host cannot allow the connection of a
client that does not have the capabilities of interoperating with the existing game session.

1.8 Vendor-Extensible Fields

This protocol maycan be transmitted over network protocols other than the IP networking stack. The
protocol includes a Service Provider Data field in the DPLAYI_PACKEDPLAYER structure (section

16 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2) and the DPLAYI_SUPERPACKEDPLAYER structure (section 2.2.3) that can be used to
transmit protocol-specific information.

Each game can also extend the protocol with player, per-group, and per-game-session data. The per-
player and per-group data is specified in the Player Data field of the DPLAYI_PACKEDPLAYER

structure (section 2.2.2) and the DPLAYI_SUPERPACKEDPLAYER structure (section 2.2.3). The
per-game-session data is contained in the Application Defined 1 and Application Defined 4 fields
of the DPSESSIONDESC2 structure (section 2.2.5).

This protocol uses HRESULT values as defined in [MS-ERREF] section 2.1. Vendors can define their
own HRESULT values provided that they set the C bit (0x20000000) for each vendor-defined value to
indicate that the value is a customer code.

1.9 Standards Assignments

Parameter Value Reference

DirectPlay 4 Port Number 47624 [IANAPORT]

DirectPlay 4 Port Number (registered but unused) 2234 [IANAPORT]

17 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

This protocol references commonly used data types as defined in [MS-DTYP].

2.1 Transport

DirectPlay messages are transmitted either by UDP or TCP depending on whether the destination of
the protocol message is broadcast or unicast. Clients of the DirectPlay 4 protocol MUST use TCP and
UDP port numbers in the range from 2300 to 2400. Enumeration messages transmitted to the
DirectPlay host computer MUST be transmitted to port 47624. Broadcast messages MUST be sent to
the UDP broadcast address of 255.255.255.255.

2.2 Message Syntax

All multibyte values transmitted by the DirectPlay 4 Protocol are transmitted in little-endian
format unless otherwise specified.

This protocol specification uses curly braced GUID strings as specified in [MS-DTYP] section 2.3.4.3.

2.2.1 SOCKADDR_IN

The SOCKADDR_IN structure is built as if it were on a little-endian machine and is treated as a byte
array. For more information, see [SOCKADDR].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AddressFamily Port

Address

Padding

...

AddressFamily (2 bytes): Address family. It MUST be 0x0002.

Port (2 bytes): IP port.

Address (4 bytes): IP address, as specified in [RFC791].

Padding (8 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

2.2.2 DPLAYI_PACKEDPLAYER

The DPLAYI_PACKEDPLAYER structure contains data related to players or groups.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size

Flags

18 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PlayerID

ShortNameLength

LongNameLength

ServiceProviderDataSize

PlayerDataSize

NumberOfPlayers

SystemPlayerID

FixedSize

PlayerVersion

ParentID

ShortName (variable)

...

LongName (variable)

...

ServiceProviderData (variable)

...

PlayerData (variable)

...

PlayerIDs (variable)

...

Size (4 bytes): MUST contain the total size of the DPLAYI_PACKEDPLAYER structure plus the

values of the ShortNameLength, LongNameLength, ServiceProviderDataSize, and
PlayerDataSize fields.

Flags (4 bytes): MUST contain 0 or more of the following player flags.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S

P

N

S

P

G

P

L

X

19 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SP (1 bit): The player is the system player.

NS (1 bit): The player is the name server (host). It MUST be combined with SP.

PG (1 bit): The player belongs to a group. This flag MUST be set for system players, for other
players that have been added to a group using DPSP_MSG_ADDPLAYERTOGROUP (section

2.2.12), or for groups that have been added to a group using
DPSP_MSG_ADDSHORTCUTTOGROUP (section 2.2.13).

PL (1 bit): The player is on the sending machine. This flag does not have meaning on other
machines and MUST be ignored on receipt.

X (28 bits): All bits that have this label SHOULD be set to zero when sent and MUST be ignored
on receipt.

PlayerID (4 bytes): The player ID.

ShortNameLength (4 bytes): MUST contain the length of the player's short name, in octets. If there
is no player short name, this field MUST be set to zero.

LongNameLength (4 bytes): MUST contain the length, in octets, of the player's long name. If there
is no player long name, this field MUST be set to zero.

ServiceProviderDataSize (4 bytes): MUST contain the length, in octets, of the
ServiceProviderData field. If there is no network service provider data, this field MUST be set

to zero.

PlayerDataSize (4 bytes): MUST contain the length of the per-game player data, in octets. If there
is no per-game player data, this field MUST be set to zero.

NumberOfPlayers (4 bytes): MUST contain the number of entries in the PlayerIDs field. If the
player represented in the DPLAYI_PACKEDPLAYER structure is not a group, this field MUST be
set to zero.

SystemPlayerID (4 bytes): MUST contain the ID of the system player for this game session.

FixedSize (4 bytes): MUST contain the size, in octets, of the fixed portion of this structure and MUST
be 48.

PlayerVersion (4 bytes): MUST contain the version of the current player or group. The version for
system players MUST match the protocol dialect version used by the creating instance. The
version for non-system players or groups SHOULD be the protocol dialect version used by the
creating instance and it MUST be ignored by receivers. The DirectPlay4 Core and Service Provider
Protocol supports the protocol dialect versions identified in the description of the

VersionOrSystemPlayerID field in DPLAYI_SUPERPACKEDPLAYER (section 2.2.3).

ParentID (4 bytes): MUST contain the identifier of the parent group. If this
DPLAYI_PACKEDPLAYER structure represents a player, or if it is a group that is not contained in
another group, this field MUST be set to zero.

ShortName (variable): If the ShortNameLength field is nonzero, this MUST contain the null-

terminated Unicode string that contains the player's short name.

LongName (variable): If the LongNameLength field is nonzero, this MUST contain the null-
terminated Unicode string that contains the player's long name.

ServiceProviderData (variable): If ServiceProviderDataSize is nonzero, this MUST be set to the
data that is used by the DirectPlay Service Provider.

If provided, the Windows Winsock DirectPlay Service Provider stores the following data in the
ServiceProviderData field.

20 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Stream Socket Address (16 bytes)

...

...

Datagram Socket Address (16 bytes)

...

...

Stream Socket Address (16 bytes): A SOCKADDR_IN structure that contains the addressing
information to be used when contacting this player over TCP. If the PL flag is set in the Flags
field, the Address field of this SOCKADDR_IN must be set to 0.0.0.0.

Datagram Socket Address (16 bytes): A SOCKADDR_IN structure that contains the addressing
information to be used when contacting this player over UDP. If the PL flag is set in the Flags
field, the Address field of this SOCKADDR_IN must be set to 0.0.0.0.

PlayerData (variable): If PlayerDataSize is nonzero, this MUST be set to the byte array of game-
specific per-player data.

PlayerIDs (variable): MUST contain an array of PlayerIDs where the array size is specified in

NumberOfPlayers. If NumberOfPlayers is 0, this field MUST NOT be present.

2.2.3 DPLAYI_SUPERPACKEDPLAYER

The DPLAYI_SUPERPACKEDPLAYER structure is used to transmit player or group-related data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size

Flags

ID

PlayerInfoMask

VersionOrSystemPlayerID

ShortName (variable)

...

LongName (variable)

21 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

PlayerDataLength (variable)

...

PlayerData (variable)

...

ServiceProviderDataLength (variable)

...

ServiceProviderData (variable)

...

PlayerCount (variable)

...

PlayerIDs (variable)

...

ParentID (optional)

ShortcutIDCount (variable)

...

ShortcutIDs (variable)

...

Size (4 bytes): The size of the fixed player header, in bytes. This includes the Size field, as well as
the Flags, ID, and PlayerInfoMask fields. MUST be 0x00000010 (16).

Flags (4 bytes): Player flags. Player Flags MUST be 0 or more of the following values.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S

P

N

S

P

G

P

L

X

SP (1 bit): The player is the system player.

NS (1 bit): The player is the name server (host). It MUST be combined with SP.

22 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PG (1 bit): The player belongs to a group. This flag MUST be set for system players, for other
players that have been added to a group using DPSP_MSG_ADDPLAYERTOGROUP (section

2.2.12), or for groups that have been added to a group using
DPSP_MSG_ADDSHORTCUTTOGROUP (section 2.2.13).

PL (1 bit): The player is on the sending machine. This flag does not have meaning on other
machines and MUST be ignored on receipt.

X (28 bits): All bits that have this label SHOULD be set to zero when sent and MUST be ignored
on receipt.

ID (4 bytes): MUST contain the player ID of the player that is described in this structure.

PlayerInfoMask (4 bytes): A bit field that indicates which optional fields are present. The
PlayerInfoMask field MUST be a bitmask that is composed of the following fields.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S

N

L

N

S

L

P

D

P

C

P

I

S

C

X

SN (1 bit): MUST be set if the ShortName field is present in the structure.

LN (1 bit): MUST be set if the LongName field is present in the structure.

SL (2 bits): MUST be set if the ServiceProviderDataLength field is present in the structure. SL
MUST be set to one of the following values.

Value Meaning

0x01 If the ServiceProviderDataLength field occupies 1 byte.

0x02 If the ServiceProviderDataLength field occupies 2 bytes.

0x03 If the ServiceProviderDataLength field occupies 4 bytes.

PD (2 bits): MUST be set if the PlayerDataLength field is present in the structure. PD MUST be
set to one of the following values.

Value Meaning

0x01 If the PlayerDataLength field occupies 1 byte.

0x02 If the PlayerDataLength field occupies 2 bytes.

0x03 If the PlayerDataLength field occupies 4 bytes.

PC (2 bits): MUST be set if the PlayerCount field is present in the structure. PC MUST be set to
one of the following values.

Value Meaning

0x01 If the PlayerCount field occupies 1 byte.

0x02 If the PlayerCount field occupies 2 bytes.

0x03 If the PlayerCount field occupies 4 bytes.

PI (1 bit): MUST be set if the ParentID field is present in the structure.

23 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SC (2 bits): MUST be set if the ShortcutCount field is present in the structure. SC MUST be set
to one of the following values.

Value Meaning

0x01 If the ShortcutCount field occupies 1 byte.

0x02 If the ShortcutCount field occupies 2 bytes.

0x03 If the ShortcutCount field occupies 4 bytes.

X (21 bits): All bits with this label SHOULD be set to zero when sent and MUST be ignored on
receipt.

VersionOrSystemPlayerID (4 bytes): If the DPLAYI_PLAYER_SYSPLAYER flag is set in the Flags
field, this field MUST contain the protocol version for the machine hosting the protocol. If the
DPLAYI_PLAYER_SYSPLAYER flag is not set, this field MUST contain the ID of the system player

for this game. When the protocol version is used for a system player, it will be one of the following

values.

Version/Value Meaning

DX6VERSION

9

First version documented.

DX61VERSION

10

New Hosts send DPSP_MSG_IAMNAMESERVER as first message when they become the new
host.

DX61AVERSION

11

No Change.

DX71VERSION

12

The version in which DirectPlay Voice was introduced. Does not affect any of the core logic.

DX8VERSION

13

Added DPSP_MSG_CREATEPLAYERVERIFY message.

DX9VERSION

14

No Change.

ShortName (variable): If the SN bit in the PlayerInfoMask field is set, the ShortName field MUST
contain a null-terminated Unicode string that contains the short name of the player.

LongName (variable): If the LN bit in the PlayerInfoMask field is set, the LongName field MUST
contain a null-terminated Unicode string that contains the long name of the player.

PlayerDataLength (variable): The PD bits in PlayerInfoMask indicate the size of this optional
field. When present, this field MUST contain the size, in octets, of the PlayerData field.

PlayerData (variable): If PlayerDataSize is nonzero, this MUST be set to per-game player data.

ServiceProviderDataLength (variable): The SL bits in PlayerInfoMask indicate the size of this
optional field. When present, this field MUST contain the size, in octets, of the
ServiceProviderData field.<3>

ServiceProviderData (variable): If ServiceProviderDataSize is nonzero, this MUST be set to the
data that is used by the DirectPlay Service Provider.

24 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If provided, the Windows Winsock DirectPlay Service Provider stores the following data in the
ServiceProviderData field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Stream Socket Address (16 bytes)

...

...

Datagram Socket Address (16 bytes)

...

...

Stream Socket Address (16 bytes): A SOCKADDR_IN structure that contains the addressing

information to be used when contacting this player over TCP. If the PL flag is set in the Flags
field, the Address field of this SOCKADDR_IN must be set to 0.0.0.0.

Datagram Socket Address (16 bytes): A SOCKADDR_IN structure that contains the addressing
information to be used when contacting this player over UDP. If the PL flag is set in the Flags
field, the Address field of this SOCKADDR_IN must be set to 0.0.0.0.

PlayerCount (variable): The PC bits in PlayerInfoMask indicate the size of this optional field.

When present, this field MUST contain the number of entries in the PlayerIDs field.

PlayerIDs (variable): If the PlayerCount field is present and nonzero, this MUST be set to a list of
player IDs that are contained in the group. The length of this field is equivalent to the value of the

PlayerCount field multiplied by four.

ParentID (4 bytes): If the PI field is set in the PlayerInfoMask, this field MUST be set to the ID of
the parent for this group.

ShortcutIDCount (variable): The SC bits in PlayerInfoMask indicate the size of this optional field.

When present, this field MUST contain the number of shortcut IDs in the ShortcutIDs field.

ShortcutIDs (variable): If the ShortcutIDCount field is nonzero, this MUST be set to a list of
shortcut IDs. The length of this field is equivalent to the value of ShortcutIDCount multiplied by
four.

2.2.4 DPSECURITYDESC

The DPSECURITYDESC structure describes the security properties of a game session instance.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size

Flags

SSPIProvider

25 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

CAPIProvider

CAPIProviderType

EncryptionAlgorithm

Size (4 bytes): MUST be set to the size of the structure, in octets.<4>

Flags (4 bytes): Game session flags. This is not used. MUST be set to zero when sent and MUST be
ignored on receipt.

SSPIProvider (4 bytes): MUST be ignored on receipt.

CAPIProvider (4 bytes): MUST be ignored on receipt.

CAPIProviderType (4 bytes): Crypto service provider type. If the application does not specify a
value, the default value of PROV_RSA_FULL is used. For more information, see Cryptographic

Provider Types [MSDN-CAPI].

EncryptionAlgorithm (4 bytes): Encryption algorithm type. If the application does not specify a

value, the default value of CALG_RC4 is used.<5>

2.2.5 DPSESSIONDESC2

The DPSESSIONDESC2 structure contains game session-related information. A game session is an
instance of a game.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size

Flags

InstanceGUID (16 bytes)

...

...

ApplicationGUID (16 bytes)

...

...

MaxPlayers

CurrentPlayerCount

SessionName

26 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Password

Reserved1

Reserved2

ApplicationDefined1

ApplicationDefined2

ApplicationDefined3

ApplicationDefined4

Size (4 bytes): MUST be set to the size of the structure, in octets.

Flags (4 bytes): Game session flags. Game session flags are set by the game and allow the game to
specify semantics for the DirectPlay 4 protocol.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

N

P

X M

H

N

M

I J

D

K

A

N

D

S

S

P P

R

M

S

C

S

R

P

N

O

O

L

A

V

N

S

Y

NP (1 bit): Applications cannot create new players in this game session, as specified in section
3.2.5.4.

X (1 bit): All bits with this label SHOULD be set to zero when sent and MUST be ignored on
receipt.

MH (1 bit): When the game host quits, the game host responsibilities migrate to another

DirectPlay machine so that new players can continue to be created and nascent game
instances can join the game session, as specified in section 3.1.6.2.

NM (1 bit): DirectPlay will not set the PlayerTo and PlayerFrom fields in player messages.

I (1 bit): (Ignored). All bits with this label MUST be ignored on receipt.

JD (1 bit): DirectPlay will not allow any new applications to join the game session. Applications
already in the game session can still create new players, as specified in section 3.2.5.4.

KA (1 bit): DirectPlay will detect when remote players exit abnormally (for example, because

their computer or modem was unplugged) through the use of the Ping Timer, as described in
sections 3.1.2.5 and 3.2.2.2.

ND (1 bit): DirectPlay will not send a message to all players when a player's remote data

changes.

SS (1 bit): Instructs the game session establishment logic to use user authentication as specified
in sections 3.1.5.1 and 3.2.5.7.

P (1 bit): Indicates that the game session is private and requires a password for EnumSessions

as well as Open.

PR (1 bit): Indicates that the game session requires a password to join.

27 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MS (1 bit): DirectPlay will route all messages through the game host, as specified in section
3.1.5.1.

CS (1 bit): DirectPlay will download information about the DPPLAYER_SERVERPLAYER only.

RP (1 bit): Instructs the DirectPlay client to always use DirectPlay 4 Reliable Protocol [MC-

DPL4R]. When this bit is set, only other game sessions with the same bit set can join or be
joined.

NO (1 bit): Instructs the DirectPlay client that, when using reliable delivery, preserving the order
of received packets is not important. This allows messages to be indicated out of order if
preceding messages have not yet arrived. If this flag is not set, DirectPlay waits for earlier
messages to arrive before delivering later reliable messages.

OL (1 bit): DirectPlay will optimize communication for latency. Implementations SHOULD use the

presence of the OL flag for guidance on how to send or process messages to optimize for
latency rather than throughput; however, implementations can choose to ignore this flag. The
presence or absence of the OL flag MUST NOT affect the sequence or binary contents of

DirectPlay 4 protocol messages.<6>

AV (1 bit): Allows lobby-launched games that are not voice-enabled to acquire voice capabilities.

NS (1 bit): Suppresses transmission of game session description changes.

Y (14 bits): All bits with this label SHOULD be set to zero when sent and MUST be ignored on
receipt.

InstanceGUID (16 bytes): Identifier for the game session instance.

ApplicationGUID (16 bytes): MUST be set to the unique identifier of the DirectPlay game.

MaxPlayers (4 bytes): Maximum number of players allowed in the game session.

CurrentPlayerCount (4 bytes): Current number of players in the game session.

SessionName (4 bytes): Placeholder for a pointer to a Unicode string that contains the game

session name and the NULL terminating character. This field SHOULD be set to zero when sent
and MUST be ignored on receipt.<7>

Password (4 bytes): Placeholder for a pointer to a Unicode string that contains the game session
password and the NULL terminating character. This field SHOULD be set to zero when sent and
MUST be ignored on receipt.<8>

Note A secure game session is different from a password protected game session. DirectPlay 4
allows for securing access to a game session with a user-specified cleartext password that is

specified by the host and which MUST be provided by all clients. Although not very secure, this
form of security provides a very lightweight alternative that does not require user accounts and
associated management. It is used to casually restrict access to a particular instance of a game
session.

Reserved1 (4 bytes): MUST be set to a unique value that is used to construct the player and group

ID values. For more information about how this value is used to construct player and group

identifiers, see section 3.2.5.4.

Reserved2 (4 bytes): Reserved for future use.

ApplicationDefined1 (4 bytes): For use by the DirectPlay game.

ApplicationDefined2 (4 bytes): For use by the DirectPlay game.

ApplicationDefined3 (4 bytes): For use by the DirectPlay game.

28 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ApplicationDefined4 (4 bytes): For use by the DirectPlay game.

2.2.6 DPSP_MSG_HEADER

The DPSP_MSG_HEADER is prepended to all DirectPlay 4 Protocol messages and contains an
identifier that describes each message structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

size (optional) token (optional)

SockAddr (16 bytes, optional)

...

...

Signature

Version Command Value

size (20 bits): Indicates the size of the message (in octets). The value is obtained by performing a
bitwise AND (&) operation with the token field and 0x000FFFFF. This field is optional and its

existence depends on the message type and whether the DirectPlay 4 Reliable Protocol is used; it
is present unless the containing message specifies otherwise.

token (12 bits): Describes high-level message characteristics. The value is obtained by performing a
bitwise AND (&) operation with the size field and 0xFFF00000. This field is optional and its
existence depends on the message type and whether the DirectPlay 4 Reliable Protocol is used; it
is present unless the containing message specifies otherwise.

Value Meaning

0xFAB Indicates that the message was received from a remote DirectPlay machine.

0xCAB Indicates that the message will be forwarded to all registered servers.

0xBAB Indicates that the message was received from a DirectPlay server.

SockAddr (16 bytes): 16 bytes of data containing a sockets SOCKADDR_IN (section 2.2.1)
structure. If the machine is on the same network as the receiving machine, the Address field of
this structure is set to 0.0.0.0. This field is optional and its existence depends on the message
type and whether the DirectPlay 4 Reliable Protocol is used; it is present unless the containing

message specifies otherwise.

Signature (4 bytes): MUST be set to the value 0x79616c70 (ASCII 'play').

Version (2 bytes): MUST be set to the version number of the protocol. The DirectPlay 4 Core and
Service Provider Protocol supports the protocol versions identified in the description of the
VersionOrSystemPlayerID field in DPLAYI_SUPERPACKEDPLAYER (section 2.2.3).

Command Value (2 bytes): MUST contain one of the following values.

29 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Value

DPSP_MSG_ENUMSESSIONSREPLY 0x0001

DPSP_MSG_ENUMSESSIONS 0x0002

DPSP_MSG_ENUMPLAYERSREPLY 0x0003

DPSP_MSG_ENUMPLAYER 0x0004

DPSP_MSG_REQUESTPLAYERID 0x0005

DPSP_MSG_REQUESTGROUPID 0x0006

DPSP_MSG_REQUESTPLAYERREPLY 0x0007

DPSP_MSG_CREATEPLAYER 0x0008

DPSP_MSG_CREATEGROUP 0x0009

DPSP_MSG_PLAYERMESSAGE 0x000A

DPSP_MSG_DELETEPLAYER 0x000B

DPSP_MSG_DELETEGROUP 0x000C

DPSP_MSG_ADDPLAYERTOGROUP 0x000D

DPSP_MSG_DELETEPLAYERFROMGROUP 0x000E

DPSP_MSG_PLAYERDATACHANGED 0x000F

DPSP_MSG_PLAYERNAMECHANGED 0x0010

DPSP_MSG_GROUPDATACHANGED 0x0011

DPSP_MSG_GROUPNAMECHANGED 0x0012

DPSP_MSG_ADDFORWARDREQUEST 0x0013

DPSP_MSG_PACKET 0x0015

DPSP_MSG_PING 0x0016

DPSP_MSG_PINGREPLY 0x0017

DPSP_MSG_YOUAREDEAD 0x0018

DPSP_MSG_PLAYERWRAPPER 0x0019

DPSP_MSG_SESSIONDESCCHANGED 0x001A

DPSP_MSG_CHALLENGE 0x001C

DPSP_MSG_ACCESSGRANTED 0x001D

DPSP_MSG_LOGONDENIED 0x001E

DPSP_MSG_AUTHERROR 0x001F

DPSP_MSG_NEGOTIATE 0x0020

DPSP_MSG_CHALLENGERESPONSE 0x0021

DPSP_MSG_SIGNED 0x0022

30 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Value

DPSP_MSG_ADDFORWARDREPLY 0x0024

DPSP_MSG_ASK4MULTICAST 0x0025

DPSP_MSG_ASK4MULTICASTGUARANTEED 0x0026

DPSP_MSG_ADDSHORTCUTTOGROUP 0x0027

DPSP_MSG_DELETEGROUPFROMGROUP 0x0028

DPSP_MSG_SUPERENUMPLAYERSREPLY 0x0029

DPSP_MSG_KEYEXCHANGE 0x002B

DPSP_MSG_KEYEXCHANGEREPLY 0x002C

DPSP_MSG_CHAT 0x002D

DPSP_MSG_ADDFORWARD 0x002E

DPSP_MSG_ADDFORWARDACK 0x002F

DPSP_MSG_PACKET2_DATA 0x0030

DPSP_MSG_PACKET2_ACK 0x0031

DPSP_MSG_IAMNAMESERVER 0x0035

DPSP_MSG_VOICE 0x0036

DPSP_MSG_MULTICASTDELIVERY 0x0037

DPSP_MSG_CREATEPLAYERVERIFY 0x0038

2.2.7 DPSP_MSG_ACCESSGRANTED

The DPSP_MSG_ACCESSGRANTED packet is sent to a DirectPlay client after the client has
successfully been authenticated as a member of the game session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

PublicKeySize

PublicKeyOffset

PublicKey (variable)

31 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 29 (0x1D).

PublicKeySize (4 bytes): MUST be set to the size of the PublicKey field, in octets. It MUST be set

to 24 (0x00000018).

PublicKeyOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the packet to
the PublicKey field.

PublicKey (variable): Array of bytes that contains the sender's signed public key.

2.2.8 DPSP_MSG_ADDFORWARD

The DPSP_MSG_ADDFORWARD packet is sent to inform a game instance of the existence of other
game instances.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

PlayerID

GroupID

CreateOffset

PasswordOffset

PlayerInfo (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 46 (0x2E).

IDTo (4 bytes): Identifier of the player to whom the message is being sent.

PlayerID (4 bytes): Identifier of the affected player.

GroupID (4 bytes): Identifier of the affected group.

CreateOffset (4 bytes): Offset, in octets, of the PlayerInfo field. It MUST be set to 28
(0x0000001C).

PasswordOffset (4 bytes): Not used. It MUST be ignored on receipt.

32 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PlayerInfo (variable): MUST be set to a DPLAYI_PACKEDPLAYER structure (section 2.2.2) that
contains information about the system player on the newly added machine.

2.2.9 DPSP_MSG_ADDFORWARDACK

The DPSP_MSG_ADDFORWARDACK packet is sent in response to a DPSP_MSG_ADDFORWARD
message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

ID

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of

this field MUST be set to 47 (0x2F).

ID (4 bytes): Identifier of the player for whom a DPSP_MSG_ADDFORWARD message was sent.

2.2.10 DPSP_MSG_ADDFORWARDREPLY

The DPSP_MSG_ADDFORWARDREPLY packet is sent in response to a

DPSP_MSG_ADDFORWARDREQUEST message when there is an error.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

Error

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 36 (0x24).

Error (4 bytes): Indicates the reason that the DPSP_MSG_ADDFORWARD (section 2.2.8) message
failed. For a complete list of DirectPlay 4 HRESULT codes, see [MS-ERREF].

2.2.11 DPSP_MSG_ADDFORWARDREQUEST

The DPSP_MSG_ADDFORWARDREQUEST packet is sent to forward a message to a downstream
player.

33 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

PlayerID

GroupID

CreateOffset

PasswordOffset

PlayerInfo (variable)

...

Password (variable)

...

TickCount

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 19 (0x13).

IDTo (4 bytes): Identifier of the player to whom the message is being sent.

PlayerID (4 bytes): MUST be the identity of the player being added.

GroupID (4 bytes): SHOULD be set to zero when sent and MUST be ignored on receipt.

CreateOffset (4 bytes): Offset, in bytes, of the PlayerInfo field from the beginning of the
Signature field in the DPSP_MSG_HEADER (section 2.2.6) message. It SHOULD be set to 28
(0x1C).

PasswordOffset (4 bytes): Offset, in bytes, of the Password field from the beginning of the

Signature field in the DPSP_MSG_HEADER message.

PlayerInfo (variable): MUST be set to a DPLAYI_PACKEDPLAYER structure (section 2.2.2) that
contains information about the system player on the newly added machine.

Password (variable): Null-terminated Unicode string that contains the game session password.

TickCount (4 bytes): MUST contain the computing system tick count when the packet was
generated.

34 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.12 DPSP_MSG_ADDPLAYERTOGROUP

The DPSP_MSG_ADDPLAYERTOGROUP packet is sent from one game participant to other game
participants when a player is added to a group.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

PlayerID

GroupID

CreateOffset

PasswordOffset

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 13 (0x0D).

IDTo (4 bytes): Identifier of the player to whom the message is being sent. It SHOULD be set to
zero when sent and MUST be ignored on receipt.

PlayerID (4 bytes): Identifier of the player to add to the group specified by the GroupID field.

GroupID (4 bytes): Identifier of the group to which the player will be added.

CreateOffset (4 bytes): Not used. It SHOULD be set to zero when sent and MUST be ignored on
receipt.

PasswordOffset (4 bytes): Not used. It SHOULD be set to zero when sent and MUST be ignored on
receipt.

2.2.13 DPSP_MSG_ADDSHORTCUTTOGROUP

The DPSP_MSG_ADDSHORTCUTTOGROUP packet is sent to add a shortcut to a group.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

35 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ChildGroupID

ParentGroupID

CreateOffset

PasswordOffset

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 39 (0x27).

IDTo (4 bytes): Identifier of the player to whom the message is being sent.

ChildGroupID (4 bytes): Identifier of the group to add to the group specified by ParentGroupID.

ParentGroupID (4 bytes): The containing group identifier.

CreateOffset (4 bytes): Not used. It SHOULD be set to zero when sent and MUST be ignored on
receipt.

PasswordOffset (4 bytes): Not used. It SHOULD be set to zero when sent and MUST be ignored on
receipt.

2.2.14 DPSP_MSG_ASK4MULTICAST

The DPSP_MSG_ASK4MULTICAST packet is sent to request that the server forward a message to
players in a specified group.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

GroupTo

PlayerFrom

MessageOffset

MulticastMessage (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 37 (0x25).

GroupTo (4 bytes): Identifier of the group that is the target of the request.

PlayerFrom (4 bytes): Identifier of the player that originated the request.

36 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MessageOffset (4 bytes): Offset, in octets, from the beginning of the message to the
MulticastMessage field.

MulticastMessage (variable): An array of octets that contains the message to forward. This field
MUST contain a complete DirectPlay 4 Protocol message. However, the message MUST begin

with the Signature field of the DPSP_MSG_HEADER (section 2.2.6) rather than the entire
DPSP_MSG_HEADER structure.

2.2.15 DPSP_MSG_ASK4MULTICASTGUARANTEED

The DPSP_MSG_ASK4MULTICASTGUARANTEED packet is used to request that the server forward
a message to players in a specified group using the guaranteed messaging mechanism.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

GroupTo

PlayerFrom

MessageOffset

MulticastMessage (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 38 (0x26).

GroupTo (4 bytes): MUST be set to the identifier of the group that is the target of the request.

PlayerFrom (4 bytes): MUST be set to the identifier of the player that originated the request.

MessageOffset (4 bytes): Offset, in octets, from the beginning of the message to the
MulticastMessage field.

MulticastMessage (variable): An array of octets that contains the message to forward. This field
MUST contain a complete DirectPlay 4 Protocol message. However, the message MUST begin
with the Signature field of the DPSP_MSG_HEADER (section 2.2.6) rather than the entire
DPSP_MSG_HEADER structure.

2.2.16 DPSP_MSG_AUTHERROR

The DPSP_MSG_AUTHERROR packet is sent to indicate the reason that authentication failed.

37 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

Error

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 31 (0x1F).

Error (4 bytes): MUST contain the reason authentication failed. The values associated with each

error can be found in [MS-ERREF].

Value Meaning

SEC_E_INVALID_TOKEN

0x80090308

The token passed is invalid.

SEC_E_INVALID_HANDLE

0x80090301

An internal handle is invalid.

SEC_E_INTERNAL_ERROR

0x80090304

The Local Security Authority could not be contacted.

SEC_E_NO_AUTHENTICATING_AUTHORITY

0x80090311

No authority could be contacted for authentication.

2.2.17 DPSP_MSG_CHALLENGE

The DPSP_MSG_CHALLENGE packet is used to request a security token.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDFrom

DataSize

DataOffset

SecurityToken (variable)

38 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 28 (0x1C).

IDFrom (4 bytes): MUST be set to the system player ID on the sender's computing system.

DataSize (4 bytes): MUST be set to the size, in octets, of the SecurityToken field.

DataOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the message to the
SecurityToken field.

SecurityToken (variable): Opaque security token whose size is specified by the DataSize field.

2.2.18 DPSP_MSG_CHALLENGERESPONSE

The DPSP_MSG_CHALLENGERESPONSE packet is sent in response to a DPSP_MSG_CHALLENGE

(section 2.2.17) message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDFrom

DataSize

DataOffset

SecurityToken (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 33 (0x21).

IDFrom (4 bytes): MUST be set to the system player ID for the sender's computing system.

DataSize (4 bytes): MUST be set to the size, in octets, of the message in the SecurityToken field.

DataOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the message to the
SecurityToken field.

SecurityToken (variable): Opaque security token whose size is specified by the DataSize field.

2.2.19 DPSP_MSG_CHAT

The DPSP_MSG_CHAT packet is used to exchange text between players.

39 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER

...

IDFrom

IDTo

Flags

MessageOffset

ChatMessage (variable)

...

DPSP_MSG_HEADER (8 bytes): Message header for this packet. It does not contain the size,
token, and SockAddr fields. The Command Value member of this field MUST be set to 45 (0x2D).

IDFrom (4 bytes): MUST be set to the identifier of the sending player.

IDTo (4 bytes): MUST be set to the identifier of the destination player or group.

Flags (4 bytes): Chat flags. MUST be set to one of the following values.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

G

S

X

GS (1 bit): If this bit is set, send the message using a guaranteed send method. If this bit is
clear, send the message using a nonguaranteed send method.

Note Determining whether to send the message guaranteed can be inferred from the

DPSP_MSG_HEADER and the transport method. Use of the GS flag is not required.

X (31 bits): Not used. SHOULD be set to zero when sent and MUST be ignored on receipt.

MessageOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the message
to the ChatMessage field. Zero indicates a NULL message.

ChatMessage (variable): Null-terminated Unicode string that contains the contents of the chat
message.

2.2.20 DPSP_MSG_CREATEGROUP

The DPSP_MSG_CREATEGROUP packet is sent to indicate that a new group has been created.

40 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

PlayerID

GroupID

CreateOffset

PasswordOffset

GroupInfo (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 9 (0x9).

IDTo (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

PlayerID (4 bytes): MUST be set to the group ID of the newly created group.

GroupID (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

CreateOffset (4 bytes): MUST be set to the offset, in octets, of the GroupInfo field. MUST be set to
28 (0x1C).

PasswordOffset (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on
receipt.

GroupInfo (variable): MUST contain a DPLAYI_PACKEDPLAYER (section 2.2.2) structure that
contains information about the group to be created.

2.2.21 DPSP_MSG_CREATEPLAYER

The DPSP_MSG_CREATEPLAYER packet is sent to indicate that a new player has been created.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

41 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

IDTo

PlayerID

GroupID

CreateOffset

PasswordOffset

PlayerInfo (variable)

...

Reserved1 Reserved2

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 8 (0x08).

IDTo (4 bytes): Player to whom the message is being sent. SHOULD be set to zero when sent and

MUST be ignored on receipt.

PlayerID (4 bytes): MUST be set to the identifier of the newly created player.

GroupID (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

CreateOffset (4 bytes): Offset, in octets, of the PlayerInfo field. MUST be set to 28 (0x001C).

PasswordOffset (4 bytes): Not used. SHOULD be set to zero when sent and MUST be ignored on
receipt.

PlayerInfo (variable): MUST contain a DPLAYI_PACKEDPLAYER (section 2.2.2) structure
containing the information about the newly created player.

Reserved1 (2 bytes): SHOULD be set to zero when sent and MUST be ignored on receipt.

Reserved2 (4 bytes): SHOULD be set to zero when sent and MUST be ignored on receipt.

2.2.22 DPSP_MSG_CREATEPLAYERVERIFY

A DPSP_MSG_CREATEPLAYERVERIFY message is sent as verification that a player was previously
created. When all of the following conditions are met, one or more
DPSP_MSG_CREATEPLAYERVERIFY messages are sent in response to a
DPSP_MSG_CREATEPLAYER (section 2.2.21) message:

 The receiving computer system is not the host.

 The player referenced in the incoming DPSP_MSG_CREATEPLAYER message has not already been

added to the name table.

 The player referenced in the incoming DPSP_MSG_CREATEPLAYER message is not a system
player.

42 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The value of the Version field of the received DPSP_MSG_HEADER (section 2.2.6) of the message
is 13 or higher.

 The receiving computer system created a local player that was not designated as a system player
within the last 40 seconds. If more than one local player has been created within that time period,

then a separate DPSP_MSG_CREATEPLAYERVERIFY message MUST be sent for each player.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

PlayerID

GroupID

CreateOffset

PasswordOffset

PlayerInfo (variable)

...

Reserved1 Reserved2

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member
of this field MUST be set to 56 (0x38).

IDTo (4 bytes): The player to whom the message is being sent. SHOULD be set to zero when sent
and MUST be ignored on receipt.

PlayerID (4 bytes): MUST be set to the identifier of the previously created player.

GroupID (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

CreateOffset (4 bytes): Offset, in octets, of the PlayerInfo field. MUST be set to 28 (0x0000001C).

PasswordOffset (4 bytes): Not used. SHOULD be set to zero when sent and MUST be ignored on
receipt.

PlayerInfo (variable): MUST contain a DPLAYI_PACKEDPLAYER (2.2.2) structure containing the
information about the previously created player.

Reserved1 (2 bytes): SHOULD be set to zero when sent and MUST be ignored on receipt.

Reserved2 (4 bytes): SHOULD be set to zero when sent and MUST be ignored on receipt.

43 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.23 DPSP_MSG_DELETEGROUP

The DPSP_MSG_DELETEGROUP packet is sent when a group is deleted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

PlayerID

GroupID

CreateOffset

PasswordOffset

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 12 (0x0C).

IDTo (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

PlayerID (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

GroupID (4 bytes): MUST be set to the group ID of the newly deleted group.

CreateOffset (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

PasswordOffset (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on

receipt.

2.2.24 DPSP_MSG_DELETEGROUPFROMGROUP

The DPSP_MSG_DELETEGROUPFROMGROUP packet is sent to delete a group from a group.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

ChildGroupID

44 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ParentGroupID

CreateOffset

PasswordOffset

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 40 (0x28).

IDTo (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

ChildGroupID (4 bytes): MUST be set to the group ID of the child group to remove.

ParentGroupID (4 bytes): MUST be set to the group ID of the parent group containing the child
group.

CreateOffset (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

PasswordOffset (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on
receipt.

2.2.25 DPSP_MSG_DELETEPLAYER

The DPSP_MSG_DELETEPLAYER packet is sent to indicate that a player has been deleted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

PlayerID

GroupID

CreateOffset

PasswordOffset

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of

this field MUST be set to 11 (0x0B).

IDTo (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

PlayerID (4 bytes): MUST be set to the player ID of the newly deleted player.

GroupID (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

CreateOffset (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

45 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PasswordOffset (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on
receipt.

2.2.26 DPSP_MSG_DELETEPLAYERFROMGROUP

The DPSP_MSG_DELETEPLAYERFROMGROUP packet is sent to indicate that a player has been
deleted from a group.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

PlayerID

GroupID

CreateOffset

PasswordOffset

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of

this field MUST be set to 14 (0x0E).

IDTo (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

PlayerID (4 bytes): MUST be set to the player ID of the newly deleted player.

GroupID (4 bytes): MUST be set to the group ID that contained the deleted player.

CreateOffset (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

PasswordOffset (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on
receipt.

2.2.27 DPSP_MSG_ENUMPLAYER

The DPSP_MSG_ENUMPLAYER packet is sent to the server to request an enumeration of DirectPlay
4 players.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

46 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 4 (0x04).

2.2.28 DPSP_MSG_ENUMPLAYERSREPLY

The DPSP_MSG_ENUMPLAYERSREPLY packet can be sent in response to a
DPSP_MSG_ENUMPLAYER (section 2.2.27) message or a
DPSP_MSG_ADDFORWARDREQUEST (section 2.2.11) message.

Note If the CS flag in the DPSESSIONDESC2 (section 2.2.5) structure associated with the game

session is set, implementations SHOULD use the DPSP_MSG_ENUMPLAYERSREPLY message;
otherwise, implementations SHOULD use the DPSP_MSG_SUPERENUMPLAYERSREPLY (section 2.2.53)
message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

PlayerCount

GroupCount

PlayerOffset

ShortcutCount

DescriptionOffset

NameOffset

PasswordOffset

DPSessionDesc2 (variable)

...

SessionName (variable)

...

Password (variable)

...

PlayerInfo (variable)

...

47 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 3 (0x03).

PlayerCount (4 bytes): MUST be set to the number of players contained in the PlayerInfo field.

GroupCount (4 bytes): MUST be set to the number of groups contained in the PlayerInfo field.

PlayerOffset (4 bytes): MUST be set to the offset, in octets, of the PlayerInfo field from the
beginning of the message.

ShortcutCount (4 bytes): MUST be ignored on receipt.<9>

DescriptionOffset (4 bytes): MUST be set to the offset, in octets, of the SessionDescription field
from the beginning of the message.

NameOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the message to
the SessionName field. A value of zero means a NULL game session name.

PasswordOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the message

to the Password field. A value of 0 means a NULL password.

DPSessionDesc2 (variable): Structure that contains the game session description information.
MUST be set to a DPSESSIONDESC2 (section 2.2.5) structure that contains the game session
description information.

SessionName (variable): Null-terminated Unicode string that contains the game session name.

Password (variable): Null-terminated Unicode string that contains the password.

PlayerInfo (variable): MUST be set to an array of DPLAYI_PACKEDPLAYER (section 2.2.2)
structures. Each entry can hold either group information or player information. The same structure
is used for groups and players. Player entries are followed by group entries. The number of entries
in the array can be found by adding the PlayerCount and GroupCount fields.

2.2.29 DPSP_MSG_ENUMSESSIONS

The DPSP_MSG_ENUMSESSIONS packet is sent by the client to request an enumeration of
DirectPlay 4 game sessions.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

ApplicationGuid (16 bytes)

...

...

PasswordOffset

48 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Flags

Password (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 2 (0x02).

ApplicationGuid (16 bytes): MUST be set to the application identifier for the game.

PasswordOffset (4 bytes): MUST be set to the offset, in octets, of the password from the beginning
of the message.

Flags (4 bytes): MUST be set to one or more of the specified enumeration game session flags passed
in by the game.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AV AL X PR Y

AV (1 bit): Enumerate game sessions that can be joined.

AL (1 bit): Enumerate all game sessions, even if they cannot be joined.

X (4 bits): Not used. SHOULD be set to zero when sent and MUST be ignored on receipt.

PR (1 bit): Enumerate all game sessions, even if they require a password.

Y (25 bits): Not used. SHOULD be set to zero when sent and MUST be ignored on receipt.

Password (variable): MUST be set to a null-terminated Unicode string that contains the password.
This value is present only if the PasswordOffset field is nonzero.

2.2.30 DPSP_MSG_ENUMSESSIONSREPLY

The DPSP_MSG_ENUMSESSIONSREPLY packet is sent by the server in response to a
DPSP_MSG_ENUMSESSIONS (section 2.2.29) request. One packet is sent for each active game
session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

SessionDescription (variable)

...

49 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

NameOffset

SessionName (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 1 (0x01).

SessionDescription (variable): MUST be set to a DPSESSIONDESC2 (section 2.2.5) structure that

describes the game session.

NameOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the message in
the SessionName field.

SessionName (variable): MUST be set to the null-terminated Unicode string that contains the game

session name. This value is present only if the NameOffset field is nonzero.

2.2.31 DPSP_MSG_GROUPDATACHANGED

The DPSP_MSG_GROUPDATACHANGED packet is sent to inform all participants that group data has
changed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

GroupID

dwDataSize

dwDataOffset

GroupData (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of

this field MUST be set to 17 (0x11).

IDTo (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

GroupID (4 bytes): MUST be set to the identifier of the groups whose data is being set.

dwDataSize (4 bytes): MUST be set to the length of GroupData.

50 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwDataOffset (4 bytes): MUST be set to the offset, in octets, of GroupData from the beginning of
the message.

GroupData (variable): Byte array that contains application data associated with the groups.

2.2.32 DPSP_MSG_GROUPNAMECHANGED

The DPSP_MSG_GROUPNAMECHANGED packet is sent to inform all participants that a group name
has changed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

GroupID

ShortOffset

LongOffset

ShortName (variable)

...

LongName (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 18 (0x12).

IDTo (4 bytes): Ignored. SHOULD be set to zero when sent and MUST be ignored on receipt.

GroupID (4 bytes): MUST be set to the identifier of the group whose data is being set.

ShortOffset (4 bytes): MUST be set to the offset, in octets, of the ShortName field from the
beginning of the message, or 0, which indicates a null short name.

LongOffset (4 bytes): MUST be set to the offset, in octets, of the LongName field from the

beginning of the message, or zero, which indicates a null long name.

ShortName (variable): MUST be set to the null-terminated Unicode string that contains the new
short name.

LongName (variable): MUST be set to the null-terminated Unicode string that contains the new long
name.

51 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.33 DPSP_MSG_IAMNAMESERVER

The DPSP_MSG_IAMNAMESERVER packet is sent to inform participants of the identity of the name
server (host).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

IDHost

Flags

SPDataSize

SPData (variable)

...

DPSP_MSG_HEADER (28 bytes): The message header for this packet. The Command Value
member of this field MUST be set to 53 (0x35).

IDTo (4 bytes): MUST be set to the identifier of the destination player.

IDHost (4 bytes): MUST be set to the system player ID of the new DirectPlay host.

Flags (4 bytes): MUST be set to the player flags that describe the system player of the new host.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S

PS
P

N

SN
S

P

GP
G

X

SP (1 bit): The player is the system player.

NS (1 bit): The player is the name server (host). MUST be combined with SP.

PG (1 bit): The player belongs to a group. This flag MUST be set for system players, for other
players that have been added to a group using DPSP_MSG_ADDPLAYERTOGROUP (section

2.2.12), or for groups that have been added to a group using
DPSP_MSG_ADDSHORTCUTTOGROUP (section 2.2.13).

X (29 bits): All bits that have this label SHOULD be set to zero when sent and MUST be ignored
on receipt.

SPDataSize (4 bytes): MUST contain the length, in octets, of the SPData field.

SPData (variable): If SPDataSize is nonzero, MUST be set to the data that is used by the DirectPlay
Service Provider.

52 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If provided, the Windows Winsock DirectPlay Service Provider stores the following data in the
SPData field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Stream Socket Address (16 bytes)

...

...

Datagram Socket Address (16 bytes)

...

...

Stream Socket Address (16 bytes): A SOCKADDR_IN structure that contains the addressing

information to be used when contacting this player over TCP. The Address field of this
SOCKADDR_IN must be set to 0.0.0.0.

Datagram Socket Address (16 bytes): A SOCKADDR_IN structure that contains the addressing
information to be used when contacting this player over UDP. The Address field of this
SOCKADDR_IN must be set to 0.0.0.0.

2.2.34 DPSP_MSG_KEYEXCHANGE

The DPSP_MSG_KEYEXCHANGE packet is used to send the client's public key to the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

SessionKeySize

SessionKeyOffset

PublicKeySize

PublicKeyOffset

SessionKey (variable)

...

PublicKey (variable)

53 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 43 (0x2B).

SessionKeySize (4 bytes): MUST be set to the size, in octets, of the SessionKey field.

SessionKeyOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the
message to the SessionKey field.

PublicKeySize (4 bytes): MUST be set to the size of the PublicKey field.

PublicKeyOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the message
to the PublicKey field.

SessionKey (variable): Array of bytes that contains the key used to encrypt data.

PublicKey (variable): Array of bytes that contains the client's public key.

2.2.35 DPSP_MSG_KEYEXCHANGEREPLY

The DPSP_MSG_KEYEXCHANGEREPLY packet is sent in response to a
DPSP_MSG_KEYEXCHANGE (section 2.2.34) message that contains the server's public key.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

SessionKeySize

SessionKeyOffset

PublicKeySize

PublicKeyOffset

SessionKey (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 44 (0x2C).

SessionKeySize (4 bytes): MUST be set to the size, in octets, of the SessionKey field.

SessionKeyOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the
message to the SessionKey field.

PublicKeySize (4 bytes): Not used. SHOULD be set to zero when sent and MUST be ignored on

receipt.

54 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PublicKeyOffset (4 bytes): Not used. SHOULD be set to zero when sent and MUST be ignored on
receipt.

SessionKey (variable): Array of bytes that contains the key used to encrypt data.

2.2.36 DPSP_MSG_LOGONDENIED

The DPSP_MSG_LOGONDENIED packet is sent to indicate that a logon failed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of

this field MUST be set to 30 (0x1E).

2.2.37 DPSP_MSG_MULTICASTDELIVERY

The DPSP_MSG_MULTICASTDELIVERY packet is used to perform a message broadcast.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (variable)

...

GroupIDTo

PlayerIDFrom

MessageOffset

BroadcastMessage (variable)

...

DPSP_MSG_HEADER (variable): Message header for this packet. The Command Value member of
this field MUST be set to 55 (0x37). If the DirectPlay 4 Reliable Protocol is used, the header does

not contain the size, token, and SockAddr fields.

GroupIDTo (4 bytes): MUST be set to the identifier of the group that is the target of the request.

PlayerIDFrom (4 bytes): MUST be set to the identifier of the player that is originating the request.

MessageOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the message
to the BroadcastMessage field.

55 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BroadcastMessage (variable): An array of octets that contains the message to broadcast. This field
MUST contain a complete DirectPlay 4 Protocol message. However, the message MUST begin

with the Signature field of the DPSP_MSG_HEADER (section 2.2.6) rather than the entire
DPSP_MSG_HEADER structure.

2.2.38 DPSP_MSG_NEGOTIATE

The DPSP_MSG_NEGOTIATE packet is sent to indicate to the server that the client is seeking to
initiate a secure connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDFrom

DataSize

DataOffset

SecurityToken (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of

this field MUST be set to 32 (0x20).

IDFrom (4 bytes): MUST be set to the system player ID on the sender's computing system.

DataSize (4 bytes): MUST be set to the size, in octets, of the SecurityToken field.

DataOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the message to the
SecurityToken field.

SecurityToken (variable): Opaque security token whose size is specified by the DataSize field.

2.2.39 DPSP_MSG_PACKET

The DPSP_MSG_PACKET packet contains player-to-player data that is part of a larger message that
does not fit within the maximum transmission unit (MTU) size of the transport.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

56 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

GuidMessage (16 bytes)

...

...

PacketIndex

DataSize

Offset

TotalPackets

MessageSize

PackedOffset

PacketData (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 21 (0x15).

GuidMessage (16 bytes): MUST be set to an identifier that uniquely identifies the message to which

the packet belongs.

PacketIndex (4 bytes): MUST be set to the index of the packet in the series of packets that make

up the message.

DataSize (4 bytes): MUST be set to the total size, in octets, of the data in the packet.

Offset (4 bytes): MUST be set to the offset of this packet in the larger message to be transmitted.

TotalPackets (4 bytes): MUST be set to the total number of packets that are used to transmit this

message.

MessageSize (4 bytes): MUST be set to the size of the buffer, in octets, that will contain the entire
message.

PackedOffset (4 bytes): MUST be set to the offset, in octets, in the message of the actual packet
data.

PacketData (variable): Array of DataSize bytes that contains the packet data. PacketData is a
fragment of a large message that spans multiple packets because it exceeded the MTU size of the

network. When all fragments have been reassembled, the large message must contain a complete
DirectPlay 4 packet.

2.2.40 DPSP_MSG_PACKET2_ACK

The DPSP_MSG_PACKET2_ACK packet is sent in response to a DPSP_MSG_PACKET2_DATA

(section 2.2.41) message.

57 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

GuidMessage (16 bytes)

...

...

PacketID

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 49 (0x31).

GuidMessage (16 bytes): Identifier of the message to which this packet belongs.

PacketID (4 bytes): Acknowledgment (ACK) packet identifier.

2.2.41 DPSP_MSG_PACKET2_DATA

The DPSP_MSG_PACKET2_DATA packet contains player-to-player data that is part of a larger

message that does not fit within the maximum transmission unit (MTU) size of the transport. It MUST
be acknowledged with a DPSP_MSG_PACKET2_ACK (section 2.2.40) message.

Once all the DPSP_MSG_PACKET2_DATA packets for a particular message have been received (as

identified by the GuidMessage field), they are assembled into one contiguous message that is the
concatenation of all the PacketData fields of all the associated DPSP_MSG_PACKET2_DATA
messages. If the message was sent without reliability, then, after a 15-second period during which no
DPSP_MSG_PACKET2_DATA packets are received for a particular message, the entire message is

discarded.

This assembly mechanism for large messages is used both for internal system messages and for
user messages. The packet breakup and assembly system does not recognize the contents of the
payload. Once the payload is reassembled, the payload is re-indicated to the lowest level of the
receive path as any other received message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

GuidMessage (16 bytes)

...

58 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

PacketIndex

DataSize

Offset

TotalPackets

MessageSize

PacketOffset

PacketData (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 48 (0x30).

GuidMessage (16 bytes): MUST be set to an identifier that uniquely identifies the message to which

the packet belongs.

PacketIndex (4 bytes): MUST be set to the index of the packet in the series of packets that make
up the message.

DataSize (4 bytes): MUST be set to the total size, in octets, of the data in the packet.

Offset (4 bytes): MUST be set to the offset of this packet in the larger message to be transmitted.

TotalPackets (4 bytes): MUST be set to the total number of packets that are used to transmit this

message.

MessageSize (4 bytes): MUST be set to the size of the buffer, in octets, that will contain the entire
message.

PacketOffset (4 bytes): MUST be set to the offset, in octets, into the message of the actual packet
data.

PacketData (variable): Array of DataSize bytes that contains the packet data.

2.2.42 DPSP_MSG_PING

The DPSP_MSG_PING packet is used to keep the UDP session active and to optimize the protocol.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (variable)

...

IDFrom

59 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

TickCount

DPSP_MSG_HEADER (variable): Message header for this packet. The Command Value member of
this field MUST be set to 22 (0x16). If the DirectPlay 4 Reliable Protocol is used, the header does
not contain the size, token, and SockAddr fields.

IDFrom (4 bytes): MUST be set to the identifier of the player who sent the ping.

TickCount (4 bytes): MUST be set to the number of milliseconds that have elapsed since the
computer system was started.

2.2.43 DPSP_MSG_PINGREPLY

The DPSP_MSG_PINGREPLY packet is sent in response to a DPSP_MSG_PING (section 2.2.42)
message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (variable)

...

IDFrom

TickCount

DPSP_MSG_HEADER (variable): Message header for this packet. The Command Value member of
this field MUST be set to 23 (0x17). If the DirectPlay 4 Reliable Protocol is used, the header does
not contain the size, token, and SockAddr fields.

IDFrom (4 bytes): MUST be set to the identifier of the player who sent the ping for which this is a
response.

TickCount (4 bytes): MUST be set to the value in the DPSP_MSG_PING (section 2.2.42) for which
this is the reply.

2.2.44 DPSP_MSG_PLAYERDATACHANGED

The DPSP_MSG_PLAYERDATACHANGED packet is sent to inform all participants that the data of a
player has changed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

60 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PlayerID

DataSize

DataOffset

PlayerData (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 15 (0x0F).

IDTo (4 bytes): Identifier of the destination player. MUST be set to zero.

PlayerID (4 bytes): MUST be set to the identifier of the player whose data is being set.

DataSize (4 bytes): MUST be set to the length of PlayerData, in octets.

DataOffset (4 bytes): MUST be set to the offset, in octets, of PlayerData from the beginning of the
message.

PlayerData (variable): Game data that contains DataSize octets of changed data associated with
the player.

2.2.45 DPSP_MSG_PLAYERMESSAGE

The DPSP_MSG_PLAYERMESSAGE is used to send a player-to-player message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

size token

sockaddr (16 bytes)

...

...

idFrom (optional)

idTo (optional)

PlayerMessage (variable)

61 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 10 (0x0A).

size (20 bits): Indicates the size of the message (in octets). The value is obtained by performing a

bitwise AND (&) operation with the token field and 0x000FFFFF.

token (12 bits): Describes high-level message characteristics. The value is obtained by performing a
bitwise AND (&) operation with the size field and 0xFFF00000.

Value Meaning

0xFAB Indicates that the message was received from a remote DirectPlay machine.

0xCAB Indicates that the message will be forwarded to all registered servers.

0xBAB Indicates that the message was received from a DirectPlay server.

sockaddr (16 bytes): Not used to transmit data. This field is a placeholder within the packet to be
used by the sender and the receiver before the packet is sent or after it is received. For more
information about the SOCKADDR structure, see [SOCKADDR].

idFrom (4 bytes): Identifier of the player who is the source of the message. This field MUST be
present when the NM flag in the DPSESSIONDESC2 structure (section 2.2.5) is not set for the
game session and it MUST NOT be present when the NM flag is set for the game session.

idTo (4 bytes): Identifier of the player who is the destination of the message. This field MUST be
present when the NM flag in the DPSESSIONDESC2 structure (section 2.2.5) is not set for the
game session and it MUST NOT be present when the NM flag is set for the game session.

PlayerMessage (variable): Player messages are the primary application method of communication
between DirectPlay applications. They are distinguished from other DirectPlay messages by the

format of their header and the lack of the presence of the "play" signature in the header. The
PlayerMessage portion of the message contains an application-specific payload.

2.2.46 DPSP_MSG_PLAYERNAMECHANGED

The DPSP_MSG_PLAYERNAMECHANGED packet is sent to inform all participants that the name of a
player has changed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

PlayerID

ShortOffset

62 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

LongOffset

ShortName (variable)

...

LongName (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 16 (0x10).

IDTo (4 bytes): Identifier of the destination player. MUST be set to zero.

PlayerID (4 bytes): MUST be set to the identifier of the player whose name is being changed.

ShortOffset (4 bytes): MUST be set to the offset, in octets, of the ShortName field from the
beginning of the message or 0, which indicates a null short name.

LongOffset (4 bytes): MUST be set to the offset, in octets, of the LongName field from the
beginning of the message or 0, which indicates a null long name.

ShortName (variable): Null-terminated Unicode string that contains the new short name.

LongName (variable): Null-terminated Unicode string that contains the new long name.

2.2.47 DPSP_MSG_PLAYERWRAPPER

The DPSP_MSG_PLAYERWRAPPER packet provides a wrapper message for a
DPSP_MSG_PLAYERMESSAGE (section 2.2.45) packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

PlayerMessage (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 25 (0x19).

PlayerMessage (variable): Enclosed player message.

2.2.48 DPSP_MSG_REQUESTGROUPID

The DPSP_MSG_REQUESTGROUPID packet is sent to the game host to request a new group
identifier.

63 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

Flags

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 6 (0x06).

Flags (4 bytes): Flag values. MUST be set to one or more of the following.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Z G

L

X

Z (3 bits): All bits with this label SHOULD be set to zero when sent and MUST be ignored on
receipt.

GL (1 bit): The group is on the sending machine. This flag does not have meaning on other
machines and MUST be ignored on receipt.

X (28 bits): All bits with this label SHOULD be set to zero when sent and MUST be ignored on

receipt.<10>

2.2.49 DPSP_MSG_REQUESTPLAYERID

The DPSP_MSG_REQUESTPLAYERID packet is sent to the game host to request a new player ID.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

Flags

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 5 (0x05).

Flags (4 bytes): Flag values. MUST be set to one or more of the following.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S

P

X P

L

Y

64 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SP (1 bit): The player is the system player.

X (2 bits): All bits with this label SHOULD be set to zero when sent and MUST be ignored on

receipt.

PL (1 bit): The player is on the sending machine. This flag does not have meaning on other

machines and MUST be ignored.

Y (28 bits): All bits with this label SHOULD be set to zero when sent and MUST be ignored on
receipt.

2.2.50 DPSP_MSG_REQUESTPLAYERREPLY

The DPSP_MSG_REQUESTPLAYERREPLY packet is sent in response to a
DPSP_MSG_REQUESTPLAYERID (section 2.2.49) or DPSP_MSG_REQUESTGROUPID (section
2.2.48) message. The reply message contains either a new player ID or a new group identifier.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

ID

SecDesc (24 bytes)

...

...

SSPIProviderOffset

CAPIProviderOffset

Result

SSPIProvider (variable)

...

CAPIProvider (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 7 (0x07).

ID (4 bytes): MUST be set to the new player (or group) identifier.

65 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SecDesc (24 bytes): MUST be set to a DPSECURITYDESC (section 2.2.4) structure that contains
the security properties of the DirectPlay game session instance.

SSPIProviderOffset (4 bytes): MUST be set to the offset, in octets, of the Security Support Provider
Interface (SSPI) provider name from the beginning of the message. Zero means that the game

session is not secure.

CAPIProviderOffset (4 bytes): MUST be set to the offset, in octets, of the Crypto API [MSDN-CAPI]
provider name from the beginning of the message. Zero means that the game session will not use
encryption.

Result (4 bytes): MUST be set to a Win32 HRESULT error code. If 0, the request succeeded; if
nonzero, indicates the reason the request failed. For a complete list of HRESULT codes, see [MS-
ERREF].

SSPIProvider (variable): Null-terminated Unicode string that contains the SSPI name. If no SSPI
provider is specified, the game session is not a secure game session.

CAPIProvider (variable): Null-terminated Unicode string that contains the Crypto API provider

name. For a list of provider names, see Cryptographic Provider Names.

2.2.51 DPSP_MSG_SESSIONDESCCHANGED

The DPSP_MSG_SESSIONDESCCHANGED packet is sent to notify players that a game session
description changed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDTo

SessionNameOffset

PasswordOffset

SessionDesc (variable)

...

SessionName (variable)

...

Password (variable)

...

66 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 26 (0x1A).

IDTo (4 bytes): MUST be set to zero.

SessionNameOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the

message to the SessionName field. If this field is 0, the game session name is not present.

PasswordOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the message
to the Password field. If this field is 0, the game session has no password.

SessionDesc (variable): MUST be set to a DPSESSIONDESC2 (section 2.2.5) structure containing
the game session description.

SessionName (variable): If present, MUST be set to a null-terminated Unicode string containing the
game session name.

Password (variable): If present, MUST be set to a null-terminated Unicode string containing the
game session password.

2.2.52 DPSP_MSG_SIGNED

The DPSP_MSG_SIGNED packet is used to send a signed message along with its signature.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

IDFrom

DataOffset

DataSize

SignatureSize

Flags

Message (variable)

...

Signature (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 34 (0x22).

IDFrom (4 bytes): MUST be set to the system player ID of the sender.

67 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DataOffset (4 bytes): MUST be set to the offset, in octets, of the DirectPlay message.

DataSize (4 bytes): MUST be set to the size of the Message field, in octets.

SignatureSize (4 bytes): MUST be set to the size of the signature, in octets.

Flags (4 bytes): Flag values. MUST be set to one or more of the following:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S

SS
S

S

CS
C

E

CE
C

 X

SS (1 bit): If set, the message was signed by the Security Support Provider Interface (SSPI)
specified when the game session was established.

SC (1 bit): If set, the message was signed by the cryptographic algorithm specified when the
game session was established.

EC (1 bit): Message was encrypted by Crypto API.

X (29 bits): All bits with this label SHOULD be set to zero when sent and MUST be ignored on
receipt.

Message (variable): Array of bytes that contains the DirectPlay message. The Message field can
contain any DirectPlay 4 Protocol message. However, the message MUST begin with the
Signature field of the DPSP_MSG_HEADER (section 2.2.6) rather than the entire
DPSP_MSG_HEADER structure. Once authentication is negotiated, DirectPlay sends all messages
in as signed, except the following:

 The DPSP_MSG_ADDFORWARDREQUEST (section 2.2.11) and
DPSP_MSG_SESSIONDESCCHANGED (section 2.2.51) messages are sent signed and
encrypted.

 The higher layer determines whether the DPSP_MSG_PLAYERMESSAGE (section 2.2.45) or
DPSP_MSG_ASK4MULTICASTGUARANTEED (section 2.2.15) message SHOULD be sent signed
and/or encrypted.

 The DPSP_MSG_PING (section 2.2.42) and DPSP_MSG_PINGREPLY (section 2.2.43) messages

are not signed or encrypted.

Signature (variable): Array of bytes that contains the message signature.

2.2.53 DPSP_MSG_SUPERENUMPLAYERSREPLY

The DPSP_MSG_SUPERENUMPLAYERSREPLY packet can be sent in response to a
DPSP_MSG_ENUMPLAYER (section 2.2.27) message or a
DPSP_MSG_ADDFORWARDREQUEST (section 2.2.11) message.

Note If the CS flag in the DPSESSIONDESC2 (section 2.2.5) structure associated with the game
session is not set, implementations SHOULD use the DPSP_MSG_SUPERENUMPLAYERSREPLY
message; otherwise implementations SHOULD use the
DPSP_MSG_ENUMPLAYERSREPLY (section 2.2.28) message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

68 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

PlayerCount

GroupCount

PackedOffset

ShortcutCount

DescriptionOffset

NameOffset

PasswordOffset

DPSessionDesc (variable)

...

SessionName (variable)

...

Password (variable)

...

SuperPackedPlayer (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 41 (0x29).

PlayerCount (4 bytes): Number of players.

GroupCount (4 bytes): Number of groups.

PackedOffset (4 bytes): Offset, in octets, of the SuperPackedPlayer field from the beginning of
the message.

ShortcutCount (4 bytes): Number of groups with shortcuts.

DescriptionOffset (4 bytes): MUST be set to the offset, in octets, of the DPSessionDesc field from
the beginning of the message.

NameOffset (4 bytes): MUST be set to the offset, in octets, from the beginning of the message in
the SessionName field. A value of zero means a null game session name.

69 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PasswordOffset (4 bytes): MUST be set to the offset, in octets, of the Password field from the
beginning of the message. A value of zero means there is no password.

DPSessionDesc (variable): MUST be set to a DPSESSIONDESC2 (section 2.2.5) structure that
contains the game session description information.

SessionName (variable): MUST be set to the null-terminated Unicode string that contains the game
session name.

Password (variable): If present, MUST be set to the null-terminated Unicode string that contains the
password for the game session.

SuperPackedPlayer (variable): Array of DPLAYI_SUPERPACKEDPLAYER (section 2.2.3)
structures. The number of elements in the array is determined by finding the sum of the
PlayerCount, GroupCount, and ShortcutCount fields. The order of items in the array is fixed,

and is as follows: players, groups, and shortcuts.

2.2.54 DPSP_MSG_VOICE

The DPSP_MSG_VOICE packet is used to send voice message data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

dwIDFrom

dwIDTo

voiceData (variable)

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 54 (0x36).

dwIDFrom (4 bytes): The player ID of the source for the voice data.

dwIDTo (4 bytes): The player ID of the destination for the voice data.

voiceData (variable): Variable-sized voice data payload to be delivered to the voice layer. See [MC-
DPLVP].

2.2.55 DPSP_MSG_YOUAREDEAD

The DPSP_MSG_YOUAREDEAD packet is sent in response to a DPSP_MSG_PING (section 2.2.42)
message when the sender of the ping is not recognized as a player who belongs to the active game

session.

70 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DPSP_MSG_HEADER (28 bytes)

...

...

DPSP_MSG_HEADER (28 bytes): Message header for this packet. The Command Value member of
this field MUST be set to 24 (0x18).

71 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

All computers that implement the DirectPlay 4 protocol are considered peers of each other;
however, the game host has special responsibilities beyond those of other game clients.

Implementations MUST ignore malformed packets and packets with unknown message types.

3.1 DirectPlay Client Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Each participant in the DirectPlay 4 Protocol functions as a peer and, as such, each participant
maintains the following state.

Game: An application using the DirectPlay Protocol has a certain state associated with the game.

Game.ApplicationGuid: A GUID that uniquely identifies the game being played.

Game.SSPIProvider: A Unicode string that specifies which authentication service is to be used when
authenticating game clients. If this value is not provided by the game, then DirectPlay 4 will use
the NT LAN Manager authentication service as specified in [MS-NLMP].<11>

Game.CAPIProvider: A Unicode string that specifies which cryptographic service is to be used when
signing or encrypting game messages. If this value is not provided, then the value of "Microsoft

Base Cryptographic Provider v1.0" is used.<12>

Game.CAPIProviderType: A 32-bit integer that specifies the required capabilities of the
cryptographic provider used by the DirectPlay 4 client. If the game does not provide a specific
value, it is interpreted as PROV_RSA_FULL.<13>

Game.EncryptionAlgorithm: A 32-bit integer that specifies the required encryption algorithm to be
used for secured DirectPlay messages. If the game does not provide a specific value, it is

interpreted as CALG_RC4.<14>

Session List: A list of all the game sessions hosted on the current machine. For each game session in
the Session List, the following information is maintained.

Session.SessionName: A description of the game session.

Session.GameData: 128 bits of game-specific data.

Session.InstanceID: GUID which uniquely identifies this instance of the game.

Session.Flags: Flags about the capabilities/configuration of the game session.

Session.Host: The computer that "hosts" the game session. The game session host is responsible for
maintaining the player and group list and for responding to DPSP_MSG_ENUMSESSIONS
(section 2.2.29) requests.

Session.MaxPlayers: The maximum number of players that can participate in a game session.

Session.CurrentPlayers: The current number of players in the game.

72 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Session.Password: The password for the game session.

Session.NewPlayersDisabled: If true, the game host does not accept new players to the game

session. This field corresponds to the NP flag in the DPSESSIONDESC2 structure (section 2.2.5).

Session.MigrateHost: If true, when the game host exits, the remaining DirectPlay 4 clients will

designate a new game host. This field corresponds to the MH flag in the DPSESSIONDESC2
structure (section 2.2.5).

Session.ReliableProtocol: If true, then messages transmitted by the protocol are transmitted via a
reliable mechanism. This field corresponds to the RP flag in the DPSESSIONDESC2 structure
(section 2.2.5).

Session.NoMessageId: If true, then the protocol omits the idFrom and idTo fields when sending all
DPSP_MSG_PLAYERMESSAGE messages (section 2.2.45), making the effective structure 8

bytes shorter. Similarly, the protocol assumes that the idFrom and idTo fields are not present
when receiving DPSP_MSG_PLAYERMESSAGE messages. This setting allows higher layers to
reduce the size of player messages in exchange for losing the identity of the sending and receiving

players. Session.NoMessageId corresponds to the NM flag in the DPSESSIONDESC2 structure
(section 2.2.5).

Session.JoinDisabled: If true, then the game host does not allow nascent game instances to join the

game, but will continue to allow new players to be created by established game instances. This
field corresponds to the JD flag in the DPSESSIONDESC2 structure (section 2.2.5).

Session.KeepAlive: If true, then the game client periodically sends DPSP_MSG_PING messages to
the other members of the game. This field corresponds to the KA flag in the DPSESSIONDESC2
structure (section 2.2.5).

Session.NoDataMessages: If true, then the game clients do not send
DPSP_MSG_PLAYERDATACHANGED messages (section 2.2.44). This field corresponds to the

ND flag in the DPSESSIONDESC2 structure (section 2.2.5).

Session.Authenticated: If true, then the game host authenticates all new game clients. This field

corresponds to the SS flag in the DPSESSIONDESC2 structure (section 2.2.5). This flag is
incompatible with the Session.MigrateHost option.

Session.Private: If true, then the game host requires that the password in the
DPSP_MSG_ENUMSESSIONS message (section 2.2.29) matches the Session.Password. This
field corresponds to the P flag in the DPSESSIONDESC2 structure (section 2.2.5).

Session.PasswordRequired: If true, then the game host requires a password to join the game
session. This field corresponds to the PR flag in the DPSESSIONDESC2 structure (section 2.2.5).

Session.MulticastServer: If true, then the game clients send all DirectPlay messages to the game
host and the game host relays all the DirectPlay messages to the other game clients. This field
corresponds to the MS flag in the DPSESSIONDESC2 structure (section 2.2.5).

Session.ClientServer: If true, then the game host does not transmit information about non-system

players. This field corresponds to the CS flag in the DPSESSIONDESC2 structure (section 2.2.5).

Session.NoPreserveOrder: See the DirectPlay4 Reliable Protocol [MC-DPL4R] for information on this
flag. This field corresponds to the NO flag in the DPSESSIONDESC2 structure (section 2.2.5).

Session.OptimizeLatency: Indicates that message transmission is optimized for latency, rather than
bandwidth, when appropriate. Implementations can ignore this flag. This field corresponds to the
OL flag in the DPSESSIONDESC2 structure (section 2.2.5).

Session.NoSessionDescMessages: If true, then when the game running on the game host modifies

the state of the game session data model, the game host does not transmit

73 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DPSP_MSG_SESSIONDESCCHANGED messages (section 2.2.51). This field corresponds to the
NS flag in the DPSESSIONDESC2 structure (section 2.2.5).

Session.SessionKey: Encryption key used to encrypt messages when the game requests that an
encrypted message be sent.

Session.HostPublicKey: Public key for the game host.

Player List: A list of all the current players in the game. Each player in the Player List maintains the
following information.

Player.LongName: The "long name" for the player. The meaning of a "long name" is game-defined.

Player.ShortName: The "short name" for the player. The meaning of a "short name" is game-
defined.

Player.ID: A 32-bit identifier that uniquely represents the player within the game.

Player.SystemPlayer: If this flag is set, then the player is the "system player" for this game

instance. This flag corresponds to the DPLAYI_PLAYER_SYSTEMPLAYER flag in the Flags field of
the DPSP_MSG_REQUESTPLAYERID (section 2.2.49) message.

Player.GameData: Per-game data associated with each player.

Player.ChatterCount: A counter incremented when messages are received, which is reset to 0 every
time the Ping Timer elapses.

Group List: A group is a container for players or other groups. Each group in the Group List contains
the following information.

Group.LongName: The "long name" for the group. The meaning of a "long name" is game-defined.

Group.ShortName: The "short name" for the group. The meaning of a "short name" is game-
defined.

Group.ID: A 32-bit identifier that uniquely represents the group within the game.

Group.ParentID: The ID of the group that contains this group.

Group.GameData: Per-game data associated with each group.

Client: A player in the game session. Each Client contains the following information.

Client.HostPublicKey: Public key for the game host on this game session.

Client.ClientPrivateKey: Private key used when encrypting or signing messages to be sent to the
game host.

Client.ClientPublicKey: Public key transmitted to game host.

3.1.2 Timers

3.1.2.1 Session Enumeration Timer

The Session Enumeration Timer is set by a DirectPlay client when it sends a
DPSP_MSG_ENUMSESSIONS (section 2.2.29) request. The timeout value for this timer is
application-defined.<15>

74 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.2.2 Reliable API Timer

The Reliable API Timer is set by a DirectPlay client when it sends a request that requires a response.
The timeout value for this timer is 5 seconds.

3.1.2.3 Logon Timer

The Logon Timer is set by a DirectPlay client when it is exchanging the DPSP_MSG_NEGOTIATE
(section 2.2.38), DPSP_MSG_CHALLENGE (section 2.2.17), and
DPSP_MSG_CHALLENGERESPONSE (section 2.2.18) messages. The timeout value for this timer is

25 seconds.

3.1.2.4 Packetize Timer

The Packetize Timer is set by a DirectPlay client when it is sending DPSP_MSG_PACKET2_DATA

(section 2.2.41) messages. The initial timeout value for this timer is 900 milliseconds. This value
SHOULD continue to be used until a packet is acknowledged. At that time, 1.5 times the round-trip

latency of the packet and acknowledgment SHOULD be used instead. If the measured latency is less
than 25 milliseconds, the timer SHOULD be set to 1.5 times 25, or 37.5 milliseconds.

3.1.2.5 Ping Timer

The Ping Timer is set by a DirectPlay client when either the joined game session has the
Session.KeepAlive flag set, or the game session has the Session.MigrateHost flag set and the
client is waiting for the new host to send a DPSP_MSG_IAMNAMESERVER (section 2.2.33)
message. It elapses periodically so that DPSP_MSG_PING (section 2.2.42) messages are sent to
players with a ChatterCount of 0 (that is, for which no messages have been received since the last

Ping Timer expiration). If not waiting for the DPSP_MSG_IAMNAMESERVER message,
DPSP_MSG_PING messages are sent only to the host; otherwise they are sent to all connected
computing systems. The period for this timer is 35 seconds.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

Most client actions in the DirectPlay 4 Protocol are triggered by game actions. In the following
sections, each of the game actions supported are enumerated and the protocol actions associated with

those actions are described.

In addition to those actions explicitly enumerated in the following sections, a game maycan choose to
query information contained in the abstract data model from the DirectPlay client on the machine.

3.1.4.1 Enumerate Sessions

When a higher-level entity chooses to enumerate the established game sessions, the DirectPlay client
MUST format a DPSP_MSG_ENUMSESSIONS message (see section 2.2.29) with the
ApplicationGuid set to Game.GUID and the Flags and Password field set appropriately based on
information from the higher-level entity to the broadcast socket address (255.255.255.255) on the
DirectPlay UDP port (see section 1.9).

It then MUST start listening for responses on the DirectPlay TCP/IP port (see section 1.9). It then

MUST start the game session enumeration timer. Until the game session enumeration timer expires, it
MUST collect all DPSP_MSG_ENUMSESSIONSREPLY (section 2.2.30) messages. It then MUST

75 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

return that collected information to the higher level. If no DPSP_MSG_ENUMSESSIONSREPLY
messages are received, it MUST return that information to the higher level.

3.1.4.2 Join Session

When a higher-level entity chooses to join an existing session (determined from received
DPSP_MSG_ENUMSESSIONSREPLY (section 2.2.30) packets), the DirectPlay client MUST create a
new Player in the players list, setting the Player.SystemPlayer flag. It MUST then format a
DPSP_MSG_REQUESTPLAYERID (section 2.2.49) packet with the DPLAYI_PLAYER_SYSTEMPLAYER

flag set in the Flags field to the host server for the specified game instance. It MUST then start the
Reliable API timer and wait for a DPSP_MSG_REQUESTPLAYERREPLY response (section 2.2.50)
from the host server. If no reply is received before the Reliable API timer fires, it MUST communicate
this information to the higher-level entity.

3.1.4.3 Enumerate Players or Groups

If the DirectPlay client is joined to a game session, then the DirectPlay client SHOULD return the list of

players from the Player List contained in the abstract data model. If the DirectPlay client is not joined
to a game session, then the DirectPlay client MUST format and transmit a
DPSP_MSG_ENUMPLAYER (section 2.2.27) to the game host. It MUST then start the Reliable API
timer and wait for either a DPSP_MSG_SUPERENUMPLAYERSREPLY (section 2.2.53) message
from the game host or a DPSP_MSG_ENUMPLAYERSREPLY (section 2.2.28). If no reply is received

before the Reliable API timer fires, it MUST communicate this information to the higher-level entity.
Once the DirectPlay client receives the DPSP_MSG_SUPERENUMPLAYERSREPLY message or
DPSP_MSG_ENUMPLAYERSREPLY message, it MUST return that information to the higher-level
entity.

3.1.4.4 Create Player

When a higher-level entity indicates that the DirectPlay client SHOULD create a player and the
DirectPlay client has joined a game session, the DirectPlay client MUST create a new player in the
Player List with the Player.SystemPlayer flag clear. It MUST then format a

DPSP_MSG_REQUESTPLAYERID (section 2.2.49) packet with the DPLAYI_PLAYER_SYSTEMPLAYER
flag clear in the Flags field to the host server for the specified game instance. It MUST then start the

Reliable API timer and wait for a DPSP_MSG_REQUESTPLAYERREPLY response (section 2.2.50)
from the host server. If no reply is received before the Reliable API timer fires, it MUST communicate
this information to the higher-level entity.

3.1.4.5 Delete Player

When a higher-level entity indicates that the DirectPlay client SHOULD remove a player and the
DirectPlay client has joined a game session, the DirectPlay client MUST format and transmit a
DPSP_MSG_DELETEPLAYER (section 2.2.25) packet to each of the computers that are currently
joined to the game session. There is no response expected to this message.

3.1.4.6 Create Group

When a higher-level entity indicates that the DirectPlay client SHOULD create a group and the
DirectPlay client has joined a game session, the DirectPlay client MUST format a
DPSP_MSG_REQUESTGROUPID (section 2.2.48) packet with the DPLAYI_PLAYER_SYSTEMPLAYER
flag clear in the Flags field to the host server for the specified game instance. It must then start the
Reliable API timer and wait for a DPSP_MSG_REQUESTPLAYERREPLY response (section 2.2.50)

from the host server. If no reply is received before the Reliable API timer fires, it MUST communicate
this information to the higher-level entity.

76 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.4.7 Remove Group

When a higher-level entity indicates that the DirectPlay client SHOULD remove a group and the
DirectPlay client has joined a game session, the DirectPlay client MUST format a

DPSP_MSG_DELETEGROUP (section 2.2.23) message. If the Session.MulticastServer flag is set,
the DirectPlay client MUST wrap the DPSP_MSG_DELETEGROUP message in a
DPSP_MSG_ASK4MULTICAST message (section 2.2.14) and it MUST transmit the wrapped
message to the game host. If the Session.MulticastServer flag is not set, the DirectPlay client MUST
transmit the DPSP_MSG_DELETEGROUP message to each of the computers that are currently
joined to the game session. There is no response expected to this message.

3.1.4.8 Set Group Data

When a higher-level entity indicates that the DirectPlay client SHOULD change the data associated
with a group and the DirectPlay client has joined a game session, the DirectPlay client MUST format a
DPSP_MSG_GROUPDATACHANGED (section 2.2.31) message. If the Session.MulticastServer

flag is set, the DirectPlay client MUST wrap the DPSP_MSG_GROUPDATACHANGED message in a

DPSP_MSG_ASK4MULTICAST message (section 2.2.14) and it MUST transmit the wrapped
message to the game host. If the Session.MulticastServer flag is not set, the DirectPlay client MUST
transmit the DPSP_MSG_GROUPDATACHANGED message to each of the computers that are
currently joined to the game session. There is no response expected to this message.

3.1.4.9 Set Group Name

When a higher-level entity indicates that the DirectPlay client SHOULD change the name of a group
and the DirectPlay client has joined a game session, the DirectPlay client MUST format a
DPSP_MSG_GROUPNAMECHANGED (section 2.2.32) message. If the Session.MulticastServer
flag is set, the DirectPlay client MUST wrap the DPSP_MSG_GROUPNAMECHANGED message in a
DPSP_MSG_ASK4MULTICAST message (section 2.2.14) and it MUST transmit the wrapped

message to the game host. If the Session.MulticastServer flag is not set, the DirectPlay client MUST
transmit the DPSP_MSG_GROUPNAMECHANGED message to each of the computers that are
currently joined to the game session. There is no response expected to this message.

3.1.4.10 Set Player Data

When a higher-level entity indicates that the DirectPlay client SHOULD change the data associated
with a player and the DirectPlay client has joined a game session, the DirectPlay client MUST format a
DPSP_MSG_PLAYERDATACHANGED (section 2.2.44) message. If the Session.MulticastServer
flag is set, the DirectPlay client MUST wrap the DPSP_MSG_PLAYERDATACHANGED message in a
DPSP_MSG_ASK4MULTICAST message (section 2.2.14) and it MUST transmit the wrapped
message to the game host. If the Session.MulticastServer flag is not set, the DirectPlay client MUST

transmit the DPSP_MSG_PLAYERDATACHANGED message to each of the computers that are
currently joined to the game session. There is no response expected to this message.

3.1.4.11 Set Player Name

When a higher-level entity indicates that the DirectPlay client SHOULD change the name associated

with a player and the DirectPlay client has joined a game session, the DirectPlay client MUST format a
DPSP_MSG_PLAYERNAMECHANGED (section 2.2.46) message. If the Session.MulticastServer
flag is set, the DirectPlay client MUST wrap the DPSP_MSG_PLAYERNAMECHANGED message in a
DPSP_MSG_ASK4MULTICAST message (section 2.2.14) and it MUST transmit the wrapped
message to the game host. If the Session.MulticastServer flag is not set, the DirectPlay client MUST
transmit the DPSP_MSG_PLAYERNAMECHANGED message to each of the computers that are

currently joined to the game session. There is no response expected to this message.

77 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.4.12 Add Player to Group

When a higher-level entity indicates that the DirectPlay client SHOULD add a player to a group and the
DirectPlay client has joined a game session, the DirectPlay client MUST format a

DPSP_MSG_ADDPLAYERTOGROUP (section 2.2.12) packet with the PlayerID and GroupID fields
set to the player ID and group ID to be added. If the Session.MulticastServer flag is set, the
DirectPlay client MUST wrap the DPSP_MSG_ADDPLAYERTOGROUP message in a
DPSP_MSG_ASK4MULTICAST message (section 2.2.14) and it MUST transmit the wrapped
message to the game host. If the Session.MulticastServer flag is not set, the DirectPlay client MUST
transmit the DPSP_MSG_ADDPLAYERTOGROUP message to each of the computers currently joined
to the game session. There is no response expected to this message.

3.1.4.13 Remove Player from Group

When a higher-level entity indicates that the DirectPlay client SHOULD remove a player previously
added to a group and the DirectPlay client has joined a game session, the DirectPlay client MUST

format a DPSP_MSG_DELETEPLAYERFROMGROUP (section 2.2.26) packet with the PlayerID and

GroupID fields set to the player ID and group ID to be added. If the Session.MulticastServer flag is
set, the DirectPlay client MUST wrap the DPSP_MSG_DELETEPLAYERFROMGROUP message in a
DPSP_MSG_ASK4MULTICAST message (section 2.2.14) and it MUST transmit the wrapped
message to the game host. If the Session.MulticastServer flag is not set, the DirectPlay client MUST
transmit the DPSP_MSG_DELETEPLAYERFROMGROUP message to each of the computers currently
joined to the game session. There is no response expected to this message.

3.1.4.14 Add Group to Group

When a higher-level entity indicates that the DirectPlay client SHOULD add a group to another group
and the DirectPlay client has joined a game session, the DirectPlay client MUST format a
DPSP_MSG_ADDSHORTCUTTOGROUP (section 2.2.13) packet with the ChildGroupID field set to

the group ID of the child group to be added and the ParentGroupID field set to the group ID of the
parent group in which to add the child group. If the Session.MulticastServer flag is set, the
DirectPlay client MUST wrap the DPSP_MSG_ADDSHORTCUTTOGROUP message in a

DPSP_MSG_ASK4MULTICAST message (section 2.2.14) and it MUST transmit the wrapped
message to the game host. If the Session.MulticastServer flag is not set, the DirectPlay client MUST
transmit the DPSP_MSG_ADDSHORTCUTTOGROUP message to each of the computers that are

currently joined to the game session. There is no response expected to this message.

3.1.4.15 Remove Group from Group

When a higher-level entity indicates that the DirectPlay client SHOULD remove a group from another
group and the DirectPlay client has joined a game session, the DirectPlay client MUST format a

DPSP_MSG_DELETEGROUPFROMGROUP (section 2.2.24) packet with the ChildGroupID field set
to the group ID of the child group to be removed and the ParentGroupID field set to the group ID of
the parent group from which to remove the child group. If the Session.MulticastServer flag is set,
the DirectPlay client MUST wrap the DPSP_MSG_DELETEGROUPFROMGROUP message in a
DPSP_MSG_ASK4MULTICAST message (section 2.2.14) and it MUST transmit the wrapped
message to the game host. If the Session.MulticastServer flag is not set, the DirectPlay client MUST

transmit the DPSP_MSG_DELETEGROUPFROMGROUP message to each of the computers currently
joined to the game session. There is no response expected to this message.

3.1.4.16 Send Application Data

There are three options available to the higher-level entity (game) when requesting that the

DirectPlay client send a message to another client. The game can request guaranteed delivery of the
message, the game can request encrypted delivery of the message, and the game can request that
the contents of the message be signed.

78 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When a higher-level entity indicates that the DirectPlay client SHOULD send a message to another
player or group, if the DirectPlay client has not joined a game session, then the DirectPlay client MUST

return an error to the application.

If the game session specified by the game has the Session.MulticastServer flag set and the higher

layer entity requires to send a message to a group and the local client is not the DirectPlay host,
then the DirectPlay client MUST route the message through the host. Instead of transmitting the
message to the peers in the group directly, it MUST wrap the message with a
DPSP_MSG_ASK4MULTICAST (section 2.2.14) or DPSP_MSG_ASK4MULTICASTGUARANTEED
(section 2.2.15) header, depending on whether guaranteed delivery is required, and send this
message to the host. The host MUST then forward the message without the header on to the clients in
the group. If the game session was also created with the Session.ReliableProtocol flag set, then the

forwarded message MUST be rewrapped, but with a DPSP_MSG_MULTICASTDELIVERY (section
2.2.37) header instead.

If the Session.Authenticated flag is not set, then the DirectPlay client MUST ignore the Encrypted or
Signed option and treat the message as if the application did not request encryption or signing.
Encryption and the signing of messages allows for applications to secure their payload and verify that

the participants are valid, as well as ensure that the messages are not transformed during transport.

Encryption and message-signing are activated by the application.<16>

Note A secure game session is different from a password-protected game session. DirectPlay 4 allows
for securing access to a game session with a user-specified cleartext password that is specified by the
host and which MUST be provided by all clients. Although not very secure, this form of security
provides a very lightweight alternative that does not require user accounts and associated
management. It is used to casually restrict access to a particular instance of a game session.

If the game session has the DPSESSION_DIRECTPLAYPROTOCOL flag set, then the DirectPlay

client MUST transmit the message using the DirectPlay4 Reliable Protocol [MC-DPL4R].

3.1.4.16.1 Sending Encrypted/Signed Data

When a higher-level entity requires to send encrypted or signed data, then the DirectPlay client MUST
encrypt or sign the data using the encryption algorithm specified by Game.CAPIProviderType and

the public key of the recipient. It MUST then wrap the encrypted or signed data in a
DPSP_MSG_SIGNED packet (section 2.2.52). If the higher-level entity requested that the message

be signed, the DirectPlay client MUST append the encryption signature to the DPSP_MSG_SIGNED
packet and transmit the resulting packet to the designated recipient.

3.1.4.16.2 Sending Unencrypted/Unsigned Data

When a higher-level entity requires to send unencrypted/unsigned data, then the DirectPlay client
MUST check the outgoing message.

If the data has the value 0x79616c70 (ASCII 'play') at offset 20 into the data, then the DirectPlay
client MUST format a DPSP_MSG_PLAYERWRAPPER message (section 2.2.47) that wraps the data.
It MUST then transmit the data to the recipient computer.

If the data does not have the value 0x79616c70 (ASCII 'play') at offset 20 into the data, then the

DirectPlay client MUST transmit the message to the recipient computer directly with no header data
via a streaming protocol.

In either case, when the higher-level entity does not specify guaranteed delivery for the data, the

DirectPlay client MUST send the data to the socket address associated with the target player.<17>

3.1.4.17 Send Chat

When a higher-level entity (game) requests that the DirectPlay client send a text chat message to
another client or a group, the sending client MUST construct a DPSP_MSG_CHAT (section 2.2.19)

79 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

message. If the target is a group, it MUST send a copy of the DPSP_MSG_CHAT message to each
player in the group. Otherwise, the client MUST send the message only to the desired player.

If the game session specified by the game has the Session.MulticastServer flag set and the higher-
layer entity requires to send a chat message to a group and the local client is not the DirectPlay host,

then the client MUST route the message through the host as described in section 3.1.4.16.

3.1.4.18 Large Messages

When a higher-level entity (game) requests that the DirectPlay client send a message that is larger

than the maximum transmission unit (MTU) size supported by the transport, the sending client MUST
split the message into smaller fragments that will fit. Each fragment MUST then be transmitted using a
DPSP_MSG_PACKET (section 2.2.39) header if the message is not reliable, or a
DPSP_MSG_PACKET2_DATA (section 2.2.41) header if the message is reliable. If it is not reliable,
the DPSP_MSG_PACKET messages SHOULD be transmitted without waiting for an
acknowledgement. If it is not reliable, the sender MUST only send the first
DPSP_MSG_PACKET2_DATA message and MUST start the Packetize Timer to retry the fragment if

necessary. Future reliable fragments MUST NOT be sent until this fragment is acknowledged as
specified in sections 3.1.5.28 and 3.1.5.29.

3.1.5 Processing Events and Sequencing Rules

When a DirectPlay client receives a packet on the DirectPlay port, it MUST inspect the four bytes of

data at offset 8 into the packet. If the value at that location is not the sequence: 0x70, 0x6c, 0x61,
0x79 (ASCII play), then the DirectPlay client MUST interpret the incoming packet as raw game data
and the DirectPlay client MUST inform any higher-level entity of the arrival of this message.

If the 4-byte value at location 8 in the incoming packet is not 0x70, 0x6c, 0x61, or 0x79, then the
DirectPlay client MUST interpret the incoming data as a DPSP_MSG_HEADER structure (section
2.2.6) and MUST implement the following behaviors based on the Command Value field of that

header.

Note The DirectPlay 4 Protocol does not perform validation on the sender of a message. An

implementation MAY choose to validate the sender of a message, but it is not a requirement for
compatibility with DirectPlay. For more information, see section 5.1.

3.1.5.1 DPSP_MSG_REQUESTPLAYERREPLY

When a DirectPlay 4 client receives a DPSP_MSG_REQUESTPLAYERREPLY message (section
2.2.50), if the DirectPlay client does not have a DPSP_MSG_REQUESTPLAYERID (section 2.2.49)
command outstanding, the DirectPlay client MUST ignore the message.

Otherwise, the DirectPlay client MUST remember the ID (contained in the
DPSP_MSG_REQUESTPLAYERREPLY message) as the Player.ID for the newly created player.

If the player being created has the Player.SystemPlayer flag set and the Session.Authenticated

flag is not set, then the client MUST format a DPSP_MSG_ADDFORWARDREQUEST message
(section 2.2.11) with the PlayerID field set to the system player ID. The client MUST then start the

reliable API timer and wait for a DPSP_MSG_SUPERENUMPLAYERSREPLY message (section
2.2.53). If no reply is received before the reliable API timer fires, then the client MUST return this
information to the higher-level entity.

If the player being created has the Player.SystemPlayer flag set and the Session.Authenticated

flag is set, then the client MUST format an NTLM NEGOTIATE packet as, specified in [MS-NLMP], using
information provided by the higher-level entity (or the operating system, if applicable).<18>

The DirectPlay client MUST then format and transmit a DPSP_MSG_NEGOTIATE (section 2.2.38) to
the game host with the SecurityToken of the message set to the NEGOTIATE message. It MUST start

80 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

the Login Timer and wait for the game host to reply with a DPSP_MSG_CHALLENGE (section 2.2.17)
message. If the Login timer expires before a DPSP_MSG_CHALLENGE (section 2.2.17) response is

received, the DirectPlay client MUST indicate that the logon operation failed to the higher level.

If the player being created does not have the Player.SystemPlayer flag set, the DirectPlay client

MUST format a DPSP_MSG_CREATEPLAYER (section 2.2.21) message. If the
Session.MulticastServer flag is set, the DirectPlay client MUST wrap the
DPSP_MSG_CREATEPLAYER message in a DPSP_MSG_ASK4MULTICAST message (section
2.2.14) and it MUST transmit the wrapped DPSP_MSG_CREATEPLAYER message to the game host.
If the Session.MulticastServer flag is not set, the DirectPlay client MUST transmit the
DPSP_MSG_CREATEPLAYER message to each of the computers currently joined to the game
session. There is no response expected to this message.

3.1.5.2 DPSP_MSG_CHALLENGE

When a DirectPlay 4 client receives a DPSP_MSG_CHALLENGE (section 2.2.17), it MUST ignore the
message if it is not in the process of joining a game session. If the client is in the process of joining a

game session, it MUST stop the logon timer and it MUST format an NTLM RESPONSE packet as
specified in [MS-NLMP]. It then MUST format and send a DPSP_MSG_CHALLENGERESPONSE
(section 2.2.18) message to the game host. It MUST then start the logon timer.

3.1.5.3 DPSP_MSG_ACCESSGRANTED

When a DirectPlay 4 client receives a DPSP_MSG_ACCESSGRANTED (section 2.2.7) message, the
DirectPlay 4 client MUST ignore the message if it is not in the process of joining a game session. If the
DirectPlay 4 client is in the process of joining the game session, it MUST save the PublicKey
contained in the DPSP_MSG_ACCESSGRANTED message as Session.HostPublicKey.

The DirectPlay 4 client MUST then generate a public/private key pair and remember it as
Client.PublicKey and Client.

The DirectPlay 4 client MUST then format a DPSP_MSG_KEYEXCHANGE (section 2.2.34) request
with the PublicKey field set to the public key received in the DPSP_MSG_ACCESSGRANTED and

the SessionKey field set to the game session's public key, and it MUST then transmit it to the game
host. It MUST then start the logon timer.

3.1.5.4 DPSP_MSG_AUTHERROR

When a DirectPlay 4 client receives a DPSP_MSG_AUTHERROR (section 2.2.16) message, the
DirectPlay 4 client MUST ignore the message if it is not in the process of joining a game session. If the
DirectPlay 4 client is in the process of joining a game session, it MUST fail the game session join
operation by returning the Error field in the DPSP_MSG_AUTHERROR to the higher-level entity.

3.1.5.5 DPSP_MSG_LOGONDENIED

When a DirectPlay 4 client receives a DPSP_MSG_LOGONDENIED (section 2.2.36) message, the
DirectPlay 4 client MUST ignore the message if it is not in the process of joining a game session. If the

DirectPlay 4 client is in the process of joining a game session, it MUST fail the game session join
operation by returning an access denied error to the higher-level entity.<19>

3.1.5.6 DPSP_MSG_KEYEXCHANGEREPLY

When a DirectPlay 4 client receives a DPSP_MSG_KEYEXCHANGEREPLY message (section 2.2.35),
the DirectPlay 4 client MUST remember the SessionKey contained in the message as
Session.SessionKey. It MUST then format a DPSP_MSG_ADDFORWARDREQUEST message

(section 2.2.11) with the PlayerID field set to the system player ID. The client MUST then start the

81 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

reliable API timer and wait for a DPSP_MSG_SUPERENUMPLAYERSREPLY message (section
2.2.53). If no reply is received before the reliable API timer fires, then the client MUST return this

information to the higher-level entity.

3.1.5.7 DPSP_MSG_SUPERENUMPLAYERSREPLY

When a DirectPlay 4 client receives a DPSP_MSG_SUPERENUMPLAYERSREPLY (section 2.2.53)
message, if the DirectPlay client is in the process of joining a game session, the DirectPlay client MUST
merge the player information contained in the DPSP_MSG_SUPERENUMPLAYERSREPLY with the

Player List. It MUST then indicate to the higher-level entity that the client has successfully joined the
game.

If the DirectPlay 4 client is not joining a game session, then if the DirectPlay client is processing an
Enumerate Players or Groups higher-level event (section 3.1.4.3), the DirectPlay 4 client MUST return
the information contained in the DPSP_MSG_SUPERENUMPLAYERSREPLY to the higher-level
entity. Otherwise, the DirectPlay client MUST ignore the message.

3.1.5.8 DPSP_MSG_ADDFORWARDREPLY

When a DirectPlay 4 client receives a DPSP_MSG_ADDFORWARDREPLY message (section 2.2.10),
if the DirectPlay client is in the process of joining a game session, it MUST indicate that the join failed
and return the Error field to the higher-level entity. Otherwise, the DirectPlay client MUST ignore this
message.

3.1.5.9 DPSP_MSG_SIGNED

When a DirectPlay 4 client receives a DPSP_MSG_SIGNED message (section 2.2.52), it MUST verify
that the signature of the Message field matches the Signature field.

If bit 2 in the Flags field is equal to 1 (0x00000004), then the Message field MUST first be decrypted
by using the encryption algorithm specified in section 3.1.1 and designating the Session.SessionKey
as the encryption key.

If the Flags field is equal to 0x00000001, then the Signature field MUST be interpreted as a
NTLMSSP_MESSAGE_SIGNATURE structure, as specified in [MS-NLMP] section 2.2.2.9.

If the Flags field is equal to 0x00000002, then the Signature field MUST be interpreted as a
signature block created by the signature algorithm, as specified in section 3.1.1.

Once the Message field has been validated, then the DirectPlay client MUST reinterpret the Message
field as if it were received from the sender.

3.1.5.10 DPSP_MSG_ADDFORWARD

When a DirectPlay client receives a DPSP_MSG_ADDFORWARD message (section 2.2.8), it MUST

add a new entry in the Player List using the information contained in the message. The DirectPlay
client MUST then format and transmit a DPSP_MSG_ADDFORWARDACK message (section 2.2.9) to
the game host. There is no response expected to this message.<20>

3.1.5.11 DPSP_MSG_CREATEGROUP

When a DirectPlay client receives a DPSP_MSG_CREATEGROUP (section 2.2.20) message, it MUST
create a new entry in the Group List using the information contained in the message. The DirectPlay
client SHOULD inform any higher-level entity of the arrival of this message.

82 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.12 DPSP_MSG_CREATEPLAYER

When a DirectPlay client receives a DPSP_MSG_CREATEPLAYER (section 2.2.21) message, it MUST
create a new entry in the Player List using the information contained in the message. The DirectPlay

client SHOULD inform any higher-level entity of the arrival of this message.

3.1.5.13 DPSP_MSG_CREATEPLAYERVERIFY

When a DirectPlay client receives a DPSP_MSG_CREATEPLAYERVERIFY message (section 2.2.22), the
recipient SHOULD respond as though it had received a DPSP_MSG_CREATEPLAYER

message (section 2.2.21). The client SHOULD create the specified player if it was not already created.

However, in contrast to the usual response to a DPSP_MSG_CREATEPLAYER message, the recipient
MUST NOT send any DPSP_MSG_CREATEPLAYERVERIFY messages. By not sending any
DPSP_MSG_CREATEPLAYERVERIFY messages in response, a feedback loop is avoided.

3.1.5.14 DPSP_MSG_DELETEPLAYER

Each DirectPlay client has a system player allocated to it by the computing system. In addition, a
client maycan create as many non-system players as it desires, where each player has a unique
identity.

A DirectPlay client can delete any player it created by sending the DPSP_MSG_DELETEPLAYER
(section 2.2.25) message. A client MUST NOT delete the players of another peer.

When a DirectPlay client is instructed to leave the game session by the game session host, the client
MUST delete all of its players and disconnect from the game session. The disconnect process results in
the deletion of the client's system player.

When a DirectPlay client receives a DPSP_MSG_DELETEPLAYER (section 2.2.25) message, it MUST
locate the specified PlayerID in the Player List using the information contained in the message and
remove the player associated with the PlayerID. The DirectPlay client SHOULD inform any higher-
level entity of the arrival of this message.

3.1.5.15 DPSP_MSG_DELETEGROUP

When a DirectPlay client receives a DPSP_MSG_DELETEGROUP (section 2.2.23) message, it MUST
look up the specified PlayerID in the Player List using the information contained in the message and

remove it. The DirectPlay client SHOULD inform any higher-level entity of the arrival of this message.

3.1.5.16 DPSP_MSG_GROUPDATACHANGED

Only the owner of a group is allowed to change the group's data, and it does so by sending the
DPSP_MSG_GROUPDATACHANGED (section 2.2.31) message. The owner of the group is the

DirectPlay client that created the group. When a DirectPlay client is destroyed, so are any groups that
it created.

When a DirectPlay client receives a DPSP_MSG_GROUPDATACHANGED message, it MUST locate

the specified GroupID in the Group List using the information contained in the message and update
the per-game data associated with the group. The DirectPlay client SHOULD inform any higher-level
entity of the arrival of this message.

3.1.5.17 DPSP_MSG_GROUPNAMECHANGED

When a DirectPlay client receives a DPSP_MSG_GROUPNAMECHANGED (section 2.2.32) message,
it MUST look up the specified GroupID in the Group List using the information contained in the

83 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

message and update the name associated with the group. The DirectPlay client SHOULD inform any
higher-level entity of the arrival of this message.

3.1.5.18 DPSP_MSG_PLAYERNAMECHANGED

When a DirectPlay client receives a DPSP_MSG_PLAYERNAMECHANGED (section 2.2.46) message,
it MUST look up the specified PlayerID in the Player List using the information contained in the
message and update the name associated with the player. The DirectPlay client SHOULD inform any
higher-level entity of the arrival of this message.

3.1.5.19 DPSP_MSG_PLAYERDATACHANGED

When a DirectPlay client receives a DPSP_MSG_PLAYERDATACHANGED (section 2.2.44) message,
it MUST look up the specified PlayerID in the Player List using the information contained in the
message and update the per-game data associated with the player. The DirectPlay client SHOULD

inform any higher-level entity of the arrival of this message.

3.1.5.20 DPSP_MSG_ADDPLAYERTOGROUP

When a DirectPlay client receives a DPSP_MSG_ADDPLAYERTOGROUP (section 2.2.12) message, it
MUST look up the specified GroupID in the Group List and the specified PlayerID in the Player

List. It MUST then add the player associated with the PlayerID to the group specified by the
GroupID. The DirectPlay client SHOULD inform any higher-level entity of the arrival of this message.

3.1.5.21 DPSP_MSG_DELETEPLAYERFROMGROUP

When a DirectPlay client receives a DPSP_MSG_DELETEPLAYERFROMGROUP (section 2.2.26)
message, it MUST locate the specified Group.ID in the Group List and the specified Player.ID in the
Player List. It MUST then remove the player associated with the player ID from the group specified
by the group ID. The DirectPlay client SHOULD inform any higher-level entity of the arrival of this
message.

3.1.5.22 DPSP_MSG_SESSIONDESCCHANGED

When a DirectPlay client receives a DPSP_MSG_SESSIONDESCCHANGED (section 2.2.51)
message, it MUST update any cached local representation of the DPSESSIONDESC2 structure.

3.1.5.23 DPSP_MSG_ADDSHORTCUTTOGROUP

When a DirectPlay client receives a DPSP_MSG_ADDSHORTCUTTOGROUP (section 2.2.13)
message, it MUST look up the specified ChildGroupID and ParentGroupID values in the Group
List. It MUST then add the group specified by ChildGroupID to the group specified by the
ParentGroupID. The DirectPlay client SHOULD inform any higher-level entity of the arrival of this
message.

3.1.5.24 DPSP_MSG_DELETEGROUPFROMGROUP

When a DirectPlay client receives a DPSP_MSG_DELETEGROUPFROMGROUP (section 2.2.24)
message, it MUST look up the specified ChildGroupID and ParentGroupID values in the Group
List. It MUST then remove the group specified by ChildGroupID from the group specified by the

ParentGroupID. The DirectPlay client SHOULD inform any higher-level entity of the arrival of this
message.

84 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.25 DPSP_MSG_VOICE

When a DirectPlay client or server receives a DPSP_MSG_VOICE (section 2.2.54) message, it MUST
pass the contents of the voiceData, dwIDFrom, and dwIDTo to the DirectPlay Protocol: DirectPlay

Voice Extension if it is active. If the DirectPlay Voice Protocol is not present within the game
session, then this message MUST be ignored. For details on how the contents of the message are
processed, see the DirectPlay Voice Protocol document [MC-DPLVP].

3.1.5.26 DPSP_MSG_CHAT

When a DirectPlay client receives a DPSP_MSG_CHAT (section 2.2.19) message, it MUST inform any
higher-level entity of the arrival of the chat string from the specified player to the specified player or
group. The client MUST also increment the Player.ChatterCount.

3.1.5.27 DPSP_MSG_PACKET

When a DirectPlay 4 client receives a DPSP_MSG_PACKET message (section 2.2.39), it MUST

determine if previous fragments of the packets identified by MessageGuid have already been
processed. If not, the client MUST begin reassembling the total message, starting with the received
fragment. Otherwise, the client MUST check that PacketID is the next ID in the sequence and ignore
the packet if not. It MUST then include the additional fragment payload in its correct location in the
total message. When all fragments have been received, the completed message MUST be delivered to

the higher-layer entity.

3.1.5.28 DPSP_MSG_PACKET2_DATA

When a DirectPlay 4 client receives a DPSP_MSG_PACKET2_DATA message (section 2.2.41), it

MUST send a DPSP_MSG_PACKET2_ACK (section 2.2.40) message to the sender to acknowledge
reception. It MUST then determine if previous fragments of the packets identified by MessageGuid
have already been processed. If not, the client MUST begin reassembling the total message, starting
with the received fragment. Otherwise, the client MUST check that PacketID is the next ID in the
sequence and ignore the packet if not. It MUST then include the additional fragment payload in its

correct location in the total message. When all fragments have been received, the completed message
MUST be delivered to the higher-layer entity.

3.1.5.29 DPSP_MSG_PACKET2_ACK

When a DirectPlay 4 client receives a DPSP_MSG_PACKET2_ACK message (section 2.2.40), it MUST
determine if the packet identified by MessageGuid and PacketID has not already been
acknowledged. If it has, the client MUST ignore this redundant acknowledgment (ACK). Otherwise, the

client MUST reset the Packetize Timer and send the next PacketID in the fragmented message. If
there are no more packets, then the entire message has completed and the Packetize Timer MUST be
canceled.

3.1.5.30 DPSP_MSG_PING

When a DirectPlay 4 client receives a DPSP_MSG_PING message (section 2.2.42), it MUST look up
the player specified by the IDFrom field in the Player List. If the ID does not represent a valid
player, the client MUST ignore this message. Otherwise, the client MUST send a
DPSP_MSG_PINGREPLY message (section 2.2.43) and echo the TickCount field. It MUST also
increment the Player.ChatterCount.

85 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.31 DPSP_MSG_PINGREPLY

When a DirectPlay 4 client receives a DPSP_MSG_PINGREPLY message (section 2.2.43), it MUST
look up the player specified by IDFrom in the Player List. If the ID does not represent a valid player,

the client MUST ignore this message. Otherwise, the client MUST also increment the
Player.ChatterCount counter.

3.1.5.32 DPSP_MSG_YOUAREDEAD

Only a DirectPlay 4 client that determines itself to be the game session host can send a

DPSP_MSG_YOUAREDEAD message (section 2.2.55) to another peer in the game session.

Any DirectPlay 4 client that is not the game session host, yet receives a
DPSP_MSG_IAMNAMESERVER message (section 2.2.33), treats the sender of the
DPSP_MSG_IAMNAMESERVER message as the new game session host.

If a DirectPlay 4 client is the game session host and it receives a DPSP_MSG_IAMNAMESERVER
message, the game session host responds to the sender with a DPSP_MSG_YOUAREDEAD message

to tell that client to disconnect from the game session.

When a DirectPlay 4 client receives a DPSP_MSG_YOUAREDEAD message, it MUST terminate all
connections to all computer systems and communicate this event to a higher-level entity.

3.1.6 Timer Events

3.1.6.1 Packetize Timer

When the Packetize Timer expires, the DirectPlay 4 client MUST resend the current
DPSP_MSG_PACKET2_DATA message (section 2.2.41), unless it has already sent the same packet

16 times and 60 seconds have elapsed since the first packet was sent, in which case the client MUST
abort sending the entire message.

3.1.6.2 Ping Timer

When the Ping Timer expires, the DirectPlay 4 client SHOULD send a DPSP_MSG_PING message

(section 2.2.42) to the host if no messages have been received since the last Ping Timer expiration. If
8 DPSP_MSG_PING messages have been sent without a reply, the connection to the host SHOULD
be terminated.

3.1.7 Other Local Events

3.1.7.1 Host Migration

The host migration process is initiated when the game session host leaves the game session for any
reason, such as failing to reply to 8 DPSP_MSG_PING (section 2.2.42) messages. When this occurs,

clients in the game session MUST check whether the host migration flag (Session.MigrateHost) is

set in the abstract data model. If the flag is not set, the clients MUST terminate connections to all
other computer systems and inform the higher layer (game) that the game session has terminated.
When the flag is set, a deterministic algorithm is employed to establish the new game session host.

The algorithm requires clients to locate the system players in the Player List and, of these, to
determine which player has the lowest Player.ID value. If the system player with the lowest
Player.ID value is found to be local, then the client associated with that player MUST become the

new game session host. This player then sends a DPSP_MSG_IAMNAMESERVER (section 2.2.33)
message to all other clients.

86 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Note Because player IDs are assigned by the host, a new player has no way to "force" itself to
become the new host. In addition, although player IDs are allocated sequentially (and starting from a

random value), the random value is XOR'd with a secret value to generate the player ID. As a result,
there is no guarantee that the distributed player ID values will be sequential. For more information,

see sections 3.2.5.4 and 5.1.

If the system player with the lowest player ID is not local, the client MUST start the Ping Timer to
detect any other unreachable players until it either receives a DPSP_MSG_IAMNAMESERVER
message, or all other computer systems are determined to be unreachable and the local system player
now has the lowest player ID value.

Note The DirectPlay 4 Protocol does not perform validation on the sender of a message. An
implementation MAY choose to validate the sender of a message but it is not a requirement for

compatibility with DirectPlay. For more information, see section 5.1.

Any client that cannot be seen by the new host SHOULD be ejected from the game session by the host
sending the client a DPSP_MSG_IAMNAMESERVER message. However, in the existing
implementation, only the game session host can send messages to inform players that they are no

longer in the game session, which the game session host would not do if a particular client were not
reachable from the game session host. Therefore, this behavior is flawed.

The nature of the host migration process is such that any client can send a
DPSP_MSG_IAMNAMESERVER message at any time during the process. The algorithm for
determining the new game session host is run on all clients simultaneously and, normally, only the
client that is determined to be the new host will send the DPSP_MSG_IAMNAMESERVER message.
However, sometimes multiple clients can leave the game session simultaneously and connectivity
between clients can become inconsistent. As a result, there are situations where more than one client
in a game session maycan decide that it has become the new host, and, as a result, it maycan send

the DPSP_MSG_IAMNAMESERVER message.

Because a client that could potentially become the new host (in the case where there have been
multiple client failures) times out each potential new host in-line and in-order, the total amount of
time to resolve a migration can be very long. During this time, the view on the game can become
inconsistent among the clients. These inconsistencies can lead to a problem where multiple clients

with varying views of the remaining clients in the game session can elect themselves as the new host
at the same time. This can cause fragmentation of the game session or possibly multiple game

sessions with overlapping inconsistent views of the remaining clients.

Note The host migration mechanism in DirectPlay 4 is insufficient for handling some complex host
migration situations. Recovery from the simultaneous failure of multiple clients might or might not
succeed in leaving an accurate image of the clients in the game session. This problem is addressed by
DirectPlay 8.

3.2 Game Host Details

Under the DirectPlay 4 Protocol, the first computer that creates a DirectPlay 4 game session is
designated as the game host. This server functions the same as any other game client, but it has
certain additional responsibilities associated with game management. These include:

 Responding to game session enumeration requests.

 Accepting nascent game instances into the game session and forwarding their information to
established instances.

 Redistributing specific multicast requests from game clients to all game instances.

87 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The game host acts as a DirectPlay client and, as such, implements the same abstract data model as
other DirectPlay clients. In addition, the game host implements the following abstract data model.

ClientList: A list of all the current DirectPlay 4 clients.

Each client contains the following information:

Client.SessionKey: An encryption key used to protect data transmitted to the client.

3.2.2 Timers

3.2.2.1 Name Table Population Timer

The Name Table Population timer is set by a DirectPlay host when it receives a
DPSP_MSG_ADDFORWARDREQUEST message (see section 2.2.11). The timeout for this timer is
15 seconds.

3.2.2.2 Ping Timer

The Ping timer is set by a DirectPlay server when the Session.KeepAlive flag is set in the abstract
data model. It elapses periodically so that DPSP_MSG_PING (section 2.2.42) messages are sent to
any connected player with a Player.ChatterCount of 0 (that is, for which no messages have been

received since the last Ping timer expiration). The period for this timer is 35 seconds.

3.2.3 Initialization

When a DirectPlay 4 host computer starts, it MUST open a UDP datagram socket on port 47624 and
listen for broadcast datagrams sent to that port. It MUST also open a TCP and UDP port within the

defined DirectPlay 4 port range of 2300 to 2400. The game host MUST also assign a new GUID value
to the Session.InstanceID identifier.

3.2.4 Higher-Layer Triggered Events

A DirectPlay 4 game host functions as a DirectPlay client and, as such, MUST handle all of the higher-

layer triggered events as specified in section 3.1.4.

Note When a DirectPlay client is the host, the messages specified in section 3.1.4 as being sent to or
from the host, are therefore, inherently sent to or from the host itself. An implementation can handle
these local message transport paths specifically for optimization or for other purposes, as long as the

resulting protocol state or behavior remains the same as would be expected for and by external
clients.

3.2.5 Processing Events and Sequencing Rules

3.2.5.1 DPSP_MSG_ASK4MULTICAST

When a DirectPlay 4 host receives a DPSP_MSG_ASK4MULTICAST (section 2.2.14) message, it
MUST validate that the PlayerFrom and GroupTo fields refer to a valid player and group,

88 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

respectively, or else ignore the message. If valid, the host MUST then extract the wrapped message
payload at MessageOffset and resend the message to all members of the specified group. If the

game session has the Session.ReliableProtocol flag set, then the forwarded message MUST be
rewrapped, but with a DPSP_MSG_MULTICASTDELIVERY (section 2.2.37) header instead. The host

MUST also increment the Player.ChatterCount counter.

3.2.5.2 DPSP_MSG_ASK4MULTICASTGUARANTEED

When a DirectPlay host receives a DPSP_MSG_ASK4MULTICASTGUARANTEED (section 2.2.15)

message, it MUST validate that the PlayerFrom and GroupTo fields refer to a valid player and group,
respectively, or else ignore the message. If valid, the host MUST then extract the wrapped message
payload at the MessageOffset field and resend the message to all members of the specified group
using the guaranteed message mechanism. If the game session has the Session.ReliableProtocol
flag set, then the forwarded message MUST be re-wrapped, but with a
DPSP_MSG_MULTICASTDELIVERY (section 2.2.37) header instead. The host MUST also increment
the Player.ChatterCount counter.

3.2.5.3 DPSP_MSG_ENUMSESSIONS

When a DirectPlay 4 host receives a DPSP_MSG_ ENUMSESSIONS (section 2.2.29) message, it
MUST format and transmit one DPSP_MSG_ENUMSESSIONSREPLY (section 2.2.30) for each game
session on the DirectPlay 4 host computer which meets the following criteria:

 The host MUST only return those game sessions whose Game.ApplicationGuid matches the
ApplicationGuid field in the DPSP_MSG_ ENUMSESSIONS request.

 If the AV flag of the Flags field of the DPSP_MSG_ ENUMSESSIONS is set, the host MUST NOT
return those game sessions whose Session.MaxPlayers is less than or equal to
Session.CurrentPlayers.

 If the AL flag is set, the host MUST return those game sessions whose Session.MaxPlayers is

less than or equal to Session.CurrentPlayers.

 If the PR flag is not set, the host MUST return those game sessions whose Session.Password
matches the Password field in the DPSP_MSG_ ENUMSESSIONS request.

The information in the DPSP_MSG_ENUMSESSIONSREPLY message MUST be extracted from
information stored in the abstract data model. The host MUST send the response via the TCP protocol
to the port specified in the SockAddr field of the DPSP_MSG_HEADER portion (section 2.2.6) of the
request and to the IP address that sent the request.

3.2.5.4 DPSP_MSG_REQUESTPLAYERID

When a DirectPlay host receives a DPSP_MSG_REQUESTPLAYERID (section 2.2.49) message, it
MUST inspect the Flags field of the DPSP_MSG_REQUESTPLAYERID request. If the
DPLAYI_PLAYER_SYSTEMPLAYER flag is set, this request is a request to join the game. If the

DPLAYI_PLAYER_SYSTEMPLAYER flag is not set, the request is a request to add a normal player
from an existing member of the game session.

When adding a normal player to the game session, the game host MUST check to see if the number of
current players identified in Session.CurrentPlayers is equal to the maximum number of players
specified in Session.MaxPlayers or if the Session.NewPlayersDisabled flag is set. If it is set, the
game host MUST format and transmit a DPSP_MSG_REQUESTPLAYERREPLY (section 2.2.50) with

the Result field set to DPERR_NONEWPLAYERS (0x8877014A). Otherwise, the game host MUST
reserve a new player ID for the new player and the game host MUST add the player to the Player
List. The game host MUST then format and transmit a DPSP_MSG_REQUESTPLAYERREPLY
message with the ID field set to the new player ID. The SecDesc field in the

89 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DPSP_MSG_REQUESTPLAYERREPLY structure MUST be filled with 0s, and the Result field MUST
be set to S_OK (0x00000000).

Note The 32-bit player and group identifiers are constructed as follows:

1. A zero-based value not shared by an existing identifier is assigned in the lowest 16 bits of the

identifier.

2. A zero-based value that is incremented to provide uniqueness for each identifier is assigned in the
highest 16 bits of the identifier.

3. The resulting 32-bit identifier value is bitwise XOR'd with the unique value specified in the
Reserved1 field of the DPSESSIONDESC2 message.

Although player IDs are allocated sequentially (and starting from a random value), because the
random value is XOR'd with this unique value, there is no guarantee that the distributed player ID

values will be sequential. For more information, see section 5.1.

When a client is joining a game session, the game host MUST check to see if

Session.CurrentPlayers is equal to the Session.MaxPlayers constraint or if the
Session.JoinDisabled flag is set. If it is set, the game host MUST format and transmit a
DPSP_MSG_REQUESTPLAYERREPLY with the Result field set to DPERR_NONEWPLAYERS
(0x8877014A). Otherwise, the game host MUST reserve a new player ID for the new player and the

game host MUST add the player to the Player List. The game host MUST then format and transmit a
DPSP_MSG_REQUESTPLAYERREPLY message with the ID field set to the new player ID and the
Result field MUST be set to S_OK (0x00000000). If the Session.Authenticated flag is not set, the
SecDesc field in the DPSP_MSG_REQUESTPLAYERREPLY structure MUST be filled with 0s. If the
Session.Authenticated flag is set, the SecDesc field MUST be filled in with the SSPIProvider field
set to Game.SSPIProvider value for the authentication.<21>

The CAPIProvider field MUST be set to the cryptographic service specified in Game.CAPIProvider,

the CAPIProviderType field MUST be set to the cryptographic provider capabilities identified in
Game.CAPIProviderType, and the Encryption Algorithm MUST be set to the algorithm indicated in
Game.EncryptionAlgorithm.

3.2.5.5 DPSP_MSG_ADDFORWARDREQUEST

When the game host receives a DPSP_MSG_ADDFORWARDREQUEST message (section 2.2.11),
the game host MUST format a DPSP_MSG_ADDFORWARD message (section 2.2.8) containing the
information for the system player contained in the DPSP_MSG_ADDFORWARDREQUEST.<22>

The game host MUST then transmit the DPSP_MSG_ADDFORWARD request to each of the other
players in the game to allow them to update their name tables. It MUST then start the Name Table
Population timer and wait for each of the players to respond with a

DPSP_MSG_ADDFORWARDACK (section 2.2.9) message.

3.2.5.6 DPSP_MSG_ADDFORWARDACK

When a DirectPlay host computer receives a DPSP_MSG_ADDFORWARDACK message (section

2.2.9), if the host has an outstanding DPSP_MSG_ADDFORWARDACK from the client which sent

the message, the DirectPlay host computer MUST indicate that it has received the
DPSP_MSG_ADDFORWARDACK. When the DirectPlay host computer has received a
DPSP_MSG_ADDFORWARDACK message from all of the clients to which it sent the
DPSP_MSG_ADDFORWARD message (section 2.2.8), then the game host MUST format and
transmit a DPSP_MSG_SUPERENUMPLAYERSREPLY message (section 2.2.53) to the client that
sent the DPSP_MSG_ADDFORWARDREQUEST (section 3.2.5.5).

90 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.5.7 DPSP_MSG_NEGOTIATE

When a DirectPlay host receives a DPSP_MSG_NEGOTIATE message (section 2.2.38), it MUST
ignore the message if the sending client is not in the process of joining a game; otherwise, it MUST

process it as an NTLM NEGOTIATE_MESSAGE packet, as specified in [MS-NLMP] section 2.2.1.1.

If the negotiate message is successful, then the host MUST format and transmit a
DPSP_MSG_CHALLENGE message (section 2.2.17) with the SecurityToken field set to an NTLM
CHALLENGE_MESSAGE, as specified in [MS-NLMP] section 2.2.1.2.

If the negotiate message is unsuccessful, then the host MUST format and transmit a
DPSP_MSG_AUTHERROR message (section 2.2.16) to the client.

3.2.5.8 DPSP_MSG_CHALLENGERESPONSE

When a DirectPlay host receives a DPSP_MSG_CHALLENGERESPONSE message (section 2.2.18), it
MUST ignore the message if the sending client is not in the process of joining a game; otherwise, it
MUST process it as an NTLM AUTHENTICATE_MESSAGE packet, as specified in [MS-NLMP] section

2.2.1.3.

If the authenticate message is successful, then the host MUST format and transmit a
DPSP_MSG_ACCESSGRANTED message (section 2.2.7) with the PublicKey field set to
Session.SessionPublicKey.

If the authenticate message is unsuccessful, then the host MUST format and transmit either a
DPSP_MSG_LOGONDENIED message (section 2.2.36) or a DPSP_MSG_AUTHERROR message
(section 2.2.16) to the client.

3.2.5.9 DPSP_MSG_KEYEXCHANGE

When a DirectPlay server receives a DPSP_MSG_KEYEXCHANGE message (section 2.2.34), it MUST
remember the PublicKey and SessionKey fields in the message as Client.PublicKey and
Client.SessionKey and it MUST use these keys for subsequent encrypted communication to the

client.

It MUST then allocate a new public/private key pair to be used when transmitting messages to this
client and save it as Client.HostPublicKey. It MUST then format and transmit a
DPSP_MSG_KEYEXCHANGEREPLY message (section 2.2.35) with the SessionKey set to
Client.HostPublicKey.

3.2.5.10 DPSP_MSG_PING

When a DirectPlay 4 server receives a DPSP_MSG_PING message (section 2.2.42) it MUST be
handled as specified in section 3.1.5.30, except that if IDFrom does not represent a valid player, then
the server MUST send a DPSP_MSG_YOUAREDEAD message (section 2.2.55) rather than ignoring
the packet.

3.2.5.11 DPSP_MSG_PINGREPLY

When a DirectPlay 4 server receives a DPSP_MSG_PINGREPLY message (section 2.2.43), it MUST
be handled as specified in section 3.1.5.31, except that if IDFrom does not represent a valid player,

then the server MUST send a DPSP_MSG_YOUAREDEAD message (section 2.2.55) rather than
ignoring the packet.

91 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.6 Timer Events

3.2.6.1 Name Table Population Timer

When the Name Table Population timer expires, the game host MUST format and transmit a
DPSP_MSG_SUPERENUMPLAYERSREPLY message (section 2.2.53) to the client that sent the
DPSP_MSG_ADDFORWARDREQUEST (section 3.2.5.5).

3.2.6.2 Ping Timer

When the Ping timer expires, the DirectPlay 4 server SHOULD send a DPSP_MSG_PING (section
2.2.42) message to all connected computer systems if no messages have been received since the last
Ping timer expiration. If eight DPSP_MSG_PING messages have been sent without a reply, the
connection to the computer system SHOULD be terminated.

3.2.7 Other Local Events

None.

92 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

4.1 DirectPlay4EnumSessionsRequest

The following is a sample DPSP_MSG_ENUMSESSIONS (section 2.2.29) message, indicating its

parsed fields and example values.

 - DirectPlay4:
 DpspMsgEnumSessions (0x0002): ,
 Application GUID: {A052A50B-FFE0-CF11-9C4E-00A0C905425E},
 Flags: 0x00000002,
 Message Size: 70,
 Token: 0xfab
 - MessageSize:
 Message Size: 70,
 Token: 0xfab
 Size: 70 (0x46)
 Token: 0xFAB - Message received from a remote DirectPlay machine
 - SockAddr: Family = 2 (0x2),
 Port = 2300 (0x08FC),
 Address = 0.0.0.0
 SinFamily: 2 (0x2)
 SinPort: 2300 (0x08FC)
 SinAddr: 0.0.0.0
 SinZero: 0 (0x0)
 - Message:
 DpspMsgEnumSessions (0x0002): ,
 Application GUID: {A052A50B-FFE0-CF11-9C4E-00A0C905425E},
 Flags: 0x00000002
 Signature: play
 - CmdToken: DpspMsgEnumSessions (0x0002)
 Command: DpspMsgEnumSessions (0x0002)
 Version: 14 (0xE)
 - DpspMsgEnumSessions:
 GuidApplication: {A052A50B-FFE0-CF11-9C4E-00A0C905425E}
 PasswordOffset: 32 (0x20)
 - Flags: 0x00000002
 Available: (...............................0)
 Don't enumerate sessions which can be joined
 All: (..............................1.)
 Enumerate all sessions even if they can't be joined
 Previous: (.............................0..) Obsolete
 NoRefresh: (............................0...)
 The response from previous enums will be freed
 Async: (...........................0....)
 Don't start an asynchronous enum sessions
 StopAsync: (..........................0.....)
 Don't stop an asynchronous enum sessions
 PasswordRequired: (.........................0......)
 Don't enumerate sessions if they require a password
 ReturnStatus: (........................0.......)
 Don't return enumeration status
 Unused: (000000000000000000000000........)
 Password: Password

4.2 DirectPlay4 EnumSessionsReply

The following is a sample DPSP_MSG_ENUMSESSIONSREPLY (section 2.2.30) message, indicating

its parsed fields and example values.

 - DirectPlay4: DpspMsgEnumSessionsReply (0x0001): ,
 Session Name: LOTHAIR,

93 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Message Size: 128,
 Token: 0xfab
 - MessageSize: Message Size: 128,
 Token: 0xfab
 Size: 128 (0x80)
 Token: 0xFAB - Message received from a remote DirectPlay machine
 - SockAddr: Family = 2 (0x2), Port = 2300 (0x08FC),
 Address = 0.0.0.0
 SinFamily: 2 (0x2)
 SinPort: 2300 (0x08FC)
 SinAddr: 0.0.0.0
 SinZero: 0 (0x0)
 - Message: DpspMsgEnumSessionsReply (0x0001): ,
 Session Name: LOTHAIR
 Signature: play
 - CmdToken: DpspMsgEnumSessionsReply (0x0001)
 Command: DpspMsgEnumSessionsReply (0x0001)
 Version: 14 (0xE)
 - DpspMsgEnumSessionsReply:
 - Desc:
 Size: 80 (0x50)
 + Flags: 0x00000404
 GuidInstance: {21FAA08E-42FC-B546-AFD3-5E1584FBBB60}
 GuidApplication: {A052A50B-FFE0-CF11-9C4E-00A0C905425E}
 MaxPlayers: 1000 (0x3E8)
 CurrentPlayers: 1 (0x1)
 SessionNameOffset: 0 (0x0)
 PasswordOffset: 0 (0x0)
 Reserved1: 508731553 (0x1E52A0A1)
 Reserved2: 0 (0x0)
 User1: 0 (0x0)
 User2: 2 (0x2)
 User3: 3 (0x3)
 User4: 4 (0x4)
 NameOffset: 92 (0x5C)
 SessionName: LOTHAIR

4.3 Joining a Game

The following figure shows a nascent game instance joining a game host and a third, established game
instance.

94 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 4: Joining a game

A nascent game instance transmits a DPSP_MSG_REQUESTPLAYERID (section 2.2.49) message

requesting a new system player to the game host.

The game host responds with a DPSP_MSG_REQUESTPLAYERREPLY message (section 2.2.50) with
the new system player ID.

The nascent game instance transmits a DPSP_MSG_ADDFORWARDREQUEST message (section
2.2.11) to the game host.

The game host transmits a DPSP_MSG_ADDFORWARD message (section 2.2.8) to each of the

established game instances.

The established game instances respond with a DPSP_MSG_ADDFORWARDACK message (section
2.2.9).

The game host completes the join process by sending a DPSP_MSG_SUPERENUMPLAYERSREPLY
message (section 2.2.53) to the nascent game instance with the state of the game session.

95 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

The following security considerations pertain to the DirectPlay 4 Protocol:

 The DirectPlay 4 Protocol was not designed to be a secure protocol. Any application that
requires end-to-end security would need to implement secure identity, and possibly encryption
and/or packet signing. This is no different than the case where applications are built on
sockets.<23>

 The only exploits that are prevented in DirectPlay 4 are problems where the formatting of a
message could lead to a buffer overrun or cause a computer to crash. Since DirectPlay 4 was a

sufficiently complex and proprietary protocol, used primarily in the domain of game applications, it
was not anticipated that there would be much point in attacking the link. If an application required
to secure a link, it could use the secure modes and packet signing that would prevent such
exploits as mentioned above.

 The DirectPlay 4 Protocol does not perform validation on the sender of a message. An
implementation maymight choose to validate the sender of a message, but it is not a requirement
for compatibility with DirectPlay.

 Player IDs are assigned by the game session host and as a result, a new player has no way to
"force" itself to become the new host. For more information, see section 3.1.7.1.

 Although player IDs are allocated sequentially (starting from a random value), the random value is
XOR'd with a secret value to generate the player ID. As a result, there is no guarantee that the
distributed player ID values will be sequential. From a security perspective, this manner of
allocation is helpful because it generates values that cannot be easily guessed. If an
implementation were to attempt to spoof a game and join the game session by accurately

guessing a player ID value, the implementation would also have to recognize the secret value in
order to be able to guess the next player ID.

5.2 Index of Security Parameters

None.

96 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows NT operating system

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 Technical Preview operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies

to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 1.5: The DirectPlay 4 Protocol is available only in Windows operating systems that

have the DirectX 6 runtime (from the DirectX 6 Software Development Kit (DirectX SDK)), or
later version of the runtime installed. All Microsoft products that are identified as applicable to this
protocol in section 6 of this specification meet this requirement.

<2> Section 1.7: The following DirectPlay 4 dialects are natively included in Windows operating
systems: DX71VERSION (supported only in Windows 2000), DX8VERSION (supported only in Windows
XP and Windows Server 2003), and DX9VERSION (not supported in Windows NT, Windows 2000, and

Windows XP).

An operating system service pack or out-of-band DirectX redistributable can upgrade the native
dialect to a later version. The maximum version to which a dialect can be upgraded is DX9VERSION.

The DirectX Software Development Kit (DirectX SDK) provided multiple programming interfaces with
names such as IDirectPlay4 and IDirectPlay3, but these do not affect the wire protocol. All
interfaces implement the DirectPlay 4 Core and Service Provider Protocol according to the native or
upgraded dialect associated with the operating system.

97 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<3> Section 2.2.3: If the Windows Winsock DirectPlay Service Provider is used, the SL field is set to
0x1 in the PlayerInfoMask field, and the ServiceProviderDataLength field is set to 0x20.

<4> Section 2.2.4: Windows sets the Size field to 0.

<5> Section 2.2.4: An implementation should supportsupports at least one of the values shown in the

following table.

Algorithm Description OS versions exceptions Reference

CALG_AES

0x00006611

Advanced Encryption Standard
(AES). This algorithm is supported
by the Microsoft AES Cryptographic
Provider.

Not supported in Windows NT,
Windows 2000 and Windows XP.
Supported in Windows XP
operating system Service Pack 1
(SP1)

[FIPS197]

CALG_3DES

0x00006603

Triple Data Encryption Standard
(DES) encryption algorithm
(3DES).

Not supported in Windows NT and
Windows 2000

For more information,
see the entry for
[TDEA] in section
1.2.1.

CALG_DES

0x00006601

Data Encryption Standard (DES). Not supported in Windows NT [FIPS46-2] and
[FIPS46-3]

CALG_RC2

0x00006602

Rivest Cipher 2 (RC2) block
encryption algorithm. This
algorithm is supported by the
Microsoft Base Cryptographic
Provider.

none [RFC2268]

CALG_RC4

0x00006801

RC4 stream encryption algorithm.
This algorithm is supported by the
Microsoft Base Cryptographic
Provider.

none [RC4]

For more information about these encryption algorithms, see [MSDN-ALG_ID].

Implementations MAYmight choose to support other algorithms and values not shown here; if they do,
they should reuse the values specified in [MSDN-CRYPTO] to avoid collisions.

<6> Section 2.2.5: When the OL flag is present, Windows disables the Nagle algorithm for its TCP
sockets.

<7> Section 2.2.5: Windows does not initialize the SessionName field to zero when sending; the
receiver must ignore the data.

<8> Section 2.2.5: Windows does not initialize the Password field to zero when sending; the receiver

must ignoreignores the data.

<9> Section 2.2.28: In Microsoft Windows, the ShortcutCount field is uninitialized when sent.

<10> Section 2.2.48: Windows implementations maycan send nonzero values for the X bitfield.

<11> Section 3.1.1: In Windows, the only supported value for Game.SSPIProvider is NTLM.

<12> Section 3.1.1: In Windows, the Game.CAPIProvider must beis one of the following cryptographic
provider names.

 Microsoft Base Cryptographic Provider v1.0

 Microsoft Enhanced Cryptographic Provider v1.0

98 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Microsoft RSA Signature Cryptographic Provider

 Microsoft Base RSA SChannel Cryptographic Provider

 Microsoft Enhanced RSA SChannelStrong Cryptographic Provider

 Microsoft Base DSS Cryptographic Provider

 Microsoft Base DSS and Diffie-Hellman Cryptographic Provider

 Microsoft Enhanced DSS and Diffie-Hellman Cryptographic Provider

 Microsoft Base DH SChannel Cryptographic Provider

 Microsoft Enhanced DH SChannel Cryptographic Provider

 Microsoft Base Smart Card Crypto Provider

<13> Section 3.1.1: In Windows, the Game.CAPIProviderType value must beis one of the following

values.

 PROV_RSA_FULL (0x00000001).

 PROV_RSA_SIG (0x00000002): The PROV_RSA_SIG provider type is a subset of the
PROV_RSA_FULL type, it only provides support for hashes and signatures using the RSA signature
algorithm.

 PROV_DSS (0x00000003): The PROV_DSS provider type is a subset of the PROV_RSA_FULL type;
it only provides support for hashes and signatures using the DSS signature algorithm.

 PROV_FORTEZZA (0x00000004): The PROV_FORTEZZA provider type specifies cryptographic
protocols and algorithms specified by the National Institute for Standards and Technology.

 PROV_MS_EXCHANGE (0x00000005): The PROV_MS_EXCHANGE provider type is intended for the
needs of Microsoft Exchange.

<14> Section 3.1.1: An implementation should supportsupports at least one of the values shown in
the following table.

Algorithm Description OS versions exceptions Reference

CALG_AES

0x00006611

Advanced Encryption Standard
(AES). This algorithm is supported by
the Microsoft AES Cryptographic
Provider.

Not supported in Windows NT,
Windows 2000 and Windows
XP. Supported in Windows XP
SP1

[FIPS197]

CALG_3DES

0x00006603

Triple DES encryption algorithm
(3DES).

Not supported in Windows NT
and Windows 2000

For more information,
see the entry for

[TDEA] in section 1.2.1.

CALG_DES

0x00006601

DES Encryption Standard (DES). Not supported in Windows NT [FIPS46-2] and
[FIPS46-3]

CALG_RC2

0x00006602

RC2 block encryption algorithm
(RC2). This algorithm is supported by
the Microsoft Base Cryptographic
Provider.

none [RFC2268]

CALG_RC4

0x00006801

RC4 stream encryption algorithm
(RC4). This algorithm is supported by
the Microsoft Base Cryptographic
Provider.

none [RC4]

99 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

For more information about these encryption algorithms, see [MSDN-ALG_ID].

Implementations can choose to support other algorithms and values not shown here; if they do, they

should reuse the values specified in [MSDN-CRYPTO] in order to avoid collisions.

<15> Section 3.1.2.1: If no application-defined timer has been set, Windows uses a default timer

value of 5 seconds.

<16> Section 3.1.4.16: In DirectPlay library implementations for Windows platforms, encryption and
signing services are provided by the Windows platform APIs.

<17> Section 3.1.4.16.2: In Windows, if the DirectPlay client is using the DirectPlay Winsock Service
and the higher level did not specify guaranteed delivery, then the datagram (UDP) or message (TCP)
must beis sent over the protocol (UDP or TCP, respectively) to the socket address associated with the
target player.

<18> Section 3.1.5.1: In Windows, the only SSPI provider supported is "NTLM".

<19> Section 3.1.5.5: Windows returns a DPERR_LOGONDENIED error code to the caller when this

message is received.

<20> Section 3.1.5.10: If the Windows Sockets DirectPlay provider is used, the SpData field of the
DPSP_MSG_ADDFORWARD request contains the IP address and port number that must beare used to
communicate with the system player.

<21> Section 3.2.5.4: In Windows, the only supported SSPI provider is the NTLM SSPI provider which
implements the NT LAN Manager (NTLM) Authentication Protocol, as specified in [MS-NLMP].

<22> Section 3.2.5.5: If the service provider is the Windows Winsock DirectPlay Service Provider,
then the DPSP_MSG_ADDFORWARD message must containcontains the IP address of the sender of
the DPSP_MSG_ADDFORWARDREQUEST message and the port number contained in the
DPSP_MSG_HEADER.SockAddr field (section 2.2.6).

<23> Section 5.1: DirectPlay actually provides access to end-to-end secure identity using Windows NT

security, and it provides for packet encryption and signing. For secure operation, employ that mode.

100 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

101 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Index

A

Abstract data model
 client 71
 DirectPlay client 71
 game host 87
Applicability 15
Application data - sending
 encrypted/signed data 78
 unencrypted/signed data 78

C

Capability negotiation 15
Change tracking 100
Client
 abstract data model 71
 higher-layer triggered events 74

 initialization 74
Client - DirectPlay
 abstract data model 71
 higher-layer triggered events
 adding group to another group 77
 adding player to group 77
 creating group 75
 creating player 75
 deleting player 75
 enumerating players or groups 75
 enumerating sessions 74
 joining session 75
 large messages 79
 overview 74
 removing group 76
 removing group from another group 77
 removing player from group 77
 sending application data 77
 sending chat 78
 setting group data 76
 setting group name 76
 setting player data 76
 setting player name 76
 initialization 74
 local events 85
 message processing 79
 sequencing rules 79
 timer events
 Packetize Timer 85
 Ping Timer 85
 timers
 Logon 74
 Packetize 74
 Ping 74
 Reliable API 74
 Session Enumeration 73

D

Data model - abstract
 client 71
 DirectPlay client 71
 game host 87
DirectPlay client

102 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 abstract data model 71
 higher-layer triggered events
 adding group to another group 77
 adding player to group 77
 creating group 75
 creating player 75
 deleting player 75
 enumerating players or groups 75
 enumerating sessions 74
 joining session 75
 large messages 79
 overview 74
 removing group 76
 removing group from another group 77
 removing player from group 77
 sending application data 77
 sending chat 78
 setting group data 76
 setting group name 76
 setting player data 76
 setting player name 76
 initialization 74
 local events 85

 message processing 79
 sequencing rules 79
 timer events
 Packetize Timer 85
 Ping Timer 85
 timers
 Logon 74
 Packetize 74
 Ping 74
 Reliable API 74
 Session Enumeration 73
DPLAYI_PACKEDPLAYER message 17
DPLAYI_PACKEDPLAYER packet 17
DPLAYI_SUPERPACKEDPLAYER message 20
DPLAYI_SUPERPACKEDPLAYER packet 20
DPSECURITYDESC message 24
DPSECURITYDESC packet 24
DPSESSIONDESC2 message 25
DPSESSIONDESC2 packet 25
DPSP_MSG_ACCESSGRANTED message (section 2.2.7 30, section 3.1.5.3 80)
DPSP_MSG_ACCESSGRANTED packet 30
DPSP_MSG_ADDFORWARD message (section 2.2.8 31, section 3.1.5.10 81)
DPSP_MSG_ADDFORWARD packet 31
DPSP_MSG_ADDFORWARDACK message (section 2.2.9 32, section 3.2.5.6 89)
DPSP_MSG_ADDFORWARDACK packet 32
DPSP_MSG_ADDFORWARDREPLY message (section 2.2.10 32, section 3.1.5.8 81)
DPSP_MSG_ADDFORWARDREPLY packet 32
DPSP_MSG_ADDFORWARDREQUEST message (section 2.2.11 32, section 3.2.5.5 89)
DPSP_MSG_ADDFORWARDREQUEST packet 32
DPSP_MSG_ADDPLAYERTOGROUP message (section 2.2.12 34, section 3.1.5.20 83)
DPSP_MSG_ADDPLAYERTOGROUP packet 34
DPSP_MSG_ADDSHORTCUTTOGROUP message (section 2.2.13 34, section 3.1.5.23 83)
DPSP_MSG_ADDSHORTCUTTOGROUP packet 34
DPSP_MSG_ASK4MULTICAST message (section 2.2.14 35, section 3.2.5.1 87)
DPSP_MSG_ASK4MULTICAST packet 35
DPSP_MSG_ASK4MULTICASTGUARANTEED message (section 2.2.15 36, section 3.2.5.2 88)
DPSP_MSG_ASK4MULTICASTGUARANTEED packet 36
DPSP_MSG_AUTHERROR message (section 2.2.16 36, section 3.1.5.4 80)
DPSP_MSG_AUTHERROR packet 36
DPSP_MSG_CHALLENGE message (section 2.2.17 37, section 3.1.5.2 80)
DPSP_MSG_CHALLENGE packet 37
DPSP_MSG_CHALLENGERESPONSE message (section 2.2.18 38, section 3.2.5.8 90)

103 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DPSP_MSG_CHALLENGERESPONSE packet 38
DPSP_MSG_CHAT message (section 2.2.19 38, section 3.1.5.26 84)
DPSP_MSG_CHAT packet 38
DPSP_MSG_CREATEGROUP message (section 2.2.20 39, section 3.1.5.11 81)
DPSP_MSG_CREATEGROUP packet 39
DPSP_MSG_CREATEPLAYER message (section 2.2.21 40, section 3.1.5.12 82)
DPSP_MSG_CREATEPLAYER packet 40
DPSP_MSG_CREATEPLAYERVERIFY message (section 2.2.22 41, section 3.1.5.13 82)
DPSP_MSG_CREATEPLAYERVERIFY packet 41
DPSP_MSG_DELETEGROUP message (section 2.2.23 43, section 3.1.5.15 82)
DPSP_MSG_DELETEGROUP packet 43
DPSP_MSG_DELETEGROUPFROMGROUP message (section 2.2.24 43, section 3.1.5.24 83)
DPSP_MSG_DELETEGROUPFROMGROUP packet 43
DPSP_MSG_DELETEPLAYER message (section 2.2.25 44, section 3.1.5.14 82)
DPSP_MSG_DELETEPLAYER packet 44
DPSP_MSG_DELETEPLAYERFROMGROUP message (section 2.2.26 45, section 3.1.5.21 83)
DPSP_MSG_DELETEPLAYERFROMGROUP packet 45
DPSP_MSG_ENUMPLAYER message 45
DPSP_MSG_ENUMPLAYER packet 45
DPSP_MSG_ENUMPLAYERSREPLY message 46
DPSP_MSG_ENUMPLAYERSREPLY packet 46
DPSP_MSG_ENUMSESSIONS message (section 2.2.29 47, section 3.2.5.3 88)
DPSP_MSG_ENUMSESSIONS packet 47

DPSP_MSG_ENUMSESSIONSREPLY message 48
DPSP_MSG_ENUMSESSIONSREPLY packet 48
DPSP_MSG_GROUPDATACHANGED message (section 2.2.31 49, section 3.1.5.16 82)
DPSP_MSG_GROUPDATACHANGED packet 49
DPSP_MSG_GROUPNAMECHANGED message (section 2.2.32 50, section 3.1.5.17 82)
DPSP_MSG_GROUPNAMECHANGED packet 50
DPSP_MSG_HEADER message 28
DPSP_MSG_HEADER packet 28
DPSP_MSG_IAMNAMESERVER message 51
DPSP_MSG_IAMNAMESERVER packet 51
DPSP_MSG_KEYEXCHANGE message (section 2.2.34 52, section 3.2.5.9 90)
DPSP_MSG_KEYEXCHANGE packet 52
DPSP_MSG_KEYEXCHANGEREPLY message (section 2.2.35 53, section 3.1.5.6 80)
DPSP_MSG_KEYEXCHANGEREPLY packet 53
DPSP_MSG_LOGONDENIED message (section 2.2.36 54, section 3.1.5.5 80)
DPSP_MSG_LOGONDENIED packet 54
DPSP_MSG_MULTICASTDELIVERY message 54
DPSP_MSG_MULTICASTDELIVERY packet 54
DPSP_MSG_NEGOTIATE message (section 2.2.38 55, section 3.2.5.7 90)
DPSP_MSG_NEGOTIATE packet 55
DPSP_MSG_PACKET message (section 2.2.39 55, section 3.1.5.27 84)
DPSP_MSG_PACKET packet 55
DPSP_MSG_PACKET2_ACK message (section 2.2.40 56, section 3.1.5.29 84)
DPSP_MSG_PACKET2_ACK packet 56
DPSP_MSG_PACKET2_DATA message (section 2.2.41 57, section 3.1.5.28 84)
DPSP_MSG_PACKET2_DATA packet 57
DPSP_MSG_PING message (section 2.2.42 58, section 3.1.5.30 84, section 3.2.5.10 90)
DPSP_MSG_PING packet 58
DPSP_MSG_PINGREPLY message (section 2.2.43 59, section 3.1.5.31 85, section 3.2.5.11 90)
DPSP_MSG_PINGREPLY packet 59
DPSP_MSG_PLAYERDATACHANGED message (section 2.2.44 59, section 3.1.5.19 83)
DPSP_MSG_PLAYERDATACHANGED packet 59
DPSP_MSG_PLAYERMESSAGE message 60
DPSP_MSG_PLAYERMESSAGE packet 60
DPSP_MSG_PLAYERNAMECHANGED message (section 2.2.46 61, section 3.1.5.18 83)
DPSP_MSG_PLAYERNAMECHANGED packet 61
DPSP_MSG_PLAYERWRAPPER message 62
DPSP_MSG_PLAYERWRAPPER packet 62
DPSP_MSG_REQUESTGROUPID message 62
DPSP_MSG_REQUESTGROUPID packet 62
DPSP_MSG_REQUESTPLAYERID message (section 2.2.49 63, section 3.2.5.4 88)
DPSP_MSG_REQUESTPLAYERID packet 63

104 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DPSP_MSG_REQUESTPLAYERREPLY message (section 2.2.50 64, section 3.1.5.1 79)
DPSP_MSG_REQUESTPLAYERREPLY packet 64
DPSP_MSG_SESSIONDESCCHANGED message (section 2.2.51 65, section 3.1.5.22 83)
DPSP_MSG_SESSIONDESCCHANGED packet 65
DPSP_MSG_SIGNED message (section 2.2.52 66, section 3.1.5.9 81)
DPSP_MSG_SIGNED packet 66
DPSP_MSG_SUPERENUMPLAYERSREPLY message (section 2.2.53 67, section 3.1.5.7 81)
DPSP_MSG_SUPERENUMPLAYERSREPLY packet 67
DPSP_MSG_VOICE message (section 2.2.54 69, section 3.1.5.25 84)
DPSP_MSG_VOICE packet 69
DPSP_MSG_YOUAREDEAD message (section 2.2.55 69, section 3.1.5.32 85)
DPSP_MSG_YOUAREDEAD packet 69

E

EnumSessionsReply example 92
EnumSessionsRequest example 92

Examples
 EnumSessionsReply 92
 EnumSessionsRequest 92
 joining game 93

F

Fields - vendor-extensible 15

G

Game host
 abstract data model 87
 higher-layer triggered events 87
 initialization 87
 local events 91
 message processing 87
 overview 86
 sequencing rules 87
 timer events
 Name Table Population Timer 91
 Ping Timer 91
 timers
 Name Table Population 87
 Ping 87
Glossary 8

H

Higher-layer triggered events
 client 74
 DirectPlay client
 adding group to another group 77
 adding player to group 77
 creating group 75
 creating player 75
 deleting player 75
 enumerating players or groups 75
 enumerating sessions 74
 joining session 75
 large messages 79
 overview 74
 removing group 76
 removing group from another group 77
 removing player from group 77
 sending application data 77
 sending chat 78
 setting group data 76

105 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 setting group name 76
 setting player data 76
 setting player name 76
 game host 87
Host - game
 abstract data model 87
 higher-layer triggered events 87
 initialization 87
 local events 91
 message processing 87
 overview 86
 sequencing rules 87
 timer events
 Name Table Population Timer 91
 Ping Timer 91
 timers
 Name Table Population 87
 Ping 87
Host migration 85

I

Implementer - security considerations 95
Index of security parameters 95
Informative references 11
Initialization
 client 74
 DirectPlay client 74
 game host 87
Introduction 8

J

Joining game - example 93

L

Local events
 DirectPlay client 85
 game host 91
Logon Timer 74

M

Message processing

 DirectPlay client 79
 game host 87
Messages
 DPLAYI_PACKEDPLAYER 17
 DPLAYI_SUPERPACKEDPLAYER 20
 DPSECURITYDESC 24
 DPSESSIONDESC2 25
 DPSP_MSG_ACCESSGRANTED 30
 DPSP_MSG_ADDFORWARD 31
 DPSP_MSG_ADDFORWARDACK 32
 DPSP_MSG_ADDFORWARDREPLY 32
 DPSP_MSG_ADDFORWARDREQUEST 32
 DPSP_MSG_ADDPLAYERTOGROUP 34
 DPSP_MSG_ADDSHORTCUTTOGROUP 34
 DPSP_MSG_ASK4MULTICAST 35
 DPSP_MSG_ASK4MULTICASTGUARANTEED 36
 DPSP_MSG_AUTHERROR 36
 DPSP_MSG_CHALLENGE 37
 DPSP_MSG_CHALLENGERESPONSE 38
 DPSP_MSG_CHAT 38

106 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 DPSP_MSG_CREATEGROUP 39
 DPSP_MSG_CREATEPLAYER 40
 DPSP_MSG_CREATEPLAYERVERIFY 41
 DPSP_MSG_DELETEGROUP 43
 DPSP_MSG_DELETEGROUPFROMGROUP 43
 DPSP_MSG_DELETEPLAYER 44
 DPSP_MSG_DELETEPLAYERFROMGROUP 45
 DPSP_MSG_ENUMPLAYER 45
 DPSP_MSG_ENUMPLAYERSREPLY 46
 DPSP_MSG_ENUMSESSIONS 47
 DPSP_MSG_ENUMSESSIONSREPLY 48
 DPSP_MSG_GROUPDATACHANGED 49
 DPSP_MSG_GROUPNAMECHANGED 50
 DPSP_MSG_HEADER 28
 DPSP_MSG_IAMNAMESERVER 51
 DPSP_MSG_KEYEXCHANGE 52
 DPSP_MSG_KEYEXCHANGEREPLY 53
 DPSP_MSG_LOGONDENIED 54
 DPSP_MSG_MULTICASTDELIVERY 54
 DPSP_MSG_NEGOTIATE 55
 DPSP_MSG_PACKET 55
 DPSP_MSG_PACKET2_ACK 56
 DPSP_MSG_PACKET2_DATA 57

 DPSP_MSG_PING 58
 DPSP_MSG_PINGREPLY 59
 DPSP_MSG_PLAYERDATACHANGED 59
 DPSP_MSG_PLAYERMESSAGE 60
 DPSP_MSG_PLAYERNAMECHANGED 61
 DPSP_MSG_PLAYERWRAPPER 62
 DPSP_MSG_REQUESTGROUPID 62
 DPSP_MSG_REQUESTPLAYERID 63
 DPSP_MSG_REQUESTPLAYERREPLY 64
 DPSP_MSG_SESSIONDESCCHANGED 65
 DPSP_MSG_SIGNED 66
 DPSP_MSG_SUPERENUMPLAYERSREPLY 67
 DPSP_MSG_VOICE 69
 DPSP_MSG_YOUAREDEAD 69
 SOCKADDR_IN 17
 syntax 17
 transport 17

N

Name Table Population Timer (section 3.2.2.1 87, section 3.2.6.1 91)
Normative references 10

O

Overview (synopsis) 12

P

Packetize Timer (section 3.1.2.4 74, section 3.1.6.1 85)
Parameters - security index 95
Ping Timer (section 3.1.2.5 74, section 3.1.6.2 85, section 3.2.2.2 87, section 3.2.6.2 91)
Preconditions 15
Prerequisites 15
Product behavior 96
Protocol Details
 overview 71

R

References 10
 informative 11

107 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 normative 10
Relationship to other protocols 15
Reliable API Timer 74

S

Security
 implementer considerations 95
 parameter index 95
Sequencing rules
 DirectPlay client 79
 game host 87
Session Enumeration Timer 73
SOCKADDR_IN message 17
SOCKADDR_IN packet 17
Standards assignments 16
Syntax 17

T

Timer events
 DirectPlay client
 Packetize Timer 85
 Ping Timer 85
 game host
 Name Table Population Timer 91
 Ping Timer 91
Timers
 DirectPlay client
 Logon Timer 74
 Packetize Timer 74
 Ping Timer 74
 Reliable API Timer 74
 Session Enumeration Timer 73
 game host
 Name Table Population Timer 87
 Ping Timer 87
Tracking changes 100
Transport 17
Triggered events - higher-layer
 client 74
 DirectPlay client
 adding group to another group 77
 adding player to group 77
 creating group 75
 creating player 75
 deleting player 75
 enumerating players or groups 75
 enumerating sessions 74
 joining session 75
 large messages 79
 overview 74
 removing group 76
 removing group from another group 77
 removing player from group 77
 sending application data 77
 sending chat 78

 setting group data 76
 setting group name 76
 setting player data 76
 setting player name 76
 game host 87

V

108 / 108

[MC-DPL4CS-Diff] - v20160714
DirectPlay 4 Protocol: Core and Service Providers
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Vendor-extensible fields 15
Versioning 15

